201
|
Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 2009; 95:501-4. [PMID: 19773263 DOI: 10.3324/haematol.2009.014399] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepcidin, a circulating regulatory hormone peptide produced by hepatocytes, functions as the master regulator of cellular iron export by controlling the amount of ferroportin, an iron exporter present on the basolateral surface of intestinal enterocytes and macrophages. Hepcidin binding to ferroportin induces its internalization and degradation, resulting in cellular iron retention and decreased iron export. Whether hepatocytes express ferroportin that could be targeted by hepcidin has remained a subject of debate. Here, we describe a hepatocyte culture system expressing high levels of ferroportin, and demonstrate that both endogenously secreted and synthetic hepcidin are fully active in down-regulating membrane-associated ferroportin. In agreement with this result, ferroportin is stabilized in liver hepatocytes of hepcidin-deficient mice and accumulates in periportal areas, supporting the centrolobular iron deposition observed in these mice. In conclusion, we show that hepcidin can trigger ferroportin degradation in hepatocytes, which must be taken into account when considering hepcidin therapeutics.
Collapse
Affiliation(s)
- Guillemette Ramey
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | |
Collapse
|
202
|
Truksa J, Gelbart T, Peng H, Beutler E, Beutler B, Lee P. Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6. Br J Haematol 2009; 147:571-81. [PMID: 19751239 DOI: 10.1111/j.1365-2141.2009.07873.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepcidin, the master regulator of enteric iron absorption, is controlled by the opposing effects of pathways activated in response to iron excess or iron attenuation. Iron excess is regulated through a pathway involving the cell surface receptor hemojuvelin (HFE2) that stimulates expression of the hepcidin encoding gene (HAMP). Iron attenuation is countered through a pathway involving the hepatocyte-specific plasma membrane protease matriptase-2 encoded by TMPRSS6, leading to suppression of HAMP expression. The non-redundant function of hemojuvelin and matriptase-2 has been deduced from the phenotype imparted by mutations of HFE2 and TMPRSS6, which cause iron excess and iron deficiency respectively. Hemojuvelin is positioned to be the ideal substrate for matriptase-2. To examine the relationship between hemojuvelin and matriptase-2 in vivo, we crossed mice lacking the protease domain of matriptase-2 with mice lacking hemojuvelin. Mice lacking functional matriptase-2 and hemojuvelin exhibited low Hamp (Hamp1) expression, high serum and liver iron, and high transferrin saturation. Surprisingly, the double mutant mice also exhibited lower levels of iron in the heart compared to hemojuvelin-deficient mice, demonstrating a possible cardioprotective effect resulting from the loss of matriptase-2. This phenotype is consistent with hemojuvelin being a major substrate for matriptase-2/TMPRSS6 protease activity.
Collapse
Affiliation(s)
- Jaroslav Truksa
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
203
|
Molecular biology, genetics and biochemistry of the repulsive guidance molecule family. Biochem J 2009; 422:393-403. [PMID: 19698085 DOI: 10.1042/bj20090978] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RGMs (repulsive guidance molecules) comprise a recently discovered family of GPI (glycosylphosphatidylinositol)-linked cell-membrane-associated proteins found in most vertebrate species. The three proteins, RGMa, RGMb and RGMc, products of distinct single-copy genes that arose early in vertebrate evolution, are approximately 40-50% identical to each other in primary amino acid sequence, and share similarities in predicted protein domains and overall structure, as inferred by ab initio molecular modelling; yet the respective proteins appear to undergo distinct biosynthetic and processing steps, whose regulation has not been characterized to date. Each RGM also displays a discrete tissue-specific pattern of gene and protein expression, and each is proposed to have unique biological functions, ranging from axonal guidance during development (RGMa) to regulation of systemic iron metabolism (RGMc). All three RGM proteins appear capable of binding selected BMPs (bone morphogenetic proteins), and interactions with BMPs mediate at least some of the biological effects of RGMc on iron metabolism, but to date no role for BMPs has been defined in the actions of RGMa or RGMb. RGMa and RGMc have been shown to bind to the transmembrane protein neogenin, which acts as a critical receptor to mediate the biological effects of RGMa on repulsive axonal guidance and on neuronal survival, but its role in the actions of RGMc remains to be elucidated. Similarly, the full spectrum of biological functions of the three RGMs has not been completely characterized yet, and will remain an active topic of ongoing investigation.
Collapse
|
204
|
Chung B, Chaston T, Marks J, Srai SK, Sharp PA. Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells. J Nutr 2009; 139:1457-62. [PMID: 19549758 DOI: 10.3945/jn.108.102905] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepcidin is thought to control iron metabolism by interacting with the iron efflux transporter ferroportin. In macrophages, there is compelling evidence that hepcidin directly regulates ferroportin protein expression. However, the effects of hepcidin on intestinal ferroportin levels are less conclusive. In this study, we compared the effects of hepcidin on iron transporter expression in the spleen and duodenum of mice treated with hepcidin over a 24- to 72-h period and observed a marked decrease in the expression of ferroportin in both duodenal enterocytes and splenic macrophages following treatment. Changes in transporter protein expression were associated with significant decreases in duodenal iron transport and serum iron. In THP-1 macrophages, ferroportin protein levels were decreased by 300 and 1000 nmol/L hepcidin. In contrast, ferroportin protein expression was unaltered in intestinal Caco-2 cells following exposure to hepcidin. However, iron efflux from Caco-2 cells was significantly inhibited in the presence of hepcidin, suggesting that the peptide could block ferroportin function in these cells. We conclude that hepcidin regulates the release of iron from both enterocytes and macrophages. However, taken together with our previous work, it is apparent that macrophages are more sensitive than enterocytes to a hepcidin challenge.
Collapse
Affiliation(s)
- Bomee Chung
- Nutritional Sciences Division, King's College London, London SE1 9NH, UK
| | | | | | | | | |
Collapse
|
205
|
Altes Hernández A, Aranalde Fortó J. [Role of hepcidin in the pathogenesis of hemochromatosis]. GASTROENTEROLOGIA Y HEPATOLOGIA 2009; 32:622-6. [PMID: 19625109 DOI: 10.1016/j.gastrohep.2009.01.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 11/26/2022]
Abstract
In the last few years, biochemical and molecular study of the various types of hemochromatosis have established that the hepcidin peptide is the central regulator of iron absorption. This peptide, which is synthesized in the liver, acts through ferroportin degradation. Ferroportin is an iron exporter situated in the intestinal epithelium and in the macrophage membrane whose function is to transport iron from the intestinal cell to plasma and from the macrophage to the erythron. In hemochromatosis, there is a physical or functional hepcidin deficit that increases ferroportin, thus producing excessive iron absorption. The opposite occurs in situations of inflammation: hepcidin synthesis is stimulated while iron entry into the organism and hemoglobin synthesis are blocked.
