201
|
Basagni B, Malloggi S, Polito C, Pellicciari L, Campagnini S, Pancani S, Mannini A, Gemignani P, Salvadori E, Marignani S, Giovannelli F, Viggiano MP, Hakiki B, Grippo A, Macchi C, Cecchi F. MoCA Domain-Specific Pattern of Cognitive Impairment in Stroke Patients Attending Intensive Inpatient Rehabilitation: A Prospective Study. Behav Sci (Basel) 2024; 14:42. [PMID: 38247694 PMCID: PMC10813017 DOI: 10.3390/bs14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
A domain-specific perspective to cognitive functioning in stroke patients may predict their cognitive recovery over time and target stroke rehabilitation intervention. However, data about domain-specific cognitive impairment after stroke are still scarce. This study prospectively investigated the domain-specific pattern of cognitive impairments, using the classification proposed by the Montreal Cognitive Assessment (MoCA), in a cohort of 49 stroke patients at admission (T0), discharge (T1), and six-month follow-up (T2) from subacute intensive rehabilitation. The predictive value of T0 cognitive domains cognitive impairment at T1 and T2 was also investigated. Patients' cognitive functioning at T0, T1, and T2 was assessed through the MoCA domains for executive functioning, attention, language, visuospatial, orientation, and memory. Different evolutionary trends of cognitive domain impairments emerged across time-points. Patients' impairments in all domains decreased from T0 to T1. Attention and executive impairments decreased from T0 to T2 (42.9% and 26.5% to 10.2% and 18.4%, respectively). Conversely, altered visuospatial, language, and orientation increased between T1 and T2 (16.3%, 36.7%, and 40.8%, respectively). Additionally, patients' global cognitive functioning at T1 was predicted by the language and executive domains in a subacute phase (p = 0.031 and p = 0.001, respectively), while in the long term, only attention (p = 0.043) and executive (p = 0.019) domains intervened. Overall, these results confirm the importance of a domain-specific approach to target cognitive recovery across time in stroke patients.
Collapse
Affiliation(s)
- Benedetta Basagni
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Serena Malloggi
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Cristina Polito
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Leonardo Pellicciari
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Silvia Campagnini
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Silvia Pancani
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Paola Gemignani
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Emilia Salvadori
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Sara Marignani
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Fabio Giovannelli
- Department of NEUROFARBA, University of Florence, 50143 Firenze, Italy; (F.G.); (M.P.V.)
| | - Maria Pia Viggiano
- Department of NEUROFARBA, University of Florence, 50143 Firenze, Italy; (F.G.); (M.P.V.)
| | - Bahia Hakiki
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Antonello Grippo
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
- Department of Experimental and Clinical Medicine, University of Florence, 50143 Firenze, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Firenze, Italy; (B.B.); (S.M.); (C.P.); (L.P.); (S.P.); (A.M.); (P.G.); (E.S.); (S.M.); (B.H.); (A.G.); (C.M.); (F.C.)
- Department of Experimental and Clinical Medicine, University of Florence, 50143 Firenze, Italy
| |
Collapse
|
202
|
Xing X, Yang X, Chen J, Wang J, Zhang B, Zhao Y, Wang S. Multimorbidity, healthy lifestyle, and the risk of cognitive impairment in Chinese older adults: a longitudinal cohort study. BMC Public Health 2024; 24:46. [PMID: 38166903 PMCID: PMC10762941 DOI: 10.1186/s12889-023-17551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Evidence on the association between multimorbidity and cognitive impairment in Chinese older population is limited. In addition, whether a healthy lifestyle can protect cognitive function in multimorbid older population remains unknown. METHODS A total of 6116 participants aged ≥ 65 years from the Chinese Longitudinal Healthy Longevity Survey were followed up repeatedly. The number of coexisting chronic diseases was used for assessing multimorbidity and cardiometabolic multimorbidity. Three lifestyle statuses (unhealthy, intermediate, and healthy) were defined based on a lifestyle score covering smoking, alcohol drinking, body mass index, outdoor activities, and dietary pattern. Cognitive impairment was defined as the Mini-Mental State Examination score < 24. A modified Poisson regression model with robust error variance was used to assess the associations between multimorbidity, healthy lifestyle, and cognitive impairment. RESULTS During a median follow-up period of 5.8 years, 1621 incident cases of cognitive impairment were identified. The relative risk (RR) of cognitive impairment associated with heavy multimorbidity burden (≥ 3 conditions) was 1.39 (95% confidence interval: 1.22-1.59). This association declined with age, with RRs being 3.08 (1.78-5.31), 1.40 (1.04-1.87), and 1.19 (1.01-1.40) in subjects aged < 70 years, ≥ 70 and < 80 years, and ≥ 80 years, respectively (P for interaction = 0.001). Compared to unhealthy lifestyle, a healthy lifestyle was related to an approximately 40% reduced risk of cognitive impairment regardless of multimorbidity burden. Among the 5 lifestyle factors assessed, daily outdoor activities and a healthy dietary pattern showed convincing protective effects on cognitive function. CONCLUSIONS The relationship between multimorbidity and cognitive impairment is age-dependent but remains significant in the population aged 80 years or older. A healthy lifestyle may protect cognitive function regardless of the multimorbidity burden. These findings highlight the importance of targeting individuals with heavy multimorbidity burden and promoting a heathy lifestyle to prevent cognitive impairment in Chinese older population.
Collapse
Affiliation(s)
- Xiaolong Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, 300071, Tianjin, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 300070, Tianjin, China
| | - Jinqian Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, 300134, Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, 300071, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, 300071, Tianjin, China
| | - Yanrong Zhao
- Shanghai M-action Health Technology Co., Ltd, 201203, Shanghai, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, 300071, Tianjin, China.
| |
Collapse
|
203
|
Wu Y, Tan M, Gao Y, Geng N, Zhong W, Sun H, Li Z, Wu C, Li X, Zhang J. Complement Proteins in Serum Astrocyte-Derived Exosomes Are Associated with Poststroke Cognitive Impairment in Type 2 Diabetes Mellitus Patients. J Alzheimers Dis 2024; 99:291-305. [PMID: 38669534 DOI: 10.3233/jad-231235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background The complement system plays crucial roles in cognitive impairment and acute ischemic stroke (AIS). High levels of complement proteins in plasma astrocyte-derived exosomes (ADEs) were proven to be associated with Alzheimer's disease. We aimed to investigate the relationship of complement proteins in serum ADEs with poststroke cognitive impairment in type 2 diabetes mellitus (T2DM) patients. Methods This study analyzed 197 T2DM patients who suffered AIS. The Beijing version of the Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Complement proteins in serum ADEs were quantified using ELISA kits. Results Mediation analyses showed that C5b-9 and C3b in serum ADEs partially mediate the impact of obstructive sleep apnea (OSA), depression, small vessel disease (SVD), and infarct volume on cognitive function at the acute phase of AIS in T2DM patients. After adjusting for age, sex, time, and interaction between time and complement proteins in serum ADEs, the mixed linear regression showed that C3b and complement protein Factor B in serum ADEs were associated with MoCA scores at three-, six-, and twelve-months after AIS in T2DM patients. Conclusions Our study suggested that the impact of OSA, depression, SVD, and infarct volume on cognitive impairment in the acute stage of AIS may partially mediate through the complement proteins in serum ADEs. Additionally, the complement proteins in serum ADEs at the acute phase of AIS associated with MoCA scores at three-, six-, twelve months after AIS in T2DM patients.REGISTRATION: URL: http://www.chictr.org.cn/,ChiCTR1900021544.
Collapse
Affiliation(s)
- Yaxuan Wu
- Weifang Medical University, Weifang, Shandong, China
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Na Geng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Weibin Zhong
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chenxi Wu
- Department of Central Sterile Supply Department, Xichang People's Hospital, Xichang, Liangshan Yi Autonomous Prefecture, Sichuan, China
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
204
|
Pluta R, Bogucka-Kocka A, Bogucki J, Kocki J, Czuczwar SJ. Apoptosis, Autophagy, and Mitophagy Genes in the CA3 Area in an Ischemic Model of Alzheimer's Disease with 2-Year Survival. J Alzheimers Dis 2024; 99:1375-1383. [PMID: 38759019 PMCID: PMC11191440 DOI: 10.3233/jad-240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
Background Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival. Objective The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months. Methods In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease. Results First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECN1 and BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided with an increase in CASP3 gene expression. However, BECN1 gene expression was variable, increased significantly at 1 and 2 years and was below control values 1.5 years post-ischemia. Conclusions Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activation of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death post-ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Faculty of Medicine, Johon Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
205
|
Wang N, Wang L, Wang J, Chen R, Shi M, Liu H, Xu X. Effects of physical activity and depressive symptoms on cognitive function in older adults: National Health and Nutrition Examination Survey. Neurol Sci 2024; 45:299-308. [PMID: 38062279 DOI: 10.1007/s10072-023-07250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND & AIMS Population aging is a growing phenomenon, with cognitive impairment becoming a prevalent issue among the elderly. This study aimed to investigate the impact of physical activity and depressive symptoms on cognitive function in older adults using a nationally representative data set of U.S. older adults aged ≥ 60 years. METHODS The study comprised 2713 participants aged ≥ 60 from the National Health and Nutrition Examination Survey 2011-2014. Participants were classified into two groups: Cognitive impairment and No-Cognitive impairment, determined by the results of the Digit Symbol Substitution Test (DSST). Physical activity (PA) was assessed using the Global Physical Activity questionnaire (GPAQ), while depressive symptoms were evaluated using the Patient Health Questionnaire (PHQ-9). Logistic regression analysis examined the relationship between physical activity, depressive symptoms and cognitive function. RESULTS Multifactorial logistic regression analysis showed that high levels of physical activity were found to be significantly associated with a lower risk of cognitive impairment compared to low levels of physical activity [OR = 0.789, 95% CI:0.632 ~ 0.986, P = 0.037]. On the other hand, the presence of major depressive symptoms was significantly associated with a higher risk of cognitive impairment compared to the absence of depressive symptoms [OR = 3.482, 95% CI: 2.278 ~ 5.324, P < 0.001]. Participants in the recreational physical activity group exhibited higher Cognitive scores (P < 0.001), indicating better cognitive functioning. CONCLUSION High levels of Physical activity were independently associated with a lower incident cognitive impairment. Additionally, the severity of depression was positively correlated with an increased risk of cognitive impairment.
Collapse
Affiliation(s)
- Na Wang
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Long Wang
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Wang
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rong Chen
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Menglian Shi
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huanbing Liu
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xinqun Xu
- General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
206
|
Huang YH, Chen WY, Liu YH, Li TY, Lin CP, Cheong PL, Wang YM, Jeng JS, Sun CW, Wu CC. Mild cognitive impairment estimation based on functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300251. [PMID: 37697821 DOI: 10.1002/jbio.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Patients with mild cognitive impairment (MCI) are at a high risk of developing future dementia. However, early identification and active intervention could potentially reduce its morbidity and the incidence of dementia. Functional near-infrared spectroscopy (fNIRS) has been proposed as a noninvasive modality for detecting oxygenation changes in the time-varying hemodynamics of the prefrontal cortex. This study sought to provide an effective method for detecting patients with MCI using fNIRS and the Wisconsin card sorting test (WCST) to evaluate changes in blood oxygenation. The results revealed that all groups with a lower mini-mental state examination grade had a higher increase in HHb concentration during a modified WCST (MCST). The increase in the change in oxygenated hemoglobin concentration in the stroke group was smaller than that in the normal group due to weak cerebrovascular reactivity.
