201
|
Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015; 172:1415-33. [PMID: 25297560 PMCID: PMC4369254 DOI: 10.1111/bph.12960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling.
Collapse
Affiliation(s)
- O Pechánová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
- Faculty of Natural Sciences, Comenius UniversityBratislava, Slovak Republic
| | - Z V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - M Cebová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
| | - Z Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - P Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAABethesda, MD, USA
| | - P Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
- Pharmahungary GroupSzeged, Hungary
| |
Collapse
|
202
|
Schisler JC, Grevengoed TJ, Pascual F, Cooper DE, Ellis JM, Paul DS, Willis MS, Patterson C, Jia W, Coleman RA. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc 2015; 4:jah3872. [PMID: 25713290 PMCID: PMC4345858 DOI: 10.1161/jaha.114.001136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.
Collapse
Affiliation(s)
- Jonathan C Schisler
- Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, NC (J.C.S., C.P.)
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Florencia Pascual
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Jessica M Ellis
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - David S Paul
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC (M.S.W.)
| | - Cam Patterson
- Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, NC (J.C.S., C.P.)
| | - Wei Jia
- Nutrition Research Institute, Kannapolis, NC (W.J.)
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| |
Collapse
|
203
|
Elezaby A, Sverdlov AL, Tu VH, Soni K, Luptak I, Qin F, Liesa M, Shirihai OS, Rimer J, Schaffer JE, Colucci WS, Miller EJ. Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. J Mol Cell Cardiol 2015; 79:275-83. [PMID: 25497302 PMCID: PMC4301992 DOI: 10.1016/j.yjmcc.2014.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity. Mice with cardiomyocyte-specific overexpression of the fatty acid transport protein FATP1 have increased cardiomyocyte FA uptake and develop MHD in the absence of systemic lipotoxicity, obesity or diabetes. We utilized this model to assess 1) the effect of cardiomyocyte lipid accumulation on mitochondrial structure and energetic function and 2) the role of lipid-driven transcriptional regulation, signaling, toxic metabolite accumulation, and mitochondrial oxidative stress in lipid-induced MHD. METHODS Cardiac lipid species, lipid-dependent signaling, and mitochondrial structure/function were examined from FATP1 mice. Cardiac structure and function were assessed in mice overexpressing both FATP1 and mitochondrial-targeted catalase. RESULTS FATP1 hearts exhibited a net increase (+12%) in diacylglycerol, with increases in several very long-chain diacylglycerol species (+160-212%, p<0.001) and no change in ceramide, sphingomyelin, or acylcarnitine content. This was associated with an increase in phosphorylation of PKCα and PKCδ, and a decrease in phosphorylation of AKT and expression of CREB, PGC1α, PPARα and the mitochondrial fusion genes MFN1, MFN2 and OPA1. FATP1 overexpression also led to marked decreases in mitochondrial size (-49%, p<0.01), complex II-driven respiration (-28.6%, p<0.05), activity of isolated complex II (-62%, p=0.05), and expression of complex II subunit B (SDHB) (-60% and -31%, p<0.01) in the absence of change in ATP synthesis. Hydrogen peroxide production was not increased in FATP1 mitochondria, and cardiac hypertrophy and diastolic dysfunction were not attenuated by overexpression of catalase in mitochondria in FATP1 mice. CONCLUSIONS Excessive delivery of FAs to the cardiac myocyte in the absence of systemic disorders leads to activation of lipid-driven signaling and remodeling of mitochondrial structure and function.
Collapse
Affiliation(s)
- Aly Elezaby
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Aaron L Sverdlov
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Vivian H Tu
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Kanupriya Soni
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Ivan Luptak
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Fuzhong Qin
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Marc Liesa
- Boston University School of Medicine, Obesity and Nutrition Section, Department of Medicine, Boston, MA 02118, United States
| | - Orian S Shirihai
- Boston University School of Medicine, Obesity and Nutrition Section, Department of Medicine, Boston, MA 02118, United States
| | - Jamie Rimer
- Washington University School of Medicine, Diabetic Cardiovascular Disease Center, St Louis, MO 63110, United States
| | - Jean E Schaffer
- Washington University School of Medicine, Diabetic Cardiovascular Disease Center, St Louis, MO 63110, United States
| | - Wilson S Colucci
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States
| | - Edward J Miller
- Boston University School of Medicine, Whitaker Cardiovascular Institute, Section of Cardiovascular Medicine, Boston, MA 02118, United States.
| |
Collapse
|
204
|
Abstract
A variety of leptin actions require a re-examination of classic concepts of metabolic diseases. Here we present evidence for two physiologic pathways: a pathway that protects nonadipose tissues from overaccumulation of potentially toxic lipids and unrecognized paracrine interactions between α and β cells revealed by leptin's ability to suppress diabetic hyperglucagonemia. These observations strongly point to new therapeutic possibilities for both type 1 and type 2 diabetes.
Collapse
|
205
|
Fuentes-Antrás J, Picatoste B, Gómez-Hernández A, Egido J, Tuñón J, Lorenzo Ó. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res 2015; 2015:656795. [PMID: 25973429 PMCID: PMC4417999 DOI: 10.1155/2015/656795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy entails a serious cardiac dysfunction induced by alterations in structure and contractility of the myocardium. This pathology is initiated by changes in energy substrates and occurs in the absence of atherothrombosis, hypertension, or other cardiomyopathies. Inflammation, hypertrophy, fibrosis, steatosis, and apoptosis in the myocardium have been studied in numerous diabetic experimental models in animals, mostly rodents. Type I and type II diabetes were induced by genetic manipulation, pancreatic toxins, and fat and sweet diets, and animals recapitulate the main features of human diabetes and related cardiomyopathy. In this review we update and discuss the main experimental models of diabetic cardiomyopathy, analysing the associated metabolic, structural, and functional abnormalities, and including current tools for detection of these responses. Also, novel experimental models based on genetic modifications of specific related genes have been discussed. The study of specific pathways or factors responsible for cardiac failures may be useful to design new pharmacological strategies for diabetic patients.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - B. Picatoste
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - A. Gómez-Hernández
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - J. Egido
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
| | - J. Tuñón
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
| | - Ó. Lorenzo
- IIS-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
206
|
Jaishy B, Zhang Q, Chung HS, Riehle C, Soto J, Jenkins S, Abel P, Cowart LA, Van Eyk JE, Abel ED. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res 2014; 56:546-561. [PMID: 25529920 DOI: 10.1194/jlr.m055152] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs.