Collapse
|
206
|
BMP/Smad signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood 2009; 114:2515-20. [PMID: 19622835 DOI: 10.1182/blood-2009-02-206771] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impaired regulation of hepcidin expression in response to iron loading appears to be the pathogenic mechanism for hereditary hemochromatosis. Iron normally induces expression of the BMP6 ligand, which, in turn, activates the BMP/Smad signaling cascade directing hepcidin expression. The molecular function of the HFE protein, involved in the most common form of hereditary hemochromatosis, is still unknown. We have used Hfe-deficient mice of different genetic backgrounds to test whether HFE has a role in the signaling cascade induced by BMP6. At 7 weeks of age, these mice have accumulated iron in their liver and have increased Bmp6 mRNA and protein. However, in contrast to mice with secondary iron overload, levels of phosphorylated Smads 1/5/8 and of Id1 mRNA, both indicators of BMP signaling, are not significantly higher in the liver of these mice than in wild-type livers. As a consequence, hepcidin mRNA levels in Hfe-deficient mice are similar or marginally reduced, compared with 7-week-old wild-type mice. The inappropriately low levels of Id1 and hepcidin mRNA observed at weaning further suggest that Hfe deficiency triggers iron overload by impairing hepatic Bmp/Smad signaling. HFE therefore appears to facilitate signal transduction induced by the BMP6 ligand.
Collapse
|
207
|
Zhang AS, Yang F, Wang J, Tsukamoto H, Enns CA. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem 2009; 284:22580-9. [PMID: 19564337 DOI: 10.1074/jbc.m109.027318] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hemojuvelin (HJV) is a glycosylphosphatidylinositol-linked protein and binds both bone morphogenic proteins (BMPs) and neogenin. Cellular HJV acts as a BMP co-receptor to enhance the transcription of hepcidin, a key iron regulatory hormone secreted predominantly by liver hepatocytes. In this study we characterized the role of neogenin in HJV-regulated hepcidin expression. Both HJV and neogenin were expressed in liver hepatocytes. Knockdown of neogenin decreased BMP4-induced hepcidin mRNA levels by 16-fold in HJV-expressing HepG2 cells but only by about 2-fold in cells transfected with either empty vector or G99V mutant HJV that does not bind BMPs. Further studies indicated that disruption of the HJV-neogenin interaction is responsible for a marked suppression of hepcidin expression. Moreover, in vivo studies showed that hepatic hepcidin mRNA could be significantly suppressed by blocking the interaction of HJV with full-length neogenin with a soluble fragment of neogenin in mice. Together, these results suggest that the HJV-neogenin interaction is required for the BMP-mediated induction of hepcidin expression when HJV is expressed. Combined with our previous studies, our results support that hepatic neogenin possesses two functions, mediation of cellular HJV release, and stimulation of HJV-enhanced hepcidin expression.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
208
|
Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:489-515. [PMID: 19400694 DOI: 10.1146/annurev.pathol.4.110807.092205] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepcidin, a 25-amino-acid antimicrobial peptide, is the central regulator of iron homeostasis. Hepcidin transcription is upregulated by inflammatory cytokines, iron, and bone morphogenetic proteins and is downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. The iron transporter ferroportin is the cognate receptor of hepcidin and is destroyed as a result of interaction with the peptide. Except for inherited defects of ferroportin and hepcidin itself, all forms of iron-storage disease appear to arise from hepcidin dysregulation. Studies using multiple approaches have begun to delineate the molecular mechanisms that regulate hepcidin expression, particularly at the transcriptional level. Knowledge of the regulation of hepcidin by inflammation, iron, erythropoiesis, and hypoxia will lead to an understanding of the pathogenesis of primary hemochromatosis, secondary iron overload, and anemia of inflammatory disease.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
209
|
Deferasirox Reduces Iron Overload in a Murine Model of Juvenile Hemochromatosis. Exp Biol Med (Maywood) 2009; 234:492-503. [DOI: 10.3181/0811-rm-337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in hemojuvelin (HJV) cause severe juvenile hemochromatosis, characterized by iron loading of the heart, liver, and pancreas. Knockout (KO) mice lacking HJV (Hjv−/−) spontaneously load with dietary iron and, therefore, present a model for hereditary hemochromatosis (HH). In HH, iron chelation may be considered in noncandidates for phlebotomy. We examined the effects of deferasirox, an oral chelator, in Hjv−/− mice. Hepatic, cardiac, splenic, and pancreatic iron were determined by measuring elemental iron and scoring histological sections. Heart and liver iron levels were also determined repeatedly by quantitative R2* magnetic resonance imaging (MRI). The time course of iron loading without intervention was followed from Week 8 of age (study start) to Week 20, when once-daily (5×/ week) deferasirox was administered, to Week 28. At 8 weeks, liver iron of KO mice was already markedly elevated versus wild-type mice ( P < 0.001) and reached a plateau around Week 14. In contrast, Week 8 cardiac and pancreatic iron levels were similar in both KO and wild-type mice and, compared with the liver, showed a delayed but massive iron loading up to Week 20. Contrary to the liver, heart, and pancreas, the KO mice spleen had lower iron content versus wild-type mice. In Hjv−/− mice, liver and heart iron burden was effectively reduced with deferasirox 100 mg/kg ( P < 0.05). Although deferasirox was less efficacious at this dose in the pancreas, over the observed time period, a clear trend toward reduced organ iron load was noted. There was no noticeable effect of deferasirox upon splenic iron in Hjv−/− mice. Quantitative R2* MRI demonstrated the ability to assess iron concentrations in the liver and myocardial muscle accurately and repetitively. Hepatic ( R = 0.86; P = 3.2*10− 12) and delayed myocardial ( R = 0.81; P = 2.9*10− 10) iron accumulation could be followed noninvasively with high agreement to invasive methods.
Collapse
|
210
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Ramsay AJ, Hooper JD, Folgueras AR, Velasco G, López-Otín C. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica 2009; 94:840-9. [PMID: 19377077 DOI: 10.3324/haematol.2008.001867] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Maintaining the body's levels of iron within precise boundaries is essential for normal physiological function. Alterations of these levels below or above the healthy limit lead to a systemic deficiency or overload in iron. The type-two transmembrane serine protease (TTSP), matriptase-2 (also known as TMPRSS6), is attracting significant amounts of interest due to its recently described role in iron homeostasis. The finding of this regulatory role for matriptase-2 was originally derived from the observation that mice deficient in this protease present with anemia due to elevated levels of hepcidin and impaired intestinal iron absorption. Further in vitro analysis has demonstrated that matriptase-2 functions to suppress bone morphogenetic protein stimulation of hepcidin transcription through cell surface proteolytic processing of the bone morphogenetic protein co-receptor hemojuvelin. Consistently, the anemic phenotype of matriptase-2 knockout mice is mirrored in humans with matripase-2 mutations. Currently, 14 patients with iron-refractory iron deficiency anemia (IRIDA) have been reported to harbor various genetic mutations that abrogate matriptase-2 proteolytic activity. In this review, after overviewing the membrane anchored serine proteases, in particular the TTSP family, we summarize the identification and characterization of matriptase-2 and describe its functional relevance in iron metabolism.
