201
|
Zheng PW, Shen P, Ye ZH, Zhang ZY, Chai PF, Li D, Jin MJ, Tang ML, Lu HC, Lin HB, Wang JB, Chen K. Acute effect of fine and coarse particular matter on cardiovascular visits in Ningbo, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33548-33555. [PMID: 30269277 DOI: 10.1007/s11356-018-3286-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Although a growing number of epidemiological studies have been conducted on size-specific health effects of particulate matter in China, results remain inconsistent. In this study, we investigated acute effect of fine and coarse particular matter on cardiovascular hospital visits in Ningbo, China. We used generalized additive models to examine short-term effects of PM2.5 and PM10-2.5 on cardiovascular hospital visits by adjustment for temporal, seasonal, and meteorological effects. Subgroup analyses were conducted by age, sex, and season. We also examined the stability of their effects in multi-pollutant models. We found that PM2.5 were associated with cardiovascular hospital visits (RR = 1.006; 95% CI 1.000, 1.011) and results remained similar after adjustment for PM10-2.5 (RR = 1.005; 95% CI 0.998, 1.013). There was a borderline association between PM10-2.5 and cardiovascular hospital visits (RR = 1.007; 95% CI 0.997, 1.016), which disappeared after controlling for PM2.5 (RR = 1.000; 95% CI 0.988, 1.013). The associations appeared to be stronger in the cold season and among the elderly (≥ 75 years). The findings of this study suggested significant adverse effects of PM2.5, but no independent effects of PM10-2.5 on cardiovascular hospital visits. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Pei-Wen Zheng
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Peng Shen
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, 315100, China
| | - Zhen-Hua Ye
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Zhen-Yu Zhang
- John Hopkins School of Public Health, Baltimore, MD, 21218, USA
| | - Peng-Fei Chai
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, 315100, China
| | - Die Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Ming-Juan Jin
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Meng-Ling Tang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China
| | - Huai-Chu Lu
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, 315100, China
| | - Hong-Bo Lin
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, 315100, China
| | - Jian-Bing Wang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China.
- Research Center for Air Pollution and Health, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, C217 Academic Building, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, Zhejiang, China.
- Research Center for Air Pollution and Health, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
202
|
Niu Y, Chen R, Xia Y, Cai J, Ying Z, Lin Z, Liu C, Chen C, Peng L, Zhao Z, Zhou W, Chen J, Wang D, Huo J, Wang X, Fu Q, Kan H. Fine particulate matter constituents and stress hormones in the hypothalamus-pituitary-adrenal axis. ENVIRONMENT INTERNATIONAL 2018; 119:186-192. [PMID: 29960262 DOI: 10.1016/j.envint.2018.06.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 05/20/2023]
Abstract
Fine particulate matter (PM2.5) has recently been associated with the activation of the hypothalamus-pituitary-adrenal (HPA) axis, increasing cardiometabolic risks. However, it is unknown which constituents of PM2.5 were mainly responsible for these associations. In a longitudinal panel study with 4 repeated measurements among 43 college students in Shanghai, China, we measured serum levels of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, as indicators of HPA axis activation. Then, we evaluated the associations of 22 constituents of PM2.5 with these stress hormones using linear mixed-effect models. During the study period, the average daily concentration of PM2.5 was 41.1 μg/m3. We found that short-term exposure to PM2.5 was associated with elevated levels of the 3 stress hormones. We observed that water-soluble inorganic ions, especially nitrate (NO3-) and ammonium, had stronger influences on 3 hormones. Six metallic elements, including Zn, Mn, Cu, Fe, Br, and Cr, had positive but generally instable associations with 3 hormones. The effects of organic carbon and elemental carbon on hormones were generally weak. When correcting for multiple comparisons using false discovery rate, NO3- was still significantly associated with CRH, but other important associations turned to be insignificant. An interquartile range increase in NO3- on the previous day were associated with 12.13% increase (95% confidence interval: 4.45%, 20.37%) in CRH. Our findings suggested that water-soluble inorganic constituents of PM2.5 (especially, NO3-) might have stronger influences on the activation of HPA axis than carbonaceous and elemental components.
Collapse
Affiliation(s)
- Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhao Zhou
- Department of Neonates, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dongfang Wang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinning Wang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
203
|
Lee H, Myung W, Jeong BH, Choi H, Jhun BW, Kim H. Short- and long-term exposure to ambient air pollution and circulating biomarkers of inflammation in non-smokers: A hospital-based cohort study in South Korea. ENVIRONMENT INTERNATIONAL 2018; 119:264-273. [PMID: 29982129 DOI: 10.1016/j.envint.2018.06.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/02/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Despite increasing epidemiological evidence of an association between air pollution and adverse health outcomes, the detailed mechanisms underlying the adverse effects of air pollution on medical conditions remain unclear. We evaluated the effects of short- and long-term exposure to ambient air pollution on key inflammatory markers in non-smoking subjects. Serum fibrinogen, C-reactive protein, ferritin, and white blood cell counts were repeatedly measured 3 times in 6589 subjects at the Samsung Medical Center (Seoul, South Korea) between 2010 and 2016. Both short- (≤8-day averages) and long-term (annual averages) exposure measures of 6 air pollutants (particles < 2.5 μm, particles < 10 μm, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide) were estimated for each subject based on available residential addresses. Linear mixed-effects models were used to relate interquartile range increases in pollutant concentrations to inflammatory marker levels. Short-term exposure to air pollution was associated with increased fibrinogen and ferritin levels. Long-term exposure to air pollution was associated with increased fibrinogen levels and white blood cell counts. The largest short- and long-term associations were observed for ferritin in response to nitrogen dioxide exposure (1.4%, 95% confidence interval [CI] 0.3-2.5) and fibrinogen exposed to particles < 2.5 μm (3.4%, 95% CI 3.0-3.8), respectively. Significantly higher associations were observed among subjects with elevated levels of inflammatory markers (upper 25th percentile), including C-reactive protein, and those with cardiac infarction, chronic obstructive pulmonary disease, cerebral infarction, or diabetes. We found clear associations between short- and long-term exposure to air pollution and inflammatory markers, especially among vulnerable subgroups. Our findings provide evidence in support of the hypothesis that air pollution increases systemic inflammation, particularly among susceptible subgroups.
Collapse
Affiliation(s)
- Hyewon Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do 13619, South Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do 13619, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 06351, South Korea
| | - Hong Choi
- Center for Health Promotion, Samsung Medical Center, Gangnam-gu, Seoul 06351, South Korea; Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 06351, South Korea.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
204
|
Tran H, Kim J, Kim D, Choi M, Choi M. Impact of air pollution on cause-specific mortality in Korea: Results from Bayesian Model Averaging and Principle Component Regression approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1020-1031. [PMID: 29729505 DOI: 10.1016/j.scitotenv.2018.04.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Health effects related to air pollution are a major global concern. Related studies based on reliable exposure assessment methods would potentially enable policy makers to propose appropriate environmental management policies. In this study, integrated Bayesian Model Averaging (BMA) and Principle Component Regression (PCR) were adopted to assess the severity of air pollution impacts on mortality related to circulatory, respiratory and skin diseases in 25 districts of Seoul, South Korea for the years 2005-2015. These methods were consistent in determining the best regression models and most important pollutants related to mortality in those highly susceptible to poor air quality. Specifically, the results demonstrated that pneumonia was highly associated with air pollution, with a large determination coefficient (BMA: 0.46, PCR: 0.51) and high model's posterior probability (0.47). The most reliable prediction model for pneumonia was indicated by the lowest Bayesian Information Criterion. Among the pollutants, particulate matter with an aerodynamic diameter of 10 μm or less (PM10) was associated with serious health risks on evaluation, with the highest posterior inclusion probabilities (range, 80.20 to 100.00%) and significantly positive correlation coefficients (range, 0.14 to 0.34, p < 0.05). In addition, excessive PM10 concentration (approximately 2.54 times the threshold) and a continuous increase in mortality due to respiratory diseases (approximately 1.50-fold in 10 years) were also exhibited. Overall, the results of this study suggest that currently, socio-environmental policies and international collaboration to mitigate health effects of air pollution is necessary in Seoul, Korea. Moreover, consideration of uncertainty of the regression model, which was verified in this research, will facilitate further application of this approach and enable optimal prediction of interactions between human and environmental factors.
Collapse
Affiliation(s)
- Hien Tran
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeongyeong Kim
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Daeun Kim
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Minyoung Choi
- Department of Medical Business Administration, Kyunghee University, Republic of Korea
| | - Minha Choi
- Graduate School of Water Resources, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
205
|
Day DB, Clyde MA, Xiang J, Li F, Cui X, Mo J, Gong J, Weschler CJ, Zhang Y, Zhang JJ. Age modification of ozone associations with cardiovascular disease risk in adults: a potential role for soluble P-selectin and blood pressure. J Thorac Dis 2018; 10:4643-4652. [PMID: 30174917 DOI: 10.21037/jtd.2018.06.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Studies have suggested that age increases susceptibility to ozone-associated mortality, but the underlying mechanisms are unclear. In a previous study, personal exposure to ozone was significantly associated with a platelet activation biomarker, plasma soluble P-selectin (sCD62P), and blood pressure in 89 healthy adults, aged 22-52 years. The present study examines whether age modifies these associations in the same adults and in additional adults. Methods Interaction terms of age and exposure were analyzed using hierarchical Bayesian mixed effects ridge regressions. Data from a similar additional study involving 71 healthy participants, aged 19-26 years, were pooled with the data from the first study to evaluate age effect modification when more young adults were added to the analysis. Results In the 89 adults, significant age interactions were observed for past 24-hour and 2-week ozone exposures and sCD62P. Based on the pooled data (89 plus 71 adults), a 10 ppb increase in 24-hour ozone exposure was associated with increases in sCD62P and systolic blood pressure (SBP) by 22.3% (95% CI: 14.3%, 31.2%) and 1.35 (-0.18, 2.84) mmHg, respectively, at age 25; these values increased to 48.6% (32.7%, 65.1%) and 4.98 (2.56, 7.35) mmHg, respectively, at age 40. Conclusions These results mechanistically suggest that increasing age enhances cardiovascular effects of ozone.
