201
|
Lafleur VN, Richard S, Richard DE. Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Mol Biol Cell 2014; 25:925-35. [PMID: 24451260 PMCID: PMC3952860 DOI: 10.1091/mbc.e13-07-0423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxia-inducible factors (HIF) are essential for the adaptive response of cells to low-oxygen conditions. Transcription of HIF-α subunits and HIF activity are repressed by the arginine methyltransferase PRMT1. Therefore PRMT1 is a novel regulator of hypoxic cell responses. Hypoxia-inducible factors (HIF-1 and HIF-2) are essential mediators for the adaptive transcriptional response of cells and tissues to low-oxygen conditions. Under hypoxia or when cells are treated with various nonhypoxic stimuli, the active HIF-α subunits are mainly regulated through increased protein stabilization. For HIF-1α, it is clear that further transcriptional, translational, and posttranslational regulations are important for complete HIF-1 activity. Novel evidence links hypoxia and HIF-1 to arginine methylation, an important protein modification. These studies suggest that arginine methyltransferases may be important for hypoxic responses. Protein arginine methyltransferase 1 (PRMT1), the predominant arginine methyltransferase, can act as a transcriptional activator or repressor by modifying a diverse set of substrates. In this work, we show that PRMT1 is a repressor of both HIF-1 and HIF-2. The cellular depletion of PRMT1 by small interference RNA targeting leads to increased HIF transcriptional activity. This activation is the result of enhanced HIF-α subunit transcription, which allows increased HIF-α subunit availability. We provide evidence that PRMT1-dependent HIF-1α regulation is mediated through the activities of both specificity protein 1 (Sp1) and Sp3, two transcription factors known to control HIF-1α expression. This study therefore identifies PRMT1 as a novel regulator of HIF-1– and HIF-2–mediated responses.
Collapse
Affiliation(s)
- Véronique N Lafleur
- Centre de Recherche du CHU de Québec, L'Hôtel-Dieu de Québec, and Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 2J6, Canada Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | |
Collapse
|
202
|
|
203
|
Systemic toll-like receptor and interleukin-18 pathway activation in patients with acute ST elevation myocardial infarction. J Mol Cell Cardiol 2014; 67:94-102. [PMID: 24389343 DOI: 10.1016/j.yjmcc.2013.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/09/2013] [Accepted: 12/25/2013] [Indexed: 12/21/2022]
Abstract
Acute myocardial infarction (AMI) is accompanied by increased expression of Toll like receptors (TLR)-2 and TLR4 on circulating monocytes. In animal models, blocking TLR2/4 signaling reduces inflammatory cell influx and infarct size. The clinical consequences of TLR activation during AMI in humans are unknown, including its role in long-term cardiac functional outcome Therefore, we analyzed gene expression in whole blood samples from 28 patients with an acute ST elevation myocardial infarction (STEMI), enrolled in the EXenatide trial for AMI patients (EXAMI), both at admission and after 4-month follow-up, by whole genome expression profiling and real-time PCR. Cardiac function was determined by cardiac magnetic resonance (CMR) imaging at baseline and after 4-month follow-up. TLR pathway activation was shown by increased expression of TLR4 and its downstream genes, including IL-18R1, IL-18R2, IL-8, MMP9, HIF1A, and NFKBIA. In contrast, expression of the classical TLR-induced genes, TNF, was reduced. Bioinformatics analysis and in vitro experiments explained this noncanonical TLR response by identification of a pivotal role for HIF-1α. The extent of TLR activation and IL-18R1/2 expression in circulating cells preceded massive troponin-T release and correlated with the CMR-measured ischemic area (R=0.48, p=0.01). In conclusion, we identified a novel HIF-1-dependent noncanonical TLR activation pathway in circulating leukocytes leading to enhanced IL-18R expression which correlated with the magnitude of the ischemic area. This knowledge may contribute to our mechanistic understanding of the involvement of the innate immune system during STEMI and may yield diagnostic and prognostic value for patients with myocardial infarction.
Collapse
|
204
|
Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production. Kidney Int 2014; 85:276-88. [DOI: 10.1038/ki.2013.342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
|
205
|
Ma J, Zi Jiang Y, Shi H, Mi C, Li J, Xing Nan J, Wu X, Joon Lee J, Jin X. Cucurbitacin B inhibits the translational expression of hypoxia-inducible factor-1α. Eur J Pharmacol 2014; 723:46-54. [DOI: 10.1016/j.ejphar.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 01/27/2023]
|
206
|
Park YJ, Yoon SJ, Suh HW, Kim DO, Park JR, Jung H, Kim TD, Yoon SR, Min JK, Na HJ, Lee SJ, Lee HG, Lee YH, Lee HB, Choi I. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog 2013; 9:e1003646. [PMID: 24098117 PMCID: PMC3789754 DOI: 10.1371/journal.ppat.1003646] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock. TXNIP has many biological functions, including the inhibition of tumor growth, suppression of hepatocarcinogenesis, and regulation of glucose metabolism and reactive oxygen species (ROS) generation in different cell types. However, little is known about its role in the inflammatory process. In this study, our results demonstrate that TXNIP plays a critical role in the control of lethal endotoxin-induced shock by controlling NO production in innate immune cells via the regulation of iNOS expression. This regulation is mediated through changes in the activation and translocation of NF-κB that affect the NF-κB/iNOS pathway. In addition, excessive NO reduces the production of IL-1β via S-nitrosylation of the NLRP3 inflammasome. Subsequently, the survival of Txnip−/− mice is significantly decreased due to hypothermia and hypoglycemia. Overall, these results suggest that TXNIP is a novel therapeutic target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sung-Jin Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Woo Suh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Dong Oh Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ran Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science & Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee-Jun Na
- Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Chung-gu, Daejeon, Republic of Korea
| | - Hee-Bong Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
207
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
208
|
Liu S, Zhu K, Chen N, Wang W, Wang H. Identification of HIF-1α promoter and expression regulation of HIF-1α gene by LPS and hypoxia in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1153-1163. [PMID: 23392835 DOI: 10.1007/s10695-013-9771-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
The ubiquitously expressed hypoxia-inducible factor-1α (HIF-1α) acts as a key transcription factor in regulating metabolism, development, cellular survival, proliferation and pathology under hypoxia condition. Compared to mammals, fish are more vulnerable to hypoxia stress and contamination; however, the regulation of HIF-1α in fish remains obscure. In this study, zebrafish HIF-1α promoter was cloned and found to possess a CpG island located at -97 to +403, but the canonical TATA-box was absent. Aligning 240-bp HIF-1α proximal promoter region of zebrafish with other vertebrates showed more than 82 % identity with cyprinid fishes. Further luciferase analysis suggested that the minimal core promoter might locate at -134 to +97, and several putative transcription factor binding sites were found in this region by bioinformatic analysis. Moreover, it was shown that the zebrafish HIF-1α mRNA was significantly activated by 10 μg/mL lipopolysaccharide (LPS) under hypoxia condition and peaked at 8 h after treatment, suggesting LPS- and hypoxia-regulated zebrafish HIF-1α transcriptional activity in a synergistic pattern. This synergistic effect was closely related to the living environment of fish, indicating that this mechanism would be more conducive to fish survival.