Collapse
Affiliation(s)
- Bharat Jaishy
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Quanjiang Zhang
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Heaseung S Chung
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224
| | - Christian Riehle
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Soto
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Stephen Jenkins
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Patrick Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403
| | - Jennifer E Van Eyk
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224; Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21224; Bayview Proteomics Center, Johns Hopkins University, Baltimore, MD 21224
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242.
| |
Collapse
|
207
|
Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2014; 34:2721-31. [PMID: 24820416 DOI: 10.1128/mcb.00133-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipid droplet (LD) is a ubiquitous organelle that stores triacylglycerol and other neutral lipids. Perilipin 5 (Plin5), a member of the perilipin protein family that is abundantly expressed in the heart, is essential to protect LDs from attack by lipases, including adipose triglyceride lipase. Plin5 controls heart metabolism and performance by maintaining LDs under physiological conditions. Aberrant lipid accumulation in the heart leads to organ malfunction, or cardiomyopathy. To elucidate the role of Plin5 in a metabolically disordered state and the mechanism of lipid-induced cardiomyopathy, we studied the effects of streptozotocin-induced type 1 diabetes in Plin5-knockout (KO) mice. In contrast to diabetic wild-type mice, diabetic Plin5-KO mice lacked detectable LDs in the heart and did not exhibit aberrant lipid accumulation, excessive reactive oxygen species (ROS) generation, or heart malfunction. Moreover, diabetic Plin5-KO mice exhibited lower heart levels of lipotoxic molecules, such as diacylglycerol and ceramide, than wild-type mice. Membrane translocation of protein kinase C and the assembly of NADPH oxidase 2 complex on the membrane were also suppressed. The results suggest that diabetic Plin5-KO mice are resistant to type 1 diabetes-induced heart malfunction due to the suppression of the diacylglycerol/ceramide-protein kinase C pathway and of excessive ROS generation by NADPH oxidase.
Collapse
|
208
|
Yu J, Pan W, Shi R, Yang T, Li Y, Yu G, Bai Y, Schuchman EH, He X, Zhang G. Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can J Cardiol 2014; 31:357-63. [PMID: 25746025 DOI: 10.1016/j.cjca.2014.12.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ceramide is involved in apoptosis, inflammation, and stress responses, which are among the pathogenic components of chronic heart failure (CHF). However, no one has documented the levels of ceramide itself in CHF or determined its potential prognostic value. METHODS In this study we recruited patients with heart failure consecutively from the hospital, of whom 423 stable patients were eventually selected to participate in this study after an observation period of at least 3 months after hospital discharge. All patents were followed up for all-cause death to December 31, 2013. RESULTS Plasma ceramide levels were increased stepwise with New York Heart Association functional class (I, 5.32 ± 1.98; II, 5.81 ± 1.63; III, 6.14 ± 2.14; IV, 6.66 ± 2.61 ng/mL). During a mean follow-up of 4.4 years (interquartile range: 3.5-5.3 years), a total of 200 CHF patients died. The optimal threshold value of ceramide was 6.05 ng/mL. Ceramide levels as continuous and as dichotomous variables are risk factors for mortality in CHF (adjusted hazard ratio, 1.31; 95% confidence interval, 1.16-1.47; P < 0.001 and adjusted hazard ratio, 2.07, 95% confidence interval, 1.53-2.81; P < 0.001, respectively). When ceramide levels were combined with conventional CHF risk factors, the area under the curve increased from 0.68 (0.63-0.72) to 0.72 (0.68-0.76); P = 0.047. The continuous net reclassification index and integrated discrimination improvement index were 17.2% (5.0-29.9%; P = 0.027) and 0.04 (0.01-0.08; P = 0.020), respectively. CONCLUSIONS Plasma ceramide levels were increased and correlated with the severity of CHF, and were an independent risk factor of mortality in patients with CHF and reduced left ventricular systolic function. Ceramide levels might provide additional predictive value after conventional risk assessment.
Collapse
Affiliation(s)
- Jingjia Yu
- The State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Wei Pan
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tianlun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanjian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guolong Yu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongping Bai
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
209
|
Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014; 171:2080-90. [PMID: 24147975 DOI: 10.1111/bph.12475] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.
Collapse
Affiliation(s)
- N Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
210
|
Glenn DJ, Cardema MC, Ni W, Zhang Y, Yeghiazarians Y, Grapov D, Fiehn O, Gardner DG. Cardiac steatosis potentiates angiotensin II effects in the heart. Am J Physiol Heart Circ Physiol 2014; 308:H339-50. [PMID: 25485904 DOI: 10.1152/ajpheart.00742.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipid accumulation in the heart is associated with obesity and diabetes and may play an important role in the pathogenesis of heart failure. The renin-angiotensin system is also thought to contribute to cardiovascular morbidity in obese and diabetic patients. We hypothesized that the presence of lipid within the myocyte might potentiate the cardiomyopathic effects of ANG II in the cardiac diacylglycerol acyl transferase 1 (DGAT1) transgenic mouse model of myocyte steatosis. Treatment with ANG II resulted in a similar increase in blood pressure in both nontransgenic and DGAT1 transgenic mice. However, ANG II in DGAT1 transgenic mice resulted in a marked increase in interstitial fibrosis and a reduction in systolic function compared with nontransgenic littermates. Lipidomic analysis revealed that >20% of lipid species were significantly altered between nontransgenic and DGAT1 transgenic animals, whereas 3% were responsive to ANG II administration. ROS were also increased by ANG II in DGAT1 transgenic hearts. ANG II treatment resulted in increased expression of transforming growth factor (TGF)-β2 and the type I TGF-β receptor as well as increased phosphorylation of Smad2 in DGAT1 transgenic hearts. Injection of neutralizing antibodies to TGF-β resulted in a reduction in fibrosis in DGAT1 transgenic hearts treated with ANG II. These results suggest that myocyte steatosis amplifies the fibrotic effects of ANG II through mechanisms that involve activation of TGF-β signaling and increased production of ROS.
Collapse
Affiliation(s)
- Denis J Glenn
- Department of Medicine and the Diabetes Center, University of California, San Francisco, California;
| | - Michelle C Cardema
- Department of Medicine and the Diabetes Center, University of California, San Francisco, California
| | - Wei Ni
- Department of Medicine and the Diabetes Center, University of California, San Francisco, California
| | - Yan Zhang
- Division of Cardiology, Department of Medicine, University of California, San Francisco, California; and
| | - Yerem Yeghiazarians
- Division of Cardiology, Department of Medicine, University of California, San Francisco, California; and
| | - Dmitry Grapov
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - David G Gardner
- Department of Medicine and the Diabetes Center, University of California, San Francisco, California
| |
Collapse
|
211
|
Abstract
Heart failure is a leading cause of morbidity and mortality worldwide, currently affecting 5 million Americans. A syndrome defined on clinical terms, heart failure is the end result of events occurring in multiple heart diseases, including hypertension, myocardial infarction, genetic mutations and diabetes, and metabolic dysregulation, is a hallmark feature. Mounting evidence from clinical and preclinical studies suggests strongly that fatty acid uptake and oxidation are adversely affected, especially in end-stage heart failure. Moreover, metabolic flexibility, the heart's ability to move freely among diverse energy substrates, is impaired in heart failure. Indeed, impairment of the heart's ability to adapt to its metabolic milieu and associated metabolic derangement are important contributing factors in the heart failure pathogenesis. Elucidation of molecular mechanisms governing metabolic control in heart failure will provide critical insights into disease initiation and progression, raising the prospect of advances with clinical relevance.