Collapse
Affiliation(s)
- Yi-Hua Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Yu Chen
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yao-Hong Liu
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Ying Li
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pou-Leng Cheong
- Department of Pediatrics, National Taiwan University Hospital, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chau-Chung Wu
- Department of Internal Medicine (Cardiology Section), National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Education and Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
207
|
Han K, Liu G, Liu N, Li J, Li J, Cui L, Cheng M, Long J, Liao X, Tang Z, Liu Y, Liu J, Chen J, Lu H, Zhang H. Effects of Mobile Intelligent Cognitive Training for Patients with Post-Stroke Cognitive Impairment: A 12-Week, Multicenter, Randomized Controlled Study. J Alzheimers Dis 2024; 100:999-1015. [PMID: 38968051 DOI: 10.3233/jad-240356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Background The current application effects of computerized cognitive intervention are inconsistent and limited to hospital rehabilitation settings. Objective To investigate the effect of mobile intelligent cognitive training (MICT) on patients with post-stroke cognitive impairment (PSCI). Methods This study was a multicenter, prospective, open-label, blinded endpoint, cluster-randomized controlled trial (RCT). 518 PSCI patients were stratified and assigned to four rehabilitation settings, and then patients were randomized into experimental and control groups in each rehabilitation setting through cluster randomization. All patients received comprehensive management for PSCI, while the experimental group additionally received MICT intervention. Treatment was 30 minutes daily, 5 days per week, for 12 weeks. Cognitive function, activities of daily living (ADL), and quality of life (QOL) were assessed before the treatment, at weeks 6 and 12 post-treatment, and a 16-week follow-up. Results Linear Mixed Effects Models showed patients with PSCI were better off than pre-treatment patients on each outcome measure (p < 0.05). Additionally, the improvement of these outcomes in the experimental group was significantly better than in the control group at week 6 post-treatment and 16-week follow-up (p < 0.05). The rehabilitation setting also affected the cognitive efficacy of MICT intervention in improving PSCI patients, and the degree of improvement in each outcome was found to be highest in hospital, followed by community, nursing home, and home settings. Conclusions Long-term MICT intervention can improve cognition, ADL, and QOL in patients with PSCI, with sustained effects for at least one month. Notably, different rehabilitation settings affect the cognitive intervention efficacy of MICT on PSCI patients. However, this still needs to be further determined in future studies.
Collapse
Affiliation(s)
- Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | | | - Nan Liu
- Beijing Puren Hospital, Beijing, China
| | - Jiangyi Li
- Beijing Dongcheng District Kangfu One Two Three Health Training Center, Beijing, China
| | - Jianfeng Li
- Beijing Yangfangdian Hospital, Beijing, China
| | - Lihua Cui
- Beijing Fengtai District Jiaxiang Nursing-Home for the Elderly, Beijing, China
- Beijing Fengtai You Anmen Hospital, Beijing, China
| | - Ming Cheng
- Beijing Haidian District Guolilai Elderly Care Center, Beijing, China
| | - Junzi Long
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Changping Laboratory, Beijing, China
| | - Xingxing Liao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Jiajie Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Jiarou Chen
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haitao Lu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
208
|
Li K, Mo D, Yu Q, Feng R, Li Y. Effect of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Comorbid Cognitive Impairment and Depression: A Randomized Controlled Trial. J Alzheimers Dis 2024; 101:337-352. [PMID: 39177600 DOI: 10.3233/jad-240505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background There are currently no uniform treatments for post-stroke comorbid cognitive impairment and depression (PSCCID). Objective To verify whether repetitive transcranial magnetic stimulation (rTMS) can improve PSCCID symptoms and explore the underlying roles of resting-state functional magnetic resonance imaging (rs-fMRI). Methods Thirty PSCCID patients were randomized in a 1 : 1 ratio to receive 4 weeks of rTMS (intervention group) or sham rTMS (control group) over the left dorsolateral prefrontal cortex (DLPFC). rs-fMRI was acquired to analyze the functional plasticity of brain regions at baseline and immediately after the last intervention. Results Cognition, depression status, and neural electrophysiology were improved in both intervention and control groups after treatment (p = 0.015-0.042), and the intervention group had more significant improvement than the control group. Analysis of functional connectivities (FCs) within the default mood network (DMN) showed that the connection strength of the left temporal pole/left parahippocampal cortex and right lateral temporal cortex/right retrosplenial cortex in the intervention group were enhanced compared with its pre-intervention and that in the control group after treatment (p < 0.05), and the both FC values were positively correlated with MMSE scores (p < 0.001). The intervention group had stronger FCs within the DMN compared with the control group after treatment, and some of the enhanced FCs were correlated with the P300 latency and amplitude. Conclusions rTMS over the left DLPFC is an effective treatment for improving both cognitive impairment and depression among patients with PSCCID. The enhanced FCs within the DMN may serve as a compensatory functional recombination to promote clinical recovery.
Collapse
Affiliation(s)
- Kuide Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Mo
- Department of Rehabilitation Medicine, the People's Hospital of Zhongjiang, Deyang, China
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongjian Feng
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
209
|
Moore MJ, Demeyere N, Rorden C, Mattingley JB. Lesion mapping in neuropsychological research: A practical and conceptual guide. Cortex 2024; 170:38-52. [PMID: 37940465 PMCID: PMC11474248 DOI: 10.1016/j.cortex.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Margaret J Moore
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.
| | - Nele Demeyere
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Colombia, SC, USA
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia; School of Psychology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
210
|
Pluta R. A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model. Curr Alzheimer Res 2024; 21:166-182. [PMID: 38963100 DOI: 10.2174/0115672050320921240627050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
211
|
Zhang Z, Lim MJR. Incident Dementia After Spontaneous Intracerebral Hemorrhage. J Alzheimers Dis 2024; 99:41-51. [PMID: 38640161 DOI: 10.3233/jad-240111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) is a complication that affects long-term functional outcomes after stroke. Studies on dementia after long-term follow-up in stroke have focused predominantly on ischemic stroke, which may be different from the development of dementia after spontaneous intracerebral hemorrhage (ICH). In this review, we summarize the existing data and hypotheses on the development of dementia after spontaneous ICH, review the management of post-ICH dementia, and suggest areas for future research. Dementia after spontaneous ICH has a cumulative incidence of up to 32.0-37.4% at 5 years post-ICH. Although the pathophysiology of post-ICH dementia has not been fully understood, two main theoretical frameworks can be considered: 1) the triggering role of ICH (both primary and secondary brain injury) in precipitating cognitive decline and dementia; and 2) the contributory role of pre-existing brain pathology (including small vessel disease and neurodegenerative pathology), reduced cognitive reserve, and genetic factors predisposing to cognitive dysfunction. These pathophysiological pathways may have synergistic effects that converge on dysfunction of the neurovascular unit and disruptions in functional connectivity leading to dementia post-ICH. Management of post-ICH dementia may include screening and monitoring, cognitive therapy, and pharmacotherapy. Non-invasive brain stimulation is an emerging therapeutic modality under investigation for safety and efficacy. Our review highlights that there remains a paucity of data and standardized reporting on incident dementia after spontaneous ICH. Further research is imperative for determining the incidence, risk factors, and pathophysiology of post-ICH dementia, in order to identify new therapies for the treatment of this debilitating condition.
Collapse
Affiliation(s)
- Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | |
Collapse
|
212
|
Demeyere N. Acute post-stroke screening for a cognitive care pathway. THE LANCET. HEALTHY LONGEVITY 2024; 5:e4-e5. [PMID: 38101425 DOI: 10.1016/s2666-7568(23)00257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Nele Demeyere
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
213
|
Wang S, Perkins AJ, Chi R, Yates BA, Khan SH, Gao S, Boustani M, Khan BA. Risk factors for dementia in older intensive care unit (ICU) survivors. Alzheimers Dement 2024; 20:278-287. [PMID: 37589315 PMCID: PMC10845165 DOI: 10.1002/alz.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION As the number of older intensive care unit (ICU) survivors grows, there is an urgent need to identify modifiable risk factors for post-ICU dementia. METHODS We performed a secondary data analysis of 3144 ICU patients ≥ 50 years of age without a history of dementia or severe mental illness who were screened as part of the Pharmacological Management of Delirium (PMD) study. Delirium was assessed using the Confusion Assessment Method for the ICU. Dementia was identified using International Classification of Diseases Ninth and Tenth revision codes for dementia or prescription of anti-dementia medication. RESULTS Average age (standard deviation) was 65.2 ± 9.5 years; 50.4% were female; and 37.3% were Black. Analyses identified stroke (adjusted hazard ratio [HR] 2.49; 95% confidence interval [CI: 1.52, 4.07], P < 0.001), and depression (adjusted HR 3.03; 95% CI [1.80, 5.10], P < 0.001) as post-ICU risk factors for dementia. DISCUSSION Future studies will need to examine whether interventions targeting post-ICU stroke and depression can lower dementia incidence in ICU survivors. HIGHLIGHTS Risk factors for post-intensive care unit (ICU) dementia were distinct from those of Alzheimer's disease. Cardiovascular risk factors were not associated with dementia in older ICU survivors. Post-ICU stroke was associated with a higher risk of dementia in older ICU survivors. Post-ICU depression was associated with a higher risk of dementia in older ICU survivors.
