201
|
Yamaguchi S, Yamane T, Takahashi-Niki K, Kato I, Niki T, Goldberg MS, Shen J, Ishimoto K, Doi T, Iguchi-Ariga SMM, Ariga H. Transcriptional activation of low-density lipoprotein receptor gene by DJ-1 and effect of DJ-1 on cholesterol homeostasis. PLoS One 2012; 7:e38144. [PMID: 22666465 PMCID: PMC3364227 DOI: 10.1371/journal.pone.0038144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/01/2012] [Indexed: 11/25/2022] Open
Abstract
DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene.
Collapse
Affiliation(s)
- Shiori Yamaguchi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Yamane
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Izumi Kato
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Niki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Matthew S. Goldberg
- Center for Neurologic Diseases, Brigham & Women’s Hospital, Program in Neuroscience, Harvard Medical School, Boston, United States of America
| | - Jie Shen
- Center for Neurologic Diseases, Brigham & Women’s Hospital, Program in Neuroscience, Harvard Medical School, Boston, United States of America
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
202
|
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 2012; 8:e1002503. [PMID: 22589709 PMCID: PMC3349722 DOI: 10.1371/journal.pcbi.1002503] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.
Collapse
Affiliation(s)
- Feixiong Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chuang Liu
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Jing Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weixing Zhou
- School of Business, East China University of Science and Technology, Shanghai, China
- * E-mail: (WZ); (JH); (YT)
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- * E-mail: (WZ); (JH); (YT)
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- * E-mail: (WZ); (JH); (YT)
| |
Collapse
|
203
|
Sterol lipid metabolism in down syndrome revisited: down syndrome is associated with a selective reduction in serum brassicasterol levels. Curr Gerontol Geriatr Res 2012; 2012:179318. [PMID: 22649448 PMCID: PMC3357506 DOI: 10.1155/2012/179318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/22/2012] [Indexed: 02/03/2023] Open
Abstract
Over the past 15 years, insights into sterol metabolism have improved our understanding of the relationship between lipids and common conditions such as atherosclerosis and Alzheimer's Disease (AD). A better understanding of sterol lipid metabolism in individuals with Down Syndrome (DS) may help elucidate how this population's unique metabolic characteristics influence their risks for atherosclerosis and AD. To revisit the question of whether sterol lipid parameters may be altered in DS subjects, we performed a pilot study to assess traditional serum sterol lipids and lipoproteins, as well as markers of sterol biosynthesis, metabolites, and plant sterols in 20 subjects with DS compared to age-matched controls. Here we report that the levels of nearly all lipids and lipoproteins examined are similar to control subjects, suggesting that trisomy 21 does not lead to pronounced general alterations in sterol lipid metabolism. However, the levels of serum brassicasterol were markedly reduced in DS subjects.
Collapse
|
204
|
Gao X, Simon KC, Schwarzschild MA, Ascherio A. Prospective study of statin use and risk of Parkinson disease. ACTA ACUST UNITED AC 2012; 69:380-4. [PMID: 22410446 DOI: 10.1001/archneurol.2011.1060] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To prospectively examine whether use of statins is associated with altered risk of Parkinson disease (PD). DESIGN, SETTING, AND PARTICIPANTS A prospective study including 38 192 men and 90 874 women participating in 2 ongoing US cohorts, the Health Professional Follow-up Study and the Nurses' Health Study, was conducted. Information on regular cholesterol-lowering drug use (≥2 times/wk) was collected in 1994 in both cohorts via questionnaire. Relative risks (RRs) and 95% CIs were computed using Cox proportional hazards models adjusting for age, smoking, caffeine intake, duration of hypercholesterolemia, and other covariates. MAIN OUTCOME MEASURE Incident PD. RESULTS During 12 years of follow-up (1994-2006), we documented 644 incident PD cases (338 women and 306 men). The risk of PD was lower among current statin users (adjusted pooled RR = 0.74; 95% CI, 0.54-1.00; P = .049) relative to nonusers. A significant association was observed in participants younger than 60 years at baseline (adjusted pooled RR = 0.31; 95% CI, 0.11-0.86; P = .02) but not among those who were older (adjusted pooled RR = 0.83; 95% CI, 0.60-1.14; P = .25) (P for interaction = .03). CONCLUSIONS We found that regular use of statins was associated with a modest reduction in PD risk. The possibility that some statins may reduce PD risk deserves further consideration.
Collapse
Affiliation(s)
- Xiang Gao
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
205
|
The role of APP proteolytic processing in lipid metabolism. Exp Brain Res 2011; 217:365-75. [DOI: 10.1007/s00221-011-2975-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022]
|
206
|
Hamano T, Yen SH, Gendron T, Ko LW, Kuriyama M. Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging 2011; 33:2306-20. [PMID: 22133277 DOI: 10.1016/j.neurobiolaging.2011.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/30/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
Epidemiological studies have shown that long-term treatment with statins decreases the risk of developing Alzheimer's disease. Statins have pleiotropic effects by lowering the concentration of isoprenoid intermediates. Although several studies have shown that statins may reduce amyloid beta protein levels, there have been few reports on the interaction between statins and tau. We report here that pitavastatin reduces total and phosphorylated tau levels in a cellular model of tauopathy, and in primary neuronal cultures. The decrease caused by pitavastatin is reversed by the addition of mevalonate, or geranylgeranyl pyrophosphate. The maturation of small G proteins, including RhoA was disrupted by pitavastatin, as was the activity of glycogen synthase kinase 3β (GSK3β), a major tau kinase. Toxin A, inhibitor of glycosylation of small G proteins, and Rho kinase (ROCK) inhibitor decreased phosphorylated tau levels. Rho kinase inhibitor also inactivated glycogen synthase kinase 3β. Although the mechanisms responsible for the reduction in tau protein by pitavastatin require further examination, this report sheds light on possible therapeutic approaches to tauopathy.
Collapse
Affiliation(s)
- Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | | | | | | | | |
Collapse
|
207
|
Merlo L, Cimino F, Scibilia A, Ricciardi E, Chirafisi J, Speciale A, Angileri FF, Raffa G, Priola S, Saija A, Germanò A. Simvastatin Administration Ameliorates Neurobehavioral Consequences of Subarachnoid Hemorrhage in the Rat. J Neurotrauma 2011; 28:2493-501. [DOI: 10.1089/neu.2010.1624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Lucia Merlo
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Messina, Italy
| | - Antonino Scibilia
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| | - Elisabetta Ricciardi
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Messina, Italy
| | - Joselita Chirafisi
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Messina, Italy
| | - Filippo Flavio Angileri
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| | - Stefano Priola
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| | - Antonella Saija
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgical Clinic, Department of Neurosciences, Psychiatry and Anesthesiology, School of Medicine, University of Messina, Messina, Italy
| |
Collapse
|
208
|
Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. ARCHIVES OF NEUROLOGY 2011; 68:1385-92. [PMID: 22084122 PMCID: PMC3248784 DOI: 10.1001/archneurol.2011.242] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substantial evidence has accumulated in support of the hypothesis that elevated cholesterol levels increase the risk of developing Alzheimer disease (AD). As a result, much work has investigated the potential use of lipid-lowering agents, particularly statins, as preventive or therapeutic agents for AD. Although epidemiology and preclinical statin research (described in part I of this review) have generally supported an adverse role of high cholesterol levels regarding AD, human studies of statins (reviewed herein) show highly variable outcomes, making it difficult to draw firm conclusions. We identify several confounding factors among the human studies, including differing blood-brain barrier permeabilities among statins, the stage in AD at which statins were administered, and the drugs' pleiotropic metabolic effects, all of which contribute to the substantial variability observed to date. We recommend that future human studies of this important therapeutic topic (1) take the blood-brain barrier permeabilities of statins into account when analyzing results, (2) include specific analyses of the effects on low- and high-density lipoprotein cholesterol, and, most important, (3) conduct statin treatment trials solely in patients with mild AD, who have the best chance for disease modification.