Collapse
Affiliation(s)
- Drew B Day
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Merlise A Clyde
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Jianbang Xiang
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxing Cui
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jicheng Gong
- College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Charles J Weschler
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.,Environmental and Occupational Health Sciences Institute, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Junfeng Jim Zhang
- Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, USA.,College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.,Duke Kunshan University, Kunshan 215347, China
| |
Collapse
|
206
|
Residential exposure to air pollution and incidence of Parkinson’s disease in a large metropolitan cohort. Environ Epidemiol 2018. [DOI: 10.1097/ee9.0000000000000023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
207
|
Zhang Z, Chan TC, Guo C, Chang LY, Lin C, Chuang YC, Jiang WK, Ho KF, Tam T, Woo KS, Lau AKH, Lao XQ. Long-term exposure to ambient particulate matter (PM 2.5) is associated with platelet counts in adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:432-439. [PMID: 29753251 DOI: 10.1016/j.envpol.2018.04.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The prothrombotic effects of particulate matter (PM) may underlie the association of air pollution with increased risks of cardiovascular disease. This study aimed to investigate the association between long-term exposure to PM with an aerodynamic diameter ≤2.5 μm (PM2.5) and platelet counts, a marker of coagulation profiles. METHODS The study participants were from a cohort consisting of 362,396 Taiwanese adults who participated in a standard medical examination program between 2001 and 2014. Platelet counts were measured through Complete Blood Count tests. A satellite-based spatio-temporal model was used to estimate 2-year average ambient PM2.5 concentration at each participant's address. Mixed-effects linear regression models were used to investigate the association between PM2.5 exposure and platelet counts. RESULTS This analysis included 175,959 men with 396,248 observations and 186,437 women with 397,877 observations. Every 10-μg/m3 increment in the 2-year average PM2.5 was associated with increases of 0.42% (95% CI: 0.38%, 0.47%) and 0.49% (95% CI: 0.44%, 0.54%) in platelet counts in men and women, respectively. A series of sensitivity analyses, including an analysis in participants free of cardiometabolic disorders, confirmed the robustness of the observed associations. Baseline data analyses showed that every 10-μg/m3 increment in PM2.5 was associated with higher risk of 17% and 14% of having elevated platelet counts (≥90th percentile) in men and women, respectively. CONCLUSIONS Long-term exposure to PM2.5 appears to be associated with increased platelet counts, indicating potential adverse effects on blood coagulability.
Collapse
Affiliation(s)
- Zilong Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ly-Yun Chang
- MJ Health Research Foundation, MJ Group, Taiwan; Institute of Sociology, Academia Sinica, Taiwan
| | - Changqing Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | | | | | - Kin Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong
| | - Kam S Woo
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong
| | - Alexis K H Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
208
|
Bai KJ, Chuang KJ, Wu SM, Chang LT, Chang TY, Ho KF, Chuang HC. Effects of diesel exhaust particles on the expression of tau and autophagy proteins in human neuroblastoma cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:54-59. [PMID: 29966942 DOI: 10.1016/j.etap.2018.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Particulate air pollution is recognized as a potential risk factor for neurological disorders; however, the underlying mechanisms of neurodegenerative diseases that occur due to particulate air pollution remain unclear. The objective of the present study was to evaluate the neurotoxic effects caused by diesel exhaust particles (DEPs). We determined the ability of DEPs and carbon black (CB) to induce neurotoxicity, oxidative stress and inflammation, and to disrupt the expression of tau and autophagy proteins in human neuroblastoma IMR-32 cells. Spherical CB (dominated by C, N, and S) and DEPs (dominated by C, N, and O) in aggregates were observed using a field emission-scanning electron microscope (FE-SEM) equipped with energy-dispersive x-ray (EDX) microanalysis. Cell viability was significantly decreased by CB and DEPs in IMR-32 cells, but neither particle altered malondialdehyde (MDA) production. We observed that exposure to DEPs significantly increased 8-isoprostane and tumor necrosis factor (TNF)-α levels. Significantly increased expression of tau was induced in IMR-32 cells by DEPs but not by CB. Expression of beclin 1 was increased by DEPs, whereas the light chain 3II (LC3II)/LC3I ratio was increased by CB. Results of the present study suggested that DEPs induced neuroinflammation, oxidative stress, and neurodegenerative-related tau overexpression and regulation by autophagy in IMR-32 cells. We demonstrated that DEPs are able to induce neurotoxicity, which could be associated with the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
209
|
Changes in Urinary Hydrogen Peroxide and 8-Hydroxy-2'-Deoxyguanosine Levels after a Forest Walk: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091871. [PMID: 30158499 PMCID: PMC6163805 DOI: 10.3390/ijerph15091871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
Some studies have shown that exposure to forests has positive effects on human health, although the mechanisms underlying the health benefits of a forest environment have not been elucidated yet. The current study was aimed at examining how the levels of urinary hydrogen peroxide (H₂O₂) and 8-hydroxy-2'deoxyguanosine (8-OHdG) change after a forest or urban walk in healthy subjects. Twenty-eight volunteers (19 men and 9 women) participated in the study. The forest walks were carried out in a forest in Okayama Prefecture, Japan, and the urban walks (15 men and 7 women) were carried out in the downtown area of Okayama city, each for two hours. Spot urine samples were collected before the walk, the next day and one week after the forest or urban walk. Compared with pre-forest walk levels, urinary H₂O₂ (p < 0.1) and 8-OHdG (p < 0.1) concentrations significantly decreased in the participants the day after the forest walk; furthermore, urinary 8-OHdG remained at a low level even at one week after the forest walk (p < 0.05). However, there were no significant changes in the concentrations of these oxidative biomarkers after the urban walk. These findings suggest the possibility that exposure to forests may alleviate oxidative stress in the body.
Collapse
|
210
|
Ledda C, Loreto C, Bracci M, Lombardo C, Romano G, Cinà D, Mucci N, Castorina S, Rapisarda V. Mutagenic and DNA repair activity in traffic policemen: a case-crossover study. J Occup Med Toxicol 2018; 13:24. [PMID: 30116289 PMCID: PMC6083631 DOI: 10.1186/s12995-018-0206-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background Emissions from vehicles are composed of heterogeneous mixtures of hazardous substances; several pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) are amongst the most dangerous substances detected in urban monitoring. A cohort of traffic policemen usually occupationally exposed to PAHs present in the urban environment were examined in order to assess the mutagenicity and DNA capacity repair. Methods Seventy-two urban traffic policemen working in Catania's metropolitan area were enrolled in the study. Two spot urine samples were collected from each subject during the whole working cycle as follows: sample 1 (S1), pre-shift on day 1; sample 2 (S2) post-shift on day 6. 1-hydroxypyrene (1-OHP) was measured to serve as an indirect exposure indicator. Urinary mutagenic activity was assessed through the plate incorporation pre-incubation technique with S9, using YG1024 Salmonella typhimurium strain over-sensitive to PAH metabolite. Concentrations of urinary 8-oxodG were measured using liquid chromatography tandem mass spectrometry. Results As regards the exposure to PAHs, results highlighted a statistically significant difference (p < 0.001) between pre-shift on day 1 and post-shift on day 6 levels. Mutagenic activity was detected in 38 (66%) workers on S1 and in 47 (81%) on S2. Also 8-oxodG analysis showed a statistically significant difference between S1 and S2 sampling. Conclusions This study demonstrated that occupational exposure to pollutants from traffic emission, assessed via 1-OHP measurements in urine, may lead to DNA repair and mutagenic activity, in line with other studies.
Collapse
Affiliation(s)
- Caterina Ledda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Carla Loreto
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Massimo Bracci
- 3Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Claudia Lombardo
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Gaetano Romano
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Diana Cinà
- Clinical Pathology Unit, "Garibaldi Centro" Hospital of Catania, 95100 Catania, Italy
| | - Nicola Mucci
- 5Occupational Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Sergio Castorina
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Venerando Rapisarda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| |
Collapse
|
211
|
Jung EM, Kim HS, Park H, Ye S, Lee D, Ha EH. Does exposure to PM 10 decrease age at menarche? ENVIRONMENT INTERNATIONAL 2018; 117:16-21. [PMID: 29704753 DOI: 10.1016/j.envint.2018.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND There has been a consistent decrease in age at menarche in South Korea. A potential risk factor for early menarche is exposure to particulate matter (PM), because endocrine-disrupting compounds emitted into air from anthropogenic sources may be incorporated into PM. The objective of this study was to examine the association between pre-menarcheal exposure to PM ≤ 10 μm in diameter (PM10) and age at menarche in adolescents of South Korea using Korea National Health and Nutrition Examination Survey (KNHANES) 2010-2012 data. METHODS We used self-reported age at menarche of 639 girls aged 13-17 years in this study. The cut-off age for early menarche was set to 12 years. Based on each subject's address, 1-year, 2-year, and 3-year averages of annual mean PM10 concentrations (models 1-3) were linked to KNHANES. Models were adjusted for body mass index (BMI), city size, household income level, maternal age at menarche, and second-hand smoke exposure at home. SURVEYREG and SURVEYLOGISTIC procedures were used to address the complex survey design of KNHANES. RESULTS Overall analysis showed that exposure to PM10 has a significant effect on decreasing age at menarche. Multiple linear regression results suggested that each 1 μg/m3 increase in 1-year, 2-year, 3-year averages of annual mean PM10 concentrations accelerated age at menarche by 0.046 years (95% CI: -0.064, -0.027; p < .0001), 0.038 years (95% CI: -0.059, -0.018; p = 0.0003),and 0.031 years (95% CI: -0.047, -0.015; p = 0.0002), respectively. Adjusted ORs for a 1 μg/m3 increase in PM10 concentration were 1.08 (95% CI: 1.04 -1.12) for model 1, 1.06 (95% CI: 1.02 -1.10) for model 2, and 1.05 (95% CI: 1.01 -1.09) for model 3. CONCLUSION Our findings suggest that elevated PM10 concentration can decrease age at menarche. This is the first study that investigates the association between exposure to PM10 and age at menarche using a nationally representative sample of Koreans.
Collapse
Affiliation(s)
- Eun Mi Jung
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Global Health Institute for Girls, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hae Soon Kim
- Ewha Global Health Institute for Girls, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Shinhee Ye
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dongheon Lee
- Department of Statistics, Williams College, Williamstown, MA, United States
| | - Eun Hee Ha
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Global Health Institute for Girls, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
212
|
Yang X, Jia X, Dong W, Wu S, Miller MR, Hu D, Li H, Pan L, Deng F, Guo X. Cardiovascular benefits of reducing personal exposure to traffic-related noise and particulate air pollution: A randomized crossover study in the Beijing subway system. INDOOR AIR 2018; 28:777-786. [PMID: 29896813 DOI: 10.1111/ina.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/08/2018] [Indexed: 05/06/2023]
Abstract
To assess the cardiovascular benefits of protecting against particulate air pollution and noise, we conducted a randomized crossover study with 40 young healthy college students from March to May 2017 in the underground subway, Beijing. Participants each received 4 treatments (no intervention phase [NIP], respirator intervention phase [RIP], headphone intervention phase [HIP], respirator plus headphone intervention phase [RHIP]) in a randomized order during 4 different study periods with 2-week washout intervals. We measured personal exposure to particulate matter (PM), noise and electrocardiogram (ECG) parameters (heart rate variability (HRV), heart rate (HR) and ST segment changes), ambulatory blood pressure (BP) continuously for 4 hours to investigate the cardiovascular effects. Compared with NIP, most of the HRV parameters increased, especially high frequency (HF) [21.1% (95% CI: 15.7%, 26.9%), 18.2% (95% CI: 12.8%, 23.9%), and 35.5% (95% CI: 29.3%, 42.0%) in RIP, HIP, and RHIP, respectively], whereas ST segment elevation and HR decreased for all 3 modes of interventions. However, no significant differences were observed in BP among the 4 treatments. In summary, short-term wearing of a respirator and/or headphone may be an effective way to minimize cardiovascular risk induced by air pollution in the subway by improving autonomic nervous function.