Collapse
Affiliation(s)
- Shasha Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
209
|
Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 2013; 14:1173-82. [PMID: 24076634 DOI: 10.1038/ni.2714] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
Abstract
Cytolytic activity by CD8(+) cytotoxic T lymphocytes (CTLs) is a powerful strategy for the elimination of intracellular pathogens and tumor cells. The destructive capacity of CTLs is progressively dampened during chronic infection, yet the environmental cues and molecular pathways that influence immunological 'exhaustion' remain unclear. Here we found that CTL immunity was regulated by the central transcriptional response to hypoxia, which is controlled in part by hypoxia-inducible factors (HIFs) and the von Hippel-Lindau tumor suppressor VHL. Loss of VHL, the main negative regulator of HIFs, led to lethal CTL-mediated immunopathology during chronic infection, and VHL-deficient CTLs displayed enhanced control of persistent viral infection and neoplastic growth. We found that HIFs and oxygen influenced the expression of pivotal transcription, effector and costimulatory-inhibitory molecules of CTLs, which was relevant to strategies that promote the clearance of viruses and tumors.
Collapse
|
210
|
Poitz DM, Augstein A, Gradehand C, Ende G, Schmeisser A, Strasser RH. Regulation of the Hif-system by micro-RNA 17 and 20a - role during monocyte-to-macrophage differentiation. Mol Immunol 2013; 56:442-51. [PMID: 23911400 DOI: 10.1016/j.molimm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
MiRNAs are a class of endogenous tiny RNAs that act as inhibitors of translation or promote RNA degradation by duplex-formation within the 3'-UTR of target mRNAs. They play an important role during a wide range of cellular processes by fine-tuning of gene expression. The differentiation of monocytes to macrophages plays a pivotal role in physiological as well as pathophysiological processes such as atherosclerosis. Monocytes which can be found in well-oxygenated blood migrate into areas with a high inflammation, such as the atherosclerotic plaque. There, they differentiate into macrophages. Interestingly, macrophages were found mainly at hypoxic sites of the plaque. Key regulators for the adaptation to hypoxia are the hypoxia-inducible factors (Hif). Therefore the aim of the present study was to investigate the regulation of the Hif-system by miRNAs during the process of monocyte differentiation. The present study shows that during the differentiation of monocytes into macrophages a dramatically change in the expression pattern of Hif-1α and Hif-2α took place. This was associated with a downregulation of microRNAs encoded by the miR-17-92 cluster. An in silico analysis of the 3'-UTR of Hif-α subunits for binding sites of miRNAs was performed using different miRNA databases in concert with a secondary structure prediction algorithm. This analysis revealed that both 3'-UTRs contain binding sites for miRNAs of the miR-17-92 cluster. Transfection of HeLa cells with miR-17 and miR-20a led to an inhibition of Hif-1α and -2α mRNA and protein expression and a lowered Hif DNA binding activity. Using a Luciferase-Reporter assay, it could be shown, that both Hif-α subunits are targeted by miR-17 and miR-20a. Furthermore, miR-overexpression in primary human macrophages demonstrates the important role of this microRNA-mediated regulation of the Hif-system for adaption of macrophages to hypoxia. In conclusion, the present study shows that the Hif-system is activated during monocyte-to-macrophage differentiation. This activation is in part mediated by a miRNA-dependent mechanism, which seems to be crucial for the adaption of macrophages to hypoxia.
Collapse
Affiliation(s)
- David M Poitz
- Internal Medicine and Cardiology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
211
|
Luo B, Jiang M, Yang X, Zhang Z, Xiong J, Schluesener HJ, Zhang Z, Wu Y. Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1260-70. [DOI: 10.1016/j.bbadis.2013.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/30/2022]
|
212
|
Pawlak EA, Geor RJ, Watts MR, Black SJ, Johnson PJ, Belknap JK. Regulation of hypoxia-inducible factor-1α and related genes in equine digital lamellae and in cultured keratinocytes. Equine Vet J 2013; 46:203-9. [PMID: 23663159 DOI: 10.1111/evj.12092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
REASONS FOR PERFORMING STUDY Hypoxia-inducible factor-1α (HIF-1A) is an important protein in the regulation/induction of many genes in the cellular and tissue response to hypoxia and a central mediator in inflammatory signalling. As both hypoxia and inflammatory events are purported to occur in the lamellar epidermis in sepsis-related laminitis in the equid, HIF-1A may play a central role in this disease process. OBJECTIVESS To assess the regulation of HIF-1A and HIF-1A-related genes in the equine keratinocyte in vitro and in the lamellar tissue of horses with sepsis-related laminitis. STUDY DESIGN In vivo and in vitro experiments. METHODS Real-time quantitative PCR (RT-qPCR) and immunoblotting were performed to assess the mRNA and protein concentrations of HIF-1A and the mRNA concentrations of HIF-1A-related genes in cultured equine keratinocytes and in lamellar samples from black walnut extract (BWE)- and carbohydrate overload (CHO)-induced laminitis. Hypoxia-inducible factor-1α was further localised via indirect immunofluorescence in frozen lamellar tissue sections. RESULTS Hypoxia-inducible factor-1α appears to be regulated primarily at the post transcriptional level in the cultured equine keratinocyte, resulting in increased HIF-1A in response to hypoxia but not to lipopolysaccharide exposure. Hypoxia-inducible factor-1α is present at high concentrations in the normal equine lamina, and is increased in Obel grade 1 (OG1) stage laminitis in the CHO model of laminitis. Equine lamellar mRNA concentrations of cyclo-oxygenase-2 and inducible nitric oxide synthase, but not glucose transporter 1, are increased in the BWE and CHO models of laminitis. CONCLUSIONS AND POTENTIAL RELEVANCE These data indicate that the normal equine lamellae are profoundly hypoxic in comparison with other tissues. The increased mRNA concentrations of cyclo-oxygenase-2 and inducible nitric oxide synthase 2 in equine keratinocytes exposed to hypoxia and lipopolysaccharide, and in lamellar tissue from BWE and CHO models of sepsis-related laminitis, suggest that the marked lamellar inflammatory gene expression in sepsis-related laminitis may be due to an interaction of constitutively high lamellar keratinocyte HIF-1A signalling with inflammatory signalling, possibly induced by circulating inflammatory mediators.
Collapse
Affiliation(s)
- E A Pawlak
- Department of Veterinary and Animal Sciences, University of Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
213
|
Shakespear MR, Hohenhaus DM, Kelly GM, Kamal NA, Gupta P, Labzin LI, Schroder K, Garceau V, Barbero S, Iyer A, Hume DA, Reid RC, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013; 288:25362-25374. [PMID: 23853092 DOI: 10.1074/jbc.m113.496281] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.
Collapse
Affiliation(s)
- Melanie R Shakespear
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Daniel M Hohenhaus
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Greg M Kelly
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Nabilah A Kamal
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Praveer Gupta
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Larisa I Labzin
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Kate Schroder
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Valerie Garceau
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Sheila Barbero
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Abishek Iyer
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David A Hume
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Robert C Reid
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Katharine M Irvine
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David P Fairlie
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Matthew J Sweet
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and.
| |
Collapse
|
214
|
Toussaint M, Fievez L, Drion PV, Cataldo D, Bureau F, Lekeux P, Desmet CJ. Myeloid hypoxia-inducible factor 1α prevents airway allergy in mice through macrophage-mediated immunoregulation. Mucosal Immunol 2013; 6:485-97. [PMID: 22968421 DOI: 10.1038/mi.2012.88] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypoxia-inducible factor (HIF) has important roles in promoting pro-inflammatory and bactericidal functions in myeloid cells. Conditional genetic ablation of its major subunit Hif1α in the myeloid lineage consequently results in decreased inflammatory responses in classical models of acute inflammation in mice. By contrast, we report here that mice conditionally deficient for Hif1α in myeloid cells display enhanced sensitivity to the development of airway allergy to experimental allergens and house-dust mite antigens. We support that upon allergen exposure, MyD88-dependent upregulation of Hif1α boosts the expression of the immunosuppressive cytokine interleukin (IL)-10 by lung interstitial macrophages (IMs). Hif1α-dependent IL-10 secretion is required for IMs to block allergen-induced dendritic cell activation and consequently for preventing the development of allergen-specific T-helper cell responses upon allergen exposure. Thus, this study supports that, in addition to its known pro-inflammatory activities, myeloid Hif1α possesses immunoregulatory functions implicated in the prevention of airway allergy.