Collapse
Affiliation(s)
- Nina E. Shepardson
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Ganesh M. Shankar
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
209
|
Valenza M, Cattaneo E. Emerging roles for cholesterol in Huntington's disease. Trends Neurosci 2011; 34:474-86. [DOI: 10.1016/j.tins.2011.06.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 06/04/2011] [Accepted: 06/08/2011] [Indexed: 01/01/2023]
|
210
|
Abstract
In the present review, we look back at the recent history of GWAS (genome-wide association studies) in AD (Alzheimer's disease) and integrate the major findings with current knowledge of biological processes and pathways. These topics are essential for the development of animal models, which will be fundamental to our complete understanding of AD.
Collapse
|
211
|
Tramontina AC, Wartchow KM, Rodrigues L, Biasibetti R, Quincozes-Santos A, Bobermin L, Tramontina F, Gonçalves CA. The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer's disease in rats. J Neural Transm (Vienna) 2011; 118:1641-9. [PMID: 21744242 DOI: 10.1007/s00702-011-0680-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/21/2011] [Indexed: 01/06/2023]
Abstract
Astrocytes play a fundamental role in glutamate metabolism by regulating the extracellular levels of glutamate and intracellular levels of glutamine. They also participate in antioxidant defenses, due to the synthesis of glutathione, coupled to glutamate metabolism. Although the cause of Alzheimer's disease (AD) remains elusive, some changes in neurochemical parameters, such as glutamate uptake, glutamine synthetase activity and glutathione have been investigated in this disease. A possible neuroprotective effect of two statins, simvastatin and pravastatin (administered p.o.), was evaluated using a model of dementia, based on the intracerebroventricular (ICV) administration of streptozotocin (STZ), and astrocyte parameters were determined. We confirmed a cognitive deficit in rats submitted to ICV-STZ, and a prevention of this deficit by statin administration. Moreover, both statins were able to prevent the decrease in glutathione content and glutamine synthetase activity in this model of AD. Interestingly, simvastatin increased per se glutamate uptake activity, while both statins increased glutamine synthetase activity per se. These results support the idea that these drugs could be effective for the prevention of alterations observed in the STZ dementia model and may contribute to reduce the cognitive impairment and brain damage observed in AD patients.
Collapse
Affiliation(s)
- Ana Carolina Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Parikh NM, Morgan RO, Kunik ME, Chen H, Aparasu RR, Yadav RK, Schulz PE, Johnson ML. Risk factors for dementia in patients over 65 with diabetes. Int J Geriatr Psychiatry 2011; 26:749-57. [PMID: 20891020 DOI: 10.1002/gps.2604] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 06/10/2010] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study identified factors in patients with diabetes associated with risk of developing dementia. RESEARCH DESIGN AND METHODS This retrospective, longitudinal study used a national cohort of US Veterans with diabetes 65 years or older to examine incidence of dementia over 2 years. A multivariable Cox regression model was used to estimate risk of developing dementia associated with sociodemographic factors, use of diabetes medications, and duration of diabetes. RESULTS In all, 377,838 patients (average age, 75.53 ± 6.07 years) were studied. Over the 2 year follow-up, 14,580 (3.85%) were diagnosed with dementia. Major risk factors for dementia were age >75 years (75-85 years, hazard ratio [HR] 2.092, 95% confidence interval [CI] 2.017-2.169; ≥85 years, HR 3.468, CI 3.274-3.672), race black versus white, HR 1.218, CI 1.164-1.274), Southern residence (HR = 1.181, CI 1.133-1.232), and diabetes duration (HR for 5 years or more, 1.428, CI 1.357-1.504). There was a reduced HR for dementia with use of an oral hypoglycemic agent (HR 0.940, CI 0.909-0.972) and HMG-CoA reductase inhibitors (HR, 0.875, CI 0.846-0.906). There was no change in HR with insulin use (HR 1.024, CI 0.983-1.067). CONCLUSIONS Several important factors were identified that are associated with increased dementia risk, and two factors were identified that are associated with reduced risk. It will be important to ascertain whether risk-factor modification reduces the HR for dementia in persons with diabetes, and to further examine effects of medication use for comorbid conditions.
Collapse
|
213
|
Dietary cholesterol and its effect on tau protein: a study in apolipoprotein E-deficient and P301L human tau mice. J Neuropathol Exp Neurol 2011; 70:292-301. [PMID: 21412171 DOI: 10.1097/nen.0b013e318212f185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Apolipoprotein E (ApoE) is the major cholesterol transporter in the brain. There is epidemiological and experimental evidence for involvement of cholesterol metabolism in the development and progression of Alzheimer disease. A dietary effect on tau phosphorylation or aggregation, or a role of apoE in tau metabolism, has been studied experimentally, but the data are ambiguous. To elucidate the relationship between cholesterol and tau, we studied mice expressing P301L mutant human tau but not apoE (htau-ApoE) and P301L mice with wild-type ApoE (htau- ApoE); both genotypes develop neuron cytoskeletal changes similar to those found in Alzheimer disease. Mice were kept on a cholesterol-enriched diet or control diet for 15 weeks. The numbers of neurons with hyperphosphorylated and conformationally changed tau in the cerebral cortex were assessed by immunohistochemistry, and sterol levels were determined. Highly elevated dietary serum cholesterol levels enhanced ongoing tau pathology in htau-ApoE mice; this effect correlated with elevated brain cholesterol metabolite 27-hydroxycholesterol levels. Apolipoprotein E deficiency promoted significant increases of tau phosphorylation and conformational changes in mice on a control diet. In htau-ApoE mice on the high cholesterol regimen, brain oxysterol levels were less than in htau-ApoE mice, and the numbers of neurons with pathologically altered tau were similar to those in htau-ApoE mice on the high-cholesterol diet.