Collapse
|
212
|
Liu S, Geng B, Zou L, Wei S, Wang W, Deng J, Xu C, Zhao X, Lyu Y, Su X, Xu G. Development of hypertrophic cardiomyopathy in perilipin-1 null mice with adipose tissue dysfunction. Cardiovasc Res 2014; 105:20-30. [DOI: 10.1093/cvr/cvu214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
213
|
Schilling JD, Mann DL. Diabetic Cardiomyopathy: Distinct and Preventable Entity or Inevitable Consequence? CURRENT CARDIOVASCULAR RISK REPORTS 2014. [DOI: 10.1007/s12170-014-0417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
214
|
Abstract
The ability of white and brown adipose tissue to efficiently take up long-chain fatty acids is key to their physiological functions in energy storage and thermogenesis, respectively. Several approaches have been taken to determine uptake rates by cultured cells and primary adipocytes including radio- and fluorescently labeled fatty acids. In addition, the recent description of activatable bioluminescent fatty acids has opened the possibility for expanding these in vitro approaches to real-time monitoring of fatty acid uptake kinetics by adipose depots in vivo. Here, we will describe some of the most useful experimental paradigms to quantitatively determine long-chain fatty acid uptake by adipocytes in vitro and provide the reader with detailed instruction on how bioluminescent probes for in vivo imaging can be synthesized and used in living mice.
Collapse
|
215
|
Simon JN, Chowdhury SAK, Warren CM, Sadayappan S, Wieczorek DF, Solaro RJ, Wolska BM. Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol 2014; 109:445. [PMID: 25280528 DOI: 10.1007/s00395-014-0445-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022]
Abstract
Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide's role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field-stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca(2+)]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2-dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC-dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present.
Collapse
Affiliation(s)
- Jillian N Simon
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Abdurrachim D, Ciapaite J, Wessels B, Nabben M, Luiken JJ, Nicolay K, Prompers JJ. Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1525-37. [DOI: 10.1016/j.bbalip.2014.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/04/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
|
217
|
Guzzardi MA, Hodson L, Guiducci L, Sanguinetti E, Di Cecco P, Liistro T, Vassalle C, Pardini S, Giorgetti L, Salvadori PA, Burchielli S, Iozzo P. Independent effects of circulating glucose, insulin and NEFA on cardiac triacylglycerol accumulation and myocardial insulin resistance in a swine model. Diabetologia 2014; 57:1937-46. [PMID: 24962669 DOI: 10.1007/s00125-014-3307-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Cardiac steatosis and myocardial insulin resistance elevate the risk of cardiac complications in obesity and diabetes. We aimed to disentangle the effects of circulating glucose, insulin and NEFA on myocardial triacylglycerol (TG) content and myocardial glucose uptake. METHODS Twenty-two pigs were stratified according to four protocols: low NEFA + low insulin (nicotinic acid), high NEFA + low insulin (fasting) and high insulin + low NEFA ± high glucose (hyperinsulinaemia-hyperglycaemia or hyperinsulinaemia-euglycaemia). Positron emission tomography, [U-(13)C]palmitate enrichment techniques and tissue biopsies were used to assess myocardial metabolism. Heart rate and rate-pressure product (RPP) were monitored. RESULTS Myocardial glucose extraction was increased by NEFA suppression and was similar in the hyperinsulinaemia-hypergylcaemia, hyperinsulinaemia-euglycaemia and nicotinic acid groups. Hyperglycaemia enhanced myocardial glucose uptake due to a mass action. Myocardial TG content was greatest in the fasting group, whereas hyperinsulinaemia had a mild effect. Heart rate and RPP increased in hyperinsulinaemia-euglycaemia, in which cardiac glycogen content was reduced. Heart rate correlated with myocardial TG and glycogen content. CONCLUSIONS/INTERPRETATION Elevated NEFA levels represent a powerful, self-sufficient promoter of cardiac TG accumulation and are a downregulator of myocardial glucose uptake, indicating that the focus of treatment should be to 'normalise' adipose tissue function to lower the risk of cardiac TG accumulation and myocardial insulin resistance. The observation that hyperinsulinaemia and nicotinic acid led to myocardial fuel deprivation provides a potential explanation for the cardiovascular outcomes reported in recent intensive glucose-lowering and NEFA-lowering clinical trials.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Effect of atrial natriuretic peptide on lipolysis in the mouse heart. Cardiovasc Endocrinol 2014. [DOI: 10.1097/xce.0000000000000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
219
|
Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev Orig Health Dis 2014; 2:250-5. [PMID: 22003431 DOI: 10.1017/s2040174410000425] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Impaired flexibility in the use of substrates for energy production in the heart is implicated in cardiomyopathy. We investigated the effect of maternal protein restriction during pregnancy in rats on the transcription of key genes in cardiac lipid and carbohydrate metabolism in the offspring. Rats were fed protein-sufficient or protein-restricted (PR) diets during pregnancy. Triacylglycerol concentration in adult (day 105) heart was altered by maternal protein intake contingent on post-weaning fat intake and sex. mRNA expression of peroxisomal proliferator-activated receptor (PPAR)-α and carnitine palmitoyltransferase-1 was increased by the maternal PR diet in adult, but not neonatal, offspring. PPARα promoter methylation was lower in adult and neonatal heart from PR offspring. These findings suggest that prenatal nutrition alters the future transcriptional regulation of cardiac energy metabolism in the offspring through changes in epigenetic regulation of specific genes. However, changes in gene functional changes may not be apparent in early life.
Collapse
|
220
|
Unger RH, Scherer PE, Holland WL. Dichotomous roles of leptin and adiponectin as enforcers against lipotoxicity during feast and famine. Mol Biol Cell 2014; 24:3011-5. [PMID: 24072813 PMCID: PMC3784375 DOI: 10.1091/mbc.e12-10-0774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Science is marked by the death of dogmas; the discovery that adipocytes are more than just lipid-storing cells but rather produce potent hormones is one such example that caught physiologists by surprise and reshaped our views of metabolism. While we once considered the adipocyte as a passive storage organ for efficient storage of long-term energy reserves in the form of triglyceride, we now appreciate the general idea (once a radical one) that adipocytes are sophisticated enough to have potent endocrine functions. Over the past two decades, the discoveries of these adipose-derived factors ("adipokines") and their mechanistic actions have left us marveling at and struggling to understand the role these factors serve in physiology and the pathophysiology of obesity and diabetes. These hormones may serve an integral role in protecting nonadipose tissues from lipid-induced damage during nutrient-deprived or replete states. As such, adipocytes deliver not only potentially cytotoxic free fatty acids but, along with these lipids, antilipotoxic adipokines such as leptin, adiponectin, and fibroblast growth factor 21 that potently eliminate excessive local accumulation of these lipids or their conversion to unfavorable sphingolipid intermediates.