Collapse
Affiliation(s)
- X Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - X Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - W Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - S Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - M R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - D Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - H Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - L Pan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - F Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - X Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
213
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
214
|
Zhang Z, Chang LY, Lau AKH, Chan TC, Chieh Chuang Y, Chan J, Lin C, Kai Jiang W, Dear K, Zee BCY, Yeoh EK, Hoek G, Tam T, Qian Lao X. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults. Int J Epidemiol 2018; 46:1126-1136. [PMID: 28541501 PMCID: PMC5837544 DOI: 10.1093/ije/dyx069] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
Background Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Methods Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant’s address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. Results In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Conclusions Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Zilong Zhang
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan.,MJ Health Research Foundation, MJ Group, Taipei, Taiwan
| | - Alexis K H Lau
- Division of Environment.,Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | - Changqing Lin
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong.,Institute for the Environment, Hong Kong University of Science and Technology, Hong Kong
| | - Wun Kai Jiang
- MJ Health Research Foundation, MJ Group, Taipei, Taiwan
| | - Keith Dear
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Benny C Y Zee
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong
| | - Eng-Kiong Yeoh
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tony Tam
- Department of Sociology, Chinese University of Hong Kong, Hong Kong
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
215
|
Abstract
Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM2.5 and PM10) which was linearly associated with mortality; PM2.5 with long term and PM10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days), reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher.
Collapse
|
216
|
Newell K, Kartsonaki C, Lam KBH, Kurmi O. Cardiorespiratory health effects of gaseous ambient air pollution exposure in low and middle income countries: a systematic review and meta-analysis. Environ Health 2018; 17:41. [PMID: 29669550 PMCID: PMC5907176 DOI: 10.1186/s12940-018-0380-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/29/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Lack of research on the effects of gaseous pollutants (nitrogen oxides [NOx], sulfur dioxide [SO2], carbon monoxide [CO] and ozone [O3]) in the ambient environment on health outcomes from within low and middle income countries (LMICs) is leading to reliance on results from studies performed within high income countries (HICs). This systematic review and meta-analysis examines the cardiorespiratory health effects of gaseous pollutants in LMICs exclusively. METHODS Systematic searching was carried out and estimates pooled by pollutant, lag and outcome, and presented as excess relative risk per 10 μg/m3 (NOx, SO2, O3) or 1 ppm (CO) increase pollutant. Sub-group analysis was performed examining estimates by specific outcomes, city and co-pollutant adjustment. RESULTS Sixty studies met the inclusion criteria, most (44) from the East Asia and Pacific region. A 10 μg/m3 increase in same day NOx was associated with 0.92% (95% CI: 0.44, 1.39), and 0.70% (0.01, 1.40) increases in cardiovascular and respiratory mortality respectively, same day NOx was not associated with morbidity. Same day sulfur dioxide was associated with 0.73% (0.04, 1.42) and 0.50% (0.01, 1.00) increases in respiratory morbidity and in cardiovascular mortality respectively. CONCLUSIONS Acute exposure to gaseous ambient air pollution (AAP) is associated with increases in morbidity and mortality in LMICs, with greatest associations observed for cardiorespiratory mortality.
Collapse
Affiliation(s)
- Katherine Newell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Christiana Kartsonaki
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kin Bong Hubert Lam
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Om Kurmi
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
217
|
Raza A, Dahlquist M, Lind T, Ljungman PLS. Susceptibility to short-term ozone exposure and cardiovascular and respiratory mortality by previous hospitalizations. Environ Health 2018; 17:37. [PMID: 29653570 PMCID: PMC5899411 DOI: 10.1186/s12940-018-0384-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/05/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Ozone (O3) has been associated with cardiorespiratory mortality although few studies have explored susceptible populations based on prior disease. We aimed to investigate the role of previous hospitalization on the association between short-term exposure to O3 and cardiovascular (CV) and respiratory mortality. METHODS We performed time series analyses using generalized additive models and case-crossover on 136,624 CV and 23,281 respiratory deaths in Stockholm County (1990-2010). Deaths were linked to hospital admissions data. We constructed 2-day and 7-day averages using daily 8-h maximum for O3 and hourly values for PM2.5, PM10, NO2, and NOx from a fixed monitor. RESULTS We observed a 0.7% (95% CI: 0.1%, 1.3%) and 2.7% (95% CI: 0.8%, 4.6%) higher risk of CV and respiratory death per 10 μg/m3 higher 2-day and 7-day average O3 respectively. Individuals previously hospitalized for myocardial infarction demonstrated 1.8% (95% CI: 0.4%, 3.4%) higher risk of CV death per 10 μg/m3 higher 2-day average O3 and similar associations were observed in individuals with no previous hospitalization for any cause. Individuals with previous hospitalizations did not show susceptibility towards O3-related risk of respiratory mortality. We observed no associations for other pollutants. CONCLUSION Short-term ozone exposure is associated with CV and respiratory mortality and our results may suggest higher susceptibility to CV mortality following O3 exposure in individuals previously hospitalized for myocardial infarction. Higher risks were also observed in individuals with cardiovascular death as their first presentation of disease.
Collapse
Affiliation(s)
- Auriba Raza
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13 | Box 210 |, SE-171 77 Stockholm, Sweden
| | - Marcus Dahlquist
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13 | Box 210 |, SE-171 77 Stockholm, Sweden
| | - Tomas Lind
- Center for Occupational and Environmental Medicine, Stockholm County Council, Solnavägen 4, 113 65 Stockholm, Sweden
| | - Petter L. S. Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13 | Box 210 |, SE-171 77 Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
218
|
Wilson SJ, Miller MR, Newby DE. Effects of Diesel Exhaust on Cardiovascular Function and Oxidative Stress. Antioxid Redox Signal 2018; 28:819-836. [PMID: 28540736 DOI: 10.1089/ars.2017.7174] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE Air pollution is a major global health concern with particulate matter (PM) being especially associated with increases in cardiovascular morbidity and mortality. Diesel exhaust emissions are a particularly rich source of the smallest sizes of PM ("fine" and "ultrafine") in urban environments, and it is these particles that are believed to be the most detrimental to cardiovascular health. Recent Advances: Controlled exposure studies to diesel exhaust in animals and man demonstrate alterations in blood pressure, heart rate, vascular tone, endothelial function, myocardial perfusion, thrombosis, atherogenesis, and plaque stability. Oxidative stress has emerged as a highly plausible pathobiological mechanism by which inhalation of diesel exhaust PM leads to multiple facets of cardiovascular dysfunction. CRITICAL ISSUES Diesel exhaust inhalation promotes oxidative stress in several biological compartments that can be directly associated with adverse cardiovascular effects. FUTURE DIRECTIONS Further studies with more sensitive and specific in vivo human markers of oxidative stress are required to determine if targeting oxidative stress pathways involved in the actions of diesel exhaust PM could be of therapeutic value. Antioxid. Redox Signal. 28, 819-836.
Collapse
Affiliation(s)
- Simon J Wilson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - Mark R Miller
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
219
|
Dias D, Tchepel O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E558. [PMID: 29558426 PMCID: PMC5877103 DOI: 10.3390/ijerph15030558] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Analyzing individual exposure in urban areas offers several challenges where both the individual's activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals' activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual's time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives.
Collapse
Affiliation(s)
- Daniela Dias
- Department of Civil Engineering, CITTA, University of Coimbra, Rua Luís Reis Santos, Polo II, 3030-788 Coimbra, Portugal.
| | - Oxana Tchepel
- Department of Civil Engineering, CITTA, University of Coimbra, Rua Luís Reis Santos, Polo II, 3030-788 Coimbra, Portugal.
| |
Collapse
|
220
|
Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018; 9:827. [PMID: 29511166 PMCID: PMC5840419 DOI: 10.1038/s41467-018-03202-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. Individuals with different genotypes may respond differently to environmental variation. Here, Favé et al. find substantial impacts of different environment exposures on the transcriptome and clinical endophenotypes when controlling for genetic ancestry by analyzing data from ∼1000 individuals from a founder population in Quebec.
Collapse
|
221
|
Hong Q, Zhou S, Zhao H, Peng J, Li Y, Shang Y, Wu M, Zhang W, Lu S, Li S, Yu S, Wang W, Wang Q. Allergenicity of recombinant Humulus japonicus pollen allergen 1 after combined exposure to ozone and nitrogen dioxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:707-715. [PMID: 29241157 DOI: 10.1016/j.envpol.2017.11.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Ozone (O3) and nitrogen dioxide (NO2) are thought to play primary roles in aggravating air pollution-induced health problems. However, the effects of joint O3/NO2 on the allergenicity of pollen allergens are unclear. Humulus japonicus pollen allergen 1 (Hum j1) is a profilin protein that causes widespread pollinosis in eastern Asia. In order to study the effects of combined O3/NO2 on the allergenicity of Hum j1, tandem six-histidine peptide tag (His6)-fused recombinant Hum j1 (rHum j1) was expressed in a prokaryotic system and purified through His6 affinity chromatography. The purified rHum j1 was used to immunize SD rats. Rat sera with high titers of IgG and IgE antibodies against rHum j1 were used for allergenicity quantification. The rHum j1 was exposed to O3/NO2, and changes in allergenicity of the exposed rHum j1 were assayed using the immunized rat antibodies. Tandem LC-MS/LC (liquid chromatography-mass spectrometer/liquid chromatography spectrometer) chromatography and UV and circular dichroism (CD) spectroscopy were used to study the structural changes in rHum j1. Our data demonstrated that a novel disulfide bond between the sulfhydryl groups of two neighboring cysteine molecules was formed after the rHum j1 exposure to joint O3/NO2, and therefore IgE-binding affinity was increased and the allergenicity was reinforced. Our results provided clues to elucidate the mechanism behind air pollution-induced increase in pollinosis prevalence.
Collapse
Affiliation(s)
- Qiang Hong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shumin Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiaxian Peng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuijun Li
- Shanghai Xuhui Center Hospital, Shanghai 200031, China
| | - Shen Yu
- Shanghai Xuhui Center Hospital, Shanghai 200031, China
| | - Weiqian Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Qingyue Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
222
|
Nuvolone D, Petri D, Voller F. The effects of ozone on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8074-8088. [PMID: 28547375 DOI: 10.1007/s11356-017-9239-3] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 04/16/2023]
Abstract
Ozone is a highly reactive, oxidative gas associated with adverse health outcome, including mortality and morbidity. Data from monitoring sites worldwide show levels of ozone often exceeding EU legislation threshold and the more restrictive WHO guidelines for the protection of human health. Well-established evidence has been produced for short-term effects, especially on respiratory and cardiovascular systems, associated to ozone exposure. Less conclusive is the evidence for long-term effects, reporting suggestive associations with respiratory mortality, new-onset asthma in children and increased respiratory symptom effects in asthmatics. The growing epidemiological evidence and the increasing availability of routinely collected data on air pollutant concentrations and health statistics allow to produce robust estimates in health impact assessment routine. Most recent estimates indicate that in 2013 in EU-28, 16,000 premature deaths, equivalent to 192,000 years of life lost, are attributable to ozone exposure. Italy shows very high health impact estimates among EU countries, reporting 3380 premature deaths and 61 years of life lost (per 100,000 inhabitants) attributable to ozone exposure.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy.