Collapse
Affiliation(s)
- M Toussaint
- Laboratory of Cellular and Molecular Immunology, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
215
|
Biswas S, Mukherjee R, Tapryal N, Singh AK, Mukhopadhyay CK. Insulin regulates hypoxia-inducible factor-1α transcription by reactive oxygen species sensitive activation of Sp1 in 3T3-L1 preadipocyte. PLoS One 2013; 8:e62128. [PMID: 23626778 PMCID: PMC3633924 DOI: 10.1371/journal.pone.0062128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/19/2013] [Indexed: 01/04/2023] Open
Abstract
Oxygen sensing transcription factor HIF-1 is activated due to accumulation of regulatory subunit HIF-1α by posttranslational stability mechanism during hypoxia or by several other stimuli even in normoxia. HIF-1α is also regulated by NF-kB mediated transcription mechanism. Reactive oxygen species (ROS) act as an important regulator of HIF-1 either by affecting prolyl hydroxylase activity, the critical determinant of HIF-1α stabilization or by activating NF-kB to promote HIF-1α transcription. Insulin is known to activate HIF-1 by a ROS dependent mechanism but the molecular mechanism of HIF-1α regulation is not known so far. Here we show that insulin regulates HIF-1α by a novel transcriptional mechanism by a ROS-sensitive activation of Sp1 in 3T3-L1 preadipocyte. Insulin shows little effect on HIF-1α protein stability, but increases HIF-1α promoter activity. Mutation analyses, electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirm the role of Sp1 in HIF-1α transcription. We further demonstrate that insulin-induced ROS generation initiates signaling pathway involving phosphatidylinositol 3-kinase and protein kinase C for Sp1 mediated HIF-1α transcription. In summary, we reveal that insulin regulates HIF-1α by a novel transcriptional mechanism involving Sp1.
Collapse
Affiliation(s)
- Sudipta Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Reshmi Mukherjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nisha Tapryal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chinmay K. Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
216
|
Miyata Y, Fukuhara A, Otsuki M, Shimomura I. Expression of activating transcription factor 2 in inflammatory macrophages in obese adipose tissue. Obesity (Silver Spring) 2013; 21:731-6. [PMID: 23712976 DOI: 10.1002/oby.20274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/16/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE White adipose tissue (WAT) of obesity is in the state of inflammation with progressive infiltration by macrophages and overproduction of reactive oxygen species (ROS), which can induce WAT dysfunction, including insulin resistance and adipocytokine dysregulation. Activating transcription factor 2 (ATF2) is a member of the ATF/cAMP response element binding family of transcription factors and known to be activated by cellular stressors, such as inflammatory cytokines, lipopolysaccharide (LPS), and ROS. DESIGN AND METHODS, RESULTS: Here, we show that ATF2 protein was significantly more induced in WAT of ob/ob mice compared with C57BL/6J mice. Total and phosphorylated ATF2 were highly expressed in infiltrated macrophages. Furthermore, flow cytometry analysis demonstrated that ATF2 expression was high in CD11c-positive/CD301-negative M1 macrophages. Phosphorylation of ATF2 was induced by treatment with either H2 O2 or LPS in RAW264.7 macrophage cells, and suppression of ATF2 expression by small-interfering RNA induced mRNA levels of ATF3, an anti-inflammatory molecule in macrophages in WAT. CONCLUSIONS These results suggest that ATF2 is an important transcriptional factor relating to inflammation through the suppression of ATF3 in M1 macrophages of WAT.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
217
|
New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. Semin Immunol 2013; 24:384-92. [PMID: 23391428 DOI: 10.1016/j.smim.2013.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 01/15/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) have long been implicated as pro-inflammatory, yet the sources of ROS and the molecular mechanisms by which they enhance inflammation have been less clear. Recent advances in the understanding of the molecular basis of inflammation mediated by the innate immune system have allowed these issues to be revisited. Although the Nox2 NADPH oxidases generate the bulk of ROS for antimicrobial host defense, recent studies have found that NADPH oxidase-dependent ROS production can actually dampen macrophage inflammatory responses to sterile pro-inflammatory stimuli. Instead, production of mitochondrial ROS has emerged as an important factor in both host defense and sterile inflammation. Excess mitochondrial ROS can be generated by either damage to the respiratory chain or by alterations of mitochondrial function such as those that increase membrane potential and reduce respiratory electron carriers. In autoinflammatory diseases, where key components of innate immune responses are activated by genetic mutations or environmental stimuli, inflammation has been found to be particularly sensitive to inhibition of mitochondrial ROS production. These findings have highlighted mitochondrial ROS as a novel generator of pro-inflammatory ROS and a potential therapeutic target in inflammatory diseases.
Collapse
|
218
|
Differential role of hypoxia-inducible factor 1 alpha in toll-like receptor-mediated and allergic inflammatory reactions. World Allergy Organ J 2013; 3:245-9. [PMID: 23282899 PMCID: PMC3651115 DOI: 10.1097/wox.0b013e3181f8daa5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription complex that plays a pivotal role in cellular adaptation to hypoxic conditions. The role of this factor in inflammatory reactions associated with infections and allergies has recently become evident. In this review we summarize our current knowledge concerning the accumulation and role of HIF-1 in Toll-like receptor-mediated and allergic inflammation. The differential molecular mechanisms used to stabilize this protein in various settings and its ability to support both proinflammatory and angiogenic responses suggest important functional roles in both innate immune responses and allergies. Importantly, the HIF-1 transcription complex is activated in human basophils during IgE-mediated inflammatory responses. It is involved in VEGF expression and subsequent promotion of angiogenesis and in controlling energy metabolism.
Collapse
|
219
|
da Rosa DP, Forgiarini LF, Baronio D, Feijó CA, Martinez D, Marroni NP. Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver. Mediators Inflamm 2012; 2012:879419. [PMID: 23226929 PMCID: PMC3513737 DOI: 10.1155/2012/879419] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/28/2012] [Indexed: 12/25/2022] Open
Abstract
Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n = 6) or a simulated IH (SIH) (n = 6) for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS), vascular endothelial growth factor (VEGF), and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.
Collapse
Affiliation(s)
- Darlan Pase da Rosa
- Ciências Médicas, Programa de Pós-Graduação em Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), 90035-903 Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
220
|
Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int Immunol 2012. [PMID: 23179187 DOI: 10.1093/intimm/dxs110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxygen availability affects cell differentiation, survival and function, with profound consequences on tissue homeostasis, inflammation and immunity. A gradient of oxygen levels is present in most organs of the body as well as in virtually every site of inflammation, damaged or pathological tissue. As a consequence, infiltrating leukocytes, macrophages in particular, are equipped with the capacity to shift their metabolism to anaerobic glycolysis, to generate ATP and induce the expression of factors that increase the supply of oxygen and nutrients. Strikingly, low oxygen conditions (hypoxia) and inflammatory signals share selected transcriptional events, including the activation of members of both the hypoxia-inducible factor and nuclear factor κB families, which may converge to activate specific cell programs. In the pathological response to hypoxia, cancer in particular, macrophages act as orchestrators of disease evolution and their number can be used as a prognostic marker. Here we review mechanisms of macrophage adaptation to hypoxia, their role in disease as well as new perspectives for their therapeutic targeting.
