201
|
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, Behnke BJ, Poole DC, Musch TI. Vascular ATP-sensitive K + channels support maximal aerobic capacity and critical speed via convective and diffusive O 2 transport. J Physiol 2020; 598:4843-4858. [PMID: 32798233 PMCID: PMC7874302 DOI: 10.1113/jp280232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V ̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V ̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V ̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V ̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V ̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q ̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V ̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V ̇ O2 was reduced via impaired Q ̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
202
|
Authors' Reply to Keir et al.: Comment on "Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis". Sports Med 2020; 51:369-370. [PMID: 33108652 DOI: 10.1007/s40279-020-01366-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
203
|
Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol 2020; 105:2007-2021. [PMID: 33002256 DOI: 10.1113/ep088548] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review sex differences within physiological systems implicated in exercise performance; specifically, how they integrate to determine metabolic thresholds and fatigability. Thereafter, we discuss the implications that these sex differences might have for long-term adaptation to exercise. What advances does it highlight? The review collates evidence from recent physiological studies that have investigated sex as a biological variable, demonstrating that the physiological response to equivalent 'dosages' of exercise is not the same in males and females; thus, highlighting the need to research diversity in physiological responses to interventions. ABSTRACT The anatomical and physiological differences between males and females are thought to determine differences in the limits of human performance. The notion of studying sex as a biological variable has recently been emphasized in the biosciences as a vital step in enhancing human health. In this review, we contend that the effects of biological sex on acute and chronic responses must be studied and accounted for when prescribing aerobic exercise, much like any intervention targeting the optimization of physiological function. Emerging evidence suggests that the response of physiological systems to exercise differs between males and females, potentially mediating the beneficial effects in healthy and clinical populations. We highlight evidence that integrative metabolic thresholds during exercise are influenced by phenotypical sex differences throughout many physiological systems. Furthermore, we discuss evidence that female skeletal muscle is more resistant to fatigue elicited by equivalent dosages of high-intensity exercise. How the different acute responses affect the long-term trainability of males and females is considered, with discussion about tailoring exercise to the characteristics of the individual presented within the context of biological sex. Finally, we highlight the influence of endogenous and exogenous sex hormones on physiological responses to exercise in females. Sex is one of many mediating influences on the outcomes of exercise, and with careful experimental designs, physiologists can advance the collective understanding of diversity in physiology and optimize outcomes for both sexes.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
204
|
Stephenson BT, Stone B, Mason BS, Goosey‐Tolfrey VL. Physiology of handcycling: A current sports perspective. Scand J Med Sci Sports 2020; 31:4-20. [DOI: 10.1111/sms.13835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Ben T. Stephenson
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
- English Institute of Sport Performance Centre Loughborough University Loughborough UK
| | - Benjamin Stone
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Barry S. Mason
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Victoria L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| |
Collapse
|
205
|
Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, Thomas K, Hunter SK, Howatson G, Goodall S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol 2020; 598:5717-5737. [PMID: 32964441 DOI: 10.1113/jp280031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax -1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elliott Atkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sarah Corden
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Amber Tygart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
206
|
Zarzissi S, Bouzid MA, Zghal F, Rebai H, Hureau TJ. Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. Am J Physiol Regul Integr Comp Physiol 2020; 319:R617-R625. [PMID: 32966120 DOI: 10.1152/ajpregu.00151.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to determine the magnitude of the maximal level of peripheral fatigue attainable (fatigue threshold) during an all-out intermittent isometric knee-extensor protocol in both younger (24 ± 1 yr, n = 12) and older (60 ± 2 yr, n = 12) participants to provide new insights into the effects of aging on neuromuscular function. Participants performed two experimental sessions, in which they performed 60 maximal voluntary contractions (MVCs; 3 s of contraction, 2 s of relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the quadriceps (FNMES). Peripheral fatigue was quantified via pre/postexercise decrease in quadriceps twitch force (∆Ptw). Critical force (CF) was determined as the mean force output of the last 12 contractions, whereas W' was calculated as the area above CF. Although FNMES led to a significant decrease in Ptw before performing the 60-MVCs protocol (P = 0.024), ∆Ptw was not different between CTRL and FNMES for both the young group (P = 0.491) and the old group (P = 0.523). However, this peripheral fatigue threshold was significantly greater in young versus old participants (∆Ptw = -48 ± 10% vs. -29 ± 13%, respectively, P = 0.028). In CTRL, W' was 55 ± 13% lower in the old group than in the young group (P < 0.001), but CF was similar (326 ± 10 N vs. 322 ± 12 N, respectively, P = 0.941). ∆Ptw was correlated with W', independently of age (r2 = 0.84, P < 0.001). Exercise performance decreases with aging consequent to a lower tolerance to peripheral fatigue. However, the peripheral fatigue threshold mechanism persists with healthy aging and continues to play a protective role in preserving locomotor muscle function during exercise.
Collapse
Affiliation(s)
- Slim Zarzissi
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France.,European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
207
|
Chartogne M, Rahmani A, Nicolon L, Jubeau M, Morel B. Neuromuscular fatigability amplitude and aetiology are interrelated across muscles. Exp Physiol 2020; 105:1758-1766. [PMID: 32822076 DOI: 10.1113/ep088682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is neuromuscular fatigability interrelated between different muscle groups from the same individual during isometric all-out exercise? What is the main finding and its importance? Although the average decrease can vary between muscles, an individual demonstrates interrelated fatigability aetiology regardless of the muscle group tested. The inter-individual variability provides evidence of different profiles common between muscles, which can be regarded as an individual characteristic. ABSTRACT Neuromuscular fatigability is commonly attributed to central and peripheral origins. However, there is strong evidence of interactions between these two mechanisms. According to the idea that peripheral fatigability might be centrally regulated, one can hypothesize that neuromuscular fatigability would be correlated between different muscle groups at the individual level. Thirty-two healthy participants (16 women and 16 men) completed two 5 min fatiguing exercises [60 isometric maximal voluntary contractions (MVCs)] with finger flexors (FFs) and ankle plantar flexors (PFs) in two randomized sessions. Neuromuscular testing was conducted before, during (every six MVCs) and directly after the fatigue procedure. The force asymptote (FA ) was calculated as the asymptote of the force-time relationship. Changes (post- vs. pre-fatigue) in the exercise-evoked force (ΔDb100 ), voluntary activation (ΔVA) and central activation ratio (∆CAR) were also investigated. Significant correlations were found between FFs and PFs for FA , ΔDb100 and ΔVA (r = 0.65, r = 0.63 and r = 0.50, respectively). A significant negative correlation between ∆CAR and ∆Db100 was evidenced for both PFs (r = -0.82) and FFs (r = -0.57). Neuromuscular fatigability is correlated between different muscle groups at the individual level. The results support the idea that a restrained motor drive prevents large peripheral perturbations and that individuals exhibit correlated fatigability aetiology regardless of the muscle group tested. Widely different central/peripheral profiles can be found amongst individuals, and a part of the fatigability aetiology can be regarded as an individual characteristic.
Collapse
Affiliation(s)
- Martin Chartogne
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Abderrahmane Rahmani
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Lucie Nicolon
- Movement, Interactions, Performance Laboratory, Le Mans University, Le Mans, France
| | - Marc Jubeau
- Movement, Interactions, Performance Laboratory, Nantes University, Nantes, France
| | - Baptiste Morel
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
208
|
The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription. Sports (Basel) 2020; 8:sports8090123. [PMID: 32899777 PMCID: PMC7552657 DOI: 10.3390/sports8090123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The two-parameter critical power (CP) model is a robust mathematical interpretation of the power–duration relationship, with CP being the rate associated with the maximal aerobic steady state, and W′ the fixed amount of tolerable work above CP available without any recovery. The aim of this narrative review is to describe the CP concept and the methodologies used to assess it, and to summarize the research applying it to intermittent cycle training techniques. CP and W′ are traditionally assessed using a number of constant work rate cycling tests spread over several days. Alternatively, both the 3-min all-out and ramp all-out protocols provide valid measurements of CP and W′ from a single test, thereby enhancing their suitability to athletes and likely reducing errors associated with the assumptions of the CP model. As CP represents the physiological landmark that is the boundary between heavy and severe intensity domains, it presents several advantages over the de facto arbitrarily defined functional threshold power as the basis for cycle training prescription at intensities up to CP. For intensities above CP, precise prescription is not possible based solely on aerobic measures; however, the addition of the W′ parameter does facilitate the prescription of individualized training intensities and durations within the severe intensity domain. Modelling of W′ reconstitution extends this application, although more research is needed to identify the individual parameters that govern W′ reconstitution rates and their kinetics.