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, via Pietro Dazzi 1, Florence, Italy
| |
Collapse
|
223
|
Kuijpers E, Pronk A, Kleemann R, Vlaanderen J, Lan Q, Rothman N, Silverman D, Hoet P, Godderis L, Vermeulen R. Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occup Environ Med 2018; 75:351-358. [DOI: 10.1136/oemed-2017-104796] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 11/04/2022]
Abstract
ObjectivesThe increase in production of multiwalled carbon nanotubes (MWCNTs) has led to growing concerns about health risks. In this study, we assessed the association between occupational exposure to MWCNTs and cardiovascular biomarkers.MethodsA cross-sectional study was performed among 22 workers of a company commercially producing MWCNTs (subdivided into lab personnel with low or high exposure and operators), and a gender and age-matched unexposed population (n=42). Exposure to MWCNTs and 12 cardiovascular markers were measured in participants’ blood (phase I). In a subpopulation of 13 exposed workers and six unexposed workers, these measures were repeated after 5 months (phase II). We analysed associations between MWCNT exposure and biomarkers of cardiovascular risk, adjusted for age, body mass index, sex and smoking.ResultsWe observed an upward trend in the concentration of endothelial damage marker intercellular adhesion molecule-1 (ICAM-1), with increasing exposure to MWCNTs in both phases. The operator category showed significantly elevated ICAM-1 geometric mean ratios (GMRs) compared with the controls (phase I: GMR=1.40, P=1.30E-3; phase II: GMR=1.37, P=0.03). The trends were significant both across worker categories (phase I: P=1.50E-3; phase II: P=0.01) and across measured GM MWCNT concentrations (phase I: P=3.00E-3; phase II: P=0.01). No consistent significant associations were found for the other cardiovascular markers.ConclusionThe associations between MWCNT exposure and ICAM-1 indicate endothelial activation and an increased inflammatory state in workers with MWCNT exposure.
Collapse
|
224
|
Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, Gieger C, Schwartz J, Baccarelli AA, Schneider A, Peters A. Long-term exposure to air pollution is associated with biological aging. Oncotarget 2018; 7:74510-74525. [PMID: 27793020 PMCID: PMC5342683 DOI: 10.18632/oncotarget.12903] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Simone Wahl
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Elena Colicino
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Letizia Trevisi
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Josef Cyrys
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexandra Schneider
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| |
Collapse
|
225
|
Argacha JF, Bourdrel T, van de Borne P. Ecology of the cardiovascular system: A focus on air-related environmental factors. Trends Cardiovasc Med 2018; 28:112-126. [DOI: 10.1016/j.tcm.2017.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022]
|
226
|
Cole-Hunter T, de Nazelle A, Donaire-Gonzalez D, Kubesch N, Carrasco-Turigas G, Matt F, Foraster M, Martínez T, Ambros A, Cirach M, Martinez D, Belmonte J, Nieuwenhuijsen M. Estimated effects of air pollution and space-time-activity on cardiopulmonary outcomes in healthy adults: A repeated measures study. ENVIRONMENT INTERNATIONAL 2018; 111:247-259. [PMID: 29294452 DOI: 10.1016/j.envint.2017.11.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Exposure to air pollution is known to affect both short and long-term outcomes of the cardiopulmonary system; however, findings on short-term outcomes have been inconsistent and often from isolated and long-term rather than coexisting and short-term exposures, and among susceptible/unhealthy rather than healthy populations. AIMS We aimed to investigate separately the annual, daily and daily space-time-activity-weighted effect of ambient air pollution, as well as confounding or modification by other environmental (including noise) or space-time-activity (including total daily physical activity) exposures, on cardiopulmonary outcomes in healthy adults. METHODS Participants (N=57: 54% female) had indicators of cardiopulmonary outcomes [blood pressure (BP), pulse (HR) and heart rate variability (HRV {SDNN}), and lung function (spirometry {FEV1, FVC, SUM})] measured on four different mornings (at least five days apart) in a clinical setting between 2011 and 2014. Spatiotemporal ESCAPE-LUR models were used to estimate daily and annual air pollution exposures (including PM10, PMCoarse, but not Ozone {derived from closest station}) at participant residential and occupational addresses. Participants' time-activity diaries indicated time spent at either address to allow daily space-time-activity-weighted estimates, and capture total daily physical activity (total-PA {as metabolic-equivalents-of-task, METs}), in the three days preceding health measurements. Multivariate-adjusted linear mixed-effects models (using either annual or daily estimates) were adjusted for possible environmental confounders or mediators including levels of ambient noise and greenness. Causal mediation analysis was also performed separately considering these factors as well as total-PA. All presented models are controlled by age, height, sex and season. RESULTS An increase in 5μg/m3 of daily space-time-activity-weighted PMCoarse exposure was statistically significantly associated with a 4.1% reduction in total heart rate variability (SDNN; p=0.01), and remained robust after adjusting for suspected confounders [except for occupational-address noise (β=-2.7, p=0.20)]. An increase in 10ppb of annual mean Ozone concentration at the residential address was statistically significantly associated with an increase in diastolic BP of 6.4mmHg (p<0.01), which lost statistical significance when substituted with daily space-time-activity-weighted estimates. As for pulmonary function, an increase in 10μg/m3 of annual mean PM10 concentration at the residential address was significantly associated with a 0.3% reduction in FVC (p<0.01) and a 0.5% reduction in SUM (p<0.04), for which again significance was lost when substituted for daily space-time-activity-weighted estimates These associations with pulmonary function remained robust after adjusting for suspected confounders, including annual Ozone, as well as total-PA and bioaerosol (pollen and fungal spore) levels (but not residential-neighborhood greenness {β=-0.22, p=0.09; β=-0.34, p=0.15, respectively}). Multilevel mediation analysis indicated that the proportion mediated as a direct effect on cardiopulmonary outcomes by suspected confounders (including total-PA, residential-neighborhood greenness, and occupational-address noise level) from primary exposures (including PM10, PMCoarse, and O3) was not statistically significant. CONCLUSION Our findings suggest that increased daily space-time-activity-weighted PMCoarse exposure levels significantly adversely affect cardiac autonomic modulation (as reduced total HRV) among healthy adults. Additionally, increased annual levels at the residential address of Ozone and PM10 significantly increase diastolic blood pressure and reduce lung function, respectively, among healthy adults. These associations typically remained robust when adjusting for suspected confounders. Occupational-address noise and residential-neighborhood greenness levels, however, were seen as mediators of cardiovascular and pulmonary outcomes, respectively. Total daily physical activity was not seen as a mediator of any of the studied outcomes, which supports the promotion of active mobility within cities.
Collapse
Affiliation(s)
- Tom Cole-Hunter
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain; Center for Energy Development and Health, Colorado State University, CO, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, CO, USA.
| | - Audrey de Nazelle
- Centre for Environmental Policy, Imperial College London, London, UK.
| | | | - Nadine Kubesch
- Centre for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Florian Matt
- Biological Safety & Risk Management Working Group, Institute Straumann AG, Basel, Switzerland
| | - Maria Foraster
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain; Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| | - Tania Martínez
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain.
| | - Albert Ambros
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain.
| | - Marta Cirach
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain.
| | - David Martinez
- Barcelona Institute for Global Health (ISGlobal-CREAL), Barcelona, Spain.
| | - Jordina Belmonte
- Institute of Environmental Science and Technology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
227
|
Li T, Yan M, Sun Q, Anderson GB. Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: A case-crossover study in Beijing, China. ENVIRONMENT INTERNATIONAL 2018; 111:52-59. [PMID: 29174689 DOI: 10.1016/j.envint.2017.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (≤2.5μm in aerodynamic diameter; PM2.5) has been shown to be associated with an increased risk of mortality due to cardiovascular, respiratory, and other pulmonary diseases. However, fewer studies have investigated the relationship between ambient PM2.5 and human mortality for a wider range of causes of death, or for more specific causes of death within these broader categories, especially at the high PM2.5 concentrations currently experienced in Chinese megacities. Beijing, China, has a very large population and a wide range of PM2.5 exposures, allowing a prime opportunity to estimate such risks across a broad spectrum of causes, including rarer causes of death. OBJECTIVE To estimate the relative risk of cause-specific mortality associated with PM2.5 for a spectrum of causes of death, as well as characterize the time course of cause-specific mortality following PM2.5 exposure, in a location where PM2.5 concentrations are representative of common exposures in Chinese megacities. METHODS We collected daily data on mortality counts of Beijing residents and Beijing weather and air pollution measurements for January 1, 2009 to December 31, 2012. We used a time-stratified case-crossover study design to estimate the association between ambient PM2.5 concentrations and risk of death from several broad causes of death and from more refined specific causes within these broader categories. Primary results were estimated for risks the day of and the day following exposure (lag 0-1), but the time pattern of associated risk was also explored up to seven days following exposure. RESULTS Increased concentrations of PM2.5 were associated with increased risks at lag days 0-1 of all-cause mortality (0.26% increase per 10μg/m3; 95% confidence interval [CI]: 0.12%-0.39%), non-accidental deaths (0.25%; 95% CI: 0.11%-0.38%), circulatory deaths (0.39%; 95% CI: 0.21%-0.59%), respiratory deaths (0.43%; 95% CI: 0.05%-0.81%), intentional self-harm deaths (1.94%; 95% CI: 0.19%-3.73%) and nervous system deaths (0.9%; 95% CI: -0.2%-2%), although the observed increase was not statistical significant for the final one rarer cause of death. In addition to these five broad death outcomes, risk also increased following PM2.5 exposure at lag days 0-1 for deaths from several specific causes, including most of the specific circulatory causes considered. The largest observed increased risk by far was for one of the rarest causes of death considered, extrapyramidal and movement disorders (2.35%; 95% CI: 0.03%-4.72%). CONCLUSIONS This study indicates that exposure to PM2.5 in a study location more representative of exposures in developing cities is associated with an increased risk of mortality from broad range of causes of death, including some causes rarely studied previously in association with PM2.5 exposure.