Collapse
Affiliation(s)
- Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara 28100, Italy
| | | | | | | | | | | |
Collapse
|
221
|
Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α. PLoS One 2012. [PMID: 23185615 PMCID: PMC3503895 DOI: 10.1371/journal.pone.0050394] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation leads to the formation of a pro-tumorigenic microenvironment that can promote tumor development, growth and differentiation through augmentation of tumor angiogenesis. Prostate cancer (CaP) risk and prognosis are adversely correlated with a number of inflammatory and angiogenic mediators, including Toll-like receptors (TLRs), NF-κB and vascular endothelial growth factor (VEGF). Peroxiredoxin 1 (Prx1) was recently identified as an endogenous ligand for TLR4 that is secreted from CaP cells and promotes inflammation. Inhibition of Prx1 by CaP cells resulted in reduced expression of VEGF, diminished tumor vasculature and retarded tumor growth. The mechanism by which Prx1 regulates VEGF expression in normoxic conditions was investigated in the current study. Our results show that incubation of mouse vascular endothelial cells with recombinant Prx1 caused increases in VEGF expression that was dependent upon TLR4 and required hypoxia inducible factor-1 (HIF-1) interaction with the VEGF promoter. The induction of VEGF was also dependent upon NF-κB; however, NF-κB interaction with the VEGF promoter was not required for Prx1 induction of VEGF suggesting that NF-κB was acting indirectly to induce VEGF expression. The results presented here show that Prx1 stimulation increased NF-κB interaction with the HIF-1α promoter, leading to enhanced promoter activity and increases in HIF-1α mRNA levels, as well as augmented HIF-1 activity that resulted in VEGF expression. Prx1 induced HIF-1 also promoted NF-κB activity, suggesting the presence of a positive feedback loop that has the potential to perpetuate Prx1 induction of angiogenesis. Strikingly, inhibition of Prx1 expression in CaP was accompanied with reduced expression of HIF-1α. The combined findings of the current study and our previous study suggest that Prx1 interaction with TLR4 promotes CaP growth potentially through chronic activation of tumor angiogenesis.
Collapse
|
222
|
Bozkus F, Ulas T, San I, Yesilova Y, Iynen I, Guldur ME, Aksoy N. Evaluation of ceruloplasmin levels in patients undergoing surgical interventions with nasal polyps. Auris Nasus Larynx 2012; 40:282-5. [PMID: 23121920 DOI: 10.1016/j.anl.2012.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/10/2012] [Accepted: 09/25/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Oxidative stress is believed to have a role in the development of nasal polyps (NPs). It is also known that ceruloplasmin (CP), an acute phase protein, limits oxidative stress. The purpose of this study was to evaluate the ceruloplasmin levels in patients with NPs. METHODS One hundred and twenty patients with NPs, septal deviations and concha hypertrophies were recruited to the study. Patients were divided in two groups; group 1 (n=60) consisted of patients with NPs, and group 2 (n=60) consisted of septal deviations and concha hypertrophies. Polyp specimens were taken from all patients who underwent endoscopic surgery due to NPs, as well as control specimens were acquired who underwent an operation due to septoplasty or concha hypertrophy. Blood and tissue samples were obtained to assess CP levels. RESULTS There were no statistical differences in gender, age and biochemical values between two groups (p>0.05 for all). Compared to group 2, group 1 had significantly higher CP levels both in serum and the tissue samples (both p<0.001). CONCLUSION As a result of our study; CP levels both in serum and the tissue in patients with NPs were higher, may be consequence of the inflammation, than in patients without NPs.
Collapse
Affiliation(s)
- Ferhat Bozkus
- Department of Otolaryngology, Head and Neck Surgery, Harran University, Sanliurfa, Turkey.
| | | | | | | | | | | | | |
Collapse
|
223
|
Madia F, Grossi V, Peserico A, Simone C. Updates from the Intestinal Front Line: Autophagic Weapons against Inflammation and Cancer. Cells 2012; 1:535-57. [PMID: 24710489 PMCID: PMC3901109 DOI: 10.3390/cells1030535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/04/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022] Open
Abstract
The intestine lies at the interface between the organism and its environment and responds to infection/inflammation in a multi-leveled manner, potentially leading to chronic inflammatory pathologies and cancer formation. Indeed, the immune response at the intestinal epithelium has been found to be involved in the origin and development of colorectal cancer, which is the third most commonly diagnosed neoplastic disease. Among the mechanisms induced upon inflammation, autophagy appears as a defensive strategy for the clearance of invading microbes and intracellular waste components. Autophagy has also been found to play an important role in colorectal cancer, where it seems to have a pro-survival or pro-death function depending on the stage of the neoplastic process. In this paper we discuss the dual role of autophagy in colorectal cancer and review evidence showing that modulation of autophagy affects the immune response and cancer biology. The study of key players involved in autophagy might contribute to the design of new approaches for colorectal cancer, consisting in combined therapies capable of modifying cancer-specific metabolism rather than simply evoking a generic apoptotic and/or autophagic response, thus enhancing the efficacy of currently used drugs and treatments.
Collapse
Affiliation(s)
- Federica Madia
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH) 66030, Italy.
| | - Valentina Grossi
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH) 66030, Italy.
| | - Alessia Peserico
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH) 66030, Italy.
| | - Cristiano Simone
- Laboratory of Signal-dependent Transcription, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH) 66030, Italy.
| |
Collapse
|
224
|
Escribese MM, Casas M, Corbí AL. Influence of low oxygen tensions on macrophage polarization. Immunobiology 2012; 217:1233-40. [PMID: 22889513 DOI: 10.1016/j.imbio.2012.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/03/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023]
Abstract
Microenvironmental conditions in infected, inflamed or damaged tissues are characterized by low levels of oxygen (hypoxia) and nutrients. Myeloid cells (mostly macrophages and neutrophils) account for 95% of the cells newly recruited into inflammatory sites, and exert their effector functions under these restrictive conditions. In the case of macrophages, adaptation to the surrounding tissue environment is underlined by their huge metabolic and functional plasticity, which allows them to critically participate in the maintenance of tissue homeostasis and the initiation and resolution of inflammatory processes under hypoxic conditions. Therefore, alterations in oxygen availability directly affect the macrophage functional state (polarization), a phenomenon that has been already illustrated in pathologies like cancer, atherosclerosis and obesity. This review summarizes recent advances on the molecular basis of macrophage sensing and response to changes in oxygen pressure, emphasizing the link among the hypoxia-induced signalling pathways, macrophage polarization and inflammatory pathologies.