Collapse
Affiliation(s)
- Andrew J Ramsay
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
212
|
Andriopoulos B, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, Knutson MD, Pietrangelo A, Vukicevic S, Lin HY, Babitt JL. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 2009; 41:482-7. [PMID: 19252486 PMCID: PMC2810136 DOI: 10.1038/ng.335] [Citation(s) in RCA: 591] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/26/2009] [Indexed: 02/06/2023]
Abstract
Juvenile hemochromatosis is an iron-overload disorder caused by mutations in the genes encoding the major iron regulatory hormone hepcidin (HAMP) and hemojuvelin (HFE2). We have previously shown that hemojuvelin is a co-receptor for bone morphogenetic proteins (BMPs) and that BMP signals regulate hepcidin expression and iron metabolism. However, the endogenous BMP regulator(s) of hepcidin in vivo is unknown. Here we show that compared with soluble hemojuvelin (HJV.Fc), the homologous DRAGON.Fc is a more potent inhibitor of BMP2 or BMP4 but a less potent inhibitor of BMP6 in vitro. In vivo, HJV.Fc or a neutralizing antibody to BMP6 inhibits hepcidin expression and increases serum iron, whereas DRAGON.Fc has no effect. Notably, Bmp6-null mice have a phenotype resembling hereditary hemochromatosis, with reduced hepcidin expression and tissue iron overload. Finally, we demonstrate a physical interaction between HJV.Fc and BMP6, and we show that BMP6 increases hepcidin expression and reduces serum iron in mice. These data support a key role for BMP6 as a ligand for hemojuvelin and an endogenous regulator of hepcidin expression and iron metabolism in vivo.
Collapse
Affiliation(s)
- Billy Andriopoulos
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Elena Corradini
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Yin Xia
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A. Faasse
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shanzhuo Chen
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lovorka Grgurevic
- Laboratory of Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mitchell D. Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Antonello Pietrangelo
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Slobodan Vukicevic
- Laboratory of Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Herbert Y. Lin
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
213
|
Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism. Eur J Appl Physiol 2009; 106:435-43. [DOI: 10.1007/s00421-009-1031-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2009] [Indexed: 01/01/2023]
|
214
|
Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat Genet 2009; 41:478-81. [PMID: 19252488 DOI: 10.1038/ng.320] [Citation(s) in RCA: 462] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/06/2009] [Indexed: 02/07/2023]
Abstract
Expression of hepcidin, a key regulator of intestinal iron absorption, can be induced in vitro by several bone morphogenetic proteins (BMPs), including BMP2, BMP4 and BMP9 (refs. 1,2). However, in contrast to BMP6, expression of other BMPs is not regulated at the mRNA level by iron in vivo, and their relevance to iron homeostasis is unclear. We show here that targeted disruption of Bmp6 in mice causes a rapid and massive accumulation of iron in the liver, the acinar cells of the exocrine pancreas, the heart and the renal convoluted tubules. Despite their severe iron overload, the livers of Bmp6-deficient mice have low levels of phosphorylated Smad1, Smad5 and Smad8, and these Smads are not significantly translocated to the nucleus. In addition, hepcidin synthesis is markedly reduced. This indicates that Bmp6 is critical for iron homeostasis and that it is functionally nonredundant with other members of the Bmp subfamily. Notably, Bmp6-deficient mice retain their capacity to induce hepcidin in response to inflammation. The iron burden in Bmp6 mutant mice is significantly greater than that in mice deficient in the gene associated with classical hemochromatosis (Hfe), suggesting that mutations in BMP6 might cause iron overload in humans with severe juvenile hemochromatosis for which the genetic basis has not yet been characterized.
Collapse
|
215
|
Darshan D, Anderson GJ. Interacting signals in the control of hepcidin expression. Biometals 2009; 22:77-87. [PMID: 19130266 DOI: 10.1007/s10534-008-9187-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/07/2008] [Indexed: 01/24/2023]
Abstract
The amount of iron in the plasma is determined by the regulated release of iron from most body cells, but macrophages, intestinal enterocytes and hepatocytes play a particularly important role in this process. This cellular iron efflux is modulated by the liver-derived peptide hepcidin, and this peptide is now regarded as the central regulator of body iron homeostasis. Hepcidin expression is influenced by systemic stimuli such as iron stores, the rate of erythropoiesis, inflammation, hypoxia and oxidative stress. These stimuli control hepcidin levels by acting through hepatocyte cell surface proteins including HFE, transferrin receptor 2, hemojuvelin, TMPRSS6 and the IL-6R. The surface proteins activate various cell signal transduction pathways, including the BMP-SMAD, JAK-STAT and HIF1 pathways, to alter transcription of HAMP, the gene which encodes hepcidin. It is becoming increasingly apparent that various stimuli can signal through multiple pathways to regulate hepcidin expression, and the interplay between positive and negative stimuli is critical in determining the net hepcidin level. The BMP-SMAD pathway appears to be particularly important and disruption of this pathway will abrogate the response of hepcidin to many stimuli.
Collapse
Affiliation(s)
- Deepak Darshan
- Iron Metabolism Laboratory, Queensland Institute of Medical Research and the University of Queensland, PO Royal Brisbane Hospital, Brisbane, QLD, Australia
| | | |
Collapse
|
216
|
Tsuchiya H, Akechi Y, Ikeda R, Nishio R, Sakabe T, Terabayashi K, Matsumi Y, Ashla AA, Hoshikawa Y, Kurimasa A, Suzuki T, Ishibashi N, Yanagida S, Shiota G. Suppressive effects of retinoids on iron-induced oxidative stress in the liver. Gastroenterology 2009; 136:341-350.e8. [PMID: 18952085 DOI: 10.1053/j.gastro.2008.09.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/26/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS We previously reported that impaired retinoid signaling in the liver causes steatohepatitis and hepatocellular carcinoma. Recently, oxidative stress induced by hepatic iron overload has emerged as an important factor for the progression of liver disease in patients with chronic hepatitis C, alcoholic liver disease, and nonalcoholic steatohepatitis. In this study, the relationship between retinoid signaling and iron metabolism in the liver was investigated. METHODS The effect of retinoids on the iron metabolism was examined in HuH7 cells treated with all-trans retinoic acid and acyclic retinoid NIK-333. In in vivo experiments, we used the mice expressing the dominant negative form of retinoic acid receptor alpha gene under the control of albumin enhancer/promoter (RAR-E Tg) and iron-overloaded wild mice fed with retinoid-deficient and retinoid-excess diets. RESULTS Hepatic iron accumulation and increased expression of hemojuvelin were observed in RAR-E Tg mouse liver. Retinoid treatment significantly suppressed expression of hemojuvelin and mildly suppressed expression of transferrin receptor type 2 and hepcidin, accompanied by decreased hepatic iron content and iron-induced oxidative stress in vitro and in vivo. Overexpression of hemojuvelin in HuH7 hepatoma cells led to a significant increase in cellular iron content. CONCLUSIONS Our results suggest that retinoids are involved in hepatic iron metabolism through transcriptional regulation of hemojuvelin. This study demonstrated a novel functional role of retinoids in preventing iron-induced oxidative stress in the liver.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:207-14. [PMID: 20008200 PMCID: PMC5831338 DOI: 10.1182/asheducation-2009.1.207] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Dietary iron absorption is regulated locally by hypoxia inducible factor (HIF) signaling and iron-regulatory proteins (IRPs) in enterocytes and systematically by hepatic hepcidin, the central iron regulatory hormone. Hepcidin not only controls the rate of iron absorption but also determines iron mobilization from stores through negatively modulating the function of ferroportin, the only identified cellular iron exporter to date. The regulation of hepatic hepcidin is accomplished by the coordinated activity of multiple proteins through different signaling pathways. Recent studies have greatly expanded the knowledge in the understanding of hepcidin expression and regulation by the bone morphogenetic protein (BMP) signaling, the erythroid factors, and inflammation. In this review, we mainly focus on the roles of recently identified proteins in the regulation of iron homeostasis.