Collapse
Affiliation(s)
- Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No.7 PanjiayuanNanli, Chaoyang District, Beijing 100021, China.
| | - Meilin Yan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1681, USA
| | - Qinghua Sun
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No.7 PanjiayuanNanli, Chaoyang District, Beijing 100021, China
| | - G Brooke Anderson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1681, USA
| |
Collapse
|
228
|
Conti S, Harari S, Caminati A, Zanobetti A, Schwartz J, Bertazzi PA, Cesana G, Madotto F. The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy. Eur Respir J 2018; 51:51/1/1700397. [DOI: 10.1183/13993003.00397-2017] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Acute exacerbations and worsening of idiopathic pulmonary fibrosis (IPF) have been associated with exposure to ozone (O3), nitrogen dioxide (NO2) and particulate matter, but chronic exposure to air pollution might also affect the incidence of IPF. We investigated the association between chronic exposure to NO2, O3and particulate matter with an aerodynamic diameter <10 μm (PM10) and IPF incidence in Northern Italy between 2005 and 2010.Daily predictions of PM10concentrations were obtained from spatiotemporal models, and NO2and O3hourly concentrations from fixed monitoring stations. We identified areas with homogenous exposure to each pollutant. We built negative binomial models to assess the association between area-specific IPF incidence rate, estimated through administrative databases, and average overall and seasonal PM10, NO2, and 8-hour maximum O3concentrations.Using unadjusted models, an increment of 10 µg·m−3in NO2concentration was associated with an increase between 7.93% (95% CI 0.36–16.08%) and 8.41% (95% CI −0.23–17.80%) in IPF incidence rate, depending on the season. After adjustment for potential confounders, estimated effects were similar in magnitude, but with larger confidence intervals.Although confirmatory studies are needed, our results trace a potential association between exposure to traffic pollution and the development of IPF.
Collapse
|
229
|
Short-term Exposure to Ozone and Mortality in Subjects With and Without Previous Cardiovascular Disease. Epidemiology 2018; 27:663-9. [PMID: 27258325 DOI: 10.1097/ede.0000000000000520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exposure to ground level ozone (O3) is a public health problem associated with a range of risks across population subgroups. Our aim was to investigate the role of previous cardiovascular diseases (CVDs) in mortality related to short-term O3 exposure. METHODS Deaths between 1990 and 2010 in Stockholm County were matched with previous hospitalizations in Swedish registries. An urban background monitoring station provided hourly values of air quality data, from which we calculated 8-hour running averages and daily 8-hour maximum. We analyzed associations between daily O3 concentrations and mortality among persons with and without previous CVD hospitalization with a generalized additive model adjusted for time trend, influenza, and weather. We also performed two-pollutant models. RESULTS There were 302,283 nontrauma-related deaths, out of which 196,916 had previous CVD hospitalization. The mean concentration of daily maximum 8-hour O3 was 62.9 μg/m. An average 10 μg/m increase in the same and preceding day was associated with an increased mortality of 1.72% (95% confidence interval: 0.44%, 3.02%) in those with prior admission for acute myocardial infarction (AMI), which was more than three times higher than for those with no previous AMI (0.50, 95% confidence interval: 0.10%, 0.89%, P value for interaction 0.098). The association between O3 and mortality remained essentially unchanged in two-pollutant models with NO2, NOx, and PM10. CONCLUSIONS Our study indicates that short-term exposure to O3 is associated with increased mortality in those with a previous hospitalization for AMI.
Collapse
|
230
|
Croft D, Block R, Cameron SJ, Evans K, Lowenstein CJ, Ling F, Zareba W, Hopke PK, Utell MJ, Thurston SW, Thevenet-Morrison K, Rich DQ. Do elevated blood levels of omega-3 fatty acids modify effects of particulate air pollutants on fibrinogen? AIR QUALITY, ATMOSPHERE, & HEALTH 2018; 11:791-799. [PMID: 30147809 PMCID: PMC6097058 DOI: 10.1007/s11869-018-0586-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/21/2018] [Indexed: 05/04/2023]
Abstract
Previously, we found short-term increases in ambient particulate matter (PM) air pollutant concentrations were associated with increased serum fibrinogen levels in patients with cardiac disease. We now studied whether high blood levels of omega-3 (ω-3) fatty acids blunted this fibrinogen response to increased PM concentrations in these same patients. Plasma fibrinogen and ω-3 fatty acid levels (% of total identified fatty acids) were measured in blood samples collected from 135 patients treated at the University of Rochester Medical Center for myocardial infarction or stable ischemic heart disease requiring cardiac catheterization. Using ambient measurements of ultrafine, accumulation mode, and fine particles (PM2.5), Delta-C, and black carbon (BC), we regressed serum fibrinogen levels against pollutant concentrations over the previous 1-96 h, using interaction terms to estimate these associations separately for those with HIGH (> 5.12%) and LOWMED serum levels of ω-3 fatty acid (≤ 5.12%). Each 5.6 μg/m3 increase in PM2.5 concentration in the previous hour was associated with a 3.1% increase in fibrinogen (95% CI = 1.5%, 4.7%) in those subjects with LOWMED total ω-3 fatty acid levels, but only a 0.9% increase (95% CI = - 1.5%, 3.2%) in patients with HIGH total ω-3 fatty acid levels. This same pattern was observed with fish oil-derived docosahexaenoic and eicosapentaenoic acids but not alpha-linolenic (from plant oil or seeds). A similar finding was observed with BC in the prior 24 h, but not other PM. Thus, increased blood levels of fish-based ω-3 fatty acids attenuated increases in fibrinogen associated with short-term increases in ambient PM.
Collapse
Affiliation(s)
- Daniel Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
| | - Robert Block
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Scott J. Cameron
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Kristin Evans
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - Charles J. Lowenstein
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Frederick Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Wojciech Zareba
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Mark J. Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - David Q. Rich
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
231
|
Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, Dominici F. Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA 2017; 318:2446-2456. [PMID: 29279932 PMCID: PMC5783186 DOI: 10.1001/jama.2017.17923] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance The US Environmental Protection Agency is required to reexamine its National Ambient Air Quality Standards (NAAQS) every 5 years, but evidence of mortality risk is lacking at air pollution levels below the current daily NAAQS in unmonitored areas and for sensitive subgroups. Objective To estimate the association between short-term exposures to ambient fine particulate matter (PM2.5) and ozone, and at levels below the current daily NAAQS, and mortality in the continental United States. Design, Setting, and Participants Case-crossover design and conditional logistic regression to estimate the association between short-term exposures to PM2.5 and ozone (mean of daily exposure on the same day of death and 1 day prior) and mortality in 2-pollutant models. The study included the entire Medicare population from January 1, 2000, to December 31, 2012, residing in 39 182 zip codes. Exposures Daily PM2.5 and ozone levels in a 1-km × 1-km grid were estimated using published and validated air pollution prediction models based on land use, chemical transport modeling, and satellite remote sensing data. From these gridded exposures, daily exposures were calculated for every zip code in the United States. Warm-season ozone was defined as ozone levels for the months April to September of each year. Main Outcomes and Measures All-cause mortality in the entire Medicare population from 2000 to 2012. Results During the study period, there were 22 433 862 million case days and 76 143 209 control days. Of all case and control days, 93.6% had PM2.5 levels below 25 μg/m3, during which 95.2% of deaths occurred (21 353 817 of 22 433 862), and 91.1% of days had ozone levels below 60 parts per billion, during which 93.4% of deaths occurred (20 955 387 of 22 433 862). The baseline daily mortality rates were 137.33 and 129.44 (per 1 million persons at risk per day) for the entire year and for the warm season, respectively. Each short-term increase of 10 μg/m3 in PM2.5 (adjusted by ozone) and 10 parts per billion (10-9) in warm-season ozone (adjusted by PM2.5) were statistically significantly associated with a relative increase of 1.05% (95% CI, 0.95%-1.15%) and 0.51% (95% CI, 0.41%-0.61%) in daily mortality rate, respectively. Absolute risk differences in daily mortality rate were 1.42 (95% CI, 1.29-1.56) and 0.66 (95% CI, 0.53-0.78) per 1 million persons at risk per day. There was no evidence of a threshold in the exposure-response relationship. Conclusions and Relevance In the US Medicare population from 2000 to 2012, short-term exposures to PM2.5 and warm-season ozone were significantly associated with increased risk of mortality. This risk occurred at levels below current national air quality standards, suggesting that these standards may need to be reevaluated.
Collapse
Affiliation(s)
- Qian Di
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Lingzhen Dai
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Yun Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Christine Choirat
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA
| |
Collapse
|
232
|
Chuang HC, Lin YJ, Chou CCK, Hwang JS, Chen CC, Yan YH, Hsieh HI, Chuang KJ, Cheng TJ. Alterations in cardiovascular function by particulate matter in rats using a crossover design. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:812-820. [PMID: 28866422 DOI: 10.1016/j.envpol.2017.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate associations between cardiovascular effects and urban ambient particle constituents using an in vivo crossover experimental design. Ambient particles were introduced to an exposure chamber for whole-body exposure of WKY rats, where the particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5) mass concentration, particle number concentration, and black carbon (BC) were monitored. Organic carbon (OC), elemental carbon (EC), and soluble ions of PM2.5 were determined. In a crossover design, rats were exposed to ambient particles or high-efficiency particle arrestance (HEPA)-filtered control air for 7 days following a 7-day washout interval. The crossover exposure between particles and HEPA-filtered air was repeated 4 times. Radiotelemetric data on blood pressure (BP) [systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), and mean arterial pressure (MAP)], heart rate (HR), and heart rate viability (HRV) were subsequently obtained during the entire study. Exposure to the PM2.5 mass concentration was associated with decreases in the SBP, DBP, MAP, and HR (p < 0.05), whereas no significant changes in the BP or HR occurred with the particle number or black carbon. For HRV, the ln 5-min standard deviation of the normal-to-normal (NN) interval (LnSDNN) and the ln root mean square of successive differences in adjacent NN intervals (LnRMSSD) were positively associated with the PM2.5 mass concentration (p < 0.05). There were no significant effects of the particle number concentration or BC on HRV. Alterations in the HR were associated with OC, EC, Na+, Cl-, and NO3-. Cl- was associated with the DBP, MAP, HR, SDNN, and RMSSD. NO3- was correlated with the SBP, MAP, HR, SDNN, and RMSSD. In conclusion, we observed cardiovascular responses to ambient particles in vivo using a crossover design which can reduce animal use in future environmental studies.
Collapse
Affiliation(s)
- Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Yin-Jyun Lin
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Charles C K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | | | - Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| | - Yuan-Horng Yan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan.
| | - Hui-I Hsieh
- Department of Family Medicine, Cathay General Hospital, New Taipei City, Taiwan.
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
233
|
Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, Devlin R, Diaz-Sanchez D, Cascio WE, Mukerjee S, Stallings C, Smith LA, Gregory SG, Shah SH, Neas LM, Hauser ER. Associations Between Residential Proximity to Traffic and Vascular Disease in a Cardiac Catheterization Cohort. Arterioscler Thromb Vasc Biol 2017; 38:275-282. [PMID: 29191927 DOI: 10.1161/atvbaha.117.310003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Exposure to mobile source emissions is nearly ubiquitous in developed nations and is associated with multiple adverse health outcomes. There is an ongoing need to understand the specificity of traffic exposure associations with vascular outcomes, particularly in individuals with cardiovascular disease. APPROACH AND RESULTS We performed a cross-sectional study using 2124 individuals residing in North Carolina, United States, who received a cardiac catheterization at the Duke University Medical Center. Traffic-related exposure was assessed via 2 metrics: (1) the distance between the primary residence and the nearest major roadway; and (2) location of the primary residence in regions defined based on local traffic patterns. We examined 4 cardiovascular disease outcomes: hypertension, peripheral arterial disease, the number of diseased coronary vessels, and recent myocardial infarction. Statistical models were adjusted for race, sex, smoking, type 2 diabetes mellitus, body mass index, hyperlipidemia, and home value. Results are expressed in terms of the odds ratio (OR). A 23% decrease in residential distance to major roadways was associated with higher prevalence of peripheral arterial disease (OR=1.29; 95% confidence interval, 1.08-1.55) and hypertension (OR=1.15; 95% confidence interval, 1.01-1.31). Associations with peripheral arterial disease were strongest in men (OR=1.42; 95% confidence interval, 1.17-1.74) while associations with hypertension were strongest in women (OR=1.21; 95% confidence interval, 0.99-1.49). Neither myocardial infarction nor the number of diseased coronary vessels were associated with traffic exposure. CONCLUSIONS Traffic-related exposure is associated with peripheral arterial disease and hypertension while no associations are observed for 2 coronary-specific vascular outcomes.