Collapse
Affiliation(s)
- María M Escribese
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | | | |
Collapse
|
225
|
Pavlov OV, Sheveleva TS, Selkov SA. In Vitro Expression of Vascular Endothelial Growth Factor and Its Receptors by Placental Macrophages. Bull Exp Biol Med 2012; 153:222-5. [DOI: 10.1007/s10517-012-1681-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
226
|
Textoris J, Beaufils N, Quintana G, Ben Lassoued A, Zieleskiewicz L, Wiramus S, Blasco V, Lesavre N, Martin C, Gabert J, Leone M. Hypoxia-inducible factor (HIF1α) gene expression in human shock states. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R120. [PMID: 22781303 PMCID: PMC3580697 DOI: 10.1186/cc11414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022]
Abstract
Introduction Hypoxia-inducible factor-1 (HIF1) controls the expression of genes involved in the cellular response to hypoxia. No information is available on its expression in critically ill patients. Thus, we designed the first clinical study in order to evaluate the role of HIF1α as a prognosis marker in patients suffering from shock. Methods Fifty consecutive adult patients with shock and 11 healthy volunteers were prospectively enrolled in the study. RNA was extracted from whole blood samples and expression of HIF1α was assessed over the first four hours of shock. The primary objective was to assess HIF1α as a prognostic marker in shock. Secondary objectives were to evaluate the role of HIF1α as a diagnostic and follow-up marker. Patient survival was evaluated at day 28. Results The causes of shock were sepsis (78%), hemorrhage (18%), and cardiac dysfunction (4%). HIF1α expression was significantly higher in the shock patients than in the healthy volunteers (121 (range: 72-168) versus 48 (range: 38-54) normalized copies, P <0.01), whatever the measured isoforms. It was similar in non-survivors and survivors (108 (range 84-183) versus 121(range 72-185) normalized copies, P = 0.92), and did not significantly change within the study period. Conclusions The present study is the first to demonstrate an increased expression of HIF1α in patients with shock. Further studies are needed to clarify the potential association with outcome. Our findings reinforce the value of monitoring plasma lactate levels to guide the treatment of shock.
Collapse
Affiliation(s)
- Julien Textoris
- Service d’anesthésie et de réanimation, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, Chemin des bourrely, 13915, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Singh AK, Mukhopadhyay C, Biswas S, Singh VK, Mukhopadhyay CK. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage. PLoS One 2012; 7:e38489. [PMID: 22701652 PMCID: PMC3373497 DOI: 10.1371/journal.pone.0038489] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Recent evidence established a crucial role for mammalian oxygen sensing transcription factor hypoxia inducible factor-1 (HIF-1) in innate immunity against intracellular pathogens. In response to most of these pathogens host phagocytes increase transcription of HIF-1α, the regulatory component of HIF-1 to express various effector molecules against invaders. Leishmania donovani (LD), a protozoan parasite and the causative agent of fatal visceral leishmaniasis resides in macrophages within mammalian host. The mechanism of HIF-1 activation or its role in determining the fate of LD in infected macrophages is still not known. To determine that J774 macrophages were infected with LD and about four-fold increase in HIF-1 activity and HIF-1α expression were detected. A strong increase in HIF-1α expression and nuclear localization was also detected in LD-infected J774 cells, peritoneal macrophages and spleen derived macrophages of LD-infected BALB/c mice. A two-fold increase in HIF-1α mRNA was detected in LD-infected macrophages suggesting involvement of a transcriptional mechanism that was confirmed by promoter activity. We further revealed that LD also induced HIF-1α expression by depleting host cellular iron pool to affect prolyl hydroxylase activity resulting in to stabilization of HIF-1α. To determine the role of HIF-1 on intracellular LD, cells were transfected with HIF-1α siRNA to attenuate its expression and then infected with LD. Although, initial infection rate of LD in HIF-1α attenuated cells was not affected but intracellular growth of LD was significantly inhibited; while, over-expression of stabilized form of HIF-1α promoted intracellular growth of LD in host macrophage. Our results strongly suggest that LD activates HIF-1 by dual mechanism for its survival advantage within macrophage.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chaitali Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sudipta Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Kumari Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Chinmay K. Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
228
|
Robach P, Boisson RC, Vincent L, Lundby C, Moutereau S, Gergelé L, Michel N, Duthil E, Féasson L, Millet GY. Hemolysis induced by an extreme mountain ultra-marathon is not associated with a decrease in total red blood cell volume. Scand J Med Sci Sports 2012; 24:18-27. [PMID: 22672635 DOI: 10.1111/j.1600-0838.2012.01481.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2012] [Indexed: 12/14/2022]
Abstract
Prolonged running is known to induce hemolysis. It has been suggested that hemolysis may lead to a significant loss of red blood cells; however, its actual impact on the erythrocyte pool is unknown. Here, we test the hypothesis that prolonged running with high hemolytic potential decreases total red blood cell volume (RCV). Hemolysis (n = 22) and RCV (n = 19) were quantified in ultra-marathon runners before and after a 166-km long mountain ultra-endurance marathon (RUN) with 9500 m of altitude gain/loss. Assessment of total hemoglobin mass (Hbmass) and RCV was performed using a carbon monoxide rebreathing technique. RUN induced a marked acute-phase response and promoted hemolysis, as shown by a decrease in serum haptoglobin (P < 0.05). Elevated serum erythropoietin concentration and reticulocyte count after RUN were indicative of erythropoietic stimulation. Following RUN, runners experienced hemodilution, mediated by a large plasma volume expansion and associated with a large increase in plasma aldosterone. However, neither Hbmass nor RCV were found to be altered after RUN. Our findings indicate that mechanical/physiological stress associated with RUN promotes hemolysis but this has no impact on total erythrocyte volume. We therefore suggest that exercise 'anemia' is entirely due to plasma volume expansion and not to a concomitant decrease in RCV.
Collapse
Affiliation(s)
- P Robach
- Medical Department, National School for Skiing and Mountaineering, Site of the National School for Mountain Sports, Chamonix, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Toussaint M, Fievez L, Desmet CJ, Pirottin D, Farnir F, Bureau F, Lekeux P. Increased hypoxia-inducible factor 1α expression in lung cells of horses with recurrent airway obstruction. BMC Vet Res 2012; 8:64. [PMID: 22621400 PMCID: PMC3536633 DOI: 10.1186/1746-6148-8-64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/07/2012] [Indexed: 12/17/2022] Open
Abstract
Background Recurrent airway obstruction (RAO, also known as equine heaves) is an inflammatory condition caused by exposure of susceptible horses to organic dusts in hay. The immunological processes responsible for the development and the persistence of airway inflammation are still largely unknown. Hypoxia-inducible factor (Hif) is mainly known as a major regulator of energy homeostasis and cellular adaptation to hypoxia. More recently however, Hif also emerged as an essential regulator of innate immune responses. Here, we aimed at investigating the potential involvement of Hif1-α in myeloid cells in horse with recurrent airway obstruction. Results In vitro, we observed that Hif is expressed in equine myeloid cells after hay dust stimulation and regulates genes such as tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A). We further showed in vivo that airway challenge with hay dust upregulated Hif1-α mRNA expression in myeloid cells from the bronchoalveolar lavage fluid (BALF) of healthy and RAO-affected horses, with a more pronounced effect in cells from RAO-affected horses. Finally, Hif1-α mRNA expression in BALF cells from challenged horses correlated positively with lung dysfunction. Conclusion Taken together, our results suggest an important role for Hif1-α in myeloid cells during hay dust-induced inflammation in horses with RAO. We therefore propose that future research aiming at functional inactivation of Hif1 in lung myeloid cells could open new therapeutic perspectives for RAO.