Collapse
Affiliation(s)
- Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549 Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549
| | | | | |
Collapse
|
221
|
Affiliation(s)
- J. P. Morrow
- Division of Cardiology; Department of Medicine; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
222
|
Duerr GD, Heinemann JC, Arnoldi V, Feisst A, Kley J, Ghanem A, Welz A, Dewald O. Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart. Life Sci 2014; 102:88-97. [DOI: 10.1016/j.lfs.2014.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
|
223
|
Granér M, Pentikäinen MO, Nyman K, Siren R, Lundbom J, Hakkarainen A, Lauerma K, Lundbom N, Nieminen MS, Petzold M, Taskinen MR. Cardiac steatosis in patients with dilated cardiomyopathy. Heart 2014; 100:1107-12. [DOI: 10.1136/heartjnl-2013-304961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
224
|
Jones HB, Reens J, Johnson E, Brocklehurst S, Slater I. Myocardial Steatosis and Necrosis in Atria and Ventricles of Rats Given Pyruvate Dehydrogenase Kinase Inhibitors. Toxicol Pathol 2014; 42:1250-66. [DOI: 10.1177/0192623314530195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes.
Collapse
Affiliation(s)
- Huw Bowen Jones
- Pathological Sciences, Global Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| | - Jaimini Reens
- Pathological Sciences, Global Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| | - Elizabeth Johnson
- Pathological Sciences, Global Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| | - Simon Brocklehurst
- Pathological Sciences, Global Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| | - Ian Slater
- General Toxicology Department, Global Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, UK
| |
Collapse
|
225
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
226
|
Abstract
In recent years, diabetes mellitus has become an epidemic and now represents one of the most prevalent disorders. Cardiovascular complications are the major cause of mortality and morbidity in diabetic patients. While ischaemic events dominate the cardiac complications of diabetes, it is widely recognised that the risk for developing heart failure is also increased in the absence of overt myocardial ischaemia and hypertension or is accelerated in the presence of these comorbidities. These diabetes-associated changes in myocardial structure and function have been called diabetic cardiomyopathy. Numerous molecular mechanisms have been proposed to contribute to the development of diabetic cardiomyopathy following analysis of various animal models of type 1 or type 2 diabetes and in genetically modified mouse models. The steady increase in reports presenting novel mechanistic data on this subject expands the list of potential underlying mechanisms. The current review provides an update on molecular alterations that may contribute to the structural and functional alterations in the diabetic heart.
Collapse
Affiliation(s)
- Heiko Bugger
- Heart Center Freiburg University, Cardiology and Angiology I, Freiburg, Germany
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 108 CMAB, 451 Newton Road, Iowa City, IA 52242-1101, USA
| |
Collapse
|
227
|
Jeong MH, Tran NKS, Kwak TH, Park BK, Lee CS, Park TS, Lee YH, Park WJ, Yang DK. β-Lapachone ameliorates lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. PLoS One 2014; 9:e91039. [PMID: 24614171 PMCID: PMC3948739 DOI: 10.1371/journal.pone.0091039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/07/2014] [Indexed: 12/28/2022] Open
Abstract
Lipotoxic cardiomyopathy is caused by myocardial lipid accumulation and often occurs in patients with diabetes and obesity. This study investigated the effects of β-lapachone (β-lap), a natural compound that activates Sirt1 through elevation of the intracellular NAD+ level, on acyl CoA synthase (ACS) transgenic (Tg) mice, which have lipotoxic cardiomyopathy. Oral administration of β-lap to ACS Tg mice significantly attenuated heart failure and inhibited myocardial accumulation of triacylglycerol. Electron microscopy and measurement of mitochondrial complex II protein and mitochondrial DNA revealed that administration of β-lap restored mitochondrial integrity and biogenesis in ACS Tg hearts. Accordingly, β-lap administration significantly increased the expression of genes associated with mitochondrial biogenesis and fatty acid metabolism that were down-regulated in ACS Tg hearts. β-lap also restored the activities of Sirt1 and AMP-activated protein kinase (AMPK), the two key regulators of metabolism, which were suppressed in ACS Tg hearts. In H9C2 cells, β-lap-mediated elevation of AMPK activity was retarded when the level of Sirt1 was reduced by transfection of siRNA against Sirt1. Taken together, these results indicate that β-lap exerts cardioprotective effects against cardiac lipotoxicity through the activation of Sirt1 and AMPK. β-lap may be a novel therapeutic agent for the treatment of lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Moon Hee Jeong
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | - Byung Keon Park
- Department of Oral Anatomy, School of Dentistry and Institute of Oral Biosciences, Chonbuk National University, Jeonju, Korea
| | - Chul Soon Lee
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Korea
| | - Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry and Institute of Oral Biosciences, Chonbuk National University, Jeonju, Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail: (WJP); (DYK)
| | - Dong Kwon Yang
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail: (WJP); (DYK)
| |
Collapse
|
228
|
Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U. Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda) 2014; 28:125-34. [PMID: 23455771 DOI: 10.1152/physiol.00042.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dietary lipids present in the circulation have to be transported through the vascular endothelium to be utilized by tissue cells, a vital mechanism that is still poorly understood. Vascular endothelial growth factor B (VEGF-B) regulates this process by controlling the expression of endothelial fatty acid transporter proteins (FATPs). Here, we summarize research on the role of the vascular endothelium in nutrient transport, with emphasis on VEGF-B signaling.
Collapse
|
229
|
Rider OJ, Lewis AJ, Neubauer S. Structural and Metabolic Effects of Obesity on the Myocardium and the Aorta. Obes Facts 2014; 7:329-338. [PMID: 25342107 PMCID: PMC5644846 DOI: 10.1159/000368429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022] Open
Abstract
Obesity per se is a recognized risk factor for cardiovascular disease exerting independent adverse effects on the cardiovascular system. Despite this well documented link, the mechanisms by which obesity modulates cardiovascular risk are not well understood. Obesity is linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end stage systolic heart failure. In addition, obesity causes changes in cardiac metabolism that make ATP production and utilization less efficient producing functional consequences that are linked to the increased rate of heart failure in this population. This review focuses on the cardiovascular structural and metabolic remodelling that occurs in obesity with and without co-morbidities and the potential links to increased mortality in this population. © 2014 S. Karger GmbH, Freiburg.
Collapse
Affiliation(s)
- Oliver J. Rider
- *Dr. Oliver J Rider, University of Oxford Centre for Clinical Magnetic Resonance Research, Level 0, John Radcliffe Hospital, Oxford OX3 9DU (UK),
| | | | | |
Collapse
|
230
|
Chou IP, Chiu YP, Ding ST, Liu BH, Lin YY, Chen CY. Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice--possible involvement of oxidative stress and autophagy. Endocr Res 2014; 39:173-9. [PMID: 24679155 DOI: 10.3109/07435800.2013.879165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies show that adiponectin and its receptors (AdipoR1 and 2) play important roles in regulating glucose and lipid metabolism in mice. Obesity, type II diabetes and cardiovascular disease are highly correlated with downregulated adiponectin signaling; however, research has not clarified the functions of AdipoR1 in vivo. METHODS In this study, mice were induced to overexpress the AdipoR1 transgene so that its functions could be studied in relation to hypertrophic cardiomyopathy. Wild-type and AdipoR1-transgenic male mice were fed ad libitum with a standard chow diet or else a high-fat/sucrose diet (HFSD) for 24 weeks, beginning at 6-7 weeks of age. RESULTS After receiving the 24-week HFSD, AdipoR1-transgenic mice did not become obese, nor did they develop heart hypertrophy. The AdipoR1 transgene decreased the elevating cardiac troponin I expression caused by the HFSD. While the HFSD induced mRNA expression of CD36 and CPTI, AdipoR1 reversed it. Suppression of cardiac SOD mRNA expression by the HFSD was improved by the AdipoR1 transgene. The HFSD caused a higher autophagic gene expression of Beclin 1 and Lamp 2 A in the heart, whereas the AdipoR1 transgene ameliorated them. CONCLUSIONS The AdipoR1 transgene enabled mice to resist diet-induced obesity while decreasing lipid accumulation, oxidative stress and autophagic damage. These effects might contribute to the improvement of heart functions in diet-induced obese mice.