Collapse
|
209
|
Nimmerichter A, Prinz B, Gumpenberger M, Heider S, Wirth K. Field-Derived Power-Duration Variables to Predict Cycling Time-Trial Performance. Int J Sports Physiol Perform 2020; 15:1095-1102. [PMID: 32040941 DOI: 10.1123/ijspp.2019-0621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the predictive validity of critical power (CP) and the work above CP (W') on cycling performance (mean power during a 20-min time trial; TT20). METHODS On 3 separate days, 10 male cyclists completed a TT20 and 3 CP and W' prediction trials of 1, 4, and 10 min and 2, 7, and 12 min in field conditions. CP and W' were modeled across combinations of these prediction trials with the hyperbolic, linear work/time, and linear power inverse-time (INV) models. The agreement and the uncertainty between the predicted and actual TT20 were assessed with 95% limits of agreement and a probabilistic approach, respectively. RESULTS Differences between the predicted and actual TT20 were "trivial" for most of the models if the 1-min trial was not included. Including the 1-min trial in the INV and linear work/time models "possibly" to "very likely" overestimated TT20. The INV model provided the smallest total error (ie, best individual fit; 6%) for all cyclists (305 [33] W; 19.6 [3.6] kJ). TT20 predicted from the best individual fit-derived CP, and W' was strongly correlated with actual TT20 (317 [33] W; r = .975; P < .001). The bias and 95% limits of agreement were 4 (7) W (-11 to 19 W). CONCLUSIONS Field-derived CP and W' accurately predicted cycling performance in the field. The INV model was most accurate to predict TT20 (1.3% [2.4%]). Adding a 1-min-prediction trial resulted in large total errors, so it should not be included in the models.
Collapse
|
210
|
Moral-González S, González-Sánchez J, Valenzuela PL, García-Merino S, Barbado C, Lucia A, Foster C, Barranco-Gil D. Time to Exhaustion at the Respiratory Compensation Point in Recreational Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176352. [PMID: 32878259 PMCID: PMC7503988 DOI: 10.3390/ijerph17176352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 11/16/2022]
Abstract
The time to exhaustion (tlim) at the respiratory compensation point (RCP) and whether a physiological steady state is observed at this workload remains unknown. Thus, this study analyzed tlim at the power output eliciting the RCP (tlim at RCP), the oxygen uptake (VO2) response to this effort, and the influence of endurance fitness. Sixty male recreational cyclists (peak oxygen uptake [VO2peak] 40–60 mL∙kg∙min−1) performed an incremental test to determine the RCP, VO2peak, and maximal aerobic power (MAP). They also performed constant-load tests to determine the tlim at RCP and tlim at MAP. Participants were divided based on their VO2peak into a low-performance group (LP, n = 30) and a high-performance group (HP, n = 30). The tlim at RCP averaged 20 min 32 s ± 5 min 42 s, with a high between-subject variability (coefficient of variation 28%) but with no differences between groups (p = 0.788, effect size = 0.06). No consistent relationships were found between the tlim at RCP and the different fitness markers analyzed (RCP, power output (PO) at RCP, VO2peak, MAP, or tlim at MAP; all p > 0.05). VO2 remained steady overall during the tlim test, although a VO2 slow component (i.e., an increase in VO2 >200 mL·min−1 from the third min to the end of the tests) was present in 33% and 40% of the participants in HP and LP, respectively. In summary, the PO at RCP could be maintained for about 20 min. However, there was a high between-subject variability in both the tlim and in the VO2 response to this effort that seemed to be independent of fitness level, which raises concerns on the suitability of this test for fitness assessment.
Collapse
Affiliation(s)
- Susana Moral-González
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
| | - Javier González-Sánchez
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
| | - Pedro L. Valenzuela
- Department of Systems Biology, University of Alcalá, 28805 Madrid, Spain
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-45-23
| | - Sonia García-Merino
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
| | - Carlos Barbado
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
- Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Carl Foster
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA;
| | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (S.M.-G.); (J.G.-S.); (S.G.-M.); (C.B.); (A.L.); (D.B.-G.)
| |
Collapse
|
211
|
de Oliveira Júnior GN, de Sousa JDFR, Carneiro MADS, Martins FM, Santagnello SB, Orsatti FL. Resistance training-induced improvement in exercise tolerance is not dependent on muscle mass gain in post-menopausal women. Eur J Sport Sci 2020; 21:958-966. [PMID: 32684108 DOI: 10.1080/17461391.2020.1798511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Menopause transition may impair muscle function, decreasing exercise tolerance. The torque-duration relationship (hyperbolic curve) forms a practical framework within which exercise tolerance may be explored. In this regard, resistance training (RT) increases the curvature constant of this relationship (W'). Muscle hypertrophy and strength gains have been suggested as possible mediators of RT-induced improvement in W', however, it is unclear what the main mediator is. Higher-volume RT (HV-RT), beyond that recommended by RT-guidelines (i.e. three sets per exercise), may promote greater hypertrophy, but not higher strength gains. Hence, this study aimed to investigate whether greater hypertrophy in HV-RT maximises W' gain when compared to LVRT in postmenopausal women (PW). Fifty-eight PW were randomised to the control group (CTRL), HV-RT (six sets per exercise) or LV-RT (three sets per exercise). They underwent a 12-week RT program and were assessed for W', thigh lean body mass (TLBM) and maximal isometric voluntary contraction (MIVC). The TLBM gain was higher (P < 0.001) in the HV-RT (9.4%) than LV-RT (3.7%). However, both HV-RT and LV-RT similarly increased MIVC (9.7% vs. 16.5%, P = 0.063) and W' (26.4% vs. 34.6% P = 0.163). Additionally, the changes in W' were associated with the changes in TLBM (31%, P = 0.003) and MIVC (52%, P= <0.001). However, when the changes in TLBM and MIVC were inserted into the predictive model, only the MIVC (33%, P = 0.002) was a predictor of W'. Thus, although HV-RT promoted greater hypertrophy than LV-RT, HV-RT does not seem to maximise W' in PW.
Collapse
Affiliation(s)
| | | | - Marcelo Augusto da Silva Carneiro
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Minas Gerais, Brazil.,Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Fernanda Maria Martins
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| | | | - Fábio Lera Orsatti
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Minas Gerais, Brazil.,Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| |
Collapse
|
212
|
Hammer SM, Alexander AM, Didier KD, Barstow TJ. Influence of blood flow occlusion on muscular recruitment and fatigue during maximal‐effort small muscle‐mass exercise. J Physiol 2020; 598:4293-4306. [DOI: 10.1113/jp279925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shane M. Hammer
- Department of Kinesiology Kansas State University Manhattan KS USA
| | | | - Kaylin D. Didier
- Department of Kinesiology Kansas State University Manhattan KS USA
| | | |
Collapse
|
213
|
Olsson K, Salier Eriksson J, Rosdahl H, Schantz P. Are heart rate methods based on ergometer cycling and level treadmill walking interchangeable? PLoS One 2020; 15:e0237388. [PMID: 32760167 PMCID: PMC7410327 DOI: 10.1371/journal.pone.0237388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction The heart rate (HR) method is a promising approach for evaluating oxygen uptake ( V˙O2), energy demands and exercise intensities in different forms of physical activities. It would be valuable if the HR method, established on ergometer cycling, is interchangeable with other regular activities, such as level walking. This study therefore aimed to examine the interchangeability of the HR method when estimating V˙O2 for ergometer cycling and level treadmill walking in submaximal conditions. Methods Two models of HR‐V˙O2 regression equations for cycle ergometer exercise (CEE) and treadmill exercise (TE) were established with 34 active commuters. Model 1 consisted of three submaximal intensities of ergometer cycling or level walking, model 2 included also one additional workload of maximal ergometer cycling or running. The regression equations were used for estimating V˙O2 with seven individual HR values based on 25–85% of HR reserve (HRR). The V˙O2 estimations were compared between CEE and TE, within and between each model. Results Only minor, and in most cases non-significant, average differences were observed when comparing the estimated V˙O2 levels between CEE and TE. Model 1 ranged from -0.4 to 4.8% (n.s.) between 25–85%HRR. In model 2, the differences between 25–65%HRR ranged from 1.3 to -2.7% (n.s.). At the two highest intensities, 75 and 85%HRR, V˙O2 was slightly lower (3.7%, 4.4%; P < 0.05), for CEE than TE. The inclusion of maximal exercise in the HR‐V˙O2 relationships reduced the individual V˙O2 variations between the two exercise modalities. Conclusion The HR methods, based on submaximal ergometer cycling and level walking, are interchangeable for estimating mean V˙O2 levels between 25–85% of HRR. Essentially, the same applies when adding maximal exercise in the HR‐V˙O2 relationships. The inter-individual V˙O2 variation between ergometer cycling and treadmill exercise is reduced when using the HR method based on both submaximal and maximal workloads.
Collapse
Affiliation(s)
- Karin Olsson
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Jane Salier Eriksson
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Hans Rosdahl
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Peter Schantz
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
214
|
PhysIOpathology of NEuromuscular function rElated to fatigue in chronic Renal disease in the elderly (PIONEER): study protocol. BMC Nephrol 2020; 21:305. [PMID: 32711479 PMCID: PMC7382847 DOI: 10.1186/s12882-020-01976-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) is associated with reduced muscular strength resulting in profound fatigue. The physiopathology of these changes, their prevalence and evolution are still debated. Moreover, we have little data on elderly CKD patients. The present study protocol aims to 1) quantify the prevalence of low muscle strength (dynapenia) in a cohort of elderly patients with advanced CKD and to 2) characterize their force production coupled with electromyographic features and the symptoms of fatigue compared to a matched control group. METHODS This is a case-control, prospective, interventional study. INCLUSION CRITERIA age ≥ 60 years; CKD Stage 3b-5; clinical stability (i.e. no hospitalization and ≤ 25% in creatinine increase in the previous 3 months). Controls with normal kidney function will be matched in terms of age, gender and diabetes mellitus (requisite: estimated glomerular filtration rate ≥ 60 ml/min/1.73m2 available in the last 6 months). Exclusion criteria for cases and controls: neuromuscular disease, life expectancy < 3 months. The handgrip strength protocol is an intermittent test consisting in 6 series of 9 repetitions of 3-s sub-maximum contractions at 40% of the maximum voluntary contraction (MVC) and 2 s of resting time between contractions. Each series is separated by one fast sub-maximum contraction and one MVC. Strength is assessed with a high-frequency handgrip dynamometer paired with surface electromyography. Symptoms of fatigue are assessed using MFI-20 and FACIT-F questionnaires. In order to reach a statistical power of 96%, we plan to enroll 110 subjects in each group. DISCUSSION The novelty of this study resides in the application of an already validated set of tests in a population in which this combination (dynamometer, electromyography and questionnaires) has not previously been explored. We expect a high prevalence of dynapenia and a higher fatigability in CKD patients. A positive correlation is expected between reported fatigue and fatigability. Better appreciation of the prevalence and the relationship between fatigability and a sensation of fatigue can help us target interventions in CKD patients to improve quality of life and survival. TRIAL REGISTRATION The study was approved by Ethical Committee EST III n°20.03.01 and was recorded as a Clinical Trial (NCT04330807) on April 2, 2020.