Collapse
Affiliation(s)
- Marie Toussaint
- Laboratory of Cellular and Molecular Physiology, GIGA-Research and Faculty of Veterinary Medicine, University of Liège, B34-Avenue de l'Hôpital, 1, 4000, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
230
|
Inhibition of hypoxia inducible factor-1α ameliorates lung injury induced by trauma and hemorrhagic shock in rats. Acta Pharmacol Sin 2012; 33:635-43. [PMID: 22465950 DOI: 10.1038/aps.2012.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Ischemia/reperfusion is an initial triggering event that leads to gut-induced acute lung injury (ALI). In this study, we investigated whether hypoxia inducible factor-1α (HIF-1α) played a role in the pathogenesis of lung injury induced by trauma and hemorrhagic shock (T/HS). METHODS Male Wistar rats underwent laparotomy and hemorrhagic shock for 60 min. Sham-shock animals underwent laparotomy but without hemorrhagic shock. After resuscitation for 3 hr, the rats were sacrificed. Morphologic changes of the lungs and intestines were examined. Bronchoalveolar lavage fluid (BALF) was collected. Lung water content, pulmonary myeloperoxidase (MPO) activity and the levels of malondialdehyde (MDA), nitrite/nitrate, TNF-α, IL-1β, and IL-6 in the lungs were measured. The gene expression of pulmonary HIF-1α and iNOS, and HIF-1α transcriptional activity in the lungs were also assessed. The apoptosis in the lungs was determined using TUNEL assay and cleaved caspase-3 expression. RESULTS Lung and intestinal injuries induced by T/HS were characterized by histological damages and a significant increase in lung water content. Compared to the sham-shock group, the BALF cell counts, the pulmonary MPO activity and the MDA, nitrite/nitrate, TNF-α, IL-1β, and IL-6 levels in the T/HS group were significantly increased. Acute lung injury was associated with a higher degree of pulmonary HIF-1α and iNOS expression as well as apoptosis in the lungs. Intratracheal delivery of HIF-1α inhibitor YC-1 (1 mg/kg) significantly attenuated lung injury, and reduced pulmonary HIF-1α and iNOS expression and HIF-1α transcriptional activity in the T/HS group. CONCLUSION Local inhibition of HIF-1α by YC-1 alleviates the lung injury induced by T/HS. Our results provide novel insight into the pathogenesis of T/HS-induced ALI and a potential therapeutic application.
Collapse
|
231
|
Abstract
It is noteworthy that bacterial or viral infections, and the resulting chronic inflammation, have been shown to predispose individuals to certain types of cancer. Remarkably, these microbes upregulated some transcription factors involved in the regulation of the epithelial to mesenchymal transition, referred herein as EMT. EMT is a cellular process that consists in the conversion of epithelial cell phenotype to a mesenchymal phenotype. Under physiological conditions EMT is clearly important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, more particularly in carcinogenesis and metastatic progression. In this review, we make a parallel between microbes- and growth factors- induced transcription factors. A unifying EMT model then emerges that may help in understanding the development of microbial pathogenesis and in defining new potential future therapeutic strategy in treating diseases linked to infections.
Collapse
Affiliation(s)
- Paul Hofman
- Institution for Research on Cancer and Aging, Nice (IRCAN); Nice, France,University of Nice-Sophia Antipolis; Nice, France,Centre Hospitalier Universitaire de Nice; Hôpital Pasteur; Laboratoire de Pathologie Clinique et Expérimentale; Nice, France
| | - Valérie Vouret-Craviari
- Institution for Research on Cancer and Aging, Nice (IRCAN); Nice, France,University of Nice-Sophia Antipolis; Nice, France,Correspondence to: Valérie Vouret-Craviari,
| |
Collapse
|
232
|
Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. HEPATOLOGY (BALTIMORE, MD.) 2012. [PMID: 22120903 DOI: 10.1002/hep.25497]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
233
|
Fan P, Zhang JJ, Wang B, Wu HQ, Zhou SX, Wang CY, Zhang JH, Tian Y, Wu HS. Hypoxia-inducible factor-1 up-regulates the expression of Toll-like receptor 4 in pancreatic cancer cells under hypoxic conditions. Pancreatology 2012; 12:170-8. [PMID: 22487528 DOI: 10.1016/j.pan.2012.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that Toll-like receptor 4 (TLR4) plays a significant role in cancer invasion and progression. In this study, the correlation between the expression of TLR4 and the change of the protein level of Hypoxia-inducible factor-1 alpha (HIF-1α) was studied. METHODS We examined 84 human pancreatic cancer tissues for expression of HIF-1α and TLR4 proteins. Panc-1 cells were exposed to normoxia (20% O(2)) or hypoxia (<1% O(2)) or treated with CoCl(2). TLR4 protein was analyzed by flow cytometry and immunostaining. Growth studies were conducted on cells with the HIF-1α inhibition isolated from stable transfected cell lines. Finally, TLR4 protein was detected by immunohistochemistry in vivo tumors. RESULTS There was a positive correlation between TLR4 and HIF-1α protein in pancreatic cancer tissues. Hypoxic stress induced TLR4 mRNA and protein expression in Panc-1 cells. Cells transfected with HIF-1α siRNA showed attenuation of hypoxia stress-induced TLR4 expression. In vivo growth decreased in response to TLR4 and HIF-1α inhibiton. Transient HIF-1α siRNA treatment could effectively curb tumor growth in vivo. CONCLUSION These results suggest that TLR4 expression in pancreatic cancer cells is up-regulated via HIF-1α in response to hypoxic stress and underscore the crucial role of HIF-1α-induced TLR4 in tumor growth.
Collapse
Affiliation(s)
- Ping Fan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Road, Wuhan, Hubei 430022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Macrophages are key innate immune effector cells best known for their role as professional phagocytes, which also include neutrophils and dendritic cells. Recent evidence indicates that macrophages are also key players in metabolic homoeostasis. Macrophages can be found in many tissues, where they respond to metabolic cues and produce pro- and/or anti-inflammatory mediators to modulate metabolite programmes. Certain metabolites, such as fatty acids, ceramides and cholesterol crystals, elicit inflammatory responses through pathogen-sensing signalling pathways, implicating a maladaptation of macrophages and the innate immune system to elevated metabolic stress associated with overnutrition in modern societies. The outcome of this maladaptation is a feedforward inflammatory response leading to a state of unresolved inflammation and a collection of metabolic pathologies, including insulin resistance, fatty liver, atherosclerosis and dyslipidaemia. The present review summarizes what is known about the contributions of macrophages to metabolic diseases and the signalling pathways that are involved in metabolic stress-induced macrophage activation. Understanding the role of macrophages in these processes will help us to develop therapies against detrimental effects of the metabolic syndrome.
Collapse
|
235
|
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
236
|
Kuschel A, Simon P, Tug S. Functional regulation of HIF-1α under normoxia--is there more than post-translational regulation? J Cell Physiol 2012; 227:514-24. [PMID: 21503885 DOI: 10.1002/jcp.22798] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is an oxygen-regulated transcriptional activator playing a pivotal role in mammalian physiology and disease pathogenesis, e.g., HIF-1 is indispensable in a broad range of developmental stages in different tumors. Its post-translational regulation via PHDs under the influence of hypoxia is widely investigated and accepted. Different non-hypoxic stimuli such as lipopolysaccharides (LPS), thrombin, and angiotensin II (Ang II), have been proven to enhance HIF-1 levels through activation of regulative mechanisms distinct from protein stabilization. Some of these stimuli specifically regulate HIF-1α at the transcriptional, post-transcriptional, or translational level, whereas others additionally influence post-translational modifications. Thus, it is difficult for the investigators to discern the impact of the different mechanisms leading to functional HIF-1 protein. Nevertheless, profound knowledge of additional regulatory networks appears to depict new therapeutic opportunities and thus is an interesting and important field for further investigations.