Collapse
|
214
|
Mihos CG, Santana O. Pleiotropic effects of the HMG-CoA reductase inhibitors. Int J Gen Med 2011; 4:261-71. [PMID: 21556312 PMCID: PMC3085235 DOI: 10.2147/ijgm.s16779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 12/19/2022] Open
Abstract
The HMG-CoA reductase inhibitors (statins) are used extensively in the treatment of hyperlipidemia. They have also demonstrated a benefit in a variety of other disease processes. These secondary actions are known as pleiotropic effects. Our paper serves as a focused and updated discussion on the pleiotropy of statins and emphasizes the importance of randomized placebo-controlled trials to further elucidate this interesting phenomenon.
Collapse
Affiliation(s)
- Christos G Mihos
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, USA
| | - Orlando Santana
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, FL, USA
| |
Collapse
|
215
|
Valdez CM, Phelix CF, Smith MA, Perry G, Santamaria F. Modeling cholesterol metabolism by gene expression profiling in the hippocampus. MOLECULAR BIOSYSTEMS 2011; 7:1891-901. [PMID: 21451815 DOI: 10.1039/c0mb00282h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An important part of the challenge of building models of biochemical reactions is determining reaction rate constants that transform substrates into products. We present a method to derive enzymatic kinetic values from mRNA expression levels for modeling biological networks without requiring further tuning. The core metabolic reactions of cholesterol in the brain, particularly in the hippocampus, were simulated. To build the model the baseline mRNA expression levels of genes involved in cholesterol metabolism were obtained from the Allen Mouse Brain Atlas. The model is capable of replicating the trends of relative cholesterol levels in Alzheimer's and Huntington's diseases; and reliably simulated SLOS, desmosterolosis, and Dhcr14/Lbr knockout studies. A sensitivity analysis correctly uncovers the Hmgcr, Idi2 and Fdft1 sites that regulate cholesterol homeostasis. Overall, our model and methodology can be used to pinpoint key reactions, which, upon manipulation, may predict altered cholesterol levels and reveal insights into potential drug therapy targets under diseased conditions.
Collapse
Affiliation(s)
- Christopher M Valdez
- Biology Department, The University of Texas at San Antonio, One UTSA circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
216
|
Abstract
Lipid-mediated signalling regulates a plethora of physiological processes, including crucial aspects of brain function. In addition, dysregulation of lipid pathways has been implicated in a growing number of neurodegenerative disorders, such as Alzheimer's disease (AD). Although much attention has been given to the link between cholesterol and AD pathogenesis, growing evidence suggests that other lipids, such as phosphoinositides and phosphatidic acid, have an important role. Regulators of lipid metabolism (for example, statins) are a highly successful class of marketed drugs, and exploration of lipid dysregulation in AD and identification of novel therapeutic agents acting through relevant lipid pathways offers new and effective options for the treatment of this devastating disorder.
Collapse
|
217
|
Leduc V, Jasmin-Bélanger S, Poirier J. APOE and cholesterol homeostasis in Alzheimer's disease. Trends Mol Med 2011; 16:469-77. [PMID: 20817608 DOI: 10.1016/j.molmed.2010.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/29/2010] [Accepted: 07/29/2010] [Indexed: 01/25/2023]
Abstract
Converging evidence from clinical and pathological studies indicate the presence of important relationships between the ongoing deterioration of brain lipid homeostasis, vascular changes and the pathophysiology of sporadic Alzheimer's disease (AD). These associations include the recognition of cholesterol transporters apolipoprotein E (APOE), APOC1 and APOJ as major genetic risk factors for common AD and observations associating risk factors for cardiovascular disease such as high midlife plasma cholesterol, diabetes, stroke, obesity and hypertension to dementia. Moreover, recent clinical findings lend support to the notion that progressive deterioration of cholesterol homeostasis in AD is a central player in the disease pathophysiology and is, therefore, a potential therapeutic target for disease prevention.
Collapse
Affiliation(s)
- Valérie Leduc
- Douglas Mental Health University Institute, 6875 Lasalle, Montreal (Verdun), Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|
218
|
Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C, Murphy MP, Head E, Butterfield DA. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 2011; 63:172-80. [PMID: 21193043 PMCID: PMC3034810 DOI: 10.1016/j.phrs.2010.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss, inability to perform the activities of daily living and personality changes. Unfortunately, drugs effective for this disease are limited to acetylcholinesterase inhibitors that do not impact disease pathogenesis. Statins, which belong to the class of cholesterol-reducing drugs, were proposed as novel agents useful in AD therapy, but the mechanism underlying their neuroprotective effect is still unknown. In this study, we show that atorvastatin may have antioxidant effects, in aged beagles, that represent a natural higher mammalian model of AD. Atorvastatin (80 mg/day for 14.5 months) significantly reduced lipoperoxidation, protein oxidation and nitration, and increased GSH levels in parietal cortex of aged beagles. This effect was specific for brain because it was not paralleled by a concomitant reduction in all these parameters in serum. In addition, atorvastatin slightly reduced the formation of cholesterol oxidation products in cortex but increased the 7-ketocholesterol/total cholesterol ratio in serum. We also found that increased oxidative damage in the parietal cortex was associated with poorer learning (visual discrimination task). Thus, a novel pharmacological effect of atorvastatin mediated by reducing oxidative damage may be one mechanism underlying benefits of this drug in AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Roma, Italy
| | - Giovanna Cenini
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sarah Martin
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Roma, Italy
| | - Michael Paul Murphy
- Department of Molecular and Cellular Biochemistry, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - Elizabeth Head
- Department of Molecular and Biomedical Pharmacology, and Sanders-Brown Center on Aging University of Kentucky, Lexington, KY, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
219
|
Monsuez JJ, Gesquière-Dando A, Rivera S. Cardiovascular prevention of cognitive decline. Cardiol Res Pract 2011; 2011:250970. [PMID: 21318115 PMCID: PMC3035018 DOI: 10.4061/2011/250970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
Midlife cardiovascular risk factors, including diabetes, hypertension, dyslipemia, and an unhealthy lifestyle, have been linked to subsequent incidence, delay of onset, and progression rate of Alzheimer disease and vascular dementia. Conversely, optimal treatment of cardiovascular risk factors prevents and slows down age-related cognitive disorders. The impact of antihypertensive therapy on cognitive outcome in patients with hypertension was assessed in large trials which demonstrated a reduction in progression of MRI white matter hyperintensities, in cognitive decline and in incidence of dementia. Large-scale database correlated statin use and reduction in the incidence of dementia, mainly in patients with documented atherosclerosis, but clinical trials failed to reach similar conclusions.
Whether a multitargeted intervention would substantially improve protection, quality of life, and reduce medical cost expenditures in patients with lower risk profile has not been ascertained. This would require appropriately designed trials targeting large populations and focusing on cognitive decline as a primary outcome endpoint.