Collapse
|
215
|
Ferguson SK, Redinius KM, Harral JW, Pak DI, Swindle DC, Hirai DM, Blackwell JR, Jones AM, Stenmark KR, Buehler PW, Irwin DC. The effect of dietary nitrate supplementation on the speed-duration relationship in mice with sickle cell disease. J Appl Physiol (1985) 2020; 129:474-482. [PMID: 32702277 DOI: 10.1152/japplphysiol.00122.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Kinesiology and Exercise Science, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, Hawaii.,Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Katherine M Redinius
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Julie W Harral
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - David I Pak
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Delaney C Swindle
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel M Hirai
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St. Luke's Campus, Exeter, United Kingdom
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St. Luke's Campus, Exeter, United Kingdom
| | - Kurt R Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Paul W Buehler
- Department of Pathology and The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland
| | - David C Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
216
|
Galán-Rioja MÁ, González-Mohíno F, Poole DC, González-Ravé JM. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med 2020; 50:1771-1783. [DOI: 10.1007/s40279-020-01314-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
217
|
Raimundo JA, Ribeiro G, Lisbôa FD, Pereira GS, Loch T, De Aguiar RA, Martins EC, Caputo F. The effects of predictive trials on critical stroke rate and critical swimming speed. J Sports Med Phys Fitness 2020; 60:1329-1334. [PMID: 32614153 DOI: 10.23736/s0022-4707.20.10846-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Critical swimming speed (CSS) and critical stroke rate (CSR) have important practical applications in evaluating endurance capacity and stroke parameters. The CSS and CSR are determined from the linear regression between two or more performance times with the respective predictive distance or "number of stroke cycles," respectively. It is already known that CSS is dependent on the number and duration of the predictive trials chosen, and performance times ranging from 2 to 12 min have been recommended. However, the effects of predictive trials on the CSR have not been reported. It was hypothesized that CSS and CSR determined by different predictive trials lasting 2 to 12 min would elicit similar values. Therefore, the purpose of the present study was to determine the impact of different combinations of predictive trials lasting 2 to 12 min on both CSR and CSS. METHODS Thirteen swimmers performed three fixed-distance (200, 400, and 800 m) performances. All possible combinations of CSR and CSS with two (CSR<inf>200-400</inf>/CSS<inf>200-400</inf>, CSR<inf>200-800</inf>/CSS<inf>200-800</inf>, CSR<inf>400-800</inf>/CSS<inf>400-800</inf>) and three (CSR<inf>200-400-800</inf>/CSS<inf>200-400-800</inf>) trials were determined. RESULTS No significant differences were found between CSR and CSS determined with different predictive distance tests. In addition, CSR<inf>200-800</inf> and CSS<inf>200-800</inf> showed the lowest coefficient of variation and highest intraclass correlation coefficients with CSR<inf>200-400-800</inf> and CSS<inf>200-400-800</inf>, respectively. CONCLUSIONS This study demonstrated that CSR and CSS were not statistically different when determined with different predictive trials located within the recommended durations of 2-12 min. Nevertheless, CSR<inf>200-800</inf> and CSS<inf>200-800</inf> exhibited the best consistency with CSR<inf>200-400-800</inf> and CSS<inf>200-400-800</inf>, respectively.
Collapse
Affiliation(s)
- João A Raimundo
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil -
| | - Guilherme Ribeiro
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Felipe D Lisbôa
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Gustavo S Pereira
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil.,Aquatic Biomechanics Research Laboratory, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Thiago Loch
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Rafael A De Aguiar
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Eduardo C Martins
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil
| |
Collapse
|
218
|
Pastellidou E, Gillespie E, McGrotty A, Spence J, McCloskey W, Johnston L, Wilson J, Kemi OJ. Blackcurrant extract does not affect the speed-duration relationship during high-intensity running. Eur J Sport Sci 2020; 21:552-561. [PMID: 32602793 DOI: 10.1080/17461391.2020.1771428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Anthocyanin-rich blackcurrant extract (BC) has been shown to ergogenically aid high-intensity exercise. Capacity for such exercise is evaluated by the hyperbolic speed-tolerable duration (S-Dtol) relationship. Therefore, in double-blinded and cross-over randomised controlled trials, 15 males underwent treadmill running incremental exercise testing and were assessed for S-Dtol, quantified by critical speed (CS) and D' (distance), and assessments of time to exhaustion performance to empirically test the limits of the S-Dtol relationship, after daily supplementation of 300 mg/d BC (105 mg/d anthocyanin) or placebo. Supplementation with BC did not change CS (placebo 12.1 ± 1.0 km/h vs BC 11.9 ± 1.0 km/h, p > .05) or D' (placebo 918.6 ± 223.2 m vs BC 965.2 ± 231.2 m, p > .05), although further analysis indicated D' increased in 60% of subject (p = .08), indicating a trend toward cohorts potentially benefiting from BC supplementation. BC supplementation did not change time to exhaustion at or above CS, maximal oxygen uptake (VO2max), lactate threshold (LT), submaximal running economy (CR), or substrate utilisation during exercise (all p > .05). In conclusion, we could not detect any beneficial effect of BC supplementation during high-intensity running exercise, including the determining factors S-Dtol relationship, VO2max, LT or CR. Hence, no ergogenic effect was observed.
Collapse
Affiliation(s)
- Eleni Pastellidou
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eric Gillespie
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anton McGrotty
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joshua Spence
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William McCloskey
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lynsey Johnston
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John Wilson
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ole J Kemi
- School of Life Sciences and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
219
|
SREEDHARA VIJAYSARTHYM, ASHTIANI FARAZ, MOCKO GREGORYM, VAHIDI ARDALAN, HUTCHISON RANDOLPHE. Modeling the Recovery of W′ in the Moderate to Heavy Exercise Intensity Domain. Med Sci Sports Exerc 2020; 52:2646-2654. [DOI: 10.1249/mss.0000000000002425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
220
|
Korzeniewski B, Rossiter HB. Exceeding a "critical" muscle P i: implications for [Formula: see text] and metabolite slow components, muscle fatigue and the power-duration relationship. Eur J Appl Physiol 2020; 120:1609-1619. [PMID: 32435984 DOI: 10.1007/s00421-020-04388-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The consequences of the assumption that the additional ATP usage, underlying the slow component of oxygen consumption ([Formula: see text]) and metabolite on-kinetics, starts when cytosolic inorganic phosphate (Pi) exceeds a certain "critical" Pi concentration, and muscle work terminates because of fatigue when Pi exceeds a certain, higher, "peak" Pi concentration are investigated. METHODS A previously developed computer model of the myocyte bioenergetic system is used. RESULTS Simulated time courses of muscle [Formula: see text], cytosolic ADP, pH, PCr and Pi at various ATP usage activities agreed well with experimental data. Computer simulations resulted in a hyperbolic power-duration relationship, with critical power (CP) as an asymptote. CP was increased, and phase II [Formula: see text] on-kinetics was accelerated, by progressive increase in oxygen tension (hyperoxia). CONCLUSIONS Pi is a major factor responsible for the slow component of the [Formula: see text] and metabolite on-kinetics, fatigue-related muscle work termination and hyperbolic power-duration relationship. The successful generation of experimental system properties suggests that the additional ATP usage, underlying the slow component, indeed starts when cytosolic Pi exceeds a "critical" Pi concentration, and muscle work terminates when Pi exceeds a "peak" Pi concentration. The contribution of other factors, such as cytosolic acidification, or glycogen depletion and central fatigue should not be excluded. Thus, a detailed quantitative unifying mechanism underlying various phenomena related to skeletal muscle fatigue and exercise tolerance is offered that was absent in the literature. This mechanism is driven by reciprocal stimulation of Pi increase and additional ATP usage when "critical" Pi is exceeded.