Collapse
Affiliation(s)
- Cavin K Ward-Caviness
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.).
| | - William E Kraus
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Colette Blach
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Carol S Haynes
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Elaine Dowdy
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Marie Lynn Miranda
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Robert Devlin
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - David Diaz-Sanchez
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Wayne E Cascio
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Shaibal Mukerjee
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Casson Stallings
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Luther A Smith
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Simon G Gregory
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Svati H Shah
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Lucas M Neas
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| | - Elizabeth R Hauser
- From the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC (C.K.W.-C., R.D., D.D.-S., W.E.C., L.M.N.); Duke Molecular Physiology Institute, Durham, NC (W.E.K., C.B., C.S.H., E.D., S.G.G., S.H.S., E.R.H.); Division of Cardiology, Duke University School of Medicine, Durham, NC (W.E.K., S.H.S.); Department of Statistics, Rice University, Houston, TX (M.L.M.); National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC (S.M.); Metabolon, Research Triangle Park, NC (C.S.); Alion Science and Technology, Inc., Research Triangle Park, NC (L.A.S.); and Epidemiologic Research and Information Center, Durham Veterans, Affairs Medical Center, NC (E.R.H.)
| |
Collapse
|
234
|
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, Cascio W, Case M, Crooks J, Hauser ER, Elaine Dowdy Z, Kraus WE, Devlin RB. Ozone exposure is associated with acute changes in inflammation, fibrinolysis, and endothelial cell function in coronary artery disease patients. Environ Health 2017; 16:126. [PMID: 29157250 PMCID: PMC5697214 DOI: 10.1186/s12940-017-0335-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/23/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollution is a major risk factor for cardiovascular disease, of which ozone is a major contributor. Several studies have found associations between ozone and cardiovascular morbidity, but the results have been inconclusive. We investigated associations between ozone and changes across biological pathways associated with cardiovascular disease. METHODS Using a panel study design, 13 participants with coronary artery disease were assessed for markers of systemic inflammation, heart rate variability and repolarization, lipids, blood pressure, and endothelial function. Daily measurements of ozone and particulate matter (PM2.5) were obtained from central monitoring stations. Single (ozone) and two-pollutant (ozone and PM2.5) models were used to assess percent changes in measurements per interquartile ranges of pollutants. RESULTS Per interquartile increase in ozone, changes in tissue plasminogen factor (6.6%, 95% confidence intervals (CI) = 0.4, 13.2), plasminogen activator inhibitor-1 (40.5%, 95% CI = 8.7, 81.6), neutrophils (8.7% 95% CI = 1.5, 16.4), monocytes (10.2%, 95% CI = 1.0, 20.1), interleukin-6 (15.9%, 95% CI = 3.6, 29.6), large-artery elasticity index (-19.5%, 95% CI = -34.0, -1.7), and the baseline diameter of the brachial artery (-2.5%, 95% CI = -5.0, 0.1) were observed. These associations were robust in the two-pollutant model. CONCLUSIONS We observed alterations across several pathways associated with cardiovascular disease in 13 coronary artery disease patients following ozone exposures, independent of PM2.5. The results support the biological plausibility of ozone-induced cardiovascular effects. The effects were found at concentrations below the EPA National Ambient Air Quality Standards for both ozone and PM2.5.
Collapse
Affiliation(s)
- Jaime E. Mirowsky
- Department of Chemistry, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC USA
| | - Martha Sue Carraway
- Department of Medicine, Pulmonary and Critical Care Medicine, Durham VA Medical Center, Durham, NC USA
| | - Radhika Dhingra
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Haiyan Tong
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Lucas Neas
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - David Diaz-Sanchez
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Wayne Cascio
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Martin Case
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - James Crooks
- Department of Biomedical Research, National Jewish Health, Denver, CO USA
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO USA
- Department of Epidemiology, Colorado School of Public Health, Denver, CO USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC USA
- Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC USA
| | - Z. Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - William E. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC USA
| | - Robert B. Devlin
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| |
Collapse
|
235
|
Wu XM, Basu R, Malig B, Broadwin R, Ebisu K, Gold EB, Qi L, Derby C, Green RS. Association between gaseous air pollutants and inflammatory, hemostatic and lipid markers in a cohort of midlife women. ENVIRONMENT INTERNATIONAL 2017; 107:131-139. [PMID: 28732305 PMCID: PMC5584622 DOI: 10.1016/j.envint.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Exposures to ambient gaseous pollutants have been linked to cardiovascular diseases (CVDs), but the biological mechanisms remain uncertain. OBJECTIVES This study examined the changes in CVD marker levels resulting from elevated exposure to ambient gaseous pollutants in midlife women. METHODS Annual repeated measurements of several inflammatory, hemostatic and lipid makers were obtained from 2306 midlife women enrolled in the longitudinal Study of Women's Health Across the Nation (SWAN) between 1999 and 2004. Ambient carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) data were assigned to each woman based on proximity of the monitoring station to her residential address. Short- and long-term exposures were calculated, and their associations with markers were examined using linear mixed-effects regression models, adjusted for demographic, health and other factors. RESULTS Short-term CO exposure was associated with increased fibrinogen, i.e., every interquartile increase of average prior one-week exposure to CO was associated with 1.3% (95% CI: 0.6%, 2.0%) increase in fibrinogen. Long-term exposures to NO2 and SO2 were associated with reduced high-density lipoproteins and apolipoprotein A1, e.g., 4.0% (1.7%, 6.3%) and 4.7% (2.8%, 6.6%) decrease per interquartile increment in prior one-year average NO2 concentration, respectively. Fine particle (PM2.5) exposure confounded associations between CO/NO2 and inflammatory/hemostatic markers, while associations with lipoproteins were generally robust to PM2.5 adjustment. CONCLUSIONS Exposures to these gas pollutants at current ambient levels may increase thrombotic potential and disrupt cholesterol metabolism, contributing to greater risk of CVDs in midlife women. Caution should be exercised in evaluating the confounding by PM2.5 exposure.
Collapse
Affiliation(s)
- Xiangmei May Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Brian Malig
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rachel Broadwin
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California Davis, School of Medicine, Davis, CA, USA
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, School of Medicine, Davis, CA, USA
| | - Carol Derby
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rochelle S Green
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
236
|
Association Between Long-term Exposure to Traffic-related Air Pollution and Inflammatory and Thrombotic Markers in Middle-aged Adults. Epidemiology 2017; 28 Suppl 1:S74-S81. [DOI: 10.1097/ede.0000000000000715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
237
|
Herrera-Dueñas A, Pineda-Pampliega J, Antonio-García MT, Aguirre JI. The Influence of Urban Environments on Oxidative Stress Balance: A Case Study on the House Sparrow in the Iberian Peninsula. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
238
|
Gorr MW, Falvo MJ, Wold LE. Air Pollution and Other Environmental Modulators of Cardiac Function. Compr Physiol 2017; 7:1479-1495. [PMID: 28915333 PMCID: PMC7249238 DOI: 10.1002/cphy.c170017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
239
|
Day DB, Xiang J, Mo J, Li F, Chung M, Gong J, Weschler CJ, Ohman-Strickland PA, Sundell J, Weng W, Zhang Y, Zhang J(J. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. JAMA Intern Med 2017; 177:1344-1353. [PMID: 28715576 PMCID: PMC5710579 DOI: 10.1001/jamainternmed.2017.2842] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Importance Exposure to ozone has been associated with cardiovascular mortality, but the underlying biological mechanisms are not yet understood. Objective To examine the association between ozone exposure and cardiopulmonary pathophysiologic mechanisms. Design, Setting, and Participants A longitudinal study involving 89 healthy adult participants living on a work campus in Changsha City, China, was conducted from December 1, 2014, to January 31, 2015. This unique quasiexperimental setting allowed for better characterization of air pollutant exposure effects because the participants spent most of their time in controlled indoor environments. Concentrations of indoor and outdoor ozone, along with the copollutants particulate matter, nitrogen dioxide, and sulfur dioxide, were monitored throughout the study period and then combined with time-activity information and filtration conditions of each residence and office to estimate 24-hour and 2-week combined indoor and outdoor mean exposure concentrations. Associations between each exposure measure and outcome measure were analyzed using single-pollutant and 2-pollutant linear mixed models controlling for ambient temperature, secondhand smoke exposure, and personal-level time-varying covariates. Main Outcomes and Measures Biomarkers indicative of inflammation and oxidative stress, arterial stiffness, blood pressure, thrombotic factors, and spirometry were measured at 4 sessions. Results Of the 89 participants, 25 (28%) were women and the mean (SD) age was 31.5 (7.6) years. The 24-hour ozone exposure concentrations ranged from 1.4 to 19.4 parts per billion (ppb), corresponding to outdoor concentrations ranging from 4.3 to 47.9 ppb. Within this range, in models controlling for a second copollutant and other potential confounders, a 10-ppb increase in 24-hour ozone was associated with mean increases of 36.3% (95% CI, 29.9%-43.0%) in the level of platelet activation marker soluble P-selectin, 2.8% (95% CI, 0.6%-5.1%) in diastolic blood pressure, 18.1% (95% CI, 4.5%-33.5%) in pulmonary inflammation markers fractional exhaled nitric oxide, and 31.0% (95% CI, 0.2%-71.1%) in exhaled breath condensate nitrite and nitrate as well as a -9.5% (95% CI, -17.7% to -1.4%) decrease in arterial stiffness marker augmentation index. A 10-ppb increase in 2-week ozone was associated with increases of 61.1% (95% CI, 37.8%-88.2%) in soluble P-selectin level and 126.2% (95% CI, 12.1%-356.2%) in exhaled breath condensate nitrite and nitrate level. Other measured biomarkers, including spirometry, showed no significant associations with either 24-hour ozone or 2-week ozone exposures. Conclusions and Relevance Short-term ozone exposure at levels not associated with lung function changes was associated with platelet activation and blood pressure increases, suggesting a possible mechanism by which ozone may affect cardiovascular health.