Collapse
Affiliation(s)
- I-Pin Chou
- Department of Animal Science and Technology, National Taiwan University , Taipei , Taiwan and
| | | | | | | | | | | |
Collapse
|
231
|
Kramer SP, Powell DK, Haggerty CM, Binkley CM, Mattingly AC, Cassis LA, Epstein FH, Fornwalt BK. Obesity reduces left ventricular strains, torsion, and synchrony in mouse models: a cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2013; 15:109. [PMID: 24380567 PMCID: PMC3882783 DOI: 10.1186/1532-429x-15-109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity affects a third of adults in the US and results in an increased risk of cardiovascular mortality. While the mechanisms underlying this increased risk are not well understood, animal models of obesity have shown direct effects on the heart such as steatosis and fibrosis, which may affect cardiac function. However, the effect of obesity on cardiac function in animal models is not well-defined. We hypothesized that diet-induced obesity in mice reduces strain, torsion, and synchrony in the left ventricle (LV). METHODS Ten 12-week-old C57BL/6 J mice were randomized to a high-fat or low-fat diet. After 5 months on the diet, mice were imaged with a 7 T ClinScan using a cine DENSE protocol. Three short-axis and two long-axis slices were acquired for quantification of strains, torsion and synchrony in the left ventricle. RESULTS Left ventricular mass was increased by 15% (p = 0.032) with no change in volumes or ejection fraction. Subepicardial strain was lower in the obese mice with a 40% reduction in circumferential strain (p = 0.008) a 53% reduction in radial strain (p = 0.032) and a trend towards a 19% reduction in longitudinal strain (p = 0.056). By contrast, subendocardial strain was modestly reduced in the obese mice in the circumferential direction by 12% (p = 0.028), and no different in the radial (p = 0.690) or longitudinal (p = 0.602) directions. Peak torsion was reduced by 34% (p = 0.028). Synchrony of contraction was also reduced (p = 0.032) with a time delay in the septal-to-lateral direction. CONCLUSIONS Diet-induced obesity reduces left ventricular strains and torsion in mice. Reductions in cardiac strain are mostly limited to the subepicardium, with relative preservation of function in the subendocardium. Diet-induced obesity also leads to reduced synchrony of contraction and hypertrophy in mouse models.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Diet, High-Fat
- Disease Models, Animal
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Magnetic Resonance Imaging, Cine
- Mice
- Mice, Inbred C57BL
- Myocardial Contraction
- Obesity/complications
- Obesity/diagnosis
- Obesity/physiopathology
- Predictive Value of Tests
- Stress, Mechanical
- Stroke Volume
- Time Factors
- Torsion, Mechanical
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Sage P Kramer
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - David K Powell
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Christopher M Haggerty
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Cassi M Binkley
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Andrea C Mattingly
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
| | - Lisa A Cassis
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY, USA
| | - Frederick H Epstein
- Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA, USA
| | - Brandon K Fornwalt
- Departments of Pediatrics, Physiology and Medicine, University of Kentucky, 800 Rose St, MN-150, Lexington, KY 40536, USA
- Graduate Center for Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
232
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
233
|
Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart--deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc 2013; 2:e000433. [PMID: 24275630 PMCID: PMC3886738 DOI: 10.1161/jaha.113.000433] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina Bayeva
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | | | | |
Collapse
|
234
|
Abstract
Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol, and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation, or modulation of PPARs.
Collapse
|
235
|
Abstract
Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator-activated receptor (PPAR) γ via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPARγ mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPARγ, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPARγ mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.
Collapse
|
236
|
Wang KCW, Lim CH, McMillen IC, Duffield JA, Brooks DA, Morrison JL. Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy. Metabolism 2013; 62:1662-72. [PMID: 23928106 DOI: 10.1016/j.metabol.2013.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/24/2013] [Accepted: 06/29/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Intrauterine growth restriction that results in low birth weight (LBW) has been linked to the onset of pathological cardiac hypertrophy. An altered transition from a fetal to an adult energy metabolism phenotype, with increased reliance on glucose rather than fatty acids for energy production, could help explain this connection. We have therefore investigated cardiac metabolism in relation to left ventricular hypertrophy in LBW lambs, at 21days after birth. MATERIALS/METHODS The expression of regulatory molecules involved in cardiac glucose and fatty acid metabolism was measured using real-time PCR and Western blotting. A section of the left ventricle was fixed for Periodic Acid Schiff staining to determine tissue glycogen content. RESULTS There was increased abundance of insulin signalling pathway proteins (phospho-insulin receptor, insulin receptor and phospho-Akt) and the glucose transporter (GLUT)-1, but no change in GLUT-4 or glycogen content in the heart of LBW compared to ABW lambs. There was, however, increased abundance of cardiac pyruvate dehydrogenase kinase 4 (PDK-4) in LBW compared to ABW lambs. There were no significant changes in the mRNA expression of components of the peroxisome proliferator activated receptor regulatory complex or proteins involved in fatty acid metabolism. CONCLUSION We concluded that LBW induced left ventricular hypertrophy was associated with increased GLUT-1 and PDK-4, suggesting increased glucose uptake, but decreased efficacy for the conversion of glucose to ATP. A reduced capacity for energy conversion could have significant implications for vulnerability to cardiovascular disease in adults who are born LBW.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
237
|
Ouyang C, You J, Xie Z. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol 2013; 71:71-80. [PMID: 24513079 DOI: 10.1016/j.yjmcc.2013.10.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/07/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022]
Abstract
Diabetic cardiomyopathy is characterized by ventricular dysfunction that occurs in diabetic patients independent of coronary artery disease, hypertension, and any other cardiovascular diseases. Diabetic cardiomyopathy has become a major cause of diabetes-related mortality. Thus, an urgent need exists to clarify the mechanism of pathogenesis. Emerging evidence demonstrates that diabetes induces cardiomyocyte apoptosis and suppresses cardiac autophagy, indicating that the interplay between the autophagy and apoptotic cell death pathways is important in the pathogenesis of diabetic cardiomyopathy. This review highlights recent advances in the crosstalk between autophagy and apoptosis and its importance in the development of diabetic cardiomyopathy. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Changhan Ouyang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jieyun You
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhonglin Xie
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
238
|
Taegtmeyer H, Beauloye C, Harmancey R, Hue L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 2013; 305:H1693-7. [PMID: 24097426 DOI: 10.1152/ajpheart.00854.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reversing impaired insulin sensitivity has been suggested as treatment for heart failure. However, recent clinical evidence suggests the opposite. Here we present a line of reasoning in support of the hypothesis that insulin resistance protects the heart from the consequences of fuel overload in the dysregulated metabolic state of obesity and diabetes. We discuss pathways of myocardial fuel toxicity, as well as several layers of defense against fuel overload. Our reassessment of the literature suggests that in the heart, insulin-sensitizing agents result in an elimination of some of the defenses, leading to cytotoxic damage. In contrast, a normalization of fuel supply should either prevent or reverse the process. Taken together, we offer a new perspective on insulin resistance of the heart.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, The University of Texas School of Medicine at Houston, Houston, Texas