Collapse
|
218
|
Abstract
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
Collapse
|
219
|
|
220
|
Abstract
Hemojuvelin (HJV) was recently identified as a critical regulator of iron homeostasis. It is either associated with cell membranes through a glycosylphosphatidylinositol anchor or released as a soluble form. Membrane-anchored HJV acts as a coreceptor for bone morphogenetic proteins and activates the transcription of hepcidin, a hormone that regulates iron efflux from cells. Soluble HJV antagonizes bone morphogenetic protein signaling and suppresses hepcidin expression. In this study, we examined the trafficking and processing of HJV. Cellular HJV reached the plasma membrane without obtaining complex oligosaccharides, indicating that HJV avoided Golgi processing. Secreted HJV, in contrast, has complex oligosaccharides and can be derived from HJV with high-mannose oligosaccharides at the plasma membrane. Our results support a model in which retrograde trafficking of HJV before cleavage is the predominant processing pathway. Release of HJV requires it to bind to the transmembrane receptor neogenin. Neogenin does not, however, play a role in HJV trafficking to the cell surface, suggesting that it could be involved either in retrograde trafficking of HJV or in cleavage leading to HJV release.
Collapse
|
221
|
Wallace DF, Subramaniam VN. Co-factors in liver disease: the role of HFE-related hereditary hemochromatosis and iron. Biochim Biophys Acta Gen Subj 2008; 1790:663-70. [PMID: 18848602 DOI: 10.1016/j.bbagen.2008.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/25/2008] [Accepted: 09/09/2008] [Indexed: 12/15/2022]
Abstract
The severity of liver disease and its presentation is thought to be influenced by many host factors. Prominent among these factors is the level of iron in the body. The liver plays an important role in coordinating the regulation of iron homeostasis and is involved in regulating the level of iron absorption in the duodenum and iron recycling by the macrophages. Iron homeostasis is disturbed by several metabolic and genetic disorders, including various forms of hereditary hemochromatosis. This review will focus on liver disease and how it is affected by disordered iron homeostasis, as observed in hereditary hemochromatosis and due to HFE mutations. The types of liver disease covered herein are chronic hepatitis C virus (HCV) infection, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), end-stage liver disease, hepatocellular carcinoma (HCC) and porphyria cutanea tarda (PCT).
Collapse
Affiliation(s)
- Daniel F Wallace
- Membrane Transport Laboratory, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | | |
Collapse
|
222
|
Zhang AS, Enns CA. Iron homeostasis: recently identified proteins provide insight into novel control mechanisms. J Biol Chem 2008; 284:711-5. [PMID: 18757363 DOI: 10.1074/jbc.r800017200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Iron is an essential nutrient required for a variety of biochemical processes. It is a vital component of the heme in hemoglobin, myoglobin, and cytochromes and is also an essential cofactor for non-heme enzymes such as ribonucleotide reductase, the limiting enzyme for DNA synthesis. When in excess, iron is toxic because it generates superoxide anions and hydroxyl radicals that react readily with biological molecules, including proteins, lipids, and DNA. As a result, humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Disruption of these processes causes either iron-deficient anemia or iron overload disorders. In this minireview, we focus on the roles of recently identified proteins in the regulation of iron homeostasis.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
223
|
Nagayoshi Y, Nakayama M, Suzuki S, Hokamaki J, Shimomura H, Tsujita K, Fukuda M, Yamashita T, Nakamura Y, Sugiyama S, Ogawa H. A Q312X mutation in the hemojuvelin gene is associated with cardiomyopathy due to juvenile haemochromatosis. Eur J Heart Fail 2008; 10:1001-6. [PMID: 18725184 DOI: 10.1016/j.ejheart.2008.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 04/16/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND AND AIMS Juvenile haemochromatosis (JH) is an autosomal recessive iron disorder characterized by the early onset of secondary cardiomyopathy. The candidate modifier genes are hemojuvelin (HJV) and hepcidin antimicrobial peptide (HAMP). In the Japanese population, the prevalence of JH is quite low. The influence of HJV mutation on the JH phenotype is still unclear. METHODS AND RESULTS We searched for possible mutations in a Japanese family with 2 members who were JH patients with severe heart failure. To search for possible variants in the HJV and HAMP genes, we performed direct sequencing in the family members. A homozygous nonsense mutation in exon 4 of HJV (Q312X) was identified in the JH patients and their mother. Three individuals in the family were heterozygous for this mutation. Subsequently, we evaluated the frequency of Q312X mutation in a large population (n=361) without heart failure, using allele-specific real-time PCR assay. No Q312X mutation was detected in this population. In the patients with the homozygous HJV mutation, iron loading revealed high serum ferritin concentration with accompanying elevated transferrin iron saturation. In contrast, ferritin levels were within the normal range in individuals with the heterozygous mutation. CONCLUSIONS We found a nonsense mutation in the HJV gene. This mutation elevates ferritin levels and leads to JH associated with severe cardiomyopathy.
Collapse
Affiliation(s)
- Yasuhiro Nagayoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Andrews NC. Forging a field: the golden age of iron biology. Blood 2008; 112:219-30. [PMID: 18606887 PMCID: PMC2442739 DOI: 10.1182/blood-2007-12-077388] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/19/2008] [Indexed: 12/12/2022] Open
|
225
|
Abstract
PURPOSE OF REVIEW The peptide hormone hepcidin regulates iron metabolism in response to erythropoietic demand, iron stores and inflammation. Major advances have been made in understanding the regulation of hepcidin production, and consequently the availability of iron for erythropoiesis. RECENT FINDINGS It is becoming clear that the bone morphogenetic protein (BMP) pathway plays a major role in setting the baseline hepcidin level and, with the assistance of BMP2/4 and hemochromatosis-related proteins hemojuvelin, HFE and transferrin receptor 2, also regulates hepcidin expression in response to iron. Regulation of hepcidin in anemias has now been linked to increased erythropoietic activity and is likely mediated by factor(s) secreted by erythroid precursors. GDF-15 was identified as a candidate for one of the erythroid factors suppressing hepcidin. Tissue hypoxia may also directly contribute to hepcidin suppression in anemias. Regulation of hepcidin by inflammation may include multiple cytokines and the Toll-like receptors pathways. Although it has not yet been shown that increased hepcidin is indispensible for the development of anemia of inflammation, transgenic overexpression of hepcidin was sufficient to replicate its key features. SUMMARY Regulation of hepcidin and iron availability for erythropoiesis has revealed unexpected pathways and much complexity. The renaissance of the study of iron regulation continues to reward researchers with interesting biology and potential therapeutic targets.