Collapse
Affiliation(s)
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.,Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
221
|
Johnson MA, Williams NC, Graham AW, Ingram LAL, Cooper SB, Sharpe GR. Effects of Prior Upper Body Exercise on the 3-min All-Out Cycling Test in Men. Med Sci Sports Exerc 2020; 52:2402-2411. [PMID: 32366795 DOI: 10.1249/mss.0000000000002395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Prior upper body exercise reduces the curvature constant (W') of the hyperbolic power-duration relationship without affecting critical power. This study tested the hypothesis that prior upper body exercise reduces the work done over the end-test power (WEP; analog of W') during a 3-min all-out cycling test (3MT) without affecting the end-test power (EP; analog of critical power). METHODS Ten endurance-trained men (V˙O2max = 62 ± 5 mL·kg·min) performed a 3MT without (CYC) and with (ARM-CYC) prior severe-intensity, intermittent upper body exercise. EP was calculated as the mean power output over the last 30 s of the 3MT, whereas WEP was calculated as the power-time integral above EP. RESULTS At the start of the 3MT, plasma [La] (1.8 ± 0.4 vs 14.1 ± 3.4 mmol·L) and [H] (42.8 ± 3.1 vs 58.6 ± 5.5 nmol·L) were higher, whereas the strong ion difference (41.4 ± 2.2 vs 30.9 ± 4.6 mmol·L) and [HCO3] (27.0 ± 1.9 vs 16.9 ± 3.2 mmol·L) were lower during ARM-CYC than CYC (P < 0.010). EP was 12% lower during the 3MT of ARM-CYC (298 ± 52 W) than CYC (338 ± 60 W; P < 0.001), whereas WEP was not different (CYC: 12.8 ± 3.3 kJ vs ARM-CYC: 13.5 ± 4.1 kJ, P = 0.312). EP in CYC was positively correlated with the peak [H] (r = 0.78, P = 0008) and negatively correlated with the lowest [HCO3] (r = -0.74, P = 0.015). CONCLUSIONS These results suggest that EP during a 3MT in endurance-trained men is sensitive to fatigue-related ionic perturbation.
Collapse
Affiliation(s)
- Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
222
|
Age-related neuromuscular fatigue and recovery after cycling: Measurements in isometric and dynamic modes. Exp Gerontol 2020; 133:110877. [DOI: 10.1016/j.exger.2020.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023]
|
223
|
Relationships between lower limbs fatigability threshold and postural control in obese adults. J Biomech 2020; 105:109819. [DOI: 10.1016/j.jbiomech.2020.109819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
|
224
|
Inglis EC, Iannetta D, Passfield L, Murias JM. Maximal Lactate Steady State Versus the 20-Minute Functional Threshold Power Test in Well-Trained Individuals: "Watts" the Big Deal? Int J Sports Physiol Perform 2020; 15:541-547. [PMID: 31689684 DOI: 10.1123/ijspp.2019-0214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 10/27/2023]
Abstract
PURPOSE To (1) compare the power output (PO) for both the 20-minute functional threshold power (FTP20) field test and the calculated 95% (FTP95%) with PO at maximal lactate steady state (MLSS) and (2) evaluate the sensitivity of FTP95% and MLSS to training-induced changes. METHODS Eighteen participants (12 males: 37 [6] y and 6 females: 28 [6] y) performed a ramp-incremental cycling test to exhaustion, 2 to 3 constant-load MLSS trials, and an FTP20 test. A total of 10 participants returned to repeat the test series after 7 months of training. RESULTS The PO at FTP20 and FTP95% was greater than that at MLSS (P = .00), with the PO at MLSS representing 88.5% (4.8%) and 93.1% (5.1%) of FTP and FTP95%, respectively. MLSS was greater at POST compared with PRE training (12 [8] W) (P = .002). No increase was observed in mean PO at FTP20 and FTP95% (P = .75). CONCLUSIONS The results indicate that the PO at FTP95% is different to MLSS, and that changes in the PO at MLSS after training were not reflected by FTP95%. Even when using an adjusted percentage (ie, 88% rather than 95% of FTP20), the large variability in the data is such that it would not be advisable to use this as a representation of MLSS.
Collapse
|
225
|
|
226
|
Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O'Leary DS, Zucker IH, Musch TI. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 2020; 318:H1100-H1138. [PMID: 32196357 DOI: 10.1152/ajpheart.00697.2019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - David L Allen
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Michael Sturek
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
227
|
Limb blood flow and muscle oxygenation responses during handgrip exercise above vs. below critical force. Microvasc Res 2020; 131:104002. [PMID: 32198059 DOI: 10.1016/j.mvr.2020.104002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 11/20/2022]
Abstract
This study compared the brachial artery blood flow (Q̇BA) and microvascular oxygen delivery responses during handgrip exercise above vs. below critical force (CF; the isometric analog of critical power). Q̇BA and microvascular oxygen delivery are important determinants of oxygen utilization and metabolite accumulation during exercise, both of which increase progressively during exercise above CF. However the Q̇BA and microvascular oxygen delivery responses above vs. below CF remain unknown. We hypothesized that Q̇BA, deoxygenated-heme (deoxy-[heme]; an estimate of microvascular fractional oxygen extraction), and total-heme concentrations (total-[heme]; an estimate of changes in microvascular hematocrit) would demonstrate physiological maximums above CF despite increases in exercise intensity. Seven men and six women performed 1) a 5-min rhythmic isometric-handgrip maximal-effort test (MET) to determine CF and 2) two constant target-force tests above (severe-intensity; S1 and S2) and two constant target-force tests below (heavy-intensity; H1 and H2) CF. CF was 189.3 ± 16.7 N (29.7 ± 1.6%MVC). At end-exercise, Q̇BA was greater for tests above CF (S1: 418 ± 147 mL/min; S2: 403 ± 137 mL/min) compared to tests below CF (H1: 287 ± 97 mL/min; H2: 340 ± 116 mL/min; all p < 0.05) but was not different between S1 and S2. Further, end-test Q̇BA during both tests above CF was not different from Q̇BA estimated at CF (392 ± 37 mL/min). At end-exercise, deoxy-[heme] was not different between tests above CF (S1: 150 ± 50 μM; S2: 155 ± 57 μM), but was greater during tests above CF compared to tests below CF (H1: 101 ± 24 μM; H2: 111 ± 21 μM; all p < 0.05). At end-exercise, total-[heme] was not different between tests above CF (S1: 404 ± 58 μM; S2: 397 ± 73 μM), but was greater during tests above CF compared to H1 (352 ± 58 μM; p < 0.01) but not H2 (371 ± 57 μM). These data suggest limb blood flow limitations exist and maximal levels of muscle microvascular oxygen delivery and extraction occur during exercise above, but not below, CF.
Collapse
|
228
|
Puchowicz MJ, Baker J, Clarke DC. Development and field validation of an omni-domain power-duration model. J Sports Sci 2020; 38:801-813. [PMID: 32131692 DOI: 10.1080/02640414.2020.1735609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: To validate and compare a novel model based on the critical power (CP) concept that describes the entire domain of maximal mean power (MMP) data from cyclists.Methods: An omni-domain power-duration (OmPD) model was derived whereby the rate of W' expenditure is bound by maximum sprint power and the power at prolonged durations declines from CP log-linearly. The three-parameter CP (3CP) and exponential (Exp) models were likewise extended with the log-linear decay function (Om3CP and OmExp). Each model bounds W' using a different nonconstant function, W'eff (effective W'). Models were fit to MMP data from nine cyclists who also completed four time-trials (TTs).Results: The OmPD and Om3CP residuals (4 ± 1%) were smaller than the OmExp residuals (6 ± 2%; P < 0.001). W'eff predicted by the OmPD model was stable between 120-1,800 s, whereas it varied for the Om3CP and OmExp models. TT prediction errors were not different between models (7 ± 5%, 8 ± 5%, 7 ± 6%; P = 0.914).Conclusion: The OmPD offers similar or superior goodness-of-fit and better theoretical properties compared to the other models, such that it best extends the CP concept to short-sprint and prolonged-endurance performance.
Collapse
Affiliation(s)
| | | | - David C Clarke
- Department of Biomedical Physiology and Kinesiology and the SFU Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
229
|
Roloff ZA, Dicks ND, Krynski LM, Hartman ME, Ekkekakis P, Pettitt RW. Ratings of affective valence closely track changes in oxygen uptake: Application to high-intensity interval exercise. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.peh.2020.100158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
230
|
Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. Response to considerations regarding Maximal Lactate Steady State determination before redefining the gold-standard. Physiol Rep 2020; 7:e14292. [PMID: 31758668 PMCID: PMC6874779 DOI: 10.14814/phy2.14292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We reinforce the key messages in our earlier review paper that critical power, rather than maximal lactate steady state, provides the better index for defining steady‐state vs non‐steady state physiological behaviour during exercise.![]()
Collapse
Affiliation(s)
- Andrew M Jones
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | - Mark Burnley
- School of Sport and Exercise Sciences, University of Kent, Medway, UK
| | - Matthew I Black
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| |
Collapse
|
231
|
Kramer M, Thomas EJ, Pettitt RW. Critical speed and finite distance capacity: norms for athletic and non-athletic groups. Eur J Appl Physiol 2020; 120:861-872. [PMID: 32086601 DOI: 10.1007/s00421-020-04325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Two parameters in particular span both health and performance; critical speed (CS) and finite distance capacity (D'). The purpose of the present study was to: (1) classify performance norms, (2) distinguish athletic from non-athletic individuals using the 3-min all-out test (3MT) for running, and (3) introduce a deterministic model highlighting the relationship between variables of the 3MT. METHODS Athletic (n = 43) and non-athletic (n = 25) individuals participated in the study. All participants completed a treadmill graded exercise test (GXT) with verification bout and a 3MT on an outdoor sprinting track. RESULTS Meaningful differences between non-athletic and athletic individuals (denoted by mean difference scores, p value and Cohen's d with 95% confidence intervals) were evident for CS (- 0.74 m s-1, p < 0.001, d = - 1.41 [1.97, - 0.87]), exponential growth time constant ([Formula: see text]; 2.75 s, p < 0.001, d = - 1.29 [- 1.45, - 0.42]), time to maximal speed ([Formula: see text]; - 2.80 s, p < 0.001, d = - 0.98 [- 1.51, - 0.47]), maximal speed ([Formula: see text]; - 1.36 m s-1, p < 0.001, d = - 1.56 [- 2.13, - 1.01]), gas exchange threshold (GET; - 5.62 ml kg-1 min-1, p < 0.001, d = - 0.97 [- 1.50, - 0.45]), distance covered in the first minute (1st min; - 81.69 m, p < 0.001, d = - 1.91 [- 2.52, - 1.33]), distance covered in the second minute (2nd min; - 52.02 m, p < 0.001, d = - 1.71 [- 2.30, - 1.15]) and maximal distance (- 153.78 m, p < 0.001, d = - 1.27 [- 1.82, - 0.74]). The correlation coefficient between key physiological and performance variables are shown in the form of a deterministic model created from the data derived from the 3MT. CONCLUSIONS Coaches and clinicians may benefit from the use of normative data to potentially identify exceptional or irregular occurrences in 3MT performances.