Collapse
Affiliation(s)
- Jean-Jacques Monsuez
- AP-HP, Hôpital René Muret, Hôpitaux Universitaires de Paris Seine-Saint-Denis, Policlinique Médicale, Avenue du Docteur Schaeffner, 93270 Sevran, France
| | | | | |
Collapse
|
220
|
Abstract
Parkinson disease (PD) is second only to Alzheimer disease as the most common neurodegenerative disorder in humans. Despite intense investigations, no effective therapy is available to halt the progression of PD. Although statins are widely used cholesterol-lowering drugs throughout the world, recent studies suggest that these drugs modulate neurodegeneration-related signaling processes and may be beneficial for PD. Simvastatin is the most potent statin in crossing the blood-brain barrier, and this particular statin drug negatively correlates with the incidence of PD and shows efficacy in animal models of PD. However, PD mainly occurs in the aging population, who are more vulnerable to cholesterol or lipid-related disorders, raising questions whether this possible beneficial effect of statins in PD patients is cholesterol dependent or cholesterol independent. This article presents data on the therapeutic efficacy of simvastatin in a chronic MPTP model of PD, reviews recent literature, and discusses the pros and cons of statin therapy in PD.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
221
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative illness after Alzheimer's disease (AD). Cognitive impairment and dementia are common features in PD and characterized by a wide range of cognitive deficits distinct from those seen in AD. Mild cognitive impairment occurs even early in PD and is associated with shorter time to dementia. The purpose of this review is to present recent findings on clinical aspects of dementia in PD and to elucidate underlying clinical and neurobiological risk factors.
Collapse
Affiliation(s)
- Dag Aarsland
- Department of Psychiatry, Stavanger University Hospital, Postboks 8100, 4068 Stavanger, Norway.
| | | |
Collapse
|
222
|
Butterfield DA. Atorvastatin and Aβ(1-40): not as simple as cholesterol reduction in brain and relevance to Alzheimer disease. Exp Neurol 2010; 228:15-8. [PMID: 21192930 DOI: 10.1016/j.expneurol.2010.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
223
|
Dolga AM, Culmsee C, de Lau L, Winter Y, Oertel WH, Luiten PGM, Eisel ULM. Statins--increasing or reducing the risk of Parkinson's disease? Exp Neurol 2010; 228:1-4. [PMID: 21111736 DOI: 10.1016/j.expneurol.2010.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 01/11/2023]
Affiliation(s)
- Amalia M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
224
|
Ritz B, Manthripragada AD, Qian L, Schernhammer E, Wermuth L, Olsen J, Friis S. Statin use and Parkinson's disease in Denmark. Mov Disord 2010; 25:1210-6. [PMID: 20629142 DOI: 10.1002/mds.23102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to investigate whether statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor) use is associated with risk of Parkinson's disease (PD) in Denmark. We identified 1,931 patients with a first time diagnosis of PD reported in hospital or outpatient clinic records between 2001 and 2006. We density matched to these patients 9,651 population controls by birth year and sex relying on the Danish population register. For every participant, we identified pharmacy records of statin and anti-Parkinson drug prescriptions since 1995 and before index date from a prescription medication use database for all Danish residents. Whenever applicable, the index dates for cases and their corresponding controls were advanced to the date of first recorded prescription for anti-Parkinson drugs. In our primary analyses, we excluded all statin prescriptions 2-years before PD diagnosis. Employing logistic regression adjusting for age, sex, diagnosis of chronic obstructive pulmonary disease, and Charlson comorbidity, we observed none to slightly inverse associations between PD diagnosis and statin prescription drug use. Inverse associations with statin use were only observed for short-term (<or=1 yrs) statin users (2-year lag OR 0.57; 95% CI 0.36 to 0.89); and suggested at higher intensity statin use (2-year lag OR 0.69; 95% CI 0.45-1.04). No associations were seen among long-term users and no difference by sex, age, or type of statins used (lipophilic/hydrophilic). We found little evidence for a neuroprotective role of statins in PD except for short-term or high intensity users. Yet, further investigations into the contributions of intensity, duration, and lag periods of statin use may still be warranted.
Collapse
Affiliation(s)
- Beate Ritz
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, California 90095-1772, USA.
| | | | | | | | | | | | | |
Collapse
|
225
|
Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu Rev Cell Dev Biol 2010; 26:211-33. [PMID: 20500090 DOI: 10.1146/annurev.cellbio.042308.113313] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the late 1990s, mutations in the synaptic protein α-synuclein (α-syn) were identified in families with hereditary Parkinson's disease (PD). Rapidly, α-syn became the target of numerous investigations that have transformed our understanding of the pathogenesis underlying this disorder. α-Syn is the major component of Lewy bodies (LBs), cytoplasmic protein aggregates that form in the neurons of PD patients. α-Syn interacts with lipid membranes and adopts amyloid conformations that deposit within LBs. Work in yeast and other model systems has revealed that α-syn-associated toxicity might be the consequence of abnormal membrane interactions and alterations in vesicle trafficking. Here we review evidence regarding α-syn's normal interactions with membranes and regulation of synaptic vesicles as well as how overexpression of α-syn yields global cellular dysfunction. Finally, we present a model linking vesicle dynamics to toxicity with the sincere hope that understanding these disease mechanisms will lead to the development of novel, potent therapeutics.
Collapse
Affiliation(s)
- Pavan K Auluck
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | |
Collapse
|
226
|
Willey JZ, Elkind MSV. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases. ACTA ACUST UNITED AC 2010; 67:1062-7. [PMID: 20837848 DOI: 10.1001/archneurol.2010.199] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are among the most prescribed medications in the United States. Statins act on the rate-limiting step in cholesterol biosynthesis (the conversion of HMG-CoA to mevalonate) and are effective in treating dyslipidemia. However, statins decrease other downstream products of the mevalonate pathway, and it is via these pathways that statins may affect inflammation, nitric oxide synthesis, the coagulation cascade, and other processes. Through these pleiotropic effects, statins may have an effect on neurologic diseases, including ischemic and hemorrhagic stroke, Alzheimer disease, Parkinson disease, and multiple sclerosis. This article reviews the basic biochemistry of statins as it relates to these pleiotropic effects, the potential role of statins in several neurologic disorders, and the results of clinical trials performed for several of these conditions.
Collapse
Affiliation(s)
- Joshua Z Willey
- Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
227
|
del Toro D, Xifró X, Pol A, Humbert S, Saudou F, Canals JM, Alberch J. Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington's disease. J Neurochem 2010; 115:153-67. [PMID: 20663016 DOI: 10.1111/j.1471-4159.2010.06912.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent findings suggest that altered cholesterol homeostasis may contribute to the pathophysiology of Huntington's disease (HD). To understand the underlying mechanisms, here we used a combination of two-photon microscopy, epifluorescence, and biochemical methods to visualize and quantify lipid distribution in cell cultures expressing mutant huntingtin. Such expression promotes lipid imbalance, and cholesterol accumulation in cellular and murine models and in HD-affected human brains. Interestingly, cells expressing mutant huntingtin also showed higher content of ordered domains in their plasma membranes. These findings correlated with high levels of caveolin-1 and glycosphingolipid GM1, two well-defined markers of cholesterol-enriched domains, at the cell surface. In addition, cells expressing mutant huntingtin showed increased localization of NMDA receptors with cholesterol-enriched domains, contributing to increased NMDA receptor susceptibility to excitotoxic insults. Treatment with simvastatin or β-cyclodextrin, two cholesterol-lowering drugs, reduced the content of ordered domains at the cell surface, which in turn, protected cells against NMDA-mediated excitotoxicity. Taken together, our results indicate that mutant huntingtin produces accumulation of cholesterol and alters its cellular distribution that contributes to NMDA-mediated excitotoxicity. Administration of drugs that recover this effect, such as simvastatin could be beneficial for the treatment of HD.