| | | | | | | |
Collapse
|
239
|
Matsumoto C, Hanson NQ, Tsai MY, Glynn RJ, Gaziano JM, Djoussé L. Plasma phospholipid saturated fatty acids and heart failure risk in the Physicians' Health Study. Clin Nutr 2013; 32:819-23. [PMID: 23473794 PMCID: PMC3703479 DOI: 10.1016/j.clnu.2013.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Previous studies have suggested that some plasma phospholipid saturated fatty acids (SFA) are associated with an increased risk of coronary heart disease and hypertension, major risk factors for heart failure (HF). However, little is known about the association between SFA and HF. This study examines associations of individual plasma phospholipid SFA with HF risk in US male physicians. METHODS The current ancillary study used a prospective nested matched case-control design to select 788 cases of incident HF and 788 controls. Plasma phospholipid SFAs were measured using gas chromatography. HF was self-reported on follow-up questionnaires and validated by review of medical records in a subsample. We used conditional logistic regression to estimate relative risks. RESULTS Mean age was 58.7 ± 8.0 years. One standard deviation higher plasma phospholipid 16:0 was associated with an odds ratio (95% CI) of 1.20 (1.04, 1.38) controlling for established HF risk factors and other SFAs (p = 0.042). However, this association was not significant after Bonferroni correction (p > 0.008). We did not observe associations between other SFAs (14:0, 15:0, 18:0, 20:0, or 22:0) and HF risk (all p for trend > 0.05). CONCLUSIONS Our data suggested no association between plasma phospholipid SFAs and HF in US male physicians.
Collapse
Affiliation(s)
- Chisa Matsumoto
- Division of Aging, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
240
|
Nelson MD, Victor RG, Szczepaniak EW, Simha V, Garg A, Szczepaniak LS. Cardiac steatosis and left ventricular hypertrophy in patients with generalized lipodystrophy as determined by magnetic resonance spectroscopy and imaging. Am J Cardiol 2013; 112:1019-24. [PMID: 23800548 PMCID: PMC3779507 DOI: 10.1016/j.amjcard.2013.05.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 01/10/2023]
Abstract
Generalized lipodystrophy is a rare disorder characterized by marked loss of adipose tissue with reduced triglyceride storage capacity, leading to a severe form of metabolic syndrome including hypertriglyceridemia, insulin resistance, type 2 diabetes mellitus, and hepatic steatosis. Recent echocardiographic studies suggest that concentric left ventricular (LV) hypertrophy is another characteristic feature of this syndrome, but the mechanism remains unknown. It has recently been hypothesized that the LV hypertrophy could be an extreme clinical example of "lipotoxic cardiomyopathy": excessive myocyte accumulation of triglyceride leading to adverse hypertrophic signaling. To test this hypothesis, the first cardiac magnetic resonance study of patients with generalized lipodystrophy was performed, using magnetic resonance imaging and localized proton spectroscopy to detect excessive triglyceride content in the hypertrophied myocytes. Six patients with generalized lipodystrophy and 6 healthy controls matched for age, gender, and body mass index were studied. As hypothesized, myocardial triglyceride content was threefold higher in patients than controls: 0.6 ± 0.2% versus 0.2 ± 0.1% (p = 0.004). The presence of pericardial fat was also found, representing a previously undescribed adipose depot in generalized lipodystrophy. Patients with generalized lipodystrophy, compared with controls, also had a striking degree of concentric LV hypertrophy, independent of blood pressure: LV mass index 101.0 ± 18.3 versus 69.0 ± 17.7 g/m(2), respectively (p = 0.02), and LV concentricity 1.3 ± 0.3 versus 0.99 ± 0.1 g/ml, respectively (p = 0.04). In conclusion, these findings advance the lipotoxicity hypothesis as a putative underlying mechanism for the dramatic concentric LV hypertrophy found in generalized lipodystrophy.
Collapse
Affiliation(s)
- Michael D. Nelson
- The Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ronald G. Victor
- The Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Edward W. Szczepaniak
- The Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vinaya Simha
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lidia S. Szczepaniak
- The Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
241
|
Park M, Wu D, Park T, Choi CS, Li RK, Cheng KKY, Xu A, Sweeney G. APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. Am J Physiol Endocrinol Metab 2013; 305:E795-804. [PMID: 23921137 DOI: 10.1152/ajpendo.00257.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif 1) has been established as an important mediator of insulin and adiponectin signaling. Here, we investigated the influence of transgenic (Tg) APPL1 overexpression in mice on high-fat diet (HFD)-induced cardiomyopathy in mice. Wild-type (WT) mice fed an HFD for 16 wk showed cardiac dysfunction, determined by echocardiography, with decreased ejection fraction, decreased fractional shortening, and increased end diastolic volume. HFD-fed APPL1 Tg mice were significantly protected from this dysfunction. Speckle tracking echocardiography to accurately assess cardiac tissue deformation strain and wall motion also indicated dysfunction in WT mice and a similar improvement in Tg vs. WT mice on HFD. APPL1 Tg mice had less HFD-induced increase in circulating nonesteridied fatty acid levels and myocardial lipid accumulation. Lipidomic analysis using LC-MS-MS showed HFD significantly increased myocardial contents of distinct ceramide, sphingomyelin, and diacylglycerol (DAG) species, of which increases in C16:0 and C18:0 ceramides plus C16:0 and C18:1 DAGs were attenuated in Tg mice. A glucose tolerance test indicated less peripheral insulin resistance in response to HFD in Tg mice, which was also apparent by measuring cardiac Akt phosphorylation and cardiomyocyte glucose uptake. In summary, APPL1 Tg mice exhibit improved peripheral metabolism, reduced cardiac lipotoxicity, and improved insulin sensitivity. These cellular effects contribute to protection from HFD-induced cardiomyopathy.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Aurich AC, Niemann B, Pan R, Gruenler S, Issa H, Silber RE, Rohrbach S. Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 2013; 108:369. [PMID: 23836256 DOI: 10.1007/s00395-013-0369-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Obesity-associated heart disease results in myocardial lipid accumulation leading to lipotoxicity. However, recent studies are suggestive of protective effects of high-fat diets (HFD). To determine whether age results in differential changes in diet-induced obesity, we fed young and old (3 and 18 months) male C57Bl/6 mice control diet, low-fat diet (both 10 kcal% fat) or HFD (45 kcal% fat) for 16 weeks, after which we analyzed LV function, mitochondrial changes, and potential modifiers of myocardial structure. HFD or age did not change LV systolic function, although a mildly increased BNP was observed in all old mice. This was associated with increased myocardial collagen, triglyceride, diacylglycerol, and ceramide content as well as higher caspase 3 activation in old mice with highest levels in old HFD mice. Pyruvate-dependent respiration and mitochondrial biogenesis were reduced in all old mice and in young HFD mice. Activation of AMPK, a strong inducer of mitochondrial biogenesis, was reduced in both HFD groups and in old control or LFD mice. Cardiomyocytes from old rats demonstrated significantly reduced AMPK activation, impaired mitochondrial biogenesis, higher ceramide content, and reduced viability after palmitate (C16:0) in vitro, while no major deleterious effects were observed in young cardiomyocytes. Aged but not young cardiomyocytes were unable to respond to higher palmitate with increased fatty acid oxidation. Thus, HFD results in cardiac structural alterations and accumulation of lipid intermediates predominantly in old mice, possibly due to the inability of old cardiomyocytes to adapt to high-fatty acid load.