Collapse
Affiliation(s)
- Sophia Wang
- Department of PsychiatryIU Health Neuroscience CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Anthony J. Perkins
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rosalyn Chi
- Division of PulmonaryCritical Care, Sleep and Occupational Medicine, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Brandon A. Yates
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
- IU Center of Aging ResearchRegenstrief InstituteIndianapolisIndianaUSA
| | - Sikandar H. Khan
- Division of PulmonaryCritical Care, Sleep and Occupational Medicine, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- IU Center of Aging ResearchRegenstrief InstituteIndianapolisIndianaUSA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Malaz Boustani
- Division of PulmonaryCritical Care, Sleep and Occupational Medicine, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- IU Center of Aging ResearchRegenstrief InstituteIndianapolisIndianaUSA
- Indiana University Center of Health Innovation and Implementation ScienceIndianapolisIndianaUSA
- Sandra Eskenazi Center for Brain Care InnovationEskenazi HospitalIndianapolisIndianaUSA
- Division of Geriatrics and General Internal MedicineDepartment of Internal MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Babar A. Khan
- Division of PulmonaryCritical Care, Sleep and Occupational Medicine, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- IU Center of Aging ResearchRegenstrief InstituteIndianapolisIndianaUSA
- Indiana University Center of Health Innovation and Implementation ScienceIndianapolisIndianaUSA
- Sandra Eskenazi Center for Brain Care InnovationEskenazi HospitalIndianapolisIndianaUSA
| |
Collapse
|
214
|
Jia W, Zhou Y, Zuo L, Liu T, Li Z. Effects of brain atrophy and altered functional connectivity on poststroke cognitive impairment. Brain Res 2024; 1822:148635. [PMID: 37852525 DOI: 10.1016/j.brainres.2023.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND AND PURPOSE Brain atrophy and disrupted functional connectivity are often present in patients with poststroke cognitive impairment (PSCI). This study aimed to explore the relationship between remote brain atrophy, connectional diaschisis and cognitive impairment in ischemic stroke patients to provide valuable information about the mechanisms underlying cognitive function recovery. METHODS Forty first-time stroke patients with basal ganglia infarcts and twenty-nine age-matched healthy people were enrolled. All participants underwent T1-weighted and functional MRI scans, comprehensive cognitive function assessments at baseline, and 3-month follow-up. Brain volumes were calculated, and the atrophic regions were regarded as regions of interest in seed-based functional connectivity analyses. Pearson correlation analysis was used to explore the relationships among cognitive performance, brain atrophy, and functional connectivity alterations. RESULTS Compared with healthy participants, stroke patients had worse cognitive performance at baseline and the 3-month follow-up. Worse cognitive performance was associated with smaller bilateral thalamus, left hippocampus, and left amygdala volumes, as well as lower functional connectivity between the left thalamus and the left medial superior frontal gyrus, between the right thalamus and the left median cingulate and paracingulate gyri, between the right hippocampus and the left medial superior frontal gyrus, and between the left amygdala and the right dorsolateral superior frontal gyrus. CONCLUSIONS In patients with basal ganglia infarction, connectional diaschisis between remote brain atrophy and the prefrontal lobe plays a significant role in PSCI. This finding provides new scientific evidence for understanding the mechanisms of PSCI and indicates that the prefrontal lobe may be a target to improve cognitive function after stroke.
Collapse
Affiliation(s)
- Weili Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Chinese Institute for Brain Research, Beijing, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
215
|
Wang J, Hu X, Yang T, Jin J, Hao J, Kelly FJ, Huang J, Li G. Ambient air pollution and the dynamic transitions of stroke and dementia: a population-based cohort study. EClinicalMedicine 2024; 67:102368. [PMID: 38169700 PMCID: PMC10758736 DOI: 10.1016/j.eclinm.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Stroke and dementia are the leading causes of neurological disease burden. Detrimental effects of air pollution on both conditions are increasingly recognised, while the impacts on the dynamic transitions have not yet been explored, and whether critical time intervals exist is unknown. Methods This prospective study was conducted based on the UK Biobank. Annual average air pollution concentrations at baseline year 2010 estimated by land-use regression models were used as a proxy for long-term air pollution exposure. Associations between multiple air pollutants (PM2.5, PM2.5-10, and NO2) indicated by air pollution score and the dynamic transitions of stroke and dementia were estimated, and the impacts during critical time intervals were explored. The date cutoff of this study was February 29, 2020. Findings During a median follow-up of 10.9 years in 413,372 participants, 6484, 3813, and 376 participants developed incident stroke, dementia, and comorbidity of stroke and dementia. For the overall transition from stroke to comorbid dementia, the hazard ratio (HR) for each interquartile range (IQR) increase in air pollution score was 1.38 (95% CI, 1.15, 1.65), and the risks were limited to two time intervals (within 1 year and over 5 years after stroke). As for the transition from dementia to comorbid stroke, increased risk was only observed during 2-3 years after dementia. Interpretation Our findings suggested that air pollution played an important role in the dynamic transition of stroke and dementia even at concentrations below the current criteria. The findings provided new evidence for alleviating the disease burden of neurological disorders related to air pollution during critical time intervals. Funding The State Scholarship Fund of China Scholarship Council.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Frank J. Kelly
- Environmental Research Group, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
- Environmental Research Group, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
216
|
Su W, Li H, Dang H, Han K, Liu J, Liu T, Liu Y, Tang Z, Lu H, Zhang H. Predictors of Cognitive Functions After Stroke Assessed Using the Wechsler Adult Intelligence Scale: A Retrospective Study. J Alzheimers Dis 2024; 98:109-117. [PMID: 38363609 DOI: 10.3233/jad-230840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The mechanism(s) of cognitive impairment remains complex, making it difficult to confirm the factors influencing poststroke cognitive impairment (PSCI). Objective This study quantitatively investigated the degree of influence and interactions of clinical indicators of PSCI. Methods Information from 270 patients with PSCI and their Wechsler Adult Intelligence Scale (WAIS-RC) scores, totaling 18 indicators, were retrospectively collected. Correlations between the indicators and WAIS scores were calculated. Multiple linear regression model(MLR), genetic algorithm modified Back-Propagation neural network(GA-BP), logistic regression model (LR), XGBoost model (XGB), and structural equation model were used to analyze the degree of influence of factors on the WAIS and their mediating effects. Results Seven indicators were significantly correlated with the WAIS scores: education, lesion side, aphasia, frontal lobe, temporal lobe, diffuse lesions, and disease course. The MLR showed significant effect of education, lesion side, aphasia, diffuse lesions, and frontal lobe on the WAIS. The GA-BP included five factors: education, aphasia, frontal lobe, temporal lobe, and diffuse lesions. LR predicted that the lesion side contributed more to mild cognitive impairment, while education, lesion side, aphasia, and course of the disease contributed more to severe cognitive impairment. XGB showed that education, side of the lesion, aphasia, and diffuse lesions contributed the most to PSCI. Aphasia plays a significant mediating role in patients with severe PSCI. Conclusions Education, lesion side, aphasia, frontal lobe, and diffuse lesions significantly affected PSCI. Aphasia is a mediating variable between clinical information and the WAIS in patients with severe PSCI.
Collapse
Affiliation(s)
- Wenlong Su
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hui Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hui Dang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Kaiyue Han
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Jiajie Liu
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Tianhao Liu
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Ying Liu
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Zhiqing Tang
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Haitao Lu
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Hao Zhang
- China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
217
|
Tynterova AM, Barantsevich ER. [Indicators of cognitive impairment of varying severity in the acute period of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:14-20. [PMID: 39166928 DOI: 10.17116/jnevro202412408214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To assess phenotype and identify biomarkers of cognitive impairment (CI) of varying severity in patients in the acute period of ischemic stroke (IS) based on the analysis of clinical and paraclinical indicators. MATERIAL AND METHODS Two hundred and forty patients with diagnosed IS and presence of CI were examined. Depending on the scores on the Montreal Cognitive Assessment Scale, patients were divided into two groups: group 1 (n=182) with mild CI, group 2 (n=58) with dementia. On admission, stroke severity according to the National Institutes of Health Stroke Scale (NIHSS), activities of daily living assessed by the Barthel Scale and patient independence assessed by the modified Rankin Scale (mRS) were determined. Neuropsychological examination was performed on day 14 and included investigation of episodic memory, executive functions, speech, gnosis, praxis, and the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) parameters. Immunological diagnostics included a study of the concentration of cytokines of various groups (interleukin (IL)-1b, IL-6, IL-16, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokines CXCL10, CXCL11, CXCL9, tumor necrosis factor α (TNFα)). Neuroimaging parameters were assessed using brain MRI data with verification of the STRIVE criteria and the medial temporal lobe atrophy scale (MTA). The standard application software package SPSS Statistics, Pandas and SciPy libraries were used for statistical analysis. RESULTS Patients of group 2 had lower scores in all cognitive domains with the greatest reduction in perception, constructive praxis, semantic information processing and mnestic function. These analyses revealed a higher degree of IQCODE, prevalence of features corresponding to STRIVE/MTA criteria in patients of group 2, while patients of group 1 had higher NIHSS and mRS scores. When serum concentrations of cytokines were assessed, patients of group 1 showed higher concentrations of IL-1b, IL-6, GM-CSF and TNFα, while group 2 patients had higher concentrations of cytokine CXCL10. CONCLUSION The presence of pre-stroke CI, baseline indicators of the patient's functional status, neuroimaging parameters of MTA/STRIVE and age are reflected in the structure and severity of cognitive deficit in the acute period of IS. Investigation of the role of interleukins, GM-CSF, TNFα and CXCL10 in the pathogenesis of IS and their association with the progression of post-stroke CI requires further studies with a larger sample size and longer follow-up period.
Collapse
Affiliation(s)
- A M Tynterova
- Imannuel Kant Baltic Federal University, Kaliningrad, Russia
| | - E R Barantsevich
- Pavlov Federal Saint Petersburg State Medical University, St Petersburg, Russia
| |
Collapse
|
218
|
Kotelnikova AV, Kukshina AA, Turova EA. [Differentiated approach to cognitive rehabilitation of patients after stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:5-11. [PMID: 39718952 DOI: 10.17116/kurort20241010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Post-stroke cognitive impairments are widespread and significantly reduce the quality of life and rehabilitation prognosis of patients. Clinical observations show a serious variability of cognitive impairments in patients after acute cerebrovascular accident. Thus, the classification of above mentioned disorders, based on which it would be possible to determine the order of individualization of a cognitive rehabilitation program, is currently not available in literature. OBJECTIVE To scientifically establish the differentiated approach to cognitive rehabilitation by verification of patients groups, differing in the structure of post-stroke complications. MATERIAL AND METHODS Cognitive status of 45 patients in the early rehabilitation period after ischemic stroke (26 (57.8%) women, 19 (42.2%) men aged 63.0±8.0 years), who underwent inpatient treatment stage of medical rehabilitation was studied by means of «Short neuropsychological examination of cognitive sphere (SNECS)» methodology. Indicators of neurodynamics according to the domains of the International Classification of Functioning, Disability and Health were considered as well. RESULTS The conducted neuropsychological study revealed 4 groups of patients, 3 of which had a significant cognitive functions' deficiency, manifested in the 1st group by reduced indicators of psychomotor control level (neurodynamic impairments, asthenia, exhaustion), executive functions, ability to analytical-synthetic activity, attention and working memory; in the 2nd group - by reduced ability to perform graphical test tasks on constructional praxis and reproduction of sequences' set; in the 4th group - by reduced indicators of «unfinished images» test task performance, reflecting state of visual object gnosis. Cognitive functions' state in the persons of the 3rd group was assessed as satisfactory. CONCLUSION The present study provides an attempt to classify cognitive disorders in patients who underwent stroke aimed at the formation of differentiated cognitive rehabilitation programs. As a result, 4 groups of patients, differing in the structure of post-stroke complications, were verified, and the directions of rehabilitation work for each of them were indicated in the cognitive functions investigation using «SNECS» methodology.