Collapse
Affiliation(s)
- Daniel del Toro
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
228
|
Kones R. Parkinson’s Disease: Mitochondrial Molecular Pathology, Inflammation, Statins, and Therapeutic Neuroprotective Nutrition. Nutr Clin Pract 2010; 25:371-89. [DOI: 10.1177/0884533610373932] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
229
|
Majde JA. Neuroinflammation resulting from covert brain invasion by common viruses - a potential role in local and global neurodegeneration. Med Hypotheses 2010; 75:204-13. [PMID: 20236772 PMCID: PMC2897933 DOI: 10.1016/j.mehy.2010.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases are a horrendous burden for their victims, their families, and society as a whole. For half a century scientists have pursued the hypothesis that these diseases involve a chronic viral infection in the brain. However, efforts to consistently detect a specific virus in brains of patients with such diseases as Alzheimer's or multiple sclerosis have generally failed. Neuropathologists have become increasingly aware that most patients with neurodegenerative diseases demonstrate marked deterioration of the brain olfactory bulb in addition to brain targets that define the specific disease. In fact, the loss of the sense of smell may precede overt neurological symptoms by many years. This realization that the olfactory bulb is a common target in neurodegenerative diseases suggests the possibility that microbes and/or toxins in inhaled air may play a role in their pathogenesis. With regard to inhaled viruses, neuropathologists have focused on those viruses that infect and kill neurons. However, a recent study shows that a respiratory virus with no neurotropic properties can rapidly invade the mouse olfactory bulb from the nasal cavity. Available data suggest that this strain of influenza is passively transported to the bulb via the olfactory nerves (mechanism unknown), and is taken up by glial cells in the outer layers of the bulb. The infected glial cells appear to be activated by the virus, secrete proinflammatory cytokines, and block further spread of virus within the brain. At the time that influenza symptoms become apparent (15 h post-infection), but not prior to symptom onset (10 h post-infection), proinflammatory cytokine-expressing neurons are increased in olfactory cortical pathways and hypothalamus as well as in the olfactory bulb. The mice go on to die of pneumonitis with severe acute phase and respiratory disease symptoms but no classical neurological symptoms. While much remains to be learned about this intranasal influenza-brain invasion model, it suggests the hypothesis that common viruses encountered in our daily life may initiate neuroinflammation via olfactory neural networks. The numerous viruses that we inhale during a lifetime might cause the death of only a few neurons per infection, but this minor damage would accumulate over time and contribute to age-related brain shrinkage and/or neurodegenerative diseases. Elderly individuals with a strong innate inflammatory system, or ongoing systemic inflammation (or both), might be most susceptible to these outcomes. The evidence for the hypothesis that common respiratory viruses may contribute to neurodegenerative processes is developed in the accompanying article.
Collapse
Affiliation(s)
- Jeannine A Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
230
|
Shinohara M, Sato N, Kurinami H, Takeuchi D, Takeda S, Shimamura M, Yamashita T, Uchiyama Y, Rakugi H, Morishita R. Reduction of brain beta-amyloid (Abeta) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Abeta clearance. J Biol Chem 2010; 285:22091-102. [PMID: 20472556 DOI: 10.1074/jbc.m110.102277] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies suggest that statins (hydroxymethylglutaryl-CoA reductase inhibitors) could reduce the risk of Alzheimer disease. Although one possible explanation is through an effect on beta-amyloid (Abeta) metabolism, its effect remains to be elucidated. Here, we explored the molecular mechanisms of how statins influence Abeta metabolism. Fluvastatin at clinical doses significantly reduced Abeta and amyloid precursor protein C-terminal fragment (APP-CTF) levels among APP metabolites in the brain of C57BL/6 mice. Chronic intracerebroventricular infusion of lysosomal inhibitors blocked these effects, indicating that up-regulation of the lysosomal degradation of endogenous APP-CTFs is involved in reduced Abeta production. Biochemical analysis suggested that this was mediated by enhanced trafficking of APP-CTFs from endosomes to lysosomes, associated with marked changes of Rab proteins, which regulate endosomal function. In primary neurons, fluvastatin enhanced the degradation of APP-CTFs through an isoprenoid-dependent mechanism. Because our previous study suggests additive effects of fluvastatin on Abeta metabolism, we examined Abeta clearance rates by using the brain efflux index method and found its increased rates at high Abeta levels from brain. As LRP1 in brain microvessels was increased, up-regulation of LRP1-mediated Abeta clearance at the blood-brain barrier might be involved. In cultured brain microvessel endothelial cells, fluvastatin increased LRP1 and the uptake of Abeta, which was blocked by LRP1 antagonists, through an isoprenoid-dependent mechanism. Overall, the present study demonstrated that fluvastatin reduced Abeta level by an isoprenoid-dependent mechanism. These results have important implications for the development of disease-modifying therapy for Alzheimer disease as well as understanding of Abeta metabolism.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Rech RL, de Lima MNM, Dornelles A, Garcia VA, Alcalde LA, Vedana G, Schröder N. Reversal of age-associated memory impairment by rosuvastatin in rats. Exp Gerontol 2010; 45:351-6. [DOI: 10.1016/j.exger.2010.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/31/2010] [Accepted: 02/02/2010] [Indexed: 01/08/2023]
|
232
|
Wang Q, Yan J, Chen X, Li J, Yang Y, Weng J, Deng C, Yenari MA. Statins: multiple neuroprotective mechanisms in neurodegenerative diseases. Exp Neurol 2010; 230:27-34. [PMID: 20406638 DOI: 10.1016/j.expneurol.2010.04.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/12/2010] [Indexed: 01/16/2023]
Abstract
Statins have been widely used for the treatment of a variety of conditions beyond their original role in lowering cholesterol. Since statins have relatively few side effects, they have been recognized as useful medicine to ameliorate neurodegenerative disorders. Current studies on the applications of statins have demonstrated their neuroprotective and clinical significance among neurodegenerative diseases like cerebral ischemic stroke, vascular dementia, Alzheimer's disease, and Parkinson's disease, though the neuroprotective mechanisms are not completely understood. This review will discuss recent development in the use of statins in slowing down the progression of these neurodegenerative diseases. It will summarize the potential mechanisms for statin-mediated neuroprotective effects in neurodegenerative diseases. In detail, this review discuss the roles of statins in lowering cholesterol, reducing reactive oxygen species, impairing β-amyloid production and serum apolipoprotein E levels, enhancing the levels of endothelial nitric oxide synthase and cerebral blood flow, and modulating cognitive related receptors and matrix metalloproteases. Finally, different alterations of various receptors in brain regions following statin treatment and their correlations with cognitive dysfunction in Parkinson's disease will also be reviewed, as well as the potential for therapy in ameliorating the progression of Parkinson's disease. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
|
234
|
Abstract
Cognitive aging describes the changes in mental abilities that occur with increasing age. Although experts disagree on the core underlying processes involved, one factor that links many factors associated with cognitive aging is neuroinflammation. Markers of inflammation are associated directly with deficits in cognitive function and with diseases that are risk factors for cognitive decline. Neuroinflammation is also associated with depression and may account for the complex interaction of depression and cognition in older adults. Interventions that reduce inflammation may improve cognition. Understanding how neuroinflammation affects cognition may provide directions for useful interventions to prevent or treat cognitive decline in older adults.