Collapse
|
226
|
Zhang AS, Yang F, Meyer K, Hernandez C, Chapman-Arvedson T, Bjorkman PJ, Enns CA. Neogenin-mediated hemojuvelin shedding occurs after hemojuvelin traffics to the plasma membrane. J Biol Chem 2008; 283:17494-502. [PMID: 18445598 DOI: 10.1074/jbc.m710527200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HFE2 (hemochromatosis type 2 gene) is highly expressed in skeletal muscle and liver hepatocytes. Its encoded protein, hemojuvelin (HJV), is a co-receptor for the bone morphogenetic proteins 2 and 4 (BMP2 and BMP4) and enhances the BMP-induced hepcidin expression. Hepcidin is a central iron regulatory hormone predominantly secreted from hepatocytes. HJV also binds neogenin, a membrane protein widely expressed in many tissues. Neogenin is required for the processing and release of HJV from cells. The role that neogenin plays in HJV trafficking was investigated, using HepG2 cells, a human hepatoma cell line. Knockdown of endogenous neogenin markedly suppresses HJV release but has no evident effect on HJV trafficking to the plasma membrane. The addition of a soluble neogenin ectodomain to cells markedly inhibits HJV release, indicating that the HJV shedding is not processed before trafficking to the cell surface. At the plasma membrane it undergoes endocytosis in a dynamin-independent but cholesterol-dependent manner. The additional findings that HJV release is coupled to lysosomal degradation of neogenin and that cholesterol depletion by filipin blocks both HJV endocytosis and HJV release suggest that neogenin-mediated HJV release occurs after the HJV-neogenin complex is internalized from the cell surface.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
227
|
Verga Falzacappa MV, Casanovas G, Hentze MW, Muckenthaler MU. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med (Berl) 2008; 86:531-40. [DOI: 10.1007/s00109-008-0313-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
228
|
Yang F, West AP, Allendorph GP, Choe S, Bjorkman PJ. Neogenin interacts with hemojuvelin through its two membrane-proximal fibronectin type III domains. Biochemistry 2008; 47:4237-45. [PMID: 18335997 PMCID: PMC2819367 DOI: 10.1021/bi800036h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hemojuvelin is a recently identified iron-regulatory protein that plays an important role in affecting the expression of hepcidin, a key iron regulatory hormone. Although the underlying mechanism of this process is not clear, several hemojuvelin-binding proteins, including the cell surface receptor neogenin and bone morphogenetic protein (BMP) cytokines, have been identified. The ectodomain of neogenin is composed of four immunoglobulin-like (Ig) domains followed by six fibronectin type III-like (FNIII) domains. Here we report expression of soluble versions of hemojuvelin and neogenin for biochemical characterization of their interaction and the interaction of HJV with BMP-2. Hemojuvelin normally undergoes an autocatalytic cleavage, and as in vivo, recombinant hemojuvelin exists as a mixture of cleaved and uncleaved forms. Neogenin binds to cleaved and noncleaved hemojuvelin, as verified by its binding to an uncleaved mutant hemojuvelin. We localized the hemojuvelin binding site on neogenin to the membrane-proximal fifth and sixth FNIII domains and the juxtamembrane linker and showed that a fragment containing only this region binds 2-3 orders of magnitude more tightly than the entire neogenin ectodomain. Binding to the most membrane-proximal region of neogenin may play a role in regulating the levels of soluble and membrane-bound forms of hemojuvelin, which in turn would influence the amount of free BMP-2 available for binding to its receptors and triggering transcription of the hepcidin gene. Our finding that BMP-2 and neogenin bind simultaneously to hemojuvelin raises the possibility that neogenin is part of a multiprotein complex at the hepatocyte membrane involving BMP, its receptors, and hemojuvelin.
Collapse
Affiliation(s)
- Fan Yang
- Graduate Option in Chemistry, California Institute of Technology, Pasadena, California 91125
| | - Anthony P. West
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | | | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037
| | - Pamela J. Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, California 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
229
|
Kuninger D, Kuns-Hashimoto R, Nili M, Rotwein P. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin. BMC BIOCHEMISTRY 2008; 9:9. [PMID: 18384687 PMCID: PMC2323002 DOI: 10.1186/1471-2091-9-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 04/02/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Repulsive guidance molecule c (RGMc or hemojuvelin), a glycosylphosphatidylinositol-linked glycoprotein expressed in liver and striated muscle, plays a central role in systemic iron balance. Inactivating mutations in the RGMc gene cause juvenile hemochromatosis (JH), a rapidly progressing iron storage disorder with severe systemic manifestations. RGMc undergoes complex biosynthetic steps leading to membrane-bound and soluble forms of the protein, including both 50 and 40 kDa single-chain species. RESULTS We now show that pro-protein convertases (PC) are responsible for conversion of 50 kDa RGMc to a 40 kDa protein with a truncated COOH-terminus. Unlike related molecules RGMa and RGMb, RGMc encodes a conserved PC recognition and cleavage site, and JH-associated RGMc frame-shift mutants undergo COOH-terminal cleavage only if this site is present. A cell-impermeable peptide PC inhibitor blocks the appearance of 40 kDa RGMc in extra-cellular fluid, as does an engineered mutation in the conserved PC recognition sequence, while the PC furin cleaves 50 kDa RGMc in vitro into a 40 kDa molecule with an intact NH2-terminus. Iron loading reduces release of RGMc from the cell membrane, and diminishes accumulation of the 40 kDa species in cell culture medium. CONCLUSION Our results define a role for PCs in the maturation of RGMc that may have implications for the physiological actions of this critical iron-regulatory protein.
Collapse
Affiliation(s)
- David Kuninger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | |
Collapse
|
230
|
Chua ACG, Graham RM, Trinder D, Olynyk JK. The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 2008; 44:413-59. [PMID: 17943492 DOI: 10.1080/10408360701428257] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While iron is an essential trace element required by nearly all living organisms, deficiencies or excesses can lead to pathological conditions such as iron deficiency anemia or hemochromatosis, respectively. A decade has passed since the discovery of the hemochromatosis gene, HFE, and our understanding of hereditary hemochromatosis (HH) and iron metabolism in health and a variety of diseases has progressed considerably. Although HFE-related hemochromatosis is the most widespread, other forms of HH have subsequently been identified. These forms are not attributed to mutations in the HFE gene but rather to mutations in genes involved in the transport, storage, and regulation of iron. This review is an overview of cellular iron metabolism and regulation, describing the function of key proteins involved in these processes, with particular emphasis on the liver's role in iron homeostasis, as it is the main target of iron deposition in pathological iron overload. Current knowledge on their roles in maintaining iron homeostasis and how their dysregulation leads to the pathogenesis of HH are discussed.
Collapse
Affiliation(s)
- Anita C G Chua
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | | | | | | |
Collapse
|
231
|
Kuns-Hashimoto R, Kuninger D, Nili M, Rotwein P. Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and neogenin. Am J Physiol Cell Physiol 2008; 294:C994-C1003. [PMID: 18287331 DOI: 10.1152/ajpcell.00563.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Juvenile hemochromatosis is a severe and rapidly progressing hereditary disorder of iron overload, and it is caused primarily by defects in the gene encoding repulsive guidance molecule c/hemojuvelin (RGMc/HJV), a recently identified protein that undergoes a complicated biosynthetic pathway in muscle and liver, leading to cell membrane-linked single-chain and heterodimeric species, and two secreted single-chain isoforms. RGMc modulates expression of the hepatic iron regulatory factor, hepcidin, potentially through effects on signaling by the bone morphogenetic protein (BMP) family of soluble growth factors. To date, little is known about specific pathogenic defects in disease-causing RGMc/HJV proteins. Here we identify functional abnormalities in three juvenile hemochromatosis-linked mutants. Using a combination of approaches, we first show that BMP-2 could interact in biochemical assays with single-chain RGMc species, and also could bind to cell-associated RGMc. Two mouse RGMc amino acid substitution mutants, D165E and G313V (corresponding to human D172E and G320V), also could bind BMP-2, but less effectively than wild-type RGMc, while G92V (human G99V) could not. In contrast, the membrane-spanning protein, neogenin, a receptor for the related molecule, RGMa, preferentially bound membrane-associated heterodimeric RGMc and was able to interact on cells only with wild-type RGMc and G92V. Our results show that different isoforms of RGMc/HJV may play unique physiological roles through defined interactions with distinct signaling proteins and demonstrate that, in some disease-linked RGMc mutants, these interactions are defective.