Collapse
Affiliation(s)
- A V Kotelnikova
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - A A Kukshina
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - E A Turova
- S.I. Spasokukotsky Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| |
Collapse
|
219
|
Yu H, Zheng B, Zhang Y, Chu M, Shu X, Wang X, Wang H, Zhou S, Cao M, Wen S, Chen J. Activation changes in patients with post-stroke cognitive impairment receiving intermittent theta burst stimulation: A functional near-infrared spectroscopy study. NeuroRehabilitation 2024; 54:677-690. [PMID: 38905062 PMCID: PMC11307044 DOI: 10.3233/nre-240068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/05/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) has demonstrated efficacy in patients with cognitive impairment. However, activation patterns and mechanisms of iTBS for post-stroke cognitive impairment (PSCI) remain insufficiently understood. OBJECTIVE To investigate the activation patterns and potential benefits of using iTBS in patients with PSCI. METHODS A total of forty-four patients with PSCI were enrolled and divided into an iTBS group (iTBS and cognitive training) or a control group (cognitive training alone). Outcomes were assessed based on the activation in functional near-infrared spectroscopy (fNIRS), as well as Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and the modified Barthel Index (MBI). RESULTS Thirty-eight patients completed the interventions and assessments. Increased cortical activation was observed in the iTBS group after the interventions, including the right superior temporal gyrus (STG), left frontopolar cortex (FPC) and left orbitofrontal cortex (OFC). Both groups showed significant improvements in LOTCA and MBI after the interventions (p < 0.05). Furthermore, the iTBS group augmented superior improvement in the total score of MBI and LOTCA compared to the control group, especially in visuomotor organization and thinking operations (p < 0.05). CONCLUSION iTBS altered activation patterns and improved cognitive function in patients with PSCI. The activation induced by iTBS may contribute to the improvement of cognitive function.
Collapse
Affiliation(s)
- Hong Yu
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youmei Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Chu
- The Seconditions Hospital of Anhui Medical University, Hefei, China
| | - Xinxin Shu
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaojun Wang
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Hani Wang
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Siwei Zhou
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shilin Wen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianer Chen
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
220
|
Humphrey S, Pike KE, Long B, Ma H, Bourke R, Byrne D, Wright B, Wong D. What does cognitive screening reveal about early cognitive performance following endovascular clot retrieval and intravenous thrombolysis in acute ischaemic stroke? BRAIN IMPAIR 2024; 25:IB23066. [PMID: 38566290 DOI: 10.1071/ib23066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/04/2023] [Indexed: 04/04/2024]
Abstract
Background Little is known regarding cognitive outcomes following treatment with endovascular clot retrieval (ECR) and intravenous tissue plasminogen activator (t-PA). We aimed to determine if there were any differences on a measure of cognitive screening between patients treated with ECR, t-PA, and those who were managed conservatively. Methods The medical records of ischaemic stroke patients admitted to Monash Medical Centre between January 2019 and December 2019 were retrospectively reviewed. Information extracted from medical records included age, sex, National Institutes of Health Stroke Scale at presentation, location of occlusion, treatment type, medical history, and cognitive screening performance measured by the Montreal Cognitive Assessment (MoCA). Results Eighty-two patients met the inclusion criteria (mean age = 66.5 ± 13.9; 49 male, 33 female). Patients treated with ECR performed significantly better on the MoCA (n = 36, 24.1 ± 4.3) compared to those who were managed conservatively (n = 26, 20.7 ± 5.5). Performance for patients treated with t-PA (n = 20, 23.9 ± 3.5) fell between the ECR and conservative management groups, but they did not significantly differ from either. Conclusion Our retrospective chart review found that ischaemic stroke patients treated with ECR appear to perform better on cognitive screening compared to patients who are managed conservatively. We also found that patients treated with ECR and t-PA appear to have similar cognitive screening performances in the acute stages following ischaemic stroke, although this finding is likely to have been impacted by group differences in stroke characteristics and may reflect the possibility that the ECR group performed better than expected based on their stroke severity.
Collapse
Affiliation(s)
- Sam Humphrey
- Department of Psychology, Counselling & Therapy, School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia; and Neuropsychology Unit, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Kerryn E Pike
- Department of Psychology, Counselling & Therapy, School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia; and John Richards Centre for Rural Ageing Research, La Trobe University, Wodonga, Victoria, Australia; and School of Applied Psychology, Griffith Centre for Mental Health & Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Brian Long
- Neuropsychology Unit, Monash Medical Centre, Melbourne, Victoria, Australia; and Neurosciences Unit, North Metropolitan Health Service, Perth, Western Australia, Australia
| | - Henry Ma
- Department of Neurology, Monash Medical Centre, Melbourne, Victoria, Australia; and Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Robert Bourke
- Neuropsychology Unit, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Danielle Byrne
- Department of Occupational Therapy, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Bradley Wright
- Department of Psychology, Counselling & Therapy, School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Dana Wong
- Department of Psychology, Counselling & Therapy, School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
221
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
222
|
Duan Y, Tang HX. Efficacy of enhanced extracorporeal counterpulsation combined with atorvastatin in the treatment of cognitive impairment after stroke. World J Psychiatry 2023; 13:1027-1036. [PMID: 38186722 PMCID: PMC10768497 DOI: 10.5498/wjp.v13.i12.1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Cerebral apoplexy patients are prone to cognitive impairment, and it is very important to choose appropriate treatment methods to improve their cognitive impairment after stroke. AIM To evaluate the effects of enhanced external counterpulsation (EECP) in conjunction with atorvastatin on cognitive function, neurotransmitter levels, and the repair of brain tissue damage in patients with cognitive impairment due to stroke. METHODS In this retrospective study, data from 60 patients with poststroke cognitive impairment due to stroke who were treated in our hospital from February 2021 to July 2022 were analyzed and divided into a treatment group (n = 30) and a control group (n = 30) according to the different nursing methods applied. Patients in the treatment group received EECP in addition to atorvastatin, while those in the control group received atorvastatin alone. Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and activities of daily living (ADL) scale scores were compared between the two groups. Additionally, the two groups were compared in terms of serum acetylcholine (ACh), acetylcholinesterase (AChE), nitric oxide (NO), endothelin-1 (ET-1), β2-microglobulin (β2-MG), glial fibrillary acidic protein (GFAP), and visinin-like protein 1 (VILIP-1) in the serum. Blood flow measurements from the anterior cerebral artery (ACA), middle cerebral artery (MCA) and posterior cerebral artery (PCA) were compared between the two groups before and after treatment, and the pulsatility index (PI) and resistance index (RI) of each artery were determined. RESULTS MMSE, MoCA, and ADL scores all improved in both groups following treatment, with the study group showing more improvement than the control group (P < 0.05). After treatment, there were statistically significant increases in both ACh and NO levels, whereas decreases occurred in AChE, ET-1, β2-MG, VILIP-1, and GFAP, levels and the PI and RI of the left-ACA, right-ACA, left-MCA, right-MCA, left-PCA, and right-PCA. The study group showed greater gains in all metrics than the control group (P < 0.05). CONCLUSION EECP combined with atorvastatin is effective in the treatment of cognitive impairment after stroke and can effectively improve the cognitive function, neurotransmitter levels, and brain tissue damage status of patients.
Collapse
Affiliation(s)
- Yan Duan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Hui-Xia Tang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
223
|
Chau JPC, Lo SHS, Zhao J, Choi KC, Butt L, Lau AYL, Mok VCT, Kwok ZCM, Thompson DR. Prevalence of post-stroke cognitive impairment and associated risk factors in Chinese stroke survivors. J Neurol Sci 2023; 455:122805. [PMID: 37995462 DOI: 10.1016/j.jns.2023.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) adversely affects survivors' recovery trajectory and overall health outcomes. This study aimed to investigate the prevalence of PCSI and its associated risk factors. METHODS A cross-sectional study was conducted with stroke survivors recruited from the neurology units of three hospitals in Yunnan, China. Measures included the Frenchay Aphasia Screening Test (FAST), Apathy Evaluation Scale (AES), Fatigue Severity Scale (FSS), Informant Questionnaire for Cognitive Decline in the Elderly (IQCODE), Montreal Cognitive Assessment (MoCA), and Charlson Comorbidity Index (CCI). Logistic regression analysis was carried out to identify risk factors significantly and independently associated with PSCI. RESULTS Of 389 stroke participants studied, 139 (36%) were found to have PSCI. Every 10-year increase in age [odds ratio (OR) =1.69, 95% confidence interval (CI): 1.27-2.24, p < 0.001], and 1-point increase in the AES (OR = 1.13, 95% CI: 1.07-1.18, p < 0.001) and FSS scores (OR = 1.06, 95% CI: 1.03-1.10, p < 0.001) were significantly associated with higher odds of PSCI. Conversely, a 1-point increase in the MoCA score (OR = 0.91, 95% CI: 0.87-0.95, p < 0.001) and having an undergraduate education (OR = 0.45, 95% CI: 0.24-0.84, p = 0.013) or postgraduate education (OR = 0.18, 95% CI: 0.06-0.50, p = 0.001) were associated with reduced odds of PSCI. CONCLUSIONS PSCI is prevalent in the Chinese population, with advanced age, lower education levels, lower MoCA scores, and higher fatigue and apathy scores identified as strong risk factors. It is recommended that psychological and cognitive assessment be routinely incorporated into post-stroke rehabilitation pathways to mitigate cognitive decline.
Collapse
Affiliation(s)
- Janita Pak Chun Chau
- Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Suzanne Hoi Shan Lo
- Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Jie Zhao
- School of Nursing, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Kai Chow Choi
- Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Laveeza Butt
- Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Alexander Yuk Lun Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Vincent Chung Tong Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Zoe Ching Man Kwok
- Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - David R Thompson
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
224
|
Xie H, Yu Y, Yang Y, Sun Q, Li ZY, Ni MH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Gao W, Bi JJ, Yan LF, Cui GB. Commonalities and distinctions between the type 2 diabetes mellitus and Alzheimer's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurosci 2023; 17:1301778. [PMID: 38125399 PMCID: PMC10731270 DOI: 10.3389/fnins.2023.1301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are aging related diseases with high incidence. Because of the correlation of incidence rate and some possible mechanisms of comorbidity, the two diseases have been studied in combination by many researchers, and even some scholars call AD type 3 diabetes. But the relationship between the two is still controversial. Methods This study used seed-based d mapping software to conduct a meta-analysis of the whole brain resting state functional magnetic resonance imaging (rs-fMRI) study, exploring the differences in amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF) between patients (AD or T2DM) and healthy controls (HCs), and searching for neuroimaging evidence that can explain the relationship between the two diseases. Results The final study included 22 datasets of ALFF and 22 datasets of CBF. The results of T2DM group showed that ALFF increased in both cerebellum and left inferior temporal gyrus regions, but decreased in left middle occipital gyrus, right inferior occipital gyrus, and left anterior central gyrus regions. In the T2DM group, CBF increased in the right supplementary motor area, while decreased in the middle occipital gyrus and inferior parietal gyrus. The results of the AD group showed that the ALFF increased in the right cerebellum, right hippocampus, and right striatum, while decreased in the precuneus gyrus and right superior temporal gyrus. In the AD group, CBF in the anterior precuneus gyrus and inferior parietal gyrus decreased. Multimodal analysis within a disease showed that ALFF and CBF both decreased in the occipital lobe of the T2DM group and in the precuneus and parietal lobe of the AD group. In addition, there was a common decrease of CBF in the right middle occipital gyrus in both groups. Conclusion Based on neuroimaging evidence, we believe that T2DM and AD are two diseases with their respective characteristics of central nervous activity and cerebral perfusion. The changes in CBF between the two diseases partially overlap, which is consistent with their respective clinical characteristics and also indicates a close relationship between them. Systematic review registration PROSPERO [CRD42022370014].