Collapse
Affiliation(s)
- Raymond L Ownby
- Nova Southeastern University, 3200 South University Drive, Room 1477, Fort Lauderdale, FL 33314, USA.
| |
Collapse
|
235
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
236
|
Reiman EM, Chen K, Langbaum JBS, Lee W, Reschke C, Bandy D, Alexander GE, Caselli RJ. Higher serum total cholesterol levels in late middle age are associated with glucose hypometabolism in brain regions affected by Alzheimer's disease and normal aging. Neuroimage 2010; 49:169-76. [PMID: 19631758 PMCID: PMC2888804 DOI: 10.1016/j.neuroimage.2009.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies suggest that higher midlife serum total cholesterol levels are associated with an increased risk of Alzheimer's disease (AD). Using fluorodeoxyglucose positron emission tomography (PET) in the study of cognitively normal late middle-aged people, we demonstrated an association between apolipoprotein E (APOE) epsilon4 gene dose, the major genetic risk factor for late-onset AD, and lower measurements of the cerebral metabolic rate for glucose (CMRgl) in AD-affected brain regions, we proposed using PET as a pre-symptomatic endophenotype to evaluate other putative AD risk modifiers, and we then used it to support an aggregate cholesterol-related genetic risk score in the risk of AD. In the present study, we used PET to investigate the association between serum total cholesterol levels and cerebral metabolic rate for glucose metabolism (CMRgl) in 117 cognitively normal late middle-aged APOE epsilon4 homozygotes, heterozygotes and non-carriers. Higher serum total cholesterol levels were associated with lower CMRgl bilaterally in precuneus, parietotemporal and prefrontal regions previously found to be preferentially affected by AD, and in additional frontal regions previously found to be preferentially affected by normal aging. The associations were greater in APOE epsilon4 carriers than non-carriers in some of the AD-affected brain regions. We postulate that higher midlife serum total cholesterol levels accelerate brain processes associated with normal aging and conspire with other risk factors in the predisposition to AD. We propose using PET in proof-of-concept randomized controlled trials to rapidly evaluate the effects of midlife cholesterol-lowering treatments on the brain changes associated with normal aging and AD.
Collapse
Affiliation(s)
- Eric M Reiman
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, 901 East Willetta Street, Phoenix, AZ 85006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci 2010; 43:33-42. [DOI: 10.1016/j.mcn.2009.07.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/27/2022] Open
|
238
|
Trompet S, van Vliet P, de Craen AJM, Jolles J, Buckley BM, Murphy MB, Ford I, Macfarlane PW, Sattar N, Packard CJ, Stott DJ, Shepherd J, Bollen ELEM, Blauw GJ, Jukema JW, Westendorp RGJ. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J Neurol 2010; 257:85-90. [PMID: 19653027 DOI: 10.1007/s00415-009-5271-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/13/2009] [Accepted: 07/21/2009] [Indexed: 01/14/2023]
Abstract
Observational studies have given conflicting results about the effect of statins in preventing dementia and cognitive decline. Moreover, observational studies are subject to prescription bias, making it hard to draw definite conclusions from them. Randomized controlled trials are therefore the preferred study design to investigate the association between statins and cognition. Here we present detailed cognitive outcomes from the randomized placebo-controlled PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). Cognitive function was assessed repeatedly in all 5,804 PROSPER participants at six different time points during the study using four neuropsychological performance tests. After a mean follow-up period of 42 months, no difference in cognitive decline at any of the cognitive domains was found in subjects treated with pravastatin compared to placebo (all p > 0.05). Pravastatin treatment in old age did not affect cognitive decline during a 3 year follow-up period. Employing statin therapy in the elderly in an attempt to prevent cognitive decline therefore seems to be futile.
Collapse
Affiliation(s)
- Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Mans RA, Chowdhury N, Cao D, McMahon LL, Li L. Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 2009; 166:435-44. [PMID: 20040368 DOI: 10.1016/j.neuroscience.2009.12.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/28/2022]
Abstract
Statins inhibit 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and they are widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of statins extend to the CNS. Statins have been shown to improve the outcome of stroke and traumatic brain injury, and statin use has been associated with a reduced prevalence of Alzheimer's disease (AD) and dementia. However, prospective studies with statins in AD have produced mixed results. Recently, we reported that simvastatin, a widely used statin in humans, enhances learning and memory in non-transgenic mice as well as in transgenic mice with AD-like pathology on a mixed genetic background. However, the cellular and molecular mechanisms underlying the beneficial effects of simvastatin on learning and memory remain elusive. The present study was undertaken to investigate the effect of acute simvastatin treatment on hippocampal long-term potentiation (LTP), a cellular model of learning and memory, in brain slices from C57BL/6 mice. Our results demonstrate that a prolonged in vitro simvastatin treatment for 2-4 h, but not a short-term 20-min exposure, significantly increases the magnitude of LTP at CA3-CA1 synapses without altering basal synaptic transmission or the paired-pulse facilitation ratio in hippocampal slices. Furthermore, we show that phosphorylation of Akt (protein kinase B) is increased significantly in the CA1 region following 2-hour treatment with simvastatin, and that inhibition of Akt phosphorylation suppresses the simvastatin-induced enhancement of LTP. These findings suggest activation of Akt as a molecular pathway for augmented hippocampal LTP by simvastatin treatment, and implicate enhancement of hippocampal LTP as a potential cellular mechanism underlying the beneficial effects of simvastatin on cognitive function.