Collapse
Affiliation(s)
- Drew B. Day
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Jianbang Xiang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingkei Chung
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Jicheng Gong
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, North Carolina
- College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China
| | - Charles J. Weschler
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey
| | | | - Jan Sundell
- Department of Building Science, Tsinghua University, Beijing, China
| | - Wenguo Weng
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Junfeng (Jim) Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, North Carolina
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province, China
- College of Environmental Sciences and Engineering and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China
| |
Collapse
|
240
|
Faridi S, Naddafi K, Kashani H, Nabizadeh R, Alimohammadi M, Momeniha F, Faridi S, Niazi S, Zare A, Gholampour A, Hoseini M, Pourpak Z, Hassanvand MS, Yunesian M. Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:380-389. [PMID: 28351806 DOI: 10.1016/j.scitotenv.2017.03.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 05/04/2023]
Abstract
Numerous studies have found that risk of cardiovascular diseases is associated with increased blood levels of circulating markers of systemic inflammation. We investigated associations of acute exposure to bioaerosols (bacteria and fungi) with blood markers of inflammation and coagulation using panels of elderly subjects and healthy young adults. We conducted a panel study of 44 nonsmoker elderly subjects in a retirement communities and a panel study of 40 healthy young adults living in a school dormitory within Tehran city, Iran. Blood sample biomarkers were measured weekly over 6weeks and including high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), von Willebrand factor (vWF), white blood cells (WBC) count and interleukin-6 (IL-6). We found significant positive associations for IL-6 and WBC with exposure to Aspergillus spp. (As), Cladosporium spp. (Cl), Penicillium spp. (Pe), total fungi (TF) and Micrococcus spp. (MI); vWF with Cl and MI; sTNF-RII with Staphylococcus spp. (ST) in healthy young adults from the current-day and multiday averages. For elderly subjects, we observed significant positive associations for hsCRP, sTNF-RII and WBC with exposure to MI, but not with ST and total bacteria (TB). Our results showed the strongest significant positive associations for IL-6 with MI, ST and TB in elderly people. In addition, IL-6 was also positively associated with As, Cl and Pe in elderly. Also, the results showed that increase of vWF was significantly associated with bacterial and fungal aerosols, except Bacillus spp. (BA) at some lags in elderly subjects. Pooled results support the pivotal role of bioaerosols in increasing the level of some of inflammatory biomarkers, especially IL-6 and WBC in healthy young adults but possibly also in elderly people.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sholeh Faridi
- Division of Immunology, Department of Microbiology, Veterinary Faculty, Urmia University, Urmia, Iran
| | - Sadegh Niazi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hoseini
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
241
|
Alexander D, Northcross A, Wilson N, Dutta A, Pandya R, Ibigbami T, Adu D, Olamijulo J, Morhason-Bello O, Karrison T, Ojengbede O, Olopade CO. Randomized Controlled Ethanol Cookstove Intervention and Blood Pressure in Pregnant Nigerian Women. Am J Respir Crit Care Med 2017; 195:1629-1639. [PMID: 28081369 DOI: 10.1164/rccm.201606-1177oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Hypertension during pregnancy is a leading cause of maternal mortality. Exposure to household air pollution elevates blood pressure (BP). OBJECTIVES To investigate the ability of a clean cookstove intervention to lower BP during pregnancy. METHODS We conducted a randomized controlled trial in Nigeria. Pregnant women cooking with kerosene or firewood were randomly assigned to an ethanol arm (n = 162) or a control arm (n = 162). BP measurements were taken during six antenatal visits. In the primary analysis, we compared ethanol users with control subjects. In subgroup analyses, we compared baseline kerosene users assigned to the intervention with kerosene control subjects and compared baseline firewood users assigned to ethanol with firewood control subjects. MEASUREMENTS AND MAIN RESULTS The change in diastolic blood pressure (DBP) over time was significantly different between ethanol users and control subjects (P = 0.040); systolic blood pressure (SBP) did not differ (P = 0.86). In subgroup analyses, there was no significant intervention effect for SBP; a significant difference for DBP (P = 0.031) existed among preintervention kerosene users. At the last visit, mean DBP was 2.8 mm Hg higher in control subjects than in ethanol users (3.6 mm Hg greater in control subjects than in ethanol users among preintervention kerosene users), and 6.4% of control subjects were hypertensive (SBP ≥140 and/or DBP ≥90 mm Hg) versus 1.9% of ethanol users (P = 0.051). Among preintervention kerosene users, 8.8% of control subjects were hypertensive compared with 1.8% of ethanol users (P = 0.029). CONCLUSIONS To our knowledge, this is the first cookstove randomized controlled trial examining prenatal BP. Ethanol cookstoves have potential to reduce DBP and hypertension during pregnancy. Accordingly, clean cooking fuels may reduce adverse health impacts associated with household air pollution. Clinical trial registered with www.clinicaltrials.gov (NCT02394574).
Collapse
Affiliation(s)
| | - Amanda Northcross
- 2 Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | | | - Anindita Dutta
- 1 Center for Global Health.,4 Department of Medicine, and
| | | | - Tope Ibigbami
- 6 Healthy Life for All Foundation, Ibadan, Nigeria; and
| | - Damilola Adu
- 6 Healthy Life for All Foundation, Ibadan, Nigeria; and
| | | | | | - Theodore Karrison
- 8 Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Oladosu Ojengbede
- 7 Department of Obstetrics and Gynecology, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
242
|
Abramesko V, Tartakovsky L. Ultrafine particle air pollution inside diesel-propelled passenger trains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:288-296. [PMID: 28390701 DOI: 10.1016/j.envpol.2017.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed.
Collapse
Affiliation(s)
- Victoria Abramesko
- Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Leonid Tartakovsky
- Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
243
|
Li H, Zhou L, Wang C, Chen R, Ma X, Xu B, Xiong L, Ding Z, Chen X, Zhou Y, Xu Y, Kan H. Associations Between Air Quality Changes and Biomarkers of Systemic Inflammation During the 2014 Nanjing Youth Olympics: A Quasi-Experimental Study. Am J Epidemiol 2017; 185:1290-1296. [PMID: 28459948 DOI: 10.1093/aje/kww209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
There is increasing interest in quasi-experimental research to evaluate whether actions taken to improve air quality will benefit public health. We conducted a quasi-experimental study to evaluate inflammatory response to changes in air quality during the 2014 Nanjing Youth Olympics in China. We repeatedly measured 8 biomarkers of systemic inflammation in 31 healthy adults and obtained hourly air pollutant concentrations from a nearby fixed-site monitoring station. We used linear mixed-effect models to examine the associations between air quality changes and blood biomarkers. Air pollutant concentrations decreased apparently during the Youth Olympics. Concomitantly, we observed significant decreases in levels of soluble cluster of differentiation 40 (CD40) ligand and interleukin 1β (geometric means ratios were 0.45 and 0.24, respectively) from the pre-Olympic period to the intra-Olympic period. Afterwards, levels of C-reactive protein and vascular cell adhesion molecule 1 increased significantly (geometric means ratios were 2.22 and 1.29, respectively) in the post-Olympic period. Fine particulate matter and ozone were significantly associated with soluble CD40 ligand, P-selectin, interleukin 1β, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Other pollutants showed positive but nonsignificant associations. Our study indicated that reduced air pollution, especially fine particulate matter and ozone, during the 2014 Nanjing Youth Olympics was associated with alleviated systemic inflammation in healthy adults.
Collapse
Affiliation(s)
- Huichu Li
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Lian Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Cuicui Wang
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
| | - Xiaoying Ma
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Bin Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lilin Xiong
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiaodong Chen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yun Zhou
- Jiangning District Center for Disease Control and Prevention, Nanjing, China
| | - Yan Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
| |
Collapse
|
244
|
Portugal-Cohen M, Oron M, Cohen D, Ma'or Z. Antipollution skin protection - a new paradigm and its demonstration on two active compounds. Clin Cosmet Investig Dermatol 2017; 10:185-193. [PMID: 28553131 PMCID: PMC5439538 DOI: 10.2147/ccid.s129437] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Urban pollution is a major source of concern for human health and is a complex of many environmental factors. The topical exposure to pollution activates cutaneous stress. Objective In this study, we tested the antipollution protection of two active components: Dead Sea minerals (Dead Sea mineral-rich water [DSW]) and anionic polysaccharide (PolluStop® [PS]). Materials and methods Two representative pollution models were studied using reconstructed epidermis: 1) mixture of pollutants (MOP) containing heavy metals and atmospheric particulate matter and 2) ozone exposure. DSW and PS were topically applied alone or in combination, and their protection against pollution was assessed by testing the levels of the inflammation markers interleukin 1α (IL-1α) and prostaglandin E2 (PGE2). Results MOP exposure induced IL-1α release, which was attenuated following pre-application with DSW and PS alone or in combination. Ozone exposure induced IL-1α and PGE2 release. Pre-application with DSW or PS alone did not inhibit IL-1α and PGE2 overproduction. Only when DSW and PS were mixed together, inhibition of these inflammatory markers was observed. Conclusion The observations reveal the potential use of active agents in combination for a selective mode of protection from urban pollution. This is because many active materials cannot solely provide a broad protection against different types of pollutants. This strategy might be beneficial for future antipollution regimen formulated in both pharmaceutical and cosmetic products.