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Wen Gao
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia-Jun Bi
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
225
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
226
|
Xu M, Li Y, Zhang C, Ma Y, Zhang L, Yang Y, Zhang Z, Meng T, He J, Wang H, Li S, Kranz GS, Zhao M, Chang J. Efficacy of scalp stimulation for multidomain cognitive impairment in patients with post-stroke cognitive impairment and dementia: A network meta-analysis and meta-regression of moderators. J Evid Based Med 2023; 16:505-519. [PMID: 38100480 DOI: 10.1111/jebm.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Scalp stimulation has gained more traction for post-stroke cognitive impairment and dementia (PSCID); the interaction between stimulation targets and parameters influences the response to the stimulation. However, the most efficacious treatment for improving different domains of cognitive impairment remains unknown. OBJECTIVE We aimed to conduct a systematic review and network meta-analysis (NMA) to compare the efficacy of various scalp stimulation protocols used in PSCID treatment. METHODS Randomized controlled trials of scalp stimulation in patients with PSCID were searched in eight databases over the past 20 years. Standardized mean differences (SMDs) for global and subdomain cognitive scores were pooled in Bayesian NMA. Moderators were examined using meta-regression analysis. RESULTS A total of 90 trials, with 6199 patients, were included. Low-frequency repetitive transcranial magnetic stimulation (rTMS) over the unaffected dorsolateral prefrontal cortex (DLPFC) was highly suggested for alleviating global severity (SMD = 1.11, 95% CI (0.64, 1.57)). High-frequency rTMS over the left DLPFC was recommended for language use (1.85 (1.18, 2.52)), executive function (0.85 (0.36, 1.33)), orientation deficits (0.59 (0.07, 1.13)), and attention (0.85 (0.27, 1.43)). Anodal transcranial direct current stimulation over the affected DLPFC (2.03 (0.72, 3.34)) was recommended for treating memory impairment. Meta-regression analyses showed significant associations within attention, language and orientation. CONCLUSION Overall, different cognitive domains have different optimal scalp stimulation prescriptions, and activating the affected key brain regions and inhibiting the unaffected area is still the most effective treatment.
Collapse
Affiliation(s)
- Minjie Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing, China
| | - Ying Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Ma
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Leyi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuai Yang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Meng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi He
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haifang Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing, China
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
227
|
Vestergaard SB, Dahm CC, Gottrup H, Valentin JB, Johnsen SP, Andersen G, Mortensen JK. Intravenous thrombolysis for acute ischemic stroke is associated with lower risk of post-stroke dementia: A nationwide cohort study. Eur Stroke J 2023; 8:947-955. [PMID: 37665134 PMCID: PMC10683737 DOI: 10.1177/23969873231197530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Dementia after stroke is common and is a great concern for patients and their caregivers. The objective was to investigate if intravenous thrombolysis (IVT) for acute ischemic stroke (AIS) was associated with lower risk of dementia after stroke. PATIENTS AND METHODS When IVT was introduced in Denmark, not all eligible patients were treated due to restricted access. We conducted a nationwide register-based cohort study of all patients with AIS in Denmark from 2004 to 2011. IVT-treated patients were propensity score-matched with comparable non-treated patients. Cox proportional hazards regression was used to estimate the hazard ratio (HR) for all-cause and vascular dementia 2, 5, and 10 years after stroke. RESULTS Of the 5919 patients eligible for the study, 2305 IVT-treated patients were propensity score-matched with 2305 non-treated patients. Mean (SD) age was 66.6 (13.3) and 61.2% were male. Rate of all-cause dementia was lower for the IVT-treated 2 years (8.4/1000 person years (PY) vs 13.6/1000 PY, HR 0.63 (0.40-0.99)) and 5 years after stroke (7.3/1000 PY vs 11.4/1000 PY, HR 0.65 (0.46-0.91)). 10 years after stroke, the rates of all-cause dementia remained in favor of IVT (8.0/1000 PY vs 9.8/1000 PY, HR 0.83 (0.64-1.07)). IVT-treated had lower rates of vascular dementia 2 years (2.4/1000 PY vs 7.4/1000 PY, HR 0.33 (0.15-0.71)), 5 years (2.3/1000 PY vs 6.2/1000 PY, HR 0.38 (0.23-0.65)), and 10 years after stroke (3.0/1000 PY vs 5.4/1000 PY, HR 0.56 (0.38-0.81)). CONCLUSION IVT treatment was associated with lower long-term risk of both vascular and all-cause dementia after AIS.
Collapse
Affiliation(s)
- Sigrid Breinholt Vestergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Brink Valentin
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University & Aalborg University Hospital, Aalborg, Denmark
| | - Søren Paaske Johnsen
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University & Aalborg University Hospital, Aalborg, Denmark
| | - Grethe Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Kærgård Mortensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
228
|
Kraft P, Häusler KG. [Stroke-Related Cognitive Dysfunction]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:503-509. [PMID: 37857330 DOI: 10.1055/a-2176-7862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
ZusammenfassungEine kognitive Dysfunktion nach Schlaganfall besteht häufig und
korreliert mit der Lokalisation und dem Ausmaß des Schlaganfalls sowie
mit dem Zeitpunkt der Erhebung, die anhand standardisierter und etablierter
Testverfahren erfolgen sollte. Eine kognitive Dysfunktion nach Schlaganfall ist
im Kontext einer so genannten post-stroke dementia für das funktionelle
Outcome relevant. Zudem ist das Bestehen einer kognitiven Dysfunktion mit einer
erhöhten Wahrscheinlichkeit für ein Schlaganfallrezidiv
assoziiert. Kognitive Defizite als mögliche Folge eines Schlaganfalls
sollte daher auch abseits von Komplex- und Rehabilitationsbehandlungen Beachtung
finden, zumal in Deutschland bis dato kein ambulantes Nachsorgekonzept nach
stattgehabtem Schlaganfall etabliert wurde. Nicht nur zerebrovaskuläre
Ereignisse selbst, sondern auch das Bestehen vaskulärer Risikofaktoren
wie Herzinsuffizienz, Vorhofflimmern, Hypercholesterinämie und
Niereninsuffizienz können zur Entwicklung einer kognitiven
Funktionsstörung beitragen und eine kognitive Dysfunktion nach
Schlaganfall verstärken. Die bestmögliche Therapie bekannter
vaskulärer Risikofaktoren und eine gesunde Lebensweise sind im Kontext
bis dato fehlender spezifischer medikamentöser Therapien einer
kognitiven Dysfunktion nach Schlaganfall angezeigt. Eine gezielte Rehabilitation
kann zur Erhaltung und Verbesserung kognitiver Funktionen bei kognitiver
Dysfunktion nach Schlaganfall beitragen. Prospektive (randomisierte)
Schlaganfallstudien sollten eine standardisierte Erfassung kognitiver Endpunkte
einschließen und bestenfalls auf die Entwicklung präventiver
Therapiestrategien für die kognitive Dysfunktion abzielen.
Collapse
Affiliation(s)
- Peter Kraft
- Neurologie, Klinikum Main-Spessart, Lohr, Germany
| | | |
Collapse
|
229
|
Stulberg EL, Sachdev PS, Murray AM, Cramer SC, Sorond FA, Lakshminarayan K, Sabayan B. Post-Stroke Brain Health Monitoring and Optimization: A Narrative Review. J Clin Med 2023; 12:7413. [PMID: 38068464 PMCID: PMC10706919 DOI: 10.3390/jcm12237413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Significant advancements have been made in recent years in the acute treatment and secondary prevention of stroke. However, a large proportion of stroke survivors will go on to have enduring physical, cognitive, and psychological disabilities from suboptimal post-stroke brain health. Impaired brain health following stroke thus warrants increased attention from clinicians and researchers alike. In this narrative review based on an open timeframe search of the PubMed, Scopus, and Web of Science databases, we define post-stroke brain health and appraise the body of research focused on modifiable vascular, lifestyle, and psychosocial factors for optimizing post-stroke brain health. In addition, we make clinical recommendations for the monitoring and management of post-stroke brain health at major post-stroke transition points centered on four key intertwined domains: cognition, psychosocial health, physical functioning, and global vascular health. Finally, we discuss potential future work in the field of post-stroke brain health, including the use of remote monitoring and interventions, neuromodulation, multi-morbidity interventions, enriched environments, and the need to address inequities in post-stroke brain health. As post-stroke brain health is a relatively new, rapidly evolving, and broad clinical and research field, this narrative review aims to identify and summarize the evidence base to help clinicians and researchers tailor their own approach to integrating post-stroke brain health into their practices.