Collapse
Affiliation(s)
- Anne-Cathleen Aurich
- Institute of Pathophysiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
243
|
Mahmod M, Bull S, Suttie JJ, Pal N, Holloway C, Dass S, Myerson SG, Schneider JE, De Silva R, Petrou M, Sayeed R, Westaby S, Clelland C, Francis JM, Ashrafian H, Karamitsos TD, Neubauer S. Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis. Circ Cardiovasc Imaging 2013; 6:808-16. [PMID: 23833283 DOI: 10.1161/circimaging.113.000559] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aortic stenosis (AS) leads to left ventricular (LV) hypertrophy and dysfunction. We hypothesized that cardiac steatosis is involved in the pathophysiology and also assessed whether it is reversible after aortic valve replacement. METHODS AND RESULTS Thirty-nine patients with severe AS (symptomatic=25, asymptomatic=14) with normal LV ejection fraction and no significant coronary artery disease and 20 age- and sex-matched healthy controls underwent cardiac 1H-magnetic resonance spectroscopy and imaging for the determination of steatosis (myocardial triglyceride content) and cardiac function, including circumferential strain (measured by magnetic resonance tagging). Strain was lower in both symptomatic and asymptomatic AS (-16.4 ± 2.5% and -18.1 ± 2.9%, respectively, versus controls -20.7 ± 2.0%, both P<0.05). Myocardial steatosis was found in both symptomatic and asymptomatic patients with AS (0.89 ± 0.42% in symptomatic AS; 0.75 ± 0.36% in asymptomatic AS versus controls 0.45 ± 0.17, both P<0.05). Importantly, multivariable analysis indicated that steatosis was an independent correlate of impaired LV strain. Spectroscopic measurements of myocardial triglyceride content correlated significantly with histological analysis of biopsies obtained during aortic valve replacement. At 8.0 ± 2.1 months after aortic valve replacement, steatosis and strain had recovered toward normal. CONCLUSIONS Pronounced myocardial steatosis is present in severe AS, regardless of symptoms, and is independently associated with the degree of LV strain impairment. Myocardial triglyceride content measured by magnetic resonance spectroscopy correlates with histological quantification. Steatosis and strain impairment are reversible after aortic valve replacement. Our findings suggest a novel pathophysiological mechanism in AS, myocardial steatosis, which may be amenable to treatment, thus potentially delaying onset of LV dysfunction.
Collapse
Affiliation(s)
- Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes (Lond) 2013; 37:972-9. [PMID: 23069666 DOI: 10.1038/ijo.2012.170] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/29/2012] [Accepted: 09/02/2012] [Indexed: 12/28/2022]
Abstract
Obesity is linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end-stage systolic heart failure. Obesity causes changes in cardiac metabolism, which make ATP production and utilization less efficient, producing functional consequences that are linked to the increased rate of heart failure in this population. As a result of the increases in circulating fatty acids and insulin resistance that accompanies excess fat storage, several of the proteins and genes that are responsible for fatty acid uptake and metabolism are upregulated, and the metabolic machinery responsible for glucose utilization and oxidation are inhibited. The resultant increase in fatty acid metabolism, and the inherent alterations in the proteins of the electron transport chain used to create the gradient needed to drive mitochondrial ATP production, results in a decrease in efficiency of cardiac work and a relative increase in oxygen usage. These changes in cardiac mitochondrial metabolism are potential therapeutic targets for the treatment and prevention of obesity-related heart failure.
Collapse
Affiliation(s)
- O J Rider
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
245
|
Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. Int J Obes (Lond) 2013; 38:205-15. [PMID: 23817015 DOI: 10.1038/ijo.2013.103] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/25/2013] [Accepted: 05/22/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Although obesity increases the risk of developing cardiomyopathy, the mechanisms underlying the development of this cardiomyopathy are incompletely understood. As obesity is also associated with increased intramyocardial triacylglycerol (TAG) deposition, also referred to as cardiac steatosis, we hypothesized that alterations in myocardial TAG metabolism and excess TAG accumulation contribute to obesity-induced cardiomyopathy. OBJECTIVE AND DESIGN To test if increased TAG catabolism could ameliorate obesity-induced cardiac steatosis and dysfunction, we utilized wild-type (WT) mice and mice with cardiomyocyte-specific overexpression of adipose triglyceride lipase (MHC-ATGL mice), which regulates cardiac TAG hydrolysis. WT and MHC-ATGL mice were fed either regular chow (13.5 kcal% fat) or high fat-high sucrose (HFHS; 45 kcal% fat and 17 kcal% sucrose) diet for 16 weeks to induce obesity and mice were subsequently studied at the physiological, biochemical and molecular level. RESULTS Obese MHC-ATGL mice were protected from increased intramyocardial TAG accumulation, despite similar increases in body weight and systemic insulin resistance as obese WT mice. Importantly, analysis of in vivo cardiac function using transthoracic echocardiography showed that ATGL overexpression protected from obesity-induced systolic and diastolic dysfunction and ventricular dilatation. Ex vivo working heart perfusions revealed impaired cardiac glucose oxidation following obesity in both WT and MHC-ATGL mice, which was consistent with similar impaired cardiac insulin signaling between genotypes. However, hearts from obese MHC-ATGL mice exhibited reduced reliance on palmitate oxidation when compared with the obese WT, which was accompanied by decreased expression of proteins involved in fatty acid uptake, storage and oxidation in MHC-ATGL hearts. CONCLUSION These findings suggest that cardiomyocyte-specific ATGL overexpression was sufficient to prevent cardiac steatosis and decrease fatty acid utilization following HFHS diet feeding, leading to protection against obesity-induced cardiac dysfunction.
