201
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
202
|
Kim J, Lee HK. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front Immunol 2022; 12:807648. [PMID: 35069592 PMCID: PMC8777015 DOI: 10.3389/fimmu.2021.807648] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
203
|
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2022; 13:1-21. [PMID: 33525961 PMCID: PMC7872077 DOI: 10.1080/19490976.2021.1875796] [Citation(s) in RCA: 610] [Impact Index Per Article: 305.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blautia is a genus of anaerobic bacteria with probiotic characteristics that occur widely in the feces and intestines of mammals. Based on phenotypic and phylogenetic analyses, some species in the genera Clostridium and Ruminococcus have been reclassified as Blautia, so to date, there are 20 new species with valid published names in this genus. An extensive body of research has recently focused on the probiotic effects of this genus, such as biological transformation and its ability to regulate host health and alleviate metabolic syndrome. This article reviews the origin and biological characteristics of Blautia and the factors that affect its abundance and discusses its role in host health, thus laying a theoretical foundation for the development of new functional microorganisms with probiotic properties.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,CONTACT Bingyong Mao
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shumao Cui School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
204
|
Privitera G, Rana N, Scaldaferri F, Armuzzi A, Pizarro TT. Novel Insights Into the Interactions Between the Gut Microbiome, Inflammasomes, and Gasdermins During Colorectal Cancer. Front Cell Infect Microbiol 2022; 11:806680. [PMID: 35111698 PMCID: PMC8801609 DOI: 10.3389/fcimb.2021.806680] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly forms of cancer in Western countries. Inflammation is a well-known driver of colonic carcinogenesis; however, its role in CRC extends beyond colitis-associated cancer. Over the last decades, numerous associations between intestinal dysbiosis and CRC have been identified, with more recent studies providing mechanistic evidence of a causative relationship. Nonetheless, much remains to be discovered regarding the precise implications of microbiome alterations in the pathogenesis of CRC. Research confirms the importance of a bidirectional crosstalk between the gut microbiome and the mucosal immune system in which inflammasomes, multiprotein complexes that can sense "danger signals," serve as conduits by detecting microbial signals and activating innate immune responses, including the induction of microbicidal activities that can alter microbiome composition. Current evidence strongly supports an active role for this "inflammasome-microbiome axis" in the initiation and development of CRC. Furthermore, the gasdermin (GSDM) family of proteins, which are downstream effectors of the inflammasome that are primarily known for their role in pyroptosis, have been recently linked to CRC pathogenesis. These findings, however, do not come without controversy, as pyroptosis is reported to exert both anti- and protumorigenic functions. Furthermore, the multi-faceted interactions between GSDMs and the gut microbiome, as well as their importance in CRC, have only been superficially investigated. In this review, we summarize the existing literature supporting the importance of the inflammasome-microbiota axis, as well as the activation and function of GSDMs, to gain a better mechanistic understanding of CRC pathogenesis.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Malattie Apparato Digerente (CEMAD), Inflammatory Bowel Disease (IBD) Unit, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario ‘A. Gemelli’ Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Franco Scaldaferri
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Malattie Apparato Digerente (CEMAD), Inflammatory Bowel Disease (IBD) Unit, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario ‘A. Gemelli’ Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Armuzzi
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Malattie Apparato Digerente (CEMAD), Inflammatory Bowel Disease (IBD) Unit, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario ‘A. Gemelli’ Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
205
|
Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes 2022; 13:1847629. [PMID: 33228450 PMCID: PMC8381792 DOI: 10.1080/19490976.2020.1847629] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks the third most common cancer type in both men and women. Besides the known genetic and epigenetic changes in the gut epithelial cells, we now know that disturbed gut microbes could also contribute to the onset and progression of CRC. Hence, keeping a balanced gut microbiota (GM) has become a novel pursue in the medical field, particularly in the area of gastrointestinal disorders. Gynostemma pentaphyllum (Gp) is a dietary herbal medicine. In our previous study, Gp saponins (GpS) displayed prebiotic and cancer-preventive properties through the modulation of GM in ApcMin/+ mice. However, the specific group(s) of GM links to the health effects of GpS remains unknown. To track down the missing link, we first investigated and found that inoculation with fecal materials from GpS-treated ApcMin/+ mice effectively reduces polyps in ApcMin/+ mice. From the same source of the fecal sample, we successfully isolated 16 bacterial species. Out of the 16 bacteria, Bifidobacterium animalis stands out as the responder to the GpS-growth stimulus. Biochemical and RNAseq analysis demonstrated that GpS enhanced expressions of a wide range of genes encoding biogenesis and metabolic pathways in B. animalis culture. Moreover, we found that colonization of B. animalis markedly reduces the polyp burden in ApcMin/+ mice. These findings reveal a mutualistic interaction between the prebiotic and a probiotic to achieve anticancer and cancer-preventive activities. Our result, for the first time, unveils the anticancer function of B. animalis and extend the probiotic horizon of B. animalis.
Collapse
Affiliation(s)
- Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Xiao Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - W. L. Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR,CONTACT W. L. Wendy Hsiao State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