Collapse
Affiliation(s)
- Eric L. Stulberg
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW 2052, Australia;
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research, Minneapolis, MN 55415, USA;
- Department of Medicine, Geriatrics Division, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| | - Steven C. Cramer
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- California Rehabilitation Institute, Los Angeles, CA 90067, USA
| | - Farzaneh A. Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Kamakshi Lakshminarayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Behnam Sabayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Neurology, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| |
Collapse
|
230
|
Chen Y, Lan M. A Hierarchical Multi-Dimensional Cognitive Training Program for Preventive Cognitive Decline in Acute Ischemic Stroke Patients: Study Protocol for a Randomized Controlled Trial. J Alzheimers Dis Rep 2023; 7:1267-1275. [PMID: 38143779 PMCID: PMC10741896 DOI: 10.3233/adr-230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 12/26/2023] Open
Abstract
Background One of the most popular ways to address cognitive decline is cognitive training. The fact that cognitive deterioration is permanent is one of the main issues. This issue might be resolved by preventive cognitive training when it is acute. As a result, this study aims to design and assess how well stroke patients respond to hierarchical, multi-dimensional preventative cognitive training. Objective To describe the study design of this center implementation trial. Methods Participants in the study will be recruited from a hospital in China and randomly assigned to the intervention group or the usual care group. Interventions will include four-week hierarchical multi-dimensional preventive cognitive training through a WeChat program. for Primary outcome measures will be the Montreal Cognitive Assessment, Mini-Mental State Examination, and Post-Stroke Cognitive Impairment (PSCI) Incidence. The secondary outcome measure will include the Hamilton Depression Scale, Hamilton Anxiety Scale, Modified Barthel Index, and National Institutes of Health Neurological Deficit Score. Outcomes will be measured at baseline, 12 weeks, and 24 weeks from the baseline. Results We expect that the hierarchical multi-dimensional preventive cognitive training program will be easy to implement, and the cognitive function, cognitive psychology, ability of daily living will vary in each setting. Conclusions The results will provide evidence highlighting differences in a new strategy of cognitive training through the WeChat program, which allows the home-based practice, puts forward an advanced idea of preventive cognitive training in the acute stage, and has the highest effectiveness of reducing cognitive impairment, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Nursing Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meijuan Lan
- Nursing Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
231
|
Zhou J, Yang C, Xv Q, Wang L, Shen L, Lv Q. Usefulness of Serum Translocator Protein as a Potential Predictive Biochemical Marker of Three-Month Cognitive Impairment After Acute Intracerebral Hemorrhage: A Prospective Observational Cohort Study. Int J Gen Med 2023; 16:5389-5403. [PMID: 38021045 PMCID: PMC10674616 DOI: 10.2147/ijgm.s438503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Translocator protein (TSPO) is a biomarker of neuroinflammation and brain injury. This study aimed to ascertain the potential of serum TSPO as a predictor of cognitive impairment after acute intracerebral hemorrhage (ICH). Methods In this prospective observational cohort study, 276 patients with supratentorial ICH were randomly assigned to two groups (184 patients in the study group and 92 in the validation group) in a 2:1 ratio. Serum TSPO levels were gauged at admission, and cognitive status was assessed using the Montreal Cognitive Assessment Scale (MoCA) post-stroke 3 months. A MoCA score of < 26 was considered indicative of cognitive impairment. Results Serum TSPO levels were inversely correlated with MoCA scores (ρ=-0.592; P<0.001). Multivariate linear regression analysis showed that serum TSPO levels were independently associated with MoCA scores (β, -0.934; 95% confidence interval (CI), -1.412--0.455; VIF, 1.473; P<0.001). Serum TSPO levels were substantially higher in patients with cognitive impairment than in the remaining patients (median, 2.7 versus 1.6 ng/mL; P<0.001). Serum TSPO levels were linearly correlated with the risk of cognitive impairment under a restricted cubic spline (P=0.325) and independently predicted cognitive impairment (odds ratio, 1.589; 95% CI, 1.139-2.216; P=0.016). Subgroup analysis showed that the relationship between serum TSPO levels and cognitive impairment was not markedly influenced by other parameters, such as age, sex, drinking, smoking, hypertension, diabetes mellitus, body mass index, and dyslipidemia (all P for interaction > 0.05). The model, which contained serum TSPO, National Institutes of Health Stroke Scale scores and hematoma volume, performed well under the receiver operating characteristic curve, calibration curve and decision curve, and using the Hosmer-Lemeshow test. This model was validated in the validation group. Conclusion Serum TSPO level upon admission after ICH was independently associated with cognitive impairment, substantializing serum TSPO as a reliable predictor of post-ICH cognitive impairment.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qichen Xv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liangjun Shen
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qingwei Lv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
232
|
Wang J, Xu X, Wang C, Ye D, Chen R, Peng P, Huang H, Yan Y, Chen Y, Wang S, Chen L, Gong H. Association of acute kidney injury with the risk of cognitive impairment or dementia: a systematic review and meta-analysis. Ren Fail 2023; 45:2279647. [PMID: 37964563 PMCID: PMC10653765 DOI: 10.1080/0886022x.2023.2279647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
PURPOSE Since previous studies have shown a paradoxical relationship between acute kidney injury (AKI) and risk of cognitive impairment, there is an urgent need for a meta-analysis to assess the relationship between AKI and risk of cognitive impairment or dementia. MATERIALS AND METHODS From database inception to October 2023, we searched PubMed, OVID (Medline), Embase, Web of Science, and Cochrane Library. This study examined AKI and cognitive impairment or dementia observational studies. Two authors independently assessed cohort and cross-sectional study quality using the Newcastle-Ottawa Scale and AHRQ Scale. They also used ROBINS-I to assess bias. The meta-analysis used fixed effects. Sensitivity analysis verified results stability. The funnel plot, Egger test, and Begg test determined publication bias in the results. RESULTS Seven studies with 423,876 patients were included in the meta-analysis. Patients with AKI were at higher risk of cognitive impairment or dementia compared to those who had not experienced AKI (OR = 1.87, 95% confidence interval [CI]: 1.77-1.98, I2=46.0%, p = 0.08). All subgroups showed a substantial connection between AKI and cognitive impairment. Compared to domestic research, the connection was stronger in overseas studies (OR = 2.18, 95% CI: 1.66-2.87). Both cognitive impairment and dementia outcomes showed a substantial connection between AKI and cognitive impairment, with OR values of 2.00 (95% CI: 1.44-2.76) and 2.04 (95% CI: 1.66-2.51). CONCLUSIONS We found that AKI significantly increases cognitive impairment or dementia risk. Thus, early interventions to delay cognitive impairment and prevent adverse outcomes in AKI patients are needed.
Collapse
Affiliation(s)
- Jiang Wang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Xiao Xu
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Chunyan Wang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Dongmei Ye
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Ruzhao Chen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Pai Peng
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Huadong Huang
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Yuxiang Yan
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Ying Chen
- Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, Ji’an, Jiangxi Province, China
- Department of Medicine, Jinggangshan University, Ji’an, Jiangxi Province, China
- Online Collaborative Research Center for Evidence-Based Medicine Ministry of Education, Jinggangshan University Branch, Jiangxi Province, China
| | - Shixuan Wang
- Department of Philosophy, University of Jena, China
| | - Lan Chen
- Department of Neurology, Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji’an, Jiangxi Province, China
| | - Huping Gong
- College of Nursing, Gannan Medical University, Ganzhou, China
| |
Collapse
|
233
|
Wang Y, Jiang A, Yan J, Wen D, Gu N, Li Z, Sun X, Wu Y, Guo Z. Inhibition of GPR17/ID2 Axis Improve Remyelination and Cognitive Recovery after SAH by Mediating OPC Differentiation in Rat Model. Transl Stroke Res 2023:10.1007/s12975-023-01201-0. [PMID: 37935878 DOI: 10.1007/s12975-023-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
Myelin sheath injury contributes to cognitive deficits following subarachnoid hemorrhage (SAH). G protein-coupled receptor 17 (GPR17), a membrane receptor, negatively regulates oligodendrocyte precursor cell (OPC) differentiation in both developmental and pathological contexts. Nonetheless, GPR17's role in modulating OPC differentiation, facilitating remyelination post SAH, and its interaction with downstream molecules remain elusive. In a rat SAH model induced by arterial puncture, OPCs expressing GPR17 proliferated prominently by day 14 post-onset, coinciding with compromised myelin sheath integrity and cognitive deficits. Selective Gpr17 knockdown in oligodendrocytes (OLs) via adeno-associated virus (AAV) administration revealed that reduced GPR17 levels promoted OPC differentiation, restored myelin sheath integrity, and improved cognitive deficits by day 14 post-SAH. Moreover, GPR17 knockdown attenuated the elevated expression of the inhibitor of DNA binding 2 (ID2) post-SAH, suggesting a GPR17-ID2 regulatory axis. Bi-directional modulation of ID2 expression in OLs using AAV unveiled that elevated ID2 counteracted the restorative effects of GPR17 knockdown. This resulted in hindered differentiation, exacerbated myelin sheath impairment, and worsened cognitive deficits. These findings highlight the pivotal roles of GPR17 and ID2 in governing OPC differentiation and axonal remyelination post-SAH. This study positions GPR17 as a potential therapeutic target for SAH intervention. The interplay between GPR17 and ID2 introduces a novel avenue for ameliorating cognitive deficits post-SAH.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Anan Jiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China
| | - Nina Gu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Zhao Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| | - Zongduo Guo
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
234
|
Lee M, Lim JS, Kim Y, Park SH, Lee SH, Kim C, Lee BC, Yu KH, Lee JJ, Oh MS. High ApoB/ApoA-I Ratio Predicts Post-Stroke Cognitive Impairment in Acute Ischemic Stroke Patients with Large Artery Atherosclerosis. Nutrients 2023; 15:4670. [PMID: 37960323 PMCID: PMC10648714 DOI: 10.3390/nu15214670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND We aimed to investigate the association between the ApoB/ApoA-I ratio and post-stroke cognitive impairment (PSCI) in patients with acute stroke of large artery atherosclerosis etiology. METHODS Prospective stroke registry data were used to consecutively enroll patients with acute ischemic stroke due to large artery atherosclerosis. Cognitive function assessments were conducted 3 to 6 months after stroke. PSCI was defined as a z-score of less than -2 standard deviations from age, sex, and education-adjusted means in at least one cognitive domain. The ApoB/ApoA-I ratio was calculated, and patients were categorized into five groups according to quintiles of the ratio. Logistic regression analyses were performed to assess the association between quintiles of the ApoB/ApoA-I ratio and PSCI. RESULTS A total of 263 patients were included, with a mean age of 65.9 ± 11.6 years. The median NIHSS score and ApoB/ApoA-I ratio upon admission were 2 (IQR, 1-5) and 0.81 (IQR, 0.76-0.88), respectively. PSCI was observed in 91 (34.6%) patients. The highest quintile (Q5) of the ApoB/ApoA-I ratio was a significant predictor of PSCI compared to the lowest quintile (Q1) (adjusted OR, 3.16; 95% CI, 1.19-8.41; p-value = 0.021) after adjusting for relevant confounders. Patients in the Q5 group exhibited significantly worse performance in the frontal domain. CONCLUSIONS The ApoB/ApoA-I ratio in the acute stage of stroke independently predicted the development of PSCI at 3-6 months after stroke due to large artery atherosclerosis. Further, a high ApoB/ApoA-I ratio was specifically associated with frontal domain dysfunction.
Collapse
Affiliation(s)
- Minwoo Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (B.-C.L.); (K.-H.Y.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, Ulsan University College of Medicine, Seoul 05505, Republic of Korea;
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 24252, Republic of Korea; (Y.K.); (S.H.P.)
| | - Soo Hyun Park
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 24252, Republic of Korea; (Y.K.); (S.H.P.)
| | - Sang-Hwa Lee
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (S.-H.L.); (C.K.)
| | - Chulho Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea; (S.-H.L.); (C.K.)
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (B.-C.L.); (K.-H.Y.)
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (B.-C.L.); (K.-H.Y.)