Collapse
Affiliation(s)
- Mark Kramer
- Department of Human Movement Science, Nelson Mandela University, University Way, Summerstrand, Port Elizabeth, 6001, South Africa.
- Physical Activity, Sport and Recreation (PhaSRec), North West University, Potchefstroom, South Africa.
| | - E J Thomas
- Department of Human Movement Science, Nelson Mandela University, University Way, Summerstrand, Port Elizabeth, 6001, South Africa
| | - R W Pettitt
- Rocky Mountain University of Health Professions, Provo, UT, USA
| |
Collapse
|
232
|
High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42978-020-00053-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
233
|
Starling-Smith TM, La Monica MB, Stout JR, Fukuda DH. Minimal Effects of Moderate Normobaric Hypoxia on the Upper Body Work-Time Relationship in Recreationally Active Women. High Alt Med Biol 2020; 21:62-69. [PMID: 31928420 DOI: 10.1089/ham.2019.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Sex-based differences in metabolism and morphological characteristics may result in unique exercise responses during periods of limited oxygen availability. Purpose: To evaluate the effects of moderate normobaric hypoxia on the parameters of the work-time relationship during upper body exercise in women. Materials and Methods: Thirteen recreationally active women (age: 22.7 ± 2.6 years; height: 167 ± 8.6 cm; weight: 66.4 ± 9.7 kg; body fat: 27.6% ± 5% body fat) completed a maximal graded exercise test in both normobaric hypoxia (H; fraction of inspired oxygen (FiO2) = 0.14) and normoxia (N; FiO2 = 0.20) on an arm ergometer to determine peak oxygen uptake (VO2peak) and peak power output (PPO). Each participant completed four constant, work rate, arm-cranking time-to-exhaustion tests at 90%-120% PPO in both environmental conditions. Linear regression was used to estimate critical power (CP) and anaerobic capacity (W') through the work-time relationship during the constant work rate tests. Paired sample t-tests compared mean differences between VO2peak, PPO, CP, and W' between conditions (normoxia vs. hypoxia). Two-way (condition × intensity) repeated measures analysis of variance (ANOVA) was used to compare total work (TW) and time to exhaustion. Results: Hypoxia significantly reduced VO2peak (N: 1.73 ± 0.31 L·minute-1 vs. H: 1.62 ± 0.27 L·minute-1, p = 0.008), but had no effects on PPO (N: 78.08 ± 14.51 W vs. H: 75.38 ± 13.46 W, p = 0.09), CP (N: 57.44 ± 18.89 W vs. H: 56.01 ± 12.36 W, p = 0.55), and W' (N: 4.81 ± 1.01 kJ vs. H: 4.56 ± 0.91 kJ, p = 0.51). No significant condition × intensity interactions were noted for TW or time to exhaustion (p > 0.05). Conclusions: Moderate normobaric hypoxia significantly reduced VO2peak, but had minimal effects on CP and W' using the work-time model in women.
Collapse
Affiliation(s)
| | | | - Jeffrey R Stout
- Department of Kinesiology, University of Central Florida, Orlando, Florida
| | - David H Fukuda
- Department of Kinesiology, University of Central Florida, Orlando, Florida
| |
Collapse
|
234
|
Batterson PM, Norton MR, Hetz SE, Rohilla S, Lindsay KG, Subudhi AW, Jacobs RA. Improving biologic predictors of cycling endurance performance with near-infrared spectroscopy derived measures of skeletal muscle respiration: E pluribus unum. Physiol Rep 2020; 8:e14342. [PMID: 31960629 PMCID: PMC6971325 DOI: 10.14814/phy2.14342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The study aim was to compare the predictive validity of the often referenced traditional model of human endurance performance (i.e. oxygen consumption, VO2 , or power at maximal effort, fatigue threshold values, and indices of exercise efficiency) versus measures of skeletal muscle oxidative potential in relation to endurance cycling performance. We hypothesized that skeletal muscle oxidative potential would more completely explain endurance performance than the traditional model, which has never been collectively verified with cycling. Accordingly, we obtained nine measures of VO2 or power at maximal efforts, 20 measures reflective of various fatigue threshold values, 14 indices of cycling efficiency, and near-infrared spectroscopy-derived measures reflecting in vivo skeletal muscle oxidative potential. Forward regression modeling identified variable combinations that best explained 25-km time trial time-to-completion (TTC) across a group of trained male participants (n = 24). The time constant for skeletal muscle oxygen consumption recovery, a validated measure of maximal skeletal muscle respiration, explained 92.7% of TTC variance by itself (Adj R2 = .927, F = 294.2, SEE = 71.2, p < .001). Alternatively, the best complete traditional model of performance, including VO2max (L·min-1 ), %VO2max determined by the ventilatory equivalents method, and cycling economy at 50 W, only explained 76.2% of TTC variance (Adj R2 = .762, F = 25.6, SEE = 128.7, p < .001). These results confirm our hypothesis by demonstrating that maximal rates of skeletal muscle respiration more completely explain cycling endurance performance than even the best combination of traditional variables long postulated to predict human endurance performance.
Collapse
Affiliation(s)
- Philip M. Batterson
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Michael R. Norton
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Sarah E. Hetz
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Sachi Rohilla
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Keston G. Lindsay
- Department of Human Physiology and NutritionUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
- Department of Health SciencesUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Andrew W. Subudhi
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
- Department of Human Physiology and NutritionUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| | - Robert A. Jacobs
- Department of BiologyUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
- Department of Human Physiology and NutritionUniversity of Colorado Colorado SpringsColorado SpringsCOUSA
| |
Collapse
|
235
|
Muangkram Y, Honda M, Amano A, Himeno Y, Noma A. Exploring the role of fatigue-related metabolite activity during high-intensity exercise using a simplified whole-body mathematical model. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
236
|
Shen Q, Mahoney D, Peltzer J, Rahman F, Krueger KJ, Hiebert JB, Pierce JD. Using the NIH symptom science model to understand fatigue and mitochondrial bioenergetics. ACTA ACUST UNITED AC 2020; 7. [PMID: 33628458 DOI: 10.7243/2056-9157-7-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The symptom of fatigue is prevalent among patients with chronic diseases and conditions such as congestive heart failure and cancer. It has a significant debilitating impact on patients' physical health, quality of life, and well-being. Early detection and appropriate assessment of fatigue is essential for diagnosing, treating, and monitoring disease progression. However, it is often challenging to manage the symptom of fatigue without first investigating the underlying biological mechanisms. In this narrative review, we conceptualize the symptom of fatigue and its relationship with mitochondrial bioenergetics using the National Institute of Health Symptom Science Model (NIH-SSM). In particular, we discuss mental and physical measures to assess fatigue, the importance of adenosine triphosphate (ATP) in cellular and organ functions, and how impaired ATP production contributes to fatigue. Specific methods to measure ATP are described. Recommendations are provided concerning how to integrate biological mechanisms with the symptom of fatigue for future research and clinical practice to help alleviate symptoms and improve patients' quality of life.
Collapse
Affiliation(s)
- Qiuhua Shen
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Diane Mahoney
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Jill Peltzer
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Faith Rahman
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Kathryn J Krueger
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - John B Hiebert
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Janet D Pierce
- University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| |
Collapse
|
237
|
Sreedhara VSM, Mocko GM, Hutchison RE. A survey of mathematical models of human performance using power and energy. SPORTS MEDICINE-OPEN 2019; 5:54. [PMID: 31883068 PMCID: PMC6934642 DOI: 10.1186/s40798-019-0230-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023]
Abstract
The ability to predict the systematic decrease of power during physical exertion gives valuable insights into health, performance, and injury. This review surveys the research of power-based models of fatigue and recovery within the area of human performance. Upon a thorough review of available literature, it is observed that the two-parameter critical power model is most popular due to its simplicity. This two-parameter model is a hyperbolic relationship between power and time with critical power as the power-asymptote and the curvature constant denoted by W′. Critical power (CP) is a theoretical power output that can be sustained indefinitely by an individual, and the curvature constant (W′) represents the amount of work that can be done above CP. Different methods and models have been validated to determine CP and W′, most of which are algebraic manipulations of the two-parameter model. The models yield different CP and W′ estimates for the same data depending on the regression fit and rounding off approximations. These estimates, at the subject level, have an inherent day-to-day variability called intra-individual variability (IIV) associated with them, which is not captured by any of the existing methods. This calls for a need for new methods to arrive at the IIV associated with CP and W′. Furthermore, existing models focus on the expenditure of W′ for efforts above CP and do not model its recovery in the sub-CP domain. Thus, there is a need for methods and models that account for (i) the IIV to measure the effectiveness of individual training prescriptions and (ii) the recovery of W′ to aid human performance optimization.