Collapse
Affiliation(s)
- Robin Kuns-Hashimoto
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
232
|
Assessing and influencing the fractional contribution of erythrocyte-bound 59Fe to individual 59Fe tissue content in murine 59Fe distribution studies. Toxicology 2008; 244:198-208. [DOI: 10.1016/j.tox.2007.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/24/2022]
|
233
|
Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 2008; 111:924-31. [PMID: 17938254 DOI: 10.1182/blood-2007-07-100677] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver peptide hepcidin regulates iron absorption and recycling. Hemojuvelin (HJV) has a key role in hepcidin regulation, and its inactivation causes severe iron overload both in humans and in mice. Membrane HJV (m-HJV) acts as a coreceptor for bone morphogenetic proteins (BMPs), whereas soluble HJV (s-HJV) may down-regulate hepcidin in a competitive way interfering with BMP signaling. s-HJV is decreased by iron in vitro and increased by iron deficiency in vivo. However, the mechanisms regulating the 2 HJV isoforms remain unclear. Here we show that s-HJV originates from a furin cleavage at position 332-335. s-HJV is reduced in the cleavage mutant R335Q as well as in cells treated with a furin inhibitor, and increased in cells overexpressing exogenous furin, but not in cells overexpressing an inactive furin variant. Furin is up-regulated by iron deficiency and hypoxia in association with the stabilization of HIF-1alpha. Increased s-HJV in response to HIF-1alpha occurs during differentiation of murine muscle cells expressing endogenous Hjv. Our data are relevant to the mechanisms that relate iron metabolism to the hypoxic response. The release of s-HJV might be a tissue-specific mechanism, signaling the local iron requests of hypoxic skeletal muscles independently of the oxygen status of the liver.
Collapse
Affiliation(s)
- Laura Silvestri
- Vita-Salute San Raffaele University-Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele, Milan, Italy
| | | | | |
Collapse
|
234
|
Abstract
Erythrocytes require iron to perform their duty as oxygen carriers. Mammals have evolved a mechanism to maintain systemic iron within an optimal range that fosters erythroid development and function while satisfying other body iron needs. This chapter reviews erythroid iron uptake and utilization as well as systemic factors that influence iron availability. One of these factors is hepcidin, a circulating peptide hormone that maintains iron homeostasis. Elevated levels of hepcidin in the bloodstream effectively shut off iron absorption by disabling the iron exporter ferroportin. Conversely, low levels of circulating hepcidin allow ferroportin to export iron into the bloodstream. Aberrations in hepcidin expression or responsiveness to hepcidin result in disorders of iron deficiency and iron overload. It is clear that erythroid precursors communicate their iron needs to the liver to influence the production of hepcidin and thus the amount of iron available for use. However, the mechanism by which erythroid cells accomplish this remains unclear and is an area of active investigation.
Collapse
Affiliation(s)
- Diedra M Wrighting
- Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
235
|
Abstract
Abstract
Systemic iron homeostasis depends on the regulated expression of hepcidin, a peptide hormone that negatively regulates iron egress from intestinal cells and macrophages by altering the expression of the cellular iron exporter ferroportin. In doing so, hepcidin can control both the total body iron by modulating intestinal iron absorption as well as promote iron available for erythropoiesis by affecting the efficiency with which macrophages recycle iron from effete red blood cells. This review focuses on the systemic and cellular physiology of hepcidin regulation in relation to iron stores, erythropoiesis, inflammation, and hypoxia and how hepcidin regulation and dysregulation contributes to normal iron homeostasis and iron metabolism disorders.
Collapse
|
236
|
Abstract
This review acknowledges the recent and dramatic advancement in the field of hemochromatosis and highlights the surprising analogies with a prototypic endocrine disease, diabetes. The term hemochromatosis should refer to a unique clinicopathologic subset of iron-overload syndromes that currently includes the disorder related to the C282Y homozygote mutation of the hemochromatosis protein HFE (by far the most common form of hemochromatosis) and the rare disorders more recently attributed to the loss of transferrin receptor 2, HAMP (hepcidin antimicrobial peptide), or hemojuvelin or to certain ferroportin mutations. The defining characteristic of this subset is failure to prevent unneeded iron from entering the circulatory pool as a result of genetic changes compromising the synthesis or activity of hepcidin, the iron hormone. Like diabetes, hemochromatosis results from the complex, nonlinear interaction between genetic and acquired factors. Depending on the underlying mutation, the coinheritance of modifier genes, the presence of nongenetic hepcidin inhibitors, and other host-related factors, the clinical manifestation may vary from simple biochemical abnormalities to severe multiorgan disease. The recognition of the endocrine nature of hemochromatosis suggests intriguing possibilities for new and more effective approaches to diagnosis and treatment.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine, University of Modena and Reggio Emilia, Policlinico, Modena, Italy.
| |
Collapse
|
237
|
Abstract
The human body requires about 1-2 mg of iron per day for its normal functioning, and dietary iron is the only source for this essential metal. Since humans do not possess a mechanism for the active excretion of iron, the amount of iron in the body is determined by the amount absorbed across the proximal small intestine and, consequently, intestinal iron absorption is a highly regulated process. In recent years, the liver has emerged as a central regulator of both iron absorption and iron release from other tissues. It achieves this by secreting a peptide hormone called hepcidin that acts on the small intestinal epithelium and other cells to limit iron delivery to the plasma. Hepcidin itself is regulated in response to various systemic stimuli including variations in body iron stores, the rate of erythropoiesis, inflammation and hypoxia, the same stimuli that have been known for many years to modulate iron absorption. This review will summarize recent findings on the role played by the liver and hepcidin in the regulation of body iron absorption.
Collapse
Affiliation(s)
- Deepak Darshan
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane Queensland 4029, Australia
| | | |
Collapse
|
238
|
Abstract
Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. An adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.
Collapse
Affiliation(s)
- Daniel-F Wallace
- Membrane Transport Laboratory, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | | |
Collapse
|
239
|
Abstract
The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV), which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.
Collapse
Affiliation(s)
- Ross-M Graham
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, PO Box 480, Fremantle 6959, Western Australia, Australia
| | | | | | | | | |
Collapse
|
240
|
Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 2007; 117:1926-32. [PMID: 17557118 PMCID: PMC1884690 DOI: 10.1172/jci31370] [Citation(s) in RCA: 474] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 04/10/2007] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for many biological processes, including oxygen delivery, and its supply is tightly regulated. Hepcidin, a small peptide synthesized in the liver, is a key regulator of iron absorption and homeostasis in mammals. Hepcidin production is increased by iron overload and decreased by anemia and hypoxia; but the molecular mechanisms that govern the hepcidin response to these stimuli are not known. Here we establish that the von Hippel-Lindau/hypoxia-inducible transcription factor (VHL/HIF) pathway is an essential link between iron homeostasis and hepcidin regulation in vivo. Through coordinate downregulation of hepcidin and upregulation of erythropoietin and ferroportin, the VHL-HIF pathway mobilizes iron to support erythrocyte production.