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Mi Sun Oh
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (M.L.); (B.-C.L.); (K.-H.Y.)
| |
Collapse
|
235
|
Fan XY, Shi G, Zhao YP, Yang JJ, Feng J. Neuroprotective effects of oxytocin against ischemic stroke in rats by blocking glutamate release and CREB-mediated DNA hypermethylation. Biomed Pharmacother 2023; 167:115520. [PMID: 37729734 DOI: 10.1016/j.biopha.2023.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Glutamate plays a crucial role in cognitive impairments after ischemic stroke. There is a scarcity of information about how glutamate-induced activation of cAMP-response element binding (CREB) signaling pathway regulates both the negative and positive regulators of synaptic plasticity. Recent studies have demonstrated the involvement of prominent epigenetic repressors, such as MeCP2 and DNMTs, in stroke. Neuroprotective effects of oxytocin against ischemia have been previously reported, while the underlying mechanism is still elusive. In this research, the possible role of CREB-mediated DNA hypermethylation and the potential mechanism of oxytocin in a rat model of permanent middle cerebral artery occlusion (pMCAO) were assessed. Adult male Sprague-Dawley rats were pretreated with intraperitoneal injection of oxytocin at the onset of pMCAO. The effects of oxytocin on spines and the expression levels of synaptic genes were determined. The regulatory effects of oxytocin on glutamate level, N-methyl-D-aspartate receptors (NMDARs), its downstream CREB pathway, and global or gene-specific DNA methylation status were evaluated by immunofluorescence, co-immunoprecipitation, and chromatin immunoprecipitation, respectively. We found that CREB could act as a common transcription factor for MeCP2 and DNMT3B after ischemic stroke. Oxytocin dose-dependently deactivated NR2B-related CaM-CREB pathway and inhibited DNA hypermethylation at the CpG islands of Ngf gene in pMCAO-operated rats. Moreover, oxytocin prevented pMCAO-induced reduction in the number of spines and neural cells. DNA hypermethylation in Ngf gene contributed to the cognitive deficits post-stroke. The neuroprotective effects of oxytocin against ischemia could be attributed to inhibiting glutamate release, providing additional evidence on the mechanism of oxytocin against ischemic stroke.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Shi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yun-Peng Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Jing Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
236
|
Basak JM, Falk M, Mitchell DN, Coakley KA, Quillinan N, Orfila JE, Herson PS. Targeting BACE1-mediated production of amyloid beta improves hippocampal synaptic function in an experimental model of ischemic stroke. J Cereb Blood Flow Metab 2023; 43:66-77. [PMID: 37150606 PMCID: PMC10638992 DOI: 10.1177/0271678x231159597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aβ), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients. In this study, we use the transient middle cerebral artery occlusion (MCAo) model in young adult mice to evaluate if a large vessel stroke increases brain soluble Aβ levels. We show that soluble Aβ40 and Aβ42 levels are increased in the ipsilateral hippocampus in MCAo mice 7 days after the injury. We also analyze the level and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), an enzyme that generates Aβ in the brain, and observe that BACE1 activity is increased in the ipsilateral hippocampus of the MCAo mice. Finally, we highlight that treatment of MCAo mice with a BACE1 inhibitor during the recovery period rescues stroke-induced deficits in hippocampal synaptic plasticity. These findings support a molecular pathway linking ischemia to alterations in BACE1-mediated production of Aβ, and encourage future studies that evaluate whether targeting BACE1 activity improves the cognitive deficits seen with PSCID.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Macy Falk
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Danae N Mitchell
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Kelley A Coakley
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
237
|
Geng H, An Q, Zhang Y, Huang Y, Wang L, Wang Y. Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases. Mol Neurobiol 2023; 60:6748-6756. [PMID: 37480499 DOI: 10.1007/s12035-023-03489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
The deimination or citrullination of arginine residues in the polypeptide chain by peptidylarginine deiminase 4 alters the charge state of the polypeptide chain and affects the function of proteins. It is one of the main ways of protein post-translational modifications to regulate its function. Peptidylarginine deiminase 4 is widely expressed in multiple tissues and organs of the body, especially the central nervous system, and regulates the normal development of organisms. The abnormal expression and activation of peptidylarginine deiminase 4 is an important pathological mechanism for the occurrence and development of central nervous system diseases such as multiple sclerosis, Alzheimer's disease, cerebral ischemia reperfusion injury, and glioblastoma.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yanshuo Zhang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yunhang Huang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| | - Yanming Wang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
238
|
Liang W, Miao J, Wang Y, Sun W, Pan C, Chen M, Li G, Lan Y, Qiu X, Zhao X, Jing P, Chen G, Mei J, Zhu Z. Longitudinal relationships between depressive symptoms and cognitive function after stroke: A cross-lagged panel design. J Psychosom Res 2023; 174:111486. [PMID: 37729753 DOI: 10.1016/j.jpsychores.2023.111486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Stroke is a leading cause of mortality and disability. This study aimed to investigate the temporal and directional relationships between post-stroke depressive symptoms and cognitive impairment using a cross-lagged panel design. Depressive symptoms and cognitive impairment are two common post-stroke complications. However, the precise underlying mechanism remains unclear despite their close relationship. Therefore, elucidating the causal relationship between these two issues is of great clinical significance for improving the poor prognosis of stroke. METHODS This study employed a hospital-based multicenter prospective cohort design. A total of 610 patients with ischemic stroke were eligible. Depressive symptoms (measured using the seventeen-item Hamilton Rating Scale for Depression) and cognitive function (measured using the Montreal Cognitive Assessment) were assessed at baseline and the 12-month follow-up. Spearman's correlation was used to examine the correlation between cognitive function and depressive symptoms. Additionally, a cross-lagged panel analysis was employed to elucidate the causal relationship between these factors after adjusting for potential covariates. RESULTS The results of a four-iteration cross-lagged panel analysis substantiated a bidirectional relationship between post-stroke depressive symptoms and cognitive function over time. Specifically, higher scores for early depressive symptoms were associated with lower scores for later cognitive function; additionally, higher baseline cognitive function scores were associated with lower depressive symptom scores at a later point. CONCLUSION This study establishes a reciprocally causal long-term relationship between depressive symptoms and cognitive function after an ischemic stroke. Therefore, interventions aimed at improving cognitive function and ameliorating depressive symptoms may positively affect both cognition and mood. TRIAL REGISTRATION ChiCTR-ROC-17013993.
Collapse
Affiliation(s)
- Wenwen Liang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanyan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenzhe Sun
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chensheng Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Lan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuli Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ping Jing
- Department of Neurology, Wuhan Central Hospital, Wuhan, Hubei 430014, China
| | - Guohua Chen
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei 430022, China
| | - Junhua Mei
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei 430022, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
239
|
Myers SJ, Agapova V, Patel SV, Hayes SH, Sposato LA, Allman BL, Whitehead SN. Acute minocycline treatment inhibits microglia activation, reduces infarct volume, and has domain-specific effects on post-ischemic stroke cognition in rats. Behav Brain Res 2023; 455:114680. [PMID: 37742808 DOI: 10.1016/j.bbr.2023.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Ischemic stroke affects millions of individuals worldwide and a high prevalence of survivors experience cognitive deficits. At present, the underlying mechanisms that drive post-stroke cognitive decline are not well understood. Microglia play a critical role in the post-stroke inflammatory response, but experimental studies show that an accumulation of chronically activated microglia can be harmful and associates with cognitive impairment. This study assessed the effect of acute post-stroke minocycline treatment on chronic microglia and astrocyte expression within the infarct and remote white matter regions, as well as its effect on various domains of cognitive function post-stroke. Nine-month-old male rats received an injection of endothelin-1 into the right dorsal striatum to induce transient focal ischemia, and then were treated with minocycline or saline for 4 days post-stroke. Rats were tested using a series of lever-pressing tasks and the Morris water maze to assess striatal-based learning, cognitive flexibility, and spatial learning and reference memory. We found that minocycline-treated rats had smaller stroke-induced infarcts and less microglia activation in the infarct area and remote white matter regions compared to saline-treated rats at 28 days post-stroke. The behavioural testing results differed according to the cognitive domain; whereas minocycline-treated rats trended towards improved striatal-based learning in a lever-pressing task, but cognitive flexibility was unaffected during the subsequent set-shifting task. Furthermore, minocycline treatment unexpectedly impaired spatial learning, yet it did not alter reference memory. Collectively, we show that post-stroke minocycline treatment can reduce chronic microglia activation even in remote brain regions, with domain-specific effects on cognitive function.
Collapse
Affiliation(s)
- S J Myers
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - V Agapova
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S V Patel
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S H Hayes
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - L A Sposato
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - B L Allman
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - S N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
240
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
241
|
Li L, He G, Shi M, Zhu J, Cheng Y, Chen Y, Chen J, Xue Q. Edaravone dexborneol ameliorates cognitive impairment by regulating the NF-κB pathway through AHR and promoting microglial polarization towards the M2 phenotype in mice with bilateral carotid artery stenosis (BCAS). Eur J Pharmacol 2023; 957:176036. [PMID: 37673366 DOI: 10.1016/j.ejphar.2023.176036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and vascular dementia, so exploring effective treatment modalities for CSVD is warranted. This study aimed to explore the anti-inflammatory effects of Edaravone dexborneol (C.EDA) in a CSVD model. Mice with CSVD showed distinct cognitive decline, as assessed by the Morris water maze (MWM). Pathological staining verified leakage across the blood‒brain barrier (BBB), microglial proliferation, neuronal loss and demyelination. Western blot analysis demonstrated that M1 microglia dominated prophase and released proinflammatory molecules; the aryl hydrocarbon receptor (AHR) was found to participate in modulating nuclear factor-kappa B (NF-κB) signalling activation through tumour necrosis factor receptor-associated factor-6 (TRAF6). C.EDA treatment resulted in the polarization of microglia from the M1 to the M2 phenotype. Mice sequentially treated with C.EDA exhibited a significant improvement in cognitive function; expression of the anti-inflammatory cytokines and modulatory proteins AHR and TRAF6 was upregulated, while the levels of pNF-κBp65 and pIΚBα were downregulated. C.EDA promoted microglial activation towards the M2 phenotype by upregulating AHR expression, which prevented TRAF6 ubiquitination, promoted NF-κB RelA/p65 protein degradation and inhibited subsequent NF-κB phosphorylation. Mechanistically, the anti-inflammatory effect of C.EDA alleviated neuronal loss and myelin damage, while at the functional level, C.EDA improved cognitive function and thus showed good application prospects.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Guojun He
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Mingyu Shi
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Yongqing Cheng
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Yang Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Jin Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
242
|
Wang P, Liu J, Wang L, Ma H, Mei X, Zhang A. Effects of brain-Computer interface combined with mindfulness therapy on rehabilitation of hemiplegic patients with stroke: a randomized controlled trial. Front Psychol 2023; 14:1241081. [PMID: 37876845 PMCID: PMC10590922 DOI: 10.3389/fpsyg.2023.1241081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Aim To explore the effects of brain-computer interface training combined with mindfulness therapy on Hemiplegic Patients with Stroke. Background The prevention and treatment of stroke still faces great challenges. Maximizing the improvement of patients' ability to perform activities of daily living, limb motor function, and reducing anxiety, depression, and other social and psychological problems to improve patients' overall quality of life is the focus and difficulty of clinical rehabilitation work. Methods Patients were recruited from December 2021 to November 2022, and assigned to either the intervention or control group following a simple randomization procedure (computer-generated random numbers). Both groups received conventional rehabilitation treatment, while patients in the intervention group additionally received brain-computer interface training and mindfulness therapy. The continuous treatment duration was 5 days per week for 8 weeks. Limb motor function, activities of daily living, mindfulness attention awareness level, sleep quality, and quality of life of the patients were measured (in T0, T1, and T2). Generalized estimated equation (GEE) were used to evaluate the effects. The trial was registered with the Chinese Clinical Trial Registry (ChiCTR2300070382). Results A total of 128 participants were randomized and 64 each were assigned to the intervention and control groups (of these, eight patients were lost to follow-up). At 6 months, compared with the control group, intervention group showed statistically significant improvements in limb motor function, mindful attention awareness, activities of daily living, sleep quality, and quality of life. Conclusion Brain-computer interface combined with mindfulness therapy training can improve limb motor function, activities of daily living, mindful attention awareness, sleep quality, and quality of life in hemiplegic patients with stroke. Impact This study provides valuable insights into post-stroke care. It may help improve the effect of rehabilitation nursing to improve the comprehensive ability and quality of life of patients after stroke. Clinical review registration https://www.chictr.org.cn/, identifier ChiCTR2300070382.