Collapse
|
246
|
Hu C, Ge F, Hyodo E, Arai K, Iwata S, Lobdell H, Walewski JL, Zhou S, Clugston RD, Jiang H, Zizola CP, Bharadwaj KG, Blaner WS, Homma S, Schulze PC, Goldberg IJ, Berk PD. Chronic ethanol consumption increases cardiomyocyte fatty acid uptake and decreases ventricular contractile function in C57BL/6J mice. J Mol Cell Cardiol 2013; 59:30-40. [PMID: 23422163 PMCID: PMC3647020 DOI: 10.1016/j.yjmcc.2013.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 02/07/2023]
Abstract
Alcohol, a major cause of human cardiomyopathy, decreases cardiac contractility in both animals and man. However, key features of alcohol-related human heart disease are not consistently reproduced in animal models. Accordingly, we studied cardiac histology, contractile function, cardiomyocyte long chain fatty acid (LCFA) uptake, and gene expression in male C57BL/6J mice consuming 0, 10, 14, or 18% ethanol in drinking water for 3months. At sacrifice, all EtOH groups had mildly decreased body and increased heart weights, dose-dependent increases in cardiac triglycerides and a marked increase in cardiac fatty acid ethyl esters. [(3)H]-oleic acid uptake kinetics demonstrated increased facilitated cardiomyocyte LCFA uptake, associated with increased expression of genes encoding the LCFA transporters CD36 and Slc27a1 (FATP1) in EtOH-fed animals. Although SCD-1 expression was increased, lipidomic analysis did not indicate significantly increased de novo LCFA synthesis. By echocardiography, ejection fraction (EF) and the related fractional shortening (FS) of left ventricular diameter during systole were reduced and negatively correlated with cardiac triglycerides. Expression of myocardial PGC-1α and multiple downstream target genes in the oxidative phosphorylation pathway, including several in the electron transport and ATP synthase complexes of the inner mitochondrial membrane, were down-regulated. Cardiac ATP was correspondingly reduced. The data suggest that decreased expression of PGC-1α and its target genes result in decreased cardiac ATP levels, which may explain the decrease in myocardial contractile function caused by chronic EtOH intake. This model recapitulates important features of human alcoholic cardiomyopathy and illustrates a potentially important pathophysiologic link between cardiac lipid metabolism and function.
Collapse
Affiliation(s)
- Chunguang Hu
- The Department of Medicine, Division of Digestive & Liver Disease, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Di Bello V, Fabiani I, Conte L, Barletta V, Delle Donne MG, Cuono C, Leo LA, Dini FL, Marzilli M, Pinchera A, Santini F. New echocardiographic techniques in the evaluation of left ventricular function in obesity. Obesity (Silver Spring) 2013; 21:881-92. [PMID: 23404860 DOI: 10.1002/oby.20071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/20/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Obesity has reached global epidemic proportions and is associated with numerous comorbidities, including major cardiovascular (CV) diseases. DESIGN AND METHODS It has many adverse effects on hemodynamics and CV structure and function: it increases total blood volume and cardiac output, and the cardiac workload is greater. Typically, obese patients have a higher cardiac output but a lower level of total peripheral resistance at any given level of arterial pressure. Most of the increase in cardiac output in obesity is caused by stroke volume, although heart rate typically mildly increases also due to enhanced sympathetic activation. RESULTS Over the last few years, experimental investigations have unraveled some important pathogenetic mechanisms that may underlie a specific form of "obesity cardiomyopathy." Bariatric surgery represents an effective alternative to treat obesity when nonsurgical weight loss programs (diet + behavior modifications + regular exercise) have failed. A great numbers of questions are still open in the global comprehension of the pathophysiological interactions between obesity and heart. CONCLUSION Conventional two-dimensional Doppler echocardiography, integrated by relative new technological ultrasonic approaches, represents the reference technique to study and possibly clarify both the very complex hemodynamic changes induced by obesity and those relative to obesity treatment.
Collapse
|
248
|
Association between myocardial triglyceride content and cardiac function in healthy subjects and endurance athletes. PLoS One 2013; 8:e61604. [PMID: 23613879 PMCID: PMC3628784 DOI: 10.1371/journal.pone.0061604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Ectopic fat accumulation plays important roles in various metabolic disorders and cardiovascular diseases. Recent studies reported that myocardial triglyceride (TG) content measured by proton magnetic resonance spectroscopy (1H-MRS) is associated with aging, diabetes mellitus, and cardiac dysfunction. However, myocardial TG content in athletes has not yet been investigated. We performed 1H-MRS and cardiac magnetic resonance imaging in 10 male endurance athletes and 15 healthy male controls. Serum markers and other clinical parameters including arterial stiffness were measured. Cardiopulmonary exercise testing was also performed. There were no significant differences in clinical characteristics including age, anthropometric parameters, blood test results, or arterial stiffness between the two groups. Peak oxygen uptakes, end–diastolic volume (EDV), end–systolic volume (ESV), left ventricular (LV) mass, peak ejection rates and peak filling rates were significantly higher in the athlete group than in the control group (all P<0.02). Myocardial TG content was significantly lower in the athlete group than in the control group (0.60±0.20 vs. 0.89±0.41%, P<0.05). Myocardial TG content was negatively correlated with EDV (r = −0.47), ESV (r = −0.64), LV mass (r = −0.44), and epicardial fat volume (r = 0.47) (all P<0.05). In conclusion, lower levels of myocardial TG content were observed in endurance athletes and were associated with morphological changes related to physiological LV alteration in athletes, suggesting that metabolic imaging for measurement of myocardial TG content by 1H-MRS may be a useful technique for noninvasively assessing the “athlete’s heart”.
Collapse
|
249
|
Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC, Goldberg IJ. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 2013; 6:550-62. [PMID: 23572494 DOI: 10.1161/circheartfailure.112.000177] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac dysfunction with sepsis is associated with both inflammation and reduced fatty acid oxidation. We hypothesized that energy deprivation accounts for sepsis-related cardiac dysfunction. METHODS AND RESULTS Escherichia coli lipopolysaccharide (LPS) administered to C57BL/6 mice (wild type) induced cardiac dysfunction and reduced fatty acid oxidation and mRNA levels of peroxisome proliferator-activated receptor (PPAR)-α and its downstream targets within 6-8 hours. Transgenic mice in which cardiomyocyte-specific expression of PPARγ is driven by the α-myosin heavy chain promoter (αMHC-PPARγ) were protected from LPS-induced cardiac dysfunction. Despite a reduction in PPARα, fatty acid oxidation and associated genes were not decreased in hearts of LPS-treated αMHC-PPARγ mice. LPS treatment, however, continued to induce inflammation-related genes, such as interleukin-1α, interleukin-1β, interleukin-6, and tumor necrosis factor-α in hearts of αMHC-PPARγ mice. Treatment of wild-type mice with LPS and the PPARγ agonist, rosiglitazone, but not the PPARα agonist (WY-14643), increased fatty acid oxidation, prevented LPS-mediated reduction of mitochondria, and treated cardiac dysfunction, as well as it improved survival, despite continued increases in the expression of cardiac inflammatory markers. CONCLUSIONS Activation of PPARγ in LPS-treated mice prevented cardiac dysfunction and mortality, despite development of cardiac inflammation and PPARα downregulation.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction. PLoS One 2013; 8:e61369. [PMID: 23585895 PMCID: PMC3621834 DOI: 10.1371/journal.pone.0061369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 03/12/2013] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.
Collapse
|