Collapse
Affiliation(s)
- Carole Peyssonnaux
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Annelies S. Zinkernagel
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Reto A. Schuepbach
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Erinn Rankin
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Sophie Vaulont
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Volker H. Haase
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Victor Nizet
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Randall S. Johnson
- Molecular Biology Section, Division of Biological Sciences, and
Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| |
Collapse
|
241
|
Abstract
Iron is a micronutrient that is an essential component that drives many metabolic reactions. Too little iron leads to anemia and too much iron increases the oxidative stress of body tissues leading to inflammation, cell death, and system organ dysfunction, including cancer. Maintaining normal iron balance is achieved by rigorous control of the amount absorbed by the intestine, that released from macrophages following erythrophagocytosis of effete red cells and by either release or uptake from hepatocytes. Hepcidin is a recently characterized molecule that appears to play a key role in the regulation of iron efflux from enterocytes, macrophages, and hepatocytes. It is produced by hepatocytes under basal conditions, in response to alterations in increased iron stores or reduced requirement for erythropoiesis and by inflammation. The proteins that regulate hepcidin expression are presently being defined, albeit that our present understanding is still far from complete. This review focuses on the molecules which regulate hepcidin expression. The subsequent characterization of these proteins using molecular, cellular, and physiological approaches also is discussed along with inflammatory signals and receptors involved in hepcidin expression.
Collapse
Affiliation(s)
- Phillip S Oates
- Physiology M311, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Western Australia, Australia.
| | | |
Collapse
|
242
|
Abstract
BACKGROUND Since the seminal discovery of the HFE gene a decade ago, considerable further progress in unravelling the genetic basis of haemochromatosis has been made. Novel genes and iron overload phenotypes have been described with potential insights into the molecular pathophysiology of human iron metabolism. AIM To review recent key advances in the field of inherited iron overload and assess their impact on clinical practice and on our understanding of iron regulation. METHODS A PubMed search was undertaken predominantly using 'haemochromatosis', 'HFE', 'hepcidin' and 'ferroportin'. Illustrative cases were sought. RESULTS The impact of HFE mutation analysis on the management of haemochromatosis is significant and allows early accurate diagnosis. HFE is also implicated in the siderosis associated with other liver pathologies. Non-HFE genes underpinning other forms of haemochromatosis are now recognized and genotype-phenotype interactions result in a spectrum of disease. These novel gene products interact with HFE in a common pathway for iron homeostasis. CONCLUSIONS Further identification of non-HFE genes associated with iron homeostasis will enhance our diagnostic certainty of primary haemochromatosis and may explain the variable expression seen in HFE-related disease. Improving our understanding of the mechanisms of iron regulation may lead to novel therapeutic strategies for the management of iron overload.
Collapse
Affiliation(s)
- W J H Griffiths
- Department of Hepatology, Cambridge University Teaching Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
243
|
Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007; 117:1933-9. [PMID: 17607365 PMCID: PMC1904317 DOI: 10.1172/jci31342] [Citation(s) in RCA: 351] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/10/2007] [Indexed: 11/17/2022] Open
Abstract
Systemic iron balance is regulated by hepcidin, a peptide hormone secreted by the liver. By decreasing cell surface expression of the iron exporter ferroportin, hepcidin decreases iron absorption from the intestine and iron release from reticuloendothelial stores. Hepcidin excess has been implicated in the pathogenesis of anemia of chronic disease, while hepcidin deficiency has a key role in the pathogenesis of the iron overload disorder hemochromatosis. We have recently shown that hemojuvelin is a coreceptor for bone morphogenetic protein (BMP) signaling and that BMP signaling positively regulates hepcidin expression in liver cells in vitro. Here we show that BMP-2 administration increases hepcidin expression and decreases serum iron levels in vivo. We also show that soluble hemojuvelin (HJV.Fc) selectively inhibits BMP induction of hepcidin expression in vitro and that administration of HJV.Fc decreases hepcidin expression, increases ferroportin expression, mobilizes splenic iron stores, and increases serum iron levels in vivo. These data support a role for modulators of the BMP signaling pathway in treating diseases of iron overload and anemia of chronic disease.
Collapse
Affiliation(s)
- Jodie L Babitt
- Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
244
|
Krijt J, Niederkofler V, Salie R, Sefc L, Pelichovská T, Vokurka M, Necas E. Effect of phlebotomy on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol Dis 2007; 39:92-5. [PMID: 17395503 DOI: 10.1016/j.bcmd.2007.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 02/09/2023]
Abstract
Hemojuvelin (Hjv) is an essential component of the pathway regulating hepcidin (Hamp1) gene expression. Mice with targeted disruption of the Hjv gene (Hjv-/- mice) fail to upregulate hepatic Hamp1 expression following iron overload. The main aim of the study was to determine whether the Hjv protein is also necessary for Hamp1 downregulation. In addition, sex differences in Hamp1 expression in Hjv-/- mice were also examined. Male and female Hjv-/- mice (129SvJ background) were used for the experiments, tissue Hamp1 and Hamp2 mRNA content was determined by real-time PCR. Hepatic Hamp1 mRNA content in male Hjv-/- mice was low (0.6% of Hjv+/+ males), however, female Hjv-/- mice displayed only moderately reduced (to 17%) Hamp1 mRNA levels. Hepatic non-heme iron concentration was similar in Hjv-/- mice of both sexes. Disruption of the Hjv gene did not affect Hamp1 mRNA content in the myocardium or Hamp2 mRNA content in the pancreas. Single phlebotomy resulted in significant reduction of Hamp1 mRNA in both male and female Hjv+/+ mice (to 17% and 27% of controls respectively), measured 20 h after treatment. In Hjv-/- mice, phlebotomy decreased Hamp1 mRNA content to 46% in males and to 11% in females. Bleeding also significantly decreased (to 16%) hepatic Hamp2 mRNA levels in Hjv-/- females. The obtained results indicate that the pathway mediating hepcidin downregulation by phlebotomy does not require functional hemojuvelin protein. In addition, they confirm a significant effect of sex on hepcidin gene expression.
Collapse
Affiliation(s)
- Jan Krijt
- Institute of Pathophysiology and Center for Experimental Hematology, First Faculty of Medicine, Charles University, 128 53 Prague 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
245
|
Silvestri L, Pagani A, Fazi C, Gerardi G, Levi S, Arosio P, Camaschella C. Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood 2007; 109:4503-10. [PMID: 17264300 DOI: 10.1182/blood-2006-08-041004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemojuvelin (HJV) positively modulates the iron regulator hepcidin, and its mutations are the major cause of juvenile hemochromatosis (JH), a recessive disease leading to iron overload. Defective HJV reduces hepcidin up-regulation both in humans and in Hjv-deficient mice. To investigate the JH pathogenesis and the functional properties of human HJV we studied the biosynthesis and maturation of 6 HJV pathogenic mutants in HeLa and HepG2 cells. We show that proteolytic processing is defective in mutants F170S, W191C, and G320V, but not in G99V and C119F. Moreover, we show that mutants G99V and C119F are targeted to the cell surface, while F170S, W191C, G320V, and R326X (lacking the glycosilphosphatidylinositol [GPI] anchor) are mainly retained in the endoplasmic reticulum, although all mutants are released as soluble forms (s-HJV) in a proportion that is modulated by iron supplementation. Membrane HJV (m-HJV) is mainly composed of the cleaved protein, and its level is increased by iron in wild-type (WT) mice but not in the mutants. Altogether, the data demonstrate that the loss of HJV membrane export is central to the pathogenesis of JH, and that HJV cleavage is essential for the export. The results support a dual function for s- and m-HJV in iron deficiency and overload, respectively.