Collapse
Affiliation(s)
- A Kuschel
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes-Gutenberg-University Mainz, Germany
| | | | | |
Collapse
|
237
|
Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO, Melero I. Molecular Pathways: Hypoxia Response in Immune Cells Fighting or Promoting Cancer. Clin Cancer Res 2011; 18:1207-13. [DOI: 10.1158/1078-0432.ccr-11-1591] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
238
|
Mahabeleshwar GH, Qureshi MA, Takami Y, Sharma N, Lingrel JB, Jain MK. A myeloid hypoxia-inducible factor 1α-Krüppel-like factor 2 pathway regulates gram-positive endotoxin-mediated sepsis. J Biol Chem 2011; 287:1448-57. [PMID: 22110137 DOI: 10.1074/jbc.m111.312702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of gram-positive endotoxin-mediated sepsis.
Collapse
Affiliation(s)
- Ganapati H Mahabeleshwar
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
239
|
Activation of hypoxia-inducible factor 1 in skeletal muscle cells after exposure to damaged muscle cell debris. Shock 2011; 35:632-8. [PMID: 21283061 DOI: 10.1097/shk.0b013e3182111f3d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skeletal muscle damage provokes complex repair mechanisms including recruitment of leukocytes as well as activation of myogenic precursor cells such as satellite cells. To study muscle cell repair mechanisms after muscle fiber damage, we used an in vitro model of scrape-injured myotubes. Exposing vital C2C12 myoblasts and myotubes to cell debris of damaged myotubes revealed mRNA upregulation of adrenomedullin (ADM), insulin-like growth factors 1 and 2, metallopeptidase 9, and monocyte chemoattractant protein11. When cell debris was treated with ultrasound, frozen in liquid nitrogen, or heat inactivated before addition to C2C12 cells, gene expression was drastically reduced or completely absent. Moreover, incubations of myoblasts with debris separated by transwell inserts indicated that direct cell contact is required for gene induction. Incubation with albumin and PolyIC ruled out that ADM induction by cell debris simply results from increased protein or nucleic acid concentrations in the supernatant. Because the genes, which were upregulated by cell debris, are potential target genes of hypoxia-inducible factor (HIF), cells were analyzed for HIF-1α expression. Western blot analysis showed accumulation of the α-subunit upon contact to cell debris. Knockdown of HIF-1α in C2C12 cells proved that activation of HIF-1 in response to cell debris was responsible for upregulating ADM and monocyte chemoattractant protein 1. Furthermore, by incubating cells on gas-permeable culture dishes, we excluded a reduced pericellular pO2 induced by cell debris as the cause for ADM upregulation. Our data suggest that damaged myofibers activate HIF-1 in neighboring myotubes and precursor myoblasts by direct contact, concomitantly upregulating factors necessary for angiogenesis, tissue regeneration, and phagocyte recruitment.
Collapse
|
240
|
Jantsch J, Wiese M, Schödel J, Castiglione K, Gläsner J, Kolbe S, Mole D, Schleicher U, Eckardt KU, Hensel M, Lang R, Bogdan C, Schnare M, Willam C. Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression. J Leukoc Biol 2011; 90:551-62. [PMID: 21685248 DOI: 10.1189/jlb.1210683] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIF1A is a transcription factor that plays a central role for the adaptation to tissue hypoxia and for the inflammatory response of myeloid cells, including DCs. HIF1A is stabilized by hypoxia but also by TLR ligands under normoxic conditions. The underlying signaling events leading to the accumulation of HIF1A in the presence of oxygen are still poorly understood. Here, we show that in contrast to hypoxic stabilization of HIF1A, normoxic, TLR-mediated HIF1A accumulation in DCs follows a different pathway that predominantly requires MYD88-dependent NF-κB activity. The TLR-induced HIF1A controls a subset of proinflammatory genes that are insufficiently induced following hypoxia-mediated HIF1A induction. Thus, TLR activation and hypoxia stabilize HIF1A via distinct signaling pathways, resulting in differential HIF1A-dependent gene expression.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Hennessy EJ, Sheedy FJ, Santamaria D, Barbacid M, O'Neill LAJ. Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6. J Biol Chem 2011; 286:25531-9. [PMID: 21628465 DOI: 10.1074/jbc.m111.256206] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) modulate the expression of multiple microRNAs (miRNAs). Here, we report the down-regulation of miR-107 by TLR4 in multiple cell types. The miR-107 sequence occurs in an intron within the sequence encoding the gene for pantothenate kinase 1α (PanK1α), which is regulated by the transcription factor peroxisome proliferator-activating receptor α (PPAR-α). PanK1α is also decreased in response to lipopolysaccharide (LPS). The effect on both miR-107 and PanK1α is consistent with a decrease in PPAR-α expression. We have found that the putative miR-107 target cyclin-dependent kinase 6 (CDK6) expression is increased by TLR4 as a result of the decrease in miR-107. This effect is required for increased adhesion of macrophages in response to LPS, and CDK6-deficient mice are resistant to the lethal effect of LPS. We have therefore identified a mechanism for LPS signaling which involves a decrease in miR-107 leading to an increase in CDK6.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
242
|
Xu M, Cao F, Liu L, Zhang B, Wang Y, Dong H, Cui Y, Dong M, Xu D, Liu Y, Zhao P, Niu W, Li Z. Tanshinone IIA-induced attenuation of lung injury in endotoxemic mice is associated with reduction of hypoxia-inducible factor 1α expression. Am J Respir Cell Mol Biol 2011; 45:1028-35. [PMID: 21622293 DOI: 10.1165/rcmb.2011-0113oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhibiting hypoxia-inducible factor (HIF)-1α activity has been proposed as a novel therapeutic target in LPS-induced sepsis syndrome. We have reported that tanshinone IIA (TIIA) can reduce LPS-induced lethality and lung injury in mice, but the precise mechanisms have not been fully described. Therefore, the present study investigated whether the protective effect of TIIA was related to the inhibition of LPS-induced HIF-1α expression and what mechanisms accounted for it. This study showed that TIIA pretreatment improved LPS-induced biochemical and cellular changes and reduced the production of inflammatory cytokines. Pretreatment with TIIA decreased LPS-induced HIF-1α expression in vivo and in vitro. TIIA did not affect the LPS-induced HIF-1α mRNA level but inhibited HIF-1α protein translation by the inhibition of the PI3K/AKT and MAPK pathways and related protein translational regulators, such as p70S6K1, S6 ribosomal protein, 4E-BP1, and eIF4E, and promoted HIF-1α protein degradation via the proteasomal pathway in LPS-stimulated macrophages. These observations partially explain the antiinflammatory effects of TIIA, which provides scientific basis for its application for the treatment of acute lung injury/acute respiratory distress syndrome or sepsis.
Collapse
Affiliation(s)
- Min Xu
- Department of Pathology, Xijing Hospital, Xi’an, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Mahabeleshwar GH, Kawanami D, Sharma N, Takami Y, Zhou G, Shi H, Nayak L, Jeyaraj D, Grealy R, White M, McManus R, Ryan T, Leahy P, Lin Z, Haldar SM, Atkins GB, Wong HR, Lingrel JB, Jain MK. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity 2011; 34:715-28. [PMID: 21565532 DOI: 10.1016/j.immuni.2011.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/14/2011] [Accepted: 02/11/2011] [Indexed: 12/21/2022]
Abstract
Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system.