Collapse
Affiliation(s)
- Vijay Sarthy M Sreedhara
- Department of Mechanical Engineering, Clemson University, 243 Fluor Daniel EIB, Clemson, SC, 29634-0921, USA
| | - Gregory M Mocko
- Department of Mechanical Engineering, Clemson University, 243 Fluor Daniel EIB, Clemson, SC, 29634-0921, USA.
| | | |
Collapse
|
238
|
Keiller DR, Gordon DA. The plateau at V˙ O 2max is associated with anaerobic alleles. J Sci Med Sport 2019; 23:506-511. [PMID: 31924536 DOI: 10.1016/j.jsams.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study tests the hypothesis that individuals who achieve a plateau at V˙ O2max (V˙ O2plat) are more likely to possess alleles, associated with anaerobic capacity, than those who do not. DESIGN A literature survey, physiological testing and genetic analysis was used to determine any association between the aerobic and anaerobic polymorphisms of 40 genes and V˙ O2plat. METHODS 34, healthy, Caucasian volunteers, completed an exercise test to determine V˙ O2max, and V˙ O2plat. 28 of the volunteers agreed to DNA testing and 26 were successfully genotyped. A literature search was used to determine whether the 40 polymorphisms analysed were associated with aerobic, or anaerobic exercise performance. RESULTS The literature survey enabled classification of the 40 target alleles as aerobic [11], anaerobic [24], or having no apparent association (NAA) [5] with exercise performance. It also found no previous studies linking a genetic component with the ability to achieve V˙ O2plat. Independent t-tests showed a significant difference (p < 0.001) in the ability to achieve V˙ O2plat, but no other measured physiological variable was significantly different. Pearson's χ2 testing demonstrated a highly significant association (p = 0.008) between anaerobic allele frequency and V˙ O2plat, but not with V˙ O2max. There was no association between aerobic alleles and V˙ O2plat, or V˙ O2max. Finally there were no significant differences in the allelic frequencies, observed in this study and those expected of Northern and Western European Caucasians. CONCLUSION These results support the hypothesis that the ability to achieve V˙ O2plat is associated with alleles linked to anaerobic exercise capacity.
Collapse
Affiliation(s)
- Don R Keiller
- Faculty of Science and Engineering, School of Life Sciences, Anglia Ruskin University, UK.
| | - Dan A Gordon
- Faculty of Science and Engineering, School Psychology and Sports Science, Anglia Ruskin University, UK
| |
Collapse
|
239
|
Vassallo C, Gray A, Cummins C, Murphy A, Waldron M. Exercise tolerance during flat over-ground intermittent running: modelling the expenditure and reconstitution kinetics of work done above critical power. Eur J Appl Physiol 2019; 120:219-230. [PMID: 31776696 PMCID: PMC6969867 DOI: 10.1007/s00421-019-04266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022]
Abstract
Purpose We compared a new locomotor-specific model to track the expenditure and reconstitution of work done above critical power (W´) and balance of W´ (W´BAL) by modelling flat over-ground power during exhaustive intermittent running. Method Nine male participants completed a ramp test, 3-min all-out test and the 30–15 intermittent fitness test (30–15 IFT), and performed a severe-intensity constant work-rate trial (SCWR) at the maximum oxygen uptake velocity (vV̇O2max). Four intermittent trials followed: 60-s at vV̇O2max + 50% Δ1 (Δ1 = vV̇O2max − critical velocity [VCrit]) interspersed by 30-s in light (SL; 40% vV̇O2max), moderate (SM; 90% gas-exchange threshold velocity [VGET]), heavy (SH; VGET + 50% Δ2 [Δ2 = VCrit − VGET]), or severe (SS; vV̇O2max − 50% Δ1) domains. Data from Global Positioning Systems were derived to model over-ground power. The difference between critical and recovery power (DCP), time constant for reconstitution of W´ (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{\prime}}}$$\end{document}τW′), time to limit of tolerance (TLIM), and W´BAL from the integral (W´BALint), differential (W´BALdiff), and locomotor-specific (OG-W´BAL) methods were compared. Results The relationship between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{\prime}}}$$\end{document}τW′ and DCP was exponential (r2 = 0.52). The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{{\prime}}}}$$\end{document}τW′ for SL, SM, and SH trials were 119 ± 32-s, 190 ± 45-s, and 336 ± 77-s, respectively. Actual TLIM in the 30–15 IFT (968 ± 117-s) compared closely to TLIM predicted by OG-W´BAL (929 ± 94-s, P > 0.100) and W´BALdiff (938 ± 84-s, P > 0.100) but not to W´BALint (848 ± 91-s, P = 0.001). Conclusion The OG-W´BAL accurately tracked W´ kinetics during intermittent running to exhaustion on flat surfaces.
Collapse
Affiliation(s)
- Christian Vassallo
- School of Sport, Health and Applied Science, St Mary's University, London, UK
| | - Adrian Gray
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Cloe Cummins
- School of Science and Technology, University of New England, Armidale, NSW, Australia.,Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,National Rugby League, Sydney, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mark Waldron
- School of Science and Technology, University of New England, Armidale, NSW, Australia. .,College of Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
240
|
Speer KE, Naumovski N, Semple S, McKune AJ. Lifestyle Modification for Enhancing Autonomic Cardiac Regulation in Children: The Role of Exercise. CHILDREN-BASEL 2019; 6:children6110127. [PMID: 31744115 PMCID: PMC6915468 DOI: 10.3390/children6110127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Decreased physical activity (PA) is a global concern contributing to the rise in cardiometabolic diseases. One potential mechanism linking insufficient PA and poor health is dysregulated autonomic nervous system (ANS) activity. This relationship is established in adults and PA recommendations, with specific exercise prescription guidelines, have been proposed to overcome this societal health burden. However, research on the benefits and underlying mechanisms of exercise on ANS activity in children <18 years old is limited. This review aimed to describe the optimal exercise “dose” and potential mechanisms of action that exercise may pose on enhancing child ANS activity, represented by heart rate variability (HRV). PubMed, Web of Science and Google Scholar were searched for articles examining the influence of exercise on child HRV. Various exercise duration and frequency combinations appear to improve HRV indices, primarily those representing parasympathetic influence. Furthermore, both aerobic and resistance training benefit HRV through potentially different mechanisms with intensity proposed to be important for exercise prescription. Findings indicate that exercise is a crucial lifestyle modification with protective and therapeutic effects on cardiometabolic health associated with improvements in child ANS activity. Exercise programming must consider the various components including mode, intensity and population characteristics to optimize ANS health.
Collapse
Affiliation(s)
- Kathryn E Speer
- Faculty of Health, Discipline of Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia; (S.S.); (A.J.M.)
- Research Institute for Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia
- Correspondence:
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra (ACT) 2617, Australia;
| | - Stuart Semple
- Faculty of Health, Discipline of Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia; (S.S.); (A.J.M.)
- Research Institute for Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia
| | - Andrew J McKune
- Faculty of Health, Discipline of Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia; (S.S.); (A.J.M.)
- Research Institute for Sport and Exercise Science, University of Canberra, Canberra (ACT) 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban (KwaZulu-Natal) 4041, South Africa
| |
Collapse
|
241
|
McGRATH E, Mahony N, Fleming N, Donne B. Is the FTP Test a Reliable, Reproducible and Functional Assessment Tool in Highly-Trained Athletes? INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2019; 12:1334-1345. [PMID: 31839854 PMCID: PMC6886609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of the current study was to assess reliability of the Functional Threshold Power test (FTP) and the corresponding intensity sustainable for 1-hour in a "quasi-steady state". Highly-trained athletes (n = 19) completed four non-randomized tests over successive weeks on a Wattbike; a 3-min incremental test (GxT) to exhaustion, two 20-min FTP tests and a 60-min test at computed FTP (cFTP). Power at cFTP was calculated by reducing 20-min FTP data by 5% and was compared with power at Dmax and lactate threshold (TLac). Ventilatory and blood lactate (BLa) responses to cFTP were measured to determine whether cFTP was quasi-steady state. Agreement between consecutive FTP tests was quantified using a Bland-Altman plot with 95% limits of agreement (95% LoA) set at ± 20 W. Satisfactory agreement between FTP tests was detected (95% LoA = +13 and -17 W, bias +2 W). The 60-min effort at cFTP was successfully completed by 17 participants, and BLa and ventilatory data at cFTP were classified as quasi-steady state. A 5% increase in power above cFTP destabilized BLa data (p < 0.05) and prompted VO2 to increase to peak GxT rates. The FTP test is therefore deemed representative of the uppermost power a highly-trained athlete can maintain in a quasi-steady state for 60-min. Agreement between repeated 20-min FTP tests was judged acceptable.