Collapse
Affiliation(s)
- Meital Portugal-Cohen
- AHAVA Dead Sea Laboratories, Lod, Israel.,The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel
| | - Miriam Oron
- AHAVA Dead Sea Laboratories, Lod, Israel.,The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel
| | - Dror Cohen
- AHAVA Dead Sea Laboratories, Lod, Israel.,The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel.,The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zeevi Ma'or
- AHAVA Dead Sea Laboratories, Lod, Israel.,The Dead Sea Laboratory for Skin Biochemistry and Biotechnology, Dead Sea and Arava Science Center, Masada, Israel
| |
Collapse
|
245
|
Chen SY, Chan CC, Su TC. Particulate and gaseous pollutants on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:403-408. [PMID: 28159399 DOI: 10.1016/j.envpol.2017.01.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 05/28/2023]
Abstract
This study examined effects of short-term urban air pollution exposures on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease (CVD). We enrolled 61 patients with multiple CVD risk factors and measured high sensitive C-reactive protein (hs-CRP), fibrinogen, D-dimer, and heart rate variability (HRV) indices. Two health examinations for each participant were performed during December 2002 through September 2003. Changes in inflammation and thrombotic markers and HRV indices with exposures to PM2.5, organic carbon (OC), elemental carbon (EC), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) at 1- to 3-day lags were analyzed using mixed models. The results showed inflammatory and thrombotic markers increased with 1- to 3-day lagged PM2.5 components and gaseous pollutants exposures. hs-CRP maximally increased 0.19 [95% confidence interval (CI): 0.07-0.31] and 0.15 (95% CI: 0.05-0.24) mg/L for an interquartile range (IQR) of 1-day lagged SO2 (2.3 ppb) and CO (0.5 ppm), respectively. D-dimer maximally increased 1.05 (95% CI: 0.13-1.75), 0.72 (95% CI: 0.09-1.21), 0.92 (95% CI: 0.13-1.50), and 0.90 (95% CI: 0.07-1.61) mg/dL for an IQR of 1-day lagged OC (3.9 μg/m3), EC (2.0 μg/m3), SO2, and NO2 (13.4 ppb), respectively. The HRV indices, including low frequency, very low frequency, and the ratio of low frequency to high frequency decreased 19.8 (95% CI: 4.4-32.7), 12.9 (95% CI: 0.8-23.4), and 17.6 (95% CI: 5.4-28.2)% for an IQR of 1-day lagged PM2.5 (20.2 μg/m3), respectively. Our findings demonstrated PM2.5 components and gaseous pollutants exert prolonged inflammatory and thrombotic reactions, while PM2.5 exert an immediate autonomic imbalance.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
246
|
Hassanvand MS, Naddafi K, Kashani H, Faridi S, Kunzli N, Nabizadeh R, Momeniha F, Gholampour A, Arhami M, Zare A, Pourpak Z, Hoseini M, Yunesian M. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:695-704. [PMID: 28190687 DOI: 10.1016/j.envpol.2017.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 05/23/2023]
Abstract
Systemic inflammation biomarkers have been associated with risk of cardiovascular morbidity and mortality. We aimed to clarify associations of acute exposure to particulate matter (PM10 (PM < 10 μm), PM2.5-10 (PM 2.5-10 μm), PM2.5 (PM < 2.5 μm), PM1-2.5 (PM 1-2.5 μm), and PM1 (PM < 1 μm)) with systemic inflammation using panels of elderly subjects and healthy young adults. We followed a panel of 44 nonsmoking elderly subjects living in a retirement home and a panel of 40 healthy young adults living in a school dormitory in Tehran city, Iran from May 2012 to May 2013. Blood biomarkers were measured one every 7-8 weeks and included white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). We measured hourly indoor and outdoor exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1 mass concentration to derive weighted averages of personal exposure based on simultaneously collected time-activity data. The random intercept linear mixed effects model was used for data analysis. We observed significant positive associations for WBC and IL-6 with exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1; sTNF-RII with PM2.5, PM1-2.5, and PM1; hsCRP with PM2.5 and PM1; and vWF with PM10 and PM2.5-10, PM2.5, and PM1-2.5 mass concentration in elderly subjects from the current-day and multiday averages. For healthy young adults, we found significant positive associations for WBC and IL-6 with exposure to PM10, PM2.5-10, PM2.5, and PM1-2.5, but no with PM1. The results showed that increase of hsCRP, sTNF-RII, and vWF were not significantly associated with any of the PM sizes investigated in the healthy young subjects. Our results provided some evidence that short-term exposure to PM10, PM2.5-10, PM2.5, PM1-2.5, and PM1 was associated with inflammation and coagulation blood markers, but associations were depended on PM size and also differed across the various time lag.
Collapse
Affiliation(s)
- Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nino Kunzli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ramin Nabizadeh
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Momeniha
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Arhami
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahad Zare
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Fars, Iran
| | - Masud Yunesian
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
247
|
Liu L, Urch B, Szyszkowicz M, Speck M, Leingartner K, Shutt R, Pelletier G, Gold DR, Scott JA, Brook JR, Thorne PS, Silverman FS. Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. ENVIRONMENT INTERNATIONAL 2017; 101:89-95. [PMID: 28117141 PMCID: PMC5348252 DOI: 10.1016/j.envint.2017.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epidemiological studies have reported associations between air pollution and neuro-psychological conditions. Biological mechanisms behind these findings are still not clear. OBJECTIVES We examined changes in blood and urinary neural biomarkers following exposure to concentrated ambient coarse, fine and ultrafine particles. METHODS Fifty healthy non-smoking volunteers, mean age 28years, were exposed to coarse (2.5-10μm, mean 213μg/m3) and fine (0.15-2.5μm, mean 238μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (mean size 59.6nm, range 47.0-69.8nm), mean (136μg/m3) and filtered medical air. Exposures lasted 130min, separated by ≥2weeks, and the biological constituents endotoxin and β-1,3-d-glucan of each particle size fraction were measured. Blood and urine samples were collected pre-exposure, and 1-hour and 21-hour post-exposure to determine neural biomarker levels. Mixed-model regressions assessed associations between exposures and changes in biomarker levels. RESULTS Results were expressed as percent change from daily pre-exposure biomarker levels. Exposure to coarse CAP was significantly associated with increased urinary levels of the stress-related biomarkers vanillylmandelic acid (VMA) and cortisol when compared with exposure to filtered medical air [20% (95% confidence interval: 1.0%, 38%) and 64% (0.2%, 127%), respectively] 21hours post-exposure. However exposure to coarse CAP was significantly associated with decreases in blood cortisol [-26.0% (-42.4%, -9.6%) and -22.4% (-43.7%, -1.1%) at 1h and 21h post-exposure, respectively]. Biological molecules present in coarse CAP were significantly associated with blood biomarkers indicative of blood brain barrier integrity. Endotoxin content was significantly associated with increased blood ubiquitin C-terminal hydrolase L1 [UCHL1, 11% (5.3%, 16%) per ln(ng/m3+1)] 1-hour post-exposure, while β-1,3-d-glucan was significantly associated with increased blood S100B [6.3% (3.2%, 9.4%) per ln(ng/m3+1)], as well as UCHL1 [3.1% (0.4%, 5.9%) per ln(ng/m3+1)], one-hour post-exposure. Fine CAP was marginally associated with increased blood UCHL1 when compared with exposure to filtered medical air [17.7% (-1.7%, 37.2%), p=0.07] 21hours post-exposure. Ultrafine CAP was not significantly associated with changes in any blood and urinary neural biomarkers examined. CONCLUSION Ambient coarse particulate matter and its biological constituents may influence neural biomarker levels that reflect perturbations of blood-brain barrier integrity and systemic stress response.
Collapse
Affiliation(s)
- Ling Liu
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Bruce Urch
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada
| | | | - Mary Speck
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Karen Leingartner
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Robin Shutt
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guillaume Pelletier
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Diane R Gold
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James A Scott
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey R Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada; Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Frances S Silverman
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, Ontario, Canada; Divisions of Occupational Medicine and Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
248
|
Kim HJ, Bae IH, Son ED, Park J, Cha N, Na HW, Jung C, Go YS, Kim DY, Lee TR, Shin DW. Transcriptome analysis of airborne PM 2.5-induced detrimental effects on human keratinocytes. Toxicol Lett 2017; 273:26-35. [PMID: 28341207 DOI: 10.1016/j.toxlet.2017.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/24/2022]
Abstract
Ambient air pollution is becoming more severe worldwide, posing a serious threat to human health. Fine airborne particles of particulate matter (PM2.5) show higher cytotoxicity than other coarse fractions. Indeed, PM2.5 induces cardiovascular or respiratory damage; however, few studies have evaluated the detrimental effect of PM2.5 to normal human skin. We used a next-generation sequencing-based (RNA-Seq) method with transcriptome and Gene Ontology (GO) enrichment analysis to determine the harmful influences of PM2.5 on human normal epidermal keratinocytes. DAVID analysis showed that the most significantly enriched GO terms were associated with epidermis-related biological processes such as "epidermis development (GO: 0008544)" and "keratinocyte differentiation (GO: 0030216)", suggesting that PM2.5 has some deleterious effects to the human epidermis. In addition, Ingenuity Pathway Analysis predicted inflammation-related signaling as one of the major PM2.5-induced signaling pathways, and pro-inflammatory cytokines as upstream regulators with symptoms similar to psoriasis as downstream effects. PM2.5 caused considerable changes in the expression of pro-inflammatory cytokines and psoriatic skin disease-related genes, might lead to epidermal dysfunctions. Our results might help to understand the mechanism of air pollution-induced skin barrier perturbation and contribute to the development of a new strategy for the prevention or recovery of the consequent damage.
Collapse
Affiliation(s)
- Hyoung-June Kim
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Il-Hong Bae
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea; College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Eui Dong Son
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Juyearl Park
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Nari Cha
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Hye-Won Na
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Changjo Jung
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - You-Seak Go
- Macrogen Inc., Seoul, 08511, Republic of Korea
| | - Dae-Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Republic of Korea
| | - Tae Ryong Lee
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea.
| | - Dong Wook Shin
- Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea.
| |
Collapse
|
249
|
Evans KA, Hopke PK, Utell MJ, Kane C, Thurston SW, Ling FS, Chalupa D, Rich DQ. Triggering of ST-elevation myocardial infarction by ambient wood smoke and other particulate and gaseous pollutants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:198-206. [PMID: 27072425 PMCID: PMC5063679 DOI: 10.1038/jes.2016.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/19/2016] [Indexed: 05/25/2023]
Abstract
We previously observed increased odds of ST-elevation myocardial infarctions (STEMIs) associated with increased ambient fine particulate matter (PM2.5) in the previous hour. However, data are lacking on the effects of specific PM sources. Using data from 362 patients, a case-crossover design, and conditional logistic regression, we estimated the relative odds of STEMI associated with increased Delta-C (wood smoke), black carbon (BC; traffic), PM2.5, and gaseous pollutants in the previous 1-72 h. We did not observe increased odds of STEMIs associated with increased Delta-C or BC. We did observe increased odds associated with each 7.1 μg/m3 increase in PM2.5 (OR (95% CI): 1.17 (0.99, 1.39)) and each 19.9 p.p.b. increase in ozone (O3; 1.27 (1.00, 1.63)) in the previous hour, and each 0.22 p.p.m. increase in 48-h carbon monoxide (CO) concentrations (1.32 (1.00, 1.73]). Larger relative odds were associated with PM2.5 in May-October, and O3 and CO in November-April. Increased PM2.5, O3, and CO, but not wood smoke or BC, were associated with increased odds of STEMI, and effects may differ by season. Studies using spatially adjusted pollution estimates are needed, as well as studies further examining O3 and CO effects on the risk of STEMI.
Collapse
Affiliation(s)
- Kristin A. Evans
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York
| | - Philip K. Hopke
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York
| | - Mark J. Utell
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Cathleen Kane
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Frederick S. Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - David Chalupa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
250
|
Step On It! Workplace Cardiovascular Risk Assessment of New York City Yellow Taxi Drivers. J Immigr Minor Health 2017; 18:118-34. [PMID: 25680879 DOI: 10.1007/s10903-015-0170-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Multiple factors associated with taxi driving can increase the risk of cardiovascular disease (CVD) in taxi drivers. This paper describes the results of Step On It!, which assessed CVD risk factors among New York City taxi drivers at John F. Kennedy International Airport. Drivers completed an intake questionnaire and free screenings for blood pressure, glucose and body mass index (BMI). 466 drivers participated. 9 % had random plasma glucose values >200 mg/dl. 77 % had elevated BMIs. Immigrants who lived in the US for >10 years had 2.5 times the odds (CI 1.1-5.9) of having high blood pressure compared to newer immigrants. Abnormalities documented in this study were significant, especially for immigrants with greater duration of residence in the US, and underscore the potential for elevated CVD risk in this vulnerable population, and the need to address this risk through frameworks that utilize multiple levels of intervention.
Collapse
|