Collapse
Affiliation(s)
- R A Mans
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | | | | | | | | |
Collapse
|
240
|
Müller HD, Berger C, Schwab S, Sommer C. Pravastatin treatment causes a shift in the balance of hippocampal neurotransmitter binding densities towards inhibition. Brain Res 2009; 1316:17-26. [PMID: 20026313 DOI: 10.1016/j.brainres.2009.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 12/11/2009] [Accepted: 12/13/2009] [Indexed: 01/29/2023]
Abstract
Since pravastatin, a HMG-CoA reductase inhibitor, has recently been shown to reduce infarct volumes and glutamate release in a rat model of ischemic stroke, the aim of the present study was to investigate whether this neuroprotective effect may be due to a modulation of excitatory and inhibitory neurotransmitter receptors. Therefore, Wistar rats were treated six times in 4 days with pravastatin or saline and allowed to survive for 6 hours or 5 days (n=10 per time point and group), respectively. Using quantitative receptor autoradiography, ligand binding densities of [(3)H]MK-801, [(3)H]AMPA, and [(3)H]muscimol for labeling of NMDA, AMPA, and GABA(A) receptors were analyzed in sensorimotor cortices Par1 and Par2, the striatum, and the hippocampus. Statin therapy induced complex alterations of ligand binding densities in different brain regions. Labeling of NMDA receptors was significantly increased in Par2, both after 6 hours and 5 days, respectively. Within the striatum, AMPA as well as GABA(A) receptor binding values were significantly increased on day 5. Furthermore, a marked and significant increase of [(3)H]muscimol ligand binding to GABA(A) receptors throughout all hippocampal subfields was seen after 6 hours. This complexity could easily be unraveled when focusing on the balance between excitatory glutamate and inhibitory GABA(A) receptors, in which case only the increase of hippocampal [(3)H]muscimol ligand binding 6 hours after the first application of pravastatin was accompanied by a net shift towards inhibition. Consequently, our data suggest an additional regulatory pathway induced by statins, namely modification of the abundance of excitatory and inhibitory neurotransmitter receptors.
Collapse
Affiliation(s)
- Harald D Müller
- Department of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
241
|
Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci 2009; 29:13543-56. [PMID: 19864567 DOI: 10.1523/jneurosci.4144-09.2009] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. We investigated whether simvastatin, a Food and Drug Administration-approved cholesterol-lowering drug, could protect against nigrostriatal degeneration after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to model PD in mice. First, MPP(+) induced the activation of p21(ras) and nuclear factor-kappaB (NF-kappaB) in mouse microglial cells. Inhibition of MPP(+)-induced activation of NF-kappaB by Deltap21(ras), a dominant-negative mutant of p21(ras), supported the involvement of p21(ras) in MPP(+)-induced microglial activation of NF-kappaB. Interestingly, simvastatin attenuated activation of both p21(ras) and NF-kappaB in MPP(+)-stimulated microglial cells. Consistently, we found a very rapid activation of p21(ras) in vivo in the substantia nigra pars compacta of MPTP-intoxicated mice. However, after oral administration, simvastatin entered into the nigra, reduced nigral activation of p21(ras), attenuated nigral activation of NF-kappaB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Similarly, pravastatin, another cholesterol-lowering drug, suppressed microglial inflammatory responses and protected dopaminergic neurons in MPTP-intoxicated mice, but at levels less than simvastatin. Furthermore, both the statins administered 2 d after initiation of the disease were still capable of inhibiting the demise of dopaminergic neurons and concomitant loss of neurotransmitters, suggesting that statins are capable of slowing down the progression of neuronal loss in the MPTP mouse model. Therefore, we conclude that statins may be of therapeutic benefit for PD patients.
Collapse
|
242
|
|
243
|
Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:676-87. [PMID: 18930814 PMCID: PMC2740981 DOI: 10.1016/j.bbadis.2008.09.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 12/21/2022]
Abstract
Current therapies for Parkinson's disease significantly improve the quality of life for patients suffering from this neurodegenerative disease, yet none of the current therapies has been convincingly shown to slow or prevent the progression of disease. Much has been learned about the pathophysiology of Parkinson's disease in recent years, and these discoveries offer a variety of potential targets for protective therapy. Mechanisms implicated in the disease process include oxidative stress, mitochondrial dysfunction, protein aggregation and misfolding, inflammation, excitotoxicity, and apoptosis. At the same time, the involvement of these diverse processes makes modeling the disease and evaluation of potential treatments difficult. In addition, available clinical tools are limited in their ability to monitor the progression of the disease. In this review, we summarize the different pathogenic mechanisms implicated in Parkinson's disease and neuroprotective strategies targeting these mechanisms currently under clinical study or under preclinical development, with a view towards strategies that seem most promising.
Collapse
Affiliation(s)
- Talene A Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
244
|
Fan J, Donkin J, Wellington C. Greasing the wheels of Abeta clearance in Alzheimer's disease: the role of lipids and apolipoprotein E. Biofactors 2009; 35:239-48. [PMID: 19472365 DOI: 10.1002/biof.37] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although apolipoprotein E (apoE) is the most common genetic risk factor for Alzheimer's Disease (AD), how apoE participates in AD pathogenesis remains incompletely understood. ApoE is also the major carrier of lipids in the brain. Here, we review studies showing that the lipidation status of apoE influences the metabolism of Abeta peptides, which accumulate as amyloid deposits in the neural parenchyma and cerebrovasculature. One effect of apoE is to inhibit the transport of Abeta across the blood-brain-barrier (BBB), particularly when apoE is lipidated. A second effect is to facilitate the proteolytic degradation of Abeta by neprilysin and insulin degrading enzyme (IDE), which is enhanced when apoE is lipidated. We also describe how apoE becomes lipidated and how this impacts Abeta metabolism. Specifically, genetic loss of the cholesterol transporter ABCA1 impairs apoE lipidation and promotes amyloid deposition in AD mouse models. ABCA1 catalyses the ATP-dependent transport of cholesterol and phospholipids from the plasma membrane to lipid-free apolipoproteins including apoE. Conversely, selective overexpression of ABCA1 increases apoE lipidation in the central nervous system (CNS) and eliminates the formation of amyloid plaques in vivo. Deficiency of Liver-X-Receptors (LXRs), transcription factors that stimulate ABCA1 and apoE expression, exacerbates AD pathogenesis in vivo, whereas treatment of AD mice with synthetic LXR agonists reduces amyloid load and improves cognitive performance. These studies provide new insights into the mechanisms by which apoE affects Abeta metabolism, and offer opportunities to develop novel therapeutic approaches to reduce the leading cause of dementia in the elderly.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, Vancouver British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
245
|
Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol 2009; 68:314-25. [PMID: 19225406 DOI: 10.1097/nen.0b013e31819ac3cb] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Statin treatment has been associated with a reduced risk of Alzheimer disease and decreased amyloid deposition in mouse models. No animal studies have reported effects of statins on tau aggregates and neurofibrillary tangles (NFTs), the pathological hallmarks of Alzheimer disease that correlate with dementia. We investigated the effect of statins on NFTs in a transgenic mouse tauopathy model and found the following: 1) 1-month treatment with the blood-brain barrier-permeable agent simvastatin in normocholesterolemic aged mice significantly reduced the NFT burden and decreased lectin-positive microglia; 2) simvastatin significantly decreased NFTs and improved T-maze performance in young animals treated for 8 months; 3) treatment of hypercholesterolemic mice for 5 months with blood-brain barrier-impermeable atorvastatin markedly reduced the NFT burden and decreased lectin-positive microglia; 4) nonstatin cholesterol-lowering strategies showed a modest NFT decrease compared with statin treatment; and 5) there was a positive correlation between microglial and NFT burden (r = 0.8). Together, these results suggest that statins reduce NFT burden irrespective of blood-brain barrier permeability at both early and late ages in long- and short-term treatment paradigms and under normocholesterolemic and hypercholesterolemic conditions. The decrease in microglia, coupled with the limited effect of nonstatin cholesterol lowering, suggests that the anti-NFT effect of statins may be related to their anti-inflammatory and not necessarily to their cholesterol-lowering properties. Statins may provide therapy against NFTs in tauopathies, particularly when NFTs are the major neuropathologic component.