Collapse
Affiliation(s)
- Eanna McGRATH
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRELAND
| | - Nick Mahony
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRELAND
| | - Neil Fleming
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRELAND
| | - Bernard Donne
- Human Performance Laboratory, Departments of Anatomy and Physiology, School of Medicine, Trinity College Dublin, IRELAND
| |
Collapse
|
242
|
Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Howatson G, Thomas K, Hunter SK, Goodall S. Sex differences in fatigability and recovery relative to the intensity-duration relationship. J Physiol 2019; 597:5577-5595. [PMID: 31529693 DOI: 10.1113/jp278699] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Females demonstrate greater fatigue resistance than males during contractions at intensities relative to maximum force. However, previous studies have not accounted for the influence of metabolic thresholds on fatigability. This study is the first to test whether sex differences in fatigability exist when exercise intensity is normalised relative to a metabolic threshold: the critical intensity derived from assessment of the intensity-duration relationship during intermittent, isometric knee extensor contractions. We show that critical intensity in females occurred at a higher percentage of maximum force compared to males. Furthermore, females demonstrated greater fatigue resistance at exercise intensities above and below this metabolic threshold. Our data suggest that the sex difference was mediated by lesser deoxygenation of the knee extensors during exercise. These data highlight the importance of accounting for metabolic thresholds when comparing fatigability between sexes, whilst emphasising the notion that male data are not generalisable to female populations. ABSTRACT Females are less fatigable than males during isometric exercise at intensities relative to maximal voluntary contraction (MVC); however, whether a sex difference in fatigability exists when exercise is prescribed relative to a critical intensity is unknown. This study established the intensity-duration relationship, and compared fatigability and recovery between sexes following intermittent isometric contractions normalised to critical intensity. Twenty participants (10 females) completed four intermittent isometric knee extension trials to task failure to determine critical intensity and the curvature constant (W'), followed by fatiguing tasks at +10% and -10% relative to critical intensity. Neuromuscular assessments were completed at baseline and for 45 min post-exercise. Non-invasive neurostimulation, near-infrared spectroscopy, and non-invasive haemodynamic monitoring were used to elucidate the physiological mechanisms responsible for sex differences. Females demonstrated a greater critical intensity relative to MVC than males (25 ± 3 vs. 21 ± 2% MVC, P = 0.003), with no sex difference for W' (18,206 ± 6331 vs. 18,756 ± 5762 N s, P = 0.850). Time to task failure was greater for females (62.37 ± 17.25 vs. 30.43 ± 12.75 min, P < 0.001) during the +10% trial, and contractile function recovered faster post-exercise (P = 0.034). During the -10% trial females experienced less contractile dysfunction (P = 0.011). Throughout the +10% trial, females demonstrated lesser decreases in deoxyhaemoglobin (P = 0.007) and an attenuated exercise pressor reflex. These data show that a sex difference in fatigability exists even when exercise is matched for critical intensity. We propose that greater oxygen availability during exercise permits females to sustain a higher relative intensity than males, and is an explanatory factor for the sex difference in fatigability during intermittent, isometric contractions.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
243
|
Iannetta D, Passfield L, Qahtani A, MacInnis MJ, Murias JM. Interlimb differences in parameters of aerobic function and local profiles of deoxygenation during double-leg and counterweighted single-leg cycling. Am J Physiol Regul Integr Comp Physiol 2019; 317:R840-R851. [PMID: 31617749 DOI: 10.1152/ajpregu.00164.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is typically assumed that in the context of double-leg cycling, dominant (DOMLEG) and nondominant legs (NDOMLEG) have similar aerobic capacity and both contribute equally to the whole body physiological responses. However, there is a paucity of studies that have systematically investigated maximal and submaximal aerobic performance and characterized the profiles of local muscle deoxygenation in relation to leg dominance. Using counterweighted single-leg cycling, this study explored whether peak O2 consumption (V̇o2peak), maximal lactate steady-state (MLSSp), and profiles of local deoxygenation [HHb] would be different in the DOMLEG compared with the NDOMLEG. Twelve participants performed a series of double-leg and counterweighted single-leg DOMLEG and NDOMLEG ramp-exercise tests and 30-min constant-load trials. V̇o2peak was greater in the DOMLEG than in the NDOMLEG (2.87 ± 0.42 vs. 2.70 ± 0.39 L/min, P < 0.05). The difference in V̇o2peak persisted even after accounting for lean mass (P < 0.05). Similarly, MLSSp was greater in the DOMLEG than in the NDOMLEG (118 ± 31 vs. 109 ± 31 W; P < 0.05). Furthermore, the amplitude of the [HHb] signal during ramp exercise was larger in the DOMLEG than in the NDOMLEG during both double-leg (26.0 ± 8.4 vs. 20.2 ± 8.8 µM, P < 0.05) and counterweighted single-leg cycling (18.5 ± 7.9 vs. 14.9 ± 7.5 µM, P < 0.05). Additionally, the amplitudes of the [HHb] signal were highly to moderately correlated with the mode-specific V̇o2peak values (ranging from 0.91 to 0.54). These findings showed in a group of young men that maximal and submaximal aerobic capacities were greater in the DOMLEG than in the NDOMLEG and that superior peripheral adaptations of the DOMLEG may underpin these differences.NEW & NOTEWORTHY It is typically assumed that the dominant and nondominant legs contribute equally to the whole physiological responses. In this study, we found that the dominant leg achieved greater peak O2 uptake values, sustained greater power output while preserving whole body metabolic stability, and showed larger amplitudes of deoxygenation responses. These findings highlight heterogeneous aerobic capacities of the lower limbs, which have important implications when whole body physiological responses are examined.
Collapse
Affiliation(s)
- Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Louis Passfield
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Ahmad Qahtani
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
244
|
Waldron M, Patterson SD, Jeffries O. Oral taurine improves critical power and severe-intensity exercise tolerance. Amino Acids 2019; 51:1433-1441. [PMID: 31482309 DOI: 10.1007/s00726-019-02775-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/18/2019] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of acute oral taurine ingestion on: (1) the power-time relationship using the 3-min all-out test (3MAOT); (2) time to exhaustion (TTE) 5% > critical power (CP) and (3) the estimated time to complete (Tlim) a range of fixed target intensities. Twelve males completed a baseline 3MAOT test on a cycle ergometer. Following this, a double-blind, randomised cross-over design was followed, where participants were allocated to one of four conditions, separated by 72 h: TTE + taurine; TTE + placebo; 3MAOT + taurine; 3MAOT + placebo. Taurine was provided at 50 mg kg-1, whilst the placebo was 3 mg kg-1 maltodextrin. CP was higher (P < 0.05) in taurine (212 ± 36 W) than baseline (197 ± 40 W) and placebo (193 ± 35 W). Work end power was not affected by supplement (P > 0.05), yet TTE 5% > CP increased (P < 0.05) by 1.7 min after taurine (17.7 min) compared to placebo (16.0 min) and there were higher (P < 0.001) estimated Tlim across all work targets. Acute supplementation of 50 mg kg-1 of taurine improved CP and estimated performance at a range of severe work intensities. Oral taurine can be taken prior to exercise to enhance endurance performance.
Collapse
Affiliation(s)
- Mark Waldron
- College of Engineering, Swansea University, Swansea, SA1 8EN, UK.
- School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | | | - Owen Jeffries
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
245
|
Pethick J, Winter SL, Burnley M. Relationship between muscle metabolic rate and muscle torque complexity during fatiguing intermittent isometric contractions in humans. Physiol Rep 2019; 7:e14240. [PMID: 31552708 PMCID: PMC6759514 DOI: 10.14814/phy2.14240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 01/07/2023] Open
Abstract
To test the hypothesis that a system's metabolic rate and the complexity of fluctuations in the output of that system are related, thirteen healthy participants performed intermittent isometric knee extensor contractions at intensities where a rise in metabolic rate would (40% maximal voluntary contraction, MVC) and would not (20% MVC) be expected. The contractions had a 60% duty factor (6 sec contraction, 4 sec rest) and were performed until task failure or for 30 min, whichever occurred sooner. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified using approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Muscle metabolic rate was determined using near-infrared spectroscopy. At 40% MVC, task failure occurred after (mean ± SD) 11.5 ± 5.2 min, whereas all participants completed 30 min of contractions at 20% MVC. Muscle metabolic rate increased significantly after 2 min at 40% MVC (2.70 ± 1.48 to 4.04 ± 1.23 %·s-1 , P < 0.001), but not at 20% MVC. Similarly, complexity decreased significantly at 40% MVC (ApEn, 0.53 ± 0.19 to 0.15 ± 0.09; DFA α, 1.37 ± 0.08 to 1.60 ± 0.09; both P < 0.001), but not at 20% MVC. The rates of change of torque complexity and muscle metabolic rate at 40% MVC were significantly correlated (ApEn, ρ = -0.63, P = 0.022; DFA, ρ = 0.58, P = 0.037). This study demonstrated that an inverse relationship exists between muscle torque complexity and metabolic rate during high-intensity contractions.