Collapse
Affiliation(s)
- Ganapati H Mahabeleshwar
- Case Cardiovascular Research Institute, Department of Medicine, Harrington-McLaughlin Heart and Vascular Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Poitz DM, Augstein A, Weinert S, Braun-Dullaeus RC, Strasser RH, Schmeisser A. OxLDL and macrophage survival: essential and oxygen-independent involvement of the Hif-pathway. Basic Res Cardiol 2011; 106:761-72. [DOI: 10.1007/s00395-011-0186-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 04/17/2011] [Accepted: 04/26/2011] [Indexed: 01/11/2023]
|
245
|
Ruiz-García A, Monsalve E, Novellasdemunt L, Navarro-Sabaté A, Manzano A, Rivero S, Castrillo A, Casado M, Laborda J, Bartrons R, Díaz-Guerra MJM. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286:19247-58. [PMID: 21464136 DOI: 10.1074/jbc.m110.190298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Macrophages activated through Toll receptor triggering increase the expression of the A(2A) and A(2B) adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A(2A) and A(2B) receptors, we demonstrate that the A(2A) receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A(2B) receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A(2) receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages.
Collapse
Affiliation(s)
- Almudena Ruiz-García
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Affiliation(s)
- Holger K Eltzschig
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
247
|
Glover LE, Irizarry K, Scully M, Campbell EL, Bowers BE, Aherne CM, Kominsky DJ, MacManus CF, Colgan SP. IFN-γ attenuates hypoxia-inducible factor (HIF) activity in intestinal epithelial cells through transcriptional repression of HIF-1β. THE JOURNAL OF IMMUNOLOGY 2011; 186:1790-8. [PMID: 21199896 DOI: 10.4049/jimmunol.1001442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies have revealed that hypoxia and inflammation occur coincidentally in mucosal disorders, such as inflammatory bowel disease. During inflammation, epithelial-expressed hypoxia-inducible factor (HIF) serves an endogenously protective function. In this study, we sought to explore how mucosal immune responses influence HIF-dependent end points. Guided by a screen of relevant inflammatory mediators, we identified IFN-γ as a potent repressor of HIF-dependent transcription in human intestinal epithelial cells. Analysis of HIF levels revealed that HIF-1β, but not HIF-1α, is selectively repressed by IFN-γ in a JAK-dependent manner. Cloning and functional analysis of the HIF-1β promoter identified a prominent region for IFN-γ-dependent repression. Further studies revealed that colonic IFN-γ and HIF-1β levels were inversely correlated in a murine colitis model. Taken together, these studies demonstrated that intestinal epithelial HIF is attenuated by IFN-γ through transcriptional repression of HIF-1β. These observations are relevant to the pathophysiology of colitis (i.e., that loss of HIF signaling during active inflammation may exacerbate disease pathogenesis).
Collapse
Affiliation(s)
- Louise E Glover
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Staples KJ, Sotoodehnejadnematalahi F, Pearson H, Frankenberger M, Francescut L, Ziegler-Heitbrock L, Burke B. Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1α mRNA. Immunobiology 2010; 216:832-9. [PMID: 21281980 DOI: 10.1016/j.imbio.2010.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
This study tested the hypothesis that prolonged severe hypoxia during monocyte to macrophage differentiation results in macrophages with a pattern of gene expression and phenotype distinct from those maturing in normal oxygen levels. Macrophages accumulate in hypoxic and anoxic areas within pathological sites such as tumours, wounds, and arthritic joints, and have been proposed as vehicles for gene therapy delivery to such tissues. Several non-pathological tissues are also hypoxic. We therefore argue that differentiation from monocyte to macrophage in hypoxic conditions is a common occurrence. However, the effect of long term severe hypoxia on monocyte to macrophage differentiation has not been studied. Here, using primary human peripheral blood monocytes, we show that maturation for 5 days in 0.2% oxygen results in decreased phagocytosis, and decreased CD40 and CD206 expression. Chronic hypoxia induced much higher mRNA levels of the pro-angiogenic cytokine, VEGF, in adherence-purified macrophages (27-fold), CD14-magnetic bead purified monocytes (90-fold), and PBMC (104-fold) compared to acute (24h) hypoxia (11, 17 and 9-fold, respectively). This suggests that macrophages may play an even greater role in angiogenesis than previously appreciated. Furthermore, chronic hypoxia resulted in up-regulation of HIF-1α mRNA, in all monocyte-derived macrophage types studied. Actinomycin D experiments indicate that the increases in HIF-1α mRNA were not due to increased mRNA stability. To our knowledge this is the first study demonstrating up-regulation of HIF-1α mRNA by hypoxia in macrophages. Taken together, the data support the hypothesis that hypoxia affects monocyte to macrophage maturation, resulting in a distinct gene expression pattern and phenotype.
Collapse
Affiliation(s)
- Karl J Staples
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
249
|
Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-90. [PMID: 20804973 DOI: 10.1016/j.stem.2010.07.011] [Citation(s) in RCA: 816] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/24/2010] [Accepted: 07/14/2010] [Indexed: 12/15/2022]
Abstract
Bone marrow transplantation is the primary therapy for numerous hematopoietic disorders. The efficiency of bone marrow transplantation depends on the function of long-term hematopoietic stem cells (LT-HSCs), which is markedly influenced by their hypoxic niche. Survival in this low-oxygen microenvironment requires significant metabolic adaptation. Here, we show that LT-HSCs utilize glycolysis instead of mitochondrial oxidative phosphorylation to meet their energy demands. We used flow cytometry to identify a unique low mitochondrial activity/glycolysis-dependent subpopulation that houses the majority of hematopoietic progenitors and LT-HSCs. Finally, we demonstrate that Meis1 and Hif-1alpha are markedly enriched in LT-HSCs and that Meis1 regulates HSC metabolism through transcriptional activation of Hif-1alpha. These findings reveal an important transcriptional network that regulates HSC metabolism.
Collapse
Affiliation(s)
- Tugba Simsek
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Kim SR, Lee KS, Park HS, Park SJ, Min KH, Moon H, Puri KD, Lee YC. HIF-1α inhibition ameliorates an allergic airway disease via VEGF suppression in bronchial epithelium. Eur J Immunol 2010; 40:2858-69. [PMID: 20827786 DOI: 10.1002/eji.200939948] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses. One of the HIF-1α target genes is vascular endothelial growth factor (VEGF), which is a potent stimulator of inflammation, airway remodeling, and physiologic dysregulation in allergic airway diseases. Using OVA-treated mice and murine tracheal epithelial cells, the signaling networks involved in HIF-1α activation and the role of HIF-1α in the pathogenesis of allergic airway disease were investigated. Transfection of airway epithelial cells with HIF-1α siRNA suppressed VEGF expression. In addition, the increased levels of HIF-1α and VEGF in lung tissues after OVA inhalation were substantially decreased by an HIF-1α inhibitor, 2-methoxyestradiol. Our data also show that the increased numbers of inflammatory cells, increased airway hyperresponsiveness, levels of IL-4, IL-5, IL-13, and vascular permeability in the lungs after OVA inhalation were significantly reduced by 2-methoxyestradiol or a VEGF inhibitor, CBO-P11. Moreover, we found that inhibition of the PI3K p110δ isoform (PI3K-δ) or HIF-1α reduced OVA-induced HIF-1α activation in airway epithelial cells. These findings indicate that HIF-1α inhibition may attenuate antigen-induced airway inflammation and hyperresponsiveness through the modulation of vascular leakage mediated by VEGF, and that PI3K-δ signaling may be involved in the allergen-induced HIF-1α activation.
Collapse
Affiliation(s)
- So Ri Kim
- Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|