Collapse
|
246
|
Becker C, Meier CR. Statins and the risk of Parkinson disease: an update on the controversy. Expert Opin Drug Saf 2009; 8:261-71. [DOI: 10.1517/14740330902859956] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
247
|
Santiago M, Hernández-Romero MC, Machado A, Cano J. Zocor Forte (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not. Eur J Pharmacol 2009; 609:58-64. [PMID: 19292984 DOI: 10.1016/j.ejphar.2009.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/28/2009] [Accepted: 03/05/2009] [Indexed: 12/21/2022]
Abstract
Due to their potential role in preventing further deterioration of Parkinson's disease, anti-inflammatory strategies have attracted great interest. In this context, some studies point out the possible protective effect of anti-inflammatory compounds against the in vivo degeneration of dopaminergic neurons produced by lipopolysaccharide (LPS)-induced inflammatory processes and others. We have investigated the effect of the treatment of Zocor Forte (simvastatin) in LPS and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurodegenerative models to identify neuroprotective drugs for Parkinson's disease. We have perfused different concentrations of LPS or 1 mM 1-methyl-4-phenylpyridinium ion (MPP+) in the rat's striatum, 24 h after implanting a brain microdialysis probe, both with and without Zocor Forte (simvastatin) treatment. Results show that LPS perfusion produced a decrease in the basal release of dopamine. Forty-eight hours after implanting the probe, we have perfused 1 mM MPP+ to check the integrity of the dopaminergic terminals present around the cannula. Our model to study toxicity in the striatal dopaminergic terminals suggests that Zocor Forte (simvastatin) could prevent the neurotoxic damage produced by LPS, but not that produced by MPP+.
Collapse
Affiliation(s)
- Marti Santiago
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.
| | | | | | | |
Collapse
|
248
|
Abdullah L, Luis C, Paris D, Ait-ghezala G, Mouzon B, Allen E, Parrish J, Mullan MA, Ferguson S, Wood M, Crawford F, Mullan M. High serum Abeta and vascular risk factors in first-degree relatives of Alzheimer's disease patients. Mol Med 2009; 15:95-100. [PMID: 19081767 PMCID: PMC2600489 DOI: 10.2119/molmed.2008.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 12/31/2022] Open
Abstract
The main objective of this study was to determine whether elevated blood beta-amyloid (Abeta) levels among the first-degree relatives of patients with Alzheimer's Disease (AD) are associated with vascular risk factors of AD. Serum Abeta was measured in samples from 197 cognitively normal first-degree relatives of patients with AD-like dementia. Study participants were recruited as part of an ancillary study of the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT subpopulation). The ADAPT subpopulation was found to be similar in age, sex, and ethnicity to another cognitively normal cohort (n = 98). Using cross-sectional analyses, we examined the association of Abeta with blood pressure, lipid levels, apolipoprotein E genotypes, and the use of prescribed medication to treat vascular risk factors in the ADAPT subpopulation. Abeta(1-40) was positively associated with age, use of antihypertensives, and serum creatinine, and we observed a marginal negative interaction on Abeta(1-40) associated with systolic blood pressure and use of antihypertensives. Serum Abeta(1-42) was associated with statin use and a positive correlation of Abeta (1-42) with HDL was observed among statin nonusers. These findings suggest that high Abeta in the periphery among the family history-enriched cohorts may be due to enrichment of vascular risk factors and may reflect presymptomatic AD pathology. It remains to be determined whether the association of Abeta with medications used for treating vascular risk factors indicates prevention of AD. Longitudinal evaluation of blood Abeta in this cohort will provide a better understanding of the significance of this association in AD etiology.
Collapse
|
249
|
Statins: mechanisms of neuroprotection. Prog Neurobiol 2009; 88:64-75. [PMID: 19428962 DOI: 10.1016/j.pneurobio.2009.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/09/2009] [Accepted: 02/10/2009] [Indexed: 12/17/2022]
Abstract
Clinical trials report that the class of drugs known as statins may be neuroprotective in Alzheimer's and Parkinson's disease, and further trials are currently underway to test whether these drugs are also beneficial in multiple sclerosis and acute stroke treatment. Since statins are well tolerated and have relatively few side effects, they may be considered as viable drugs to ameliorate neurodegenerative diseases. However, the mechanism of their neuroprotective effects is only partly understood. In this article, we review the current data on the neuroprotective effects of statins and their underlying mechanisms. In the first section, we detail the mechanisms by which statins affect cellular signalling. The primary action of statins is to inhibit cellular cholesterol synthesis. However, the cholesterol synthesis pathway also has several by-products, the non-sterol isoprenoids that are also important in cellular functioning. Furthermore, reduced cholesterol levels may deplete the cholesterol-rich membrane domains known as lipid rafts, which in turn could affect cellular signalling. In the second section, we summarize how the effects on signalling translate into general neuroprotective effects through peripheral systems. Statins improve blood-flow, reduce coagulation, modulate the immune system and reduce oxidative damage. The final section deals with the effects of statins on the central nervous system, particularly during Alzheimer's and Parkinson's disease, stroke and multiple sclerosis.
Collapse
|
250
|
Abstract
In recent years, accumulating evidence has suggested that vascular risk factors contribute to Alzheimer disease (AD). Vascular dementia had been traditionally considered secondary to stroke and vascular disease. It has been traditionally distinguished from AD, considered to be a purely neurodegenerative form of dementia. However, in light of this more recent literature, it appears that there is a spectrum: ranging from patients with pure vascular dementia to patients with pure AD and including a large majority of patients with contributions from both Alzheimer and vascular pathologies. In this article, we discuss the impact of vascular risk factors on AD and its consequences at the individual level and at the population level by highlighting the concept of attributable risk. We then discuss the key questions and next steps involved in designing a therapeutic trial to control vascular risk factors for the prevention of dementia.
Collapse
Affiliation(s)
- Anand Viswanathan
- Department of Neurology and Clinical Trials Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|