Collapse
Affiliation(s)
- Jamie Pethick
- Endurance Research GroupSchool of Sport and Exercise SciencesUniversity of KentCanterburyUnited Kingdom
| | - Samantha L. Winter
- Endurance Research GroupSchool of Sport and Exercise SciencesUniversity of KentCanterburyUnited Kingdom
| | - Mark Burnley
- Endurance Research GroupSchool of Sport and Exercise SciencesUniversity of KentCanterburyUnited Kingdom
| |
Collapse
|
246
|
Zarzissi S, Zghal F, Bouzid MA, Hureau TJ, Sahli S, Ben Hassen H, Rebai H. Centrally-mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the force-duration relationship in older men. Eur J Sport Sci 2019; 20:641-649. [PMID: 31397211 DOI: 10.1080/17461391.2019.1655099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to investigate the existence of a critical threshold beyond which peripheral fatigue would not further decrease during knee extensor (KE) exercise in older men, and the consequences of this mechanism on the force-duration relationship. Twelve old men (59 ± 2 years) randomly performed two different sessions, in which they performed 60 maximum voluntary contractions (MVC; 3s contraction, 2s relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the KE (FNMES). Peripheral and central fatigue were quantified via pre/post-exercise decreases in quadriceps twitch-force (Δ Ptw) and voluntary activation (ΔVA). Critical torque (CT) was determined as the mean force of the last 12 contractions while W' was calculated as the area above CT. Compared with CTRL, pre-fatigue (Δ Ptw = -10.3 ± 6.2%) resulted in a significant (p < 0.05) reduction in W' (-18.2 ± 1.6%) in FNMES. However, CT (∼964 N), ΔVA (∼15%) and Δ Ptw (∼25%) post-MVCs were similar between both conditions. In CTRL, W' was correlated with Δ Ptw (r 2 = 0.78). Moreover, the difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r 2 = 0.76). These findings document that peripheral fatigue is confined to an individual threshold during KE exercise in older men. Furthermore, correlative results suggest that mechanisms regulating peripheral fatigue to a critical threshold also restrict W', and therefore play a role in exercise capacity in older men.
Collapse
Affiliation(s)
- Slim Zarzissi
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.,Faculté des Sciences du Sport, Université Côte d'Azur, LAMHESS, Nice, France
| | - Mohamed Amine Bouzid
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, oxidative stress and muscular protection laboratory (EA 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Sonia Sahli
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Habib Ben Hassen
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| |
Collapse
|
247
|
P i-induced muscle fatigue leads to near-hyperbolic power-duration dependence. Eur J Appl Physiol 2019; 119:2201-2213. [PMID: 31399839 DOI: 10.1007/s00421-019-04204-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Consequences of combining three ideas proposed previously by other authors: (1) that there exists a critical power (CP), above which no steady state in [Formula: see text]O2 (oxygen consumption) and metabolites can be achieved in voluntary constant-power exercise; (2) that muscle fatigue is related to decreased exercise efficiency (increased [Formula: see text]O2/power output ratio); and (3) that Pi (inorganic phosphate) is the main fatigue-related metabolite are investigated. METHODS A previously-developed computer model of the skeletal muscle bioenergetic system is used. It was assumed in computer simulations that skeletal muscle work terminates when cytosolic Pi (inorganic phosphate) exceeds a certain critical level. RESULTS Simulated changes in muscle [Formula: see text]O2, cytosolic ADP, pH, PCr and Pi as a function of time at various ATP usage activities (corresponding to power outputs) agreed well with experimental data. Computer simulations resulted in a fourth previously-published idea: (4) that the power-duration relationship describing the dependence of power output (PO) on the time to exhaustion of voluntary constant-power exercise at a given PO has a (near-)hyperbolic shape. CONCLUSIONS Pi is a major factor contributing to muscle fatigue, as such an assumption leads to a (near-)hyperbolic shape of the power-duration relationship, at least for exercise duration of ~ 1-10 min. Thus, a potential mechanism underlying the power-duration relationship shape is offered that was absent in the literature. Other factors/mechanisms, such as cytosol acidification, glycogen stores depletion and central fatigue can contribute to this relationship, especially in longer exercises.
Collapse
|
248
|
Abstract
Purpose:To determine if the mathematical model used for the estimation of critical force (CF) and the energy store componentW′ are applicable to intermittent isometric muscle actions of the finger flexors of rock climbers, using a multisession test. As a secondary aim, the agreement of estimates of CF andW′ from a single-session test was also determined. The CF was defined as the slope coefficient, andW′ was the intercept of the linear relationship between total “isometric work” (Wlim) and time to exhaustion (Tlim).Methods:Subjects performed 3 (separated by either 20 min or >24 h) tests to failure using intermittent isometric finger-flexor contractions at 45%, 60%, and 80% of their maximum voluntary contraction.Results:Force plotted againstTlimdisplayed a hyperbolic relationship; correlation coefficients of the parameter estimates from the work–time CF model were consistently very high (R2 > .94). Climbers’ mean CF was 425.7 (82.8) N (41.0% [6.2%] maximum voluntary contraction) andW′ was 30,882 (11,820) N·s. Good agreement was found between the single-session and multisession protocol for CF (intraclass correlation coefficient [ICC3,1] = .900; 95% confidence interval, .616–.979), but not forW′ (ICC3,1 = .768; 95% confidence interval, .190–.949).Conclusions:The results demonstrated the sensitivity of a simple test for the determination of CF andW′, using equipment readily available in most climbing gyms. Although further work is still necessary, the test of CF described is of value for understanding exercise tolerance and to determine optimal training prescription to monitor improvements in the performance of the finger flexors.
Collapse
|
249
|
Morel B, Lapole T, Liotard C, Hautier C. Critical Peripheral Fatigue Thresholds Among Different Force-Velocity Conditions: An Individual-Based Model Approach. Front Physiol 2019; 10:875. [PMID: 31379595 PMCID: PMC6646582 DOI: 10.3389/fphys.2019.00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
During high intensity exercise, metabosensitive muscle afferents are thought to inhibit the motor drive command to restrict the level of peripheral fatigue to an individual's critical threshold. No evidence exists of an individual relationship between peripheral fatigue and the decrease in voluntary activation reached after prolonged all-out exercise. Moreover, there is no explanation for the previously reported large decrease in voluntary activation despite low metabolic stress during high force contractions. Thirteen active men completed two maximal intensity isokinetic knee extension tests (160 contractions) under conditions of low force - high velocity and high force - low velocity. Neuromuscular testing including maximal torque, evoked torque and voluntary activation, was done every 20 contractions. The exponential modeling of these variables over time allowed us to predict the stable state (asymptote) and the rate of decrease (curvature constant). For both high and low force contractions the evoked torque and voluntary activation asymptotes were negatively correlated (R 2 = 0.49 and R 2 = 0.46, respectively). The evoked torque asymptotes of the high and low force conditions were positively correlated (R 2 = 0.49). For the high force contractions, the evoked torque and voluntary activation curvature constant were negatively correlated (R 2 = 0.43). These results support the idea that a restrained central motor drive keeps peripheral fatigue under this threshold. Furthermore, an individual would show similar fatigue sensibility regardless of the force generated. These data also suggest that the decrease in voluntary activation might not have been triggered by peripheral perturbations during the first high force contractions.
Collapse
Affiliation(s)
- Baptiste Morel
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France.,Movement-Interactions-Performance, MIP, EA 4334, F-72000, Le Mans Université, Le Mans, France
| | - Thomas Lapole
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France
| | - Cyril Liotard
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France
| | - Christophe Hautier
- EA7424, Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
250
|
Clark IE, Vanhatalo A, Thompson C, Joseph C, Black MI, Blackwell JR, Wylie LJ, Tan R, Bailey SJ, Wilkins BW, Kirby BS, Jones AM. Dynamics of the power-duration relationship during prolonged endurance exercise and influence of carbohydrate ingestion. J Appl Physiol (1985) 2019; 127:726-736. [PMID: 31295069 DOI: 10.1152/japplphysiol.00207.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypotheses that the parameters of the power-duration relationship, estimated as the end-test power (EP) and work done above EP (WEP) during a 3-min all-out exercise test (3MT), would be reduced progressively after 40 min, 80 min, and 2 h of heavy-intensity cycling and that carbohydrate (CHO) ingestion would attenuate the reduction in EP and WEP. Sixteen participants completed a 3MT without prior exercise (control), immediately after 40 min, 80 min, and 2 h of heavy-intensity exercise while consuming a placebo beverage, and also after 2 h of heavy-intensity exercise while consuming a CHO supplement (60 g/h CHO). There was no difference in EP measured without prior exercise (260 ± 37 W) compared with EP after 40 min (268 ± 39 W) or 80 min (260 ± 40 W) of heavy-intensity exercise; however, after 2 h EP was 9% lower compared with control (236 ± 47 W; P < 0.05). There was no difference in WEP measured without prior exercise (17.9 ± 3.3 kJ) compared with after 40 min of heavy-intensity exercise (16.1 ± 3.3 kJ), but WEP was lower (P < 0.05) than control after 80 min (14.7 ± 2.9 kJ) and 2 h (13.8 ± 2.7 kJ). Compared with placebo, CHO ingestion negated the reduction of EP following 2 h of heavy-intensity exercise (254 ± 49 W) but had no effect on WEP (13.5 ± 3.4 kJ). These results reveal a different time course for the deterioration of EP and WEP during prolonged endurance exercise and indicate that EP is sensitive to CHO availability.NEW & NOTEWORTHY The parameters of the power-duration relationship [critical power (CP) and the curvature constant (W')] have typically been considered to be static. Here we report the time course for reductions in CP and W', as estimated with the 3-min all-out cycle test, during 2 h of heavy-intensity exercise. We also show that carbohydrate ingestion during exercise preserves CP, but not W', without altering muscle glycogen depletion. These results provide new mechanistic and practical insight into the power-duration curve and its relationship to exercise-related fatigue development.
Collapse
Affiliation(s)
- Ida E Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Christopher Thompson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Charlotte Joseph
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Matthew I Black
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | | | | | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|