Collapse
Affiliation(s)
- Pei Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Jinyu Liu
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lili Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Huifang Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, Shandong, China
| | - Xingyan Mei
- Linyi People’s Hospital, Linyi, Shandong, China
| | - Aihua Zhang
- School of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
243
|
Filippenkov IB, Khrunin AV, Mozgovoy IV, Dergunova LV, Limborska SA. Are Ischemic Stroke and Alzheimer's Disease Genetically Consecutive Pathologies? Biomedicines 2023; 11:2727. [PMID: 37893101 PMCID: PMC10604604 DOI: 10.3390/biomedicines11102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Complex diseases that affect the functioning of the central nervous system pose a major problem for modern society. Among these, ischemic stroke (IS) holds a special place as one of the most common causes of disability and mortality worldwide. Furthermore, Alzheimer's disease (AD) ranks first among neurodegenerative diseases, drastically reducing brain activity and overall life quality and duration. Recent studies have shown that AD and IS share several common risk and pathogenic factors, such as an overlapping genomic architecture and molecular signature. In this review, we will summarize the genomics and RNA biology studies of IS and AD, discussing the interconnected nature of these pathologies. Additionally, we highlight specific genomic points and RNA molecules that can serve as potential tools in predicting the risks of diseases and developing effective therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia (A.V.K.); (I.V.M.); (L.V.D.)
| |
Collapse
|
244
|
Zhang T, Liu W, Bai Q, Gao S. Virtual reality technology in the rehabilitation of post-stroke cognitive impairment: an opinion article on recent findings. Front Psychol 2023; 14:1271458. [PMID: 37849482 PMCID: PMC10577207 DOI: 10.3389/fpsyg.2023.1271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Affiliation(s)
- Ting Zhang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
- Department of Traditional Chinese Medicine, University Hospital, Zhejiang Normal University, Jinhua, China
| | - Wei Liu
- Physical Education College, Guangxi University of Science and Technology, Liuzhou, China
| | - Qingping Bai
- Physical Education College, Guangxi University of Science and Technology, Liuzhou, China
| | - Song Gao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
245
|
Tsai Y, Tsai H, Liu C, Lin S, Chen Y, Jeng J, Tsai L, Yen R. Cerebral amyloid deposition predicts long-term cognitive decline in hemorrhagic small vessel disease. Brain Behav 2023; 13:e3189. [PMID: 37533346 PMCID: PMC10570474 DOI: 10.1002/brb3.3189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND To investigate the association between cerebral amyloid deposition and long-term cognitive outcomes in patients with hemorrhagic small vessel disease (SVD) and survivors of intracerebral hemorrhage (ICH). METHODS Patients experiencing an ICH without overt dementia were prospectively recruited (n = 68) for brain MRI and Pittsburgh compound B (PiB) positron emission tomography scans at baseline. Cognitive function was assessed using the mini-mental status examination (MMSE) and clinical dementia rating after an overall median follow-up of 3.8 years. A positive amyloid scan was defined as a global PiB standardized uptake value ratio >1.2. Associations between follow-up cognitive outcomes and neuroimaging markers were explored using multivariable Cox regression models. RESULTS PiB(+) patients were older (72.1 ± 7.8 vs. 59.9 ± 11.7, p = .002) and more frequently had cerebral amyloid angiopathy (CAA) (63.6% vs. 15.8%, p = .002) than PiB(-) patients. PiB(+) was associated with a higher risk of dementia conversion (32.9 vs. 4.0 per 100-person-years, hazard ratio [HR] = 15.7 [3.0-80.7], p = .001) and MMSE score decline (58.8 vs. 9.9 per 100-person-years, HR = 6.2 [1.9-20.0], p = .002). In the non-CAA subgroup (n = 52), PiB(+) remained an independent predictor of dementia conversion, p = .04). In the Cox models, PiB(+) was an independent predictor of dementia conversion (HR = 15.8 [2.6-95.4], p = .003) and MMSE score decline (HR = 5.7 [1.6-20.3], p = .008) after adjusting for confounders. CONCLUSIONS Cerebral amyloid deposition potentially contributes to long-term cognitive decline in SVD-related ICH.
Collapse
Affiliation(s)
- Ya‐Chin Tsai
- Department of Nuclear MedicineNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Hsin‐Hsi Tsai
- Department of NeurologyNational Taiwan University Hospital Bei‐Hu BranchTaipeiTaiwan
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Chia‐Ju Liu
- Department of Nuclear MedicineNational Taiwan University HospitalTaipeiTaiwan
| | - Sheng‐Sian Lin
- Department of NeurologyNational Taiwan University Hospital Bei‐Hu BranchTaipeiTaiwan
| | - Ya‐Fang Chen
- Department of Medical ImagingNational Taiwan University HospitalTaipeiTaiwan
| | - Jiann‐Shing Jeng
- Department of NeurologyNational Taiwan University Hospital Bei‐Hu BranchTaipeiTaiwan
| | - Li‐Kai Tsai
- Department of NeurologyNational Taiwan University Hospital Bei‐Hu BranchTaipeiTaiwan
- Department of NeurologyNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Ruoh‐Fang Yen
- Department of Nuclear MedicineNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
246
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
247
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
248
|
Fan PL, Wang SS, Chu SF, Chen NH. Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int 2023; 169:105584. [PMID: 37454817 DOI: 10.1016/j.neuint.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Ping-Long Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
249
|
Torres-López C, Cuartero MI, García-Culebras A, de la Parra J, Fernández-Valle ME, Benito M, Vázquez-Reyes S, Jareño-Flores T, de Castro-Millán FJ, Hurtado O, Buckwalter MS, García-Segura JM, Lizasoain I, Moro MA. Ipsilesional Hippocampal GABA Is Elevated and Correlates With Cognitive Impairment and Maladaptive Neurogenesis After Cortical Stroke in Mice. Stroke 2023; 54:2652-2665. [PMID: 37694402 DOI: 10.1161/strokeaha.123.043516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated. METHODS Stroke was induced by permanent occlusion of the middle cerebral artery occlusion in 2-month-old C57BL/6 male mice. Hippocampal metabolites/neurotransmitters were analyzed longitudinally by in vivo magnetic resonance spectroscopy. Cognitive function was evaluated with the contextual fear conditioning test. Microglia, astrocytes, neuroblasts, interneurons, γ-aminobutyric acid (GABA), and c-fos were analyzed by immunofluorescence. RESULTS Approximately 50% of mice exhibited progressive post-middle cerebral artery occlusion cognitive impairment. Notably, immature hippocampal neurons in the impaired group displayed more severe aberrant phenotypes than those from the nonimpaired group. Using magnetic resonance spectroscopy, significant bilateral changes in hippocampal metabolites, such as myo-inositol or N-acetylaspartic acid, were found that correlated, respectively, with numbers of glia and immature neuroblasts in the ischemic group. Importantly, some metabolites were specifically altered in the ipsilateral hippocampus suggesting its involvement in aberrant hippocampal neurogenesis and remodeling processes. Specifically, middle cerebral artery occlusion animals with higher hippocampal GABA levels displayed worse cognitive outcome. Implication of GABA in this setting was supported by the amelioration of ischemia-induced memory deficits and aberrant hippocampal neurogenesis after blocking pharmacologically GABAergic neurotransmission, an intervention which was ineffective when neurogenesis was inhibited. These data suggest that GABA exerts its detrimental effect, at least partly, by affecting morphology and integration of newborn neurons into the hippocampal circuits. CONCLUSIONS Hippocampal GABAergic neurotransmission could be considered a novel diagnostic and therapeutic target for poststroke cognitive impairment.
Collapse
Affiliation(s)
- Cristina Torres-López
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Maria I Cuartero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Biología Celular, Facultad de Medicina (A.G.-C.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Juan de la Parra
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - María E Fernández-Valle
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Marina Benito
- Hospital Nacional de Parapléjicos de Toledo, Spain (M.B.)
| | - Sandra Vázquez-Reyes
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Tania Jareño-Flores
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Francisco J de Castro-Millán
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Olivia Hurtado
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.)
| | - Juan M García-Segura
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Bioquímica y Biología Molecular (J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - María A Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| |
Collapse
|
250
|
Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023; 11:2617. [PMID: 37892991 PMCID: PMC10604797 DOI: 10.3390/biomedicines11102617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Among the high prevalence of cerebrovascular diseases nowadays, acute ischemic stroke stands out, representing a significant worldwide health issue with important socio-economic implications. Prompt diagnosis and intervention are important milestones for the management of this multifaceted pathology, making understanding the various stroke-onset symptoms crucial. A key role in acute ischemic stroke management is emphasizing the essential role of a multi-disciplinary team, therefore, increasing the efficiency of recognition and treatment. Neuroimaging and neuroradiology have evolved dramatically over the years, with multiple approaches that provide a higher understanding of the morphological aspects as well as timely recognition of cerebral artery occlusions for effective therapy planning. Regarding the treatment matter, the pharmacological approach, particularly fibrinolytic therapy, has its merits and challenges. Endovascular thrombectomy, a game-changer in stroke management, has witnessed significant advances, with technologies like stent retrievers and aspiration catheters playing pivotal roles. For select patients, combining pharmacological and endovascular strategies offers evidence-backed benefits. The aim of our comprehensive study on acute ischemic stroke is to efficiently compare the current therapies, recognize novel possibilities from the literature, and describe the state of the art in the interdisciplinary approach to acute ischemic stroke. As we aspire for holistic patient management, the emphasis is not just on medical intervention but also on physical therapy, mental health, and community engagement. The future holds promising innovations, with artificial intelligence poised to reshape stroke diagnostics and treatments. Bridging the gap between groundbreaking research and clinical practice remains a challenge, urging continuous collaboration and research.
Collapse
Affiliation(s)
- Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania;
- Neurosurgery Department, “Lucian Blaga” University of Medicine, 550024 Sibiu, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020022 Bucharest, Romania
| | - Horia Ples
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babes” University of Medicine and Pharmacy, 300736 Timisoara, Romania
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|