Collapse
|
246
|
Oates PS. The relevance of the intestinal crypt and enterocyte in regulating iron absorption. Pflugers Arch 2007; 455:201-13. [PMID: 17473933 DOI: 10.1007/s00424-007-0264-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/28/2007] [Indexed: 12/27/2022]
Abstract
Rigorous regulation of iron absorption is required to meet the requirements of the body and to limit excess iron accumulation that can produce oxidative stress. Regulation of iron absorption is controlled by hepcidin and probably by the crypt program. Hepcidin is a humoral mediator of iron absorption that interacts with the basolateral transporter, ferroportin. High levels of hepcidin reduce iron absorption by targeting ferroportin to lysosomes for destruction. It is also proposed that ferroportin is expressed on the apical membrane and coordinates with ferroportin-hepcidin derived from the basal surface to modulate the uptake phase of iron absorption. The crypt program suggests that as crypt cells differentiate and migrate into the absorptive zone they absorb iron from the diet at levels inverse to the amount of iron taken up from transferrin. Under most circumstances, intestinal iron absorption is controlled at multiple levels that lead to hepcidin/ferroportin modulation of the enterocyte labile iron pool (LIP). It is likely that transcription of iron transport proteins involved in the apical and basolateral transport of iron are differentially regulated by separate LIPs. Iron-responsive protein (IRP) 1 and IRP2 do not appear to play a significant role in the expression of iron transport proteins, although IRP2 regulates L- and H-ferritin expression. Despite the importance of hepcidin, there is evidence of hepcidin-independent regulation of iron absorption possibly involving haemojuvelin (HJV) and neogenin, which may be up-regulated during ineffective erythropoiesis.
Collapse
Affiliation(s)
- Phillip S Oates
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia.
| |
Collapse
|
247
|
Mueller BK, Yamashita T, Schaffar G, Mueller R. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system. Philos Trans R Soc Lond B Biol Sci 2007; 361:1513-29. [PMID: 16939972 PMCID: PMC1664662 DOI: 10.1098/rstb.2006.1888] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues.
Collapse
Affiliation(s)
- Bernhard K Mueller
- Neuroscience Discovery Research, Abbott GmbH & Co. KG, Knollstrasse 50, 67061 Ludwigshafen, Germany.
| | | | | | | |
Collapse
|
248
|
Zhang AS, Anderson SA, Meyers KR, Hernandez C, Eisenstein RS, Enns CA. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem 2007; 282:12547-56. [PMID: 17331953 DOI: 10.1074/jbc.m608788200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemojuvelin (HJV), encoded by the gene HFE2, is a critical upstream regulator of hepcidin expression. Hepcidin, the central iron regulatory hormone, is secreted from hepatocytes, whereas HFE2 is highly expressed in skeletal muscle and liver. Previous studies demonstrated that HJV is a GPI-anchored protein, binds the proteins neogenin and bone morphogenetic proteins (BMP2 and BMP4), and can be released from the cell membrane (shedding). In this study, we investigated the physiological significance and the underlying mechanism of HJV shedding. In acutely iron-deficient rats with markedly suppressed hepatic hepcidin expression, we detected an early phase increase of serum HJV with no significant change of either HFE2 mRNA or protein levels in gastrocnemius muscle. Studies in both C2C12 (a mouse myoblast cell line) and HepG2 (a human hepatoma cell line) cells showed active HJV shedding, implying that both skeletal muscle and liver could be the source of serum HJV. In agreement with the observations in iron-deficient rats, HJV shedding in these cell lines was down-regulated by holo-transferrin in a concentration-dependent manner. Our present study showing that knock-down of endogenous neogenin, a HJV receptor, in C2C12 cells suppresses HJV shedding and that overexpression of neogenin in HEK293 cells markedly enhances this process, suggests that membrane HJV shedding is mediated by neogenin. The finding that neither BMP4 nor its antagonist, noggin, was able to alter HJV shedding support the lack of involvement of BMP signaling pathway in this process.
Collapse
Affiliation(s)
- An-Sheng Zhang
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | |
Collapse
|
249
|
Gardenghi S, Marongiu MF, Ramos P, Guy E, Breda L, Chadburn A, Liu Y, Amariglio N, Rechavi G, Rachmilewitz EA, Breuer W, Cabantchik ZI, Wrighting DM, Andrews NC, de Sousa M, Giardina PJ, Grady RW, Rivella S. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 2007; 109:5027-35. [PMID: 17299088 PMCID: PMC1885515 DOI: 10.1182/blood-2006-09-048868] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Progressive iron overload is the most salient and ultimately fatal complication of beta-thalassemia. However, little is known about the relationship among ineffective erythropoiesis (IE), the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. We analyzed tissue iron content and iron-regulatory gene expression in the liver, duodenum, spleen, bone marrow, kidney, and heart of mice up to 1 year old that exhibit levels of iron overload and anemia consistent with both beta-thalassemia intermedia (th3/+) and major (th3/th3). Here we show, for the first time, that tissue and cellular iron distribution are abnormal and different in th3/+ and th3/th3 mice, and that transfusion therapy can rescue mice affected by beta-thalassemia major and modify both the absorption and distribution of iron. Our study reveals that the degree of IE dictates tissue iron distribution and that IE and iron content regulate hepcidin (Hamp1) and other iron-regulatory genes such as Hfe and Cebpa. In young th3/+ and th3/th3 mice, low Hamp1 levels are responsible for increased iron absorption. However, in 1-year-old th3/+ animals, Hamp1 levels rise and it is rather the increase of ferroportin (Fpn1) that sustains iron accumulation, thus revealing a fundamental role of this iron transporter in the iron overload of beta-thalassemia.
Collapse
Affiliation(s)
- Sara Gardenghi
- Department of Pediatric Hematology-Oncology, Children's Blood Foundation Laboratories, Weill Medical College of Cornell University, 515E 71st Street S702, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Ramey G, Faye A, Durel B, Viollet B, Vaulont S. Iron overload inHepc1−/−mice is not impairing glucose homeostasis. FEBS Lett 2007; 581:1053-7. [PMID: 17316628 DOI: 10.1016/j.febslet.2007.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/25/2007] [Accepted: 02/04/2007] [Indexed: 12/28/2022]
Abstract
Diabetes Mellitus is found with increasing frequency in iron overload patients with hemochromatosis. In these conditions, the pancreas shows predominant iron overload in acini but also islet beta-cells. We assess glucose homeostasis status in iron-overloaded hepcidin-deficient mice. These mice presented with heavy pancreatic iron deposits but only in the acini. The beta-cell function was found unaffected with a normal production and secretion of insulin. The mutant mice were not diabetic, responded as the control group to glucose and insulin challenges, with no alteration of insulin signalling in the muscle and the liver. These results indicate that, beta-cells iron deposits-induced decreased insulin secretory capacity might be of primary importance to trigger diabetes in hemochromatosic patients.
Collapse
Affiliation(s)
- G Ramey
- Institut Cochin, Département Endocrinologie Métabolisme et Cancer, Paris, F-75014, France
| | | | | | | | | |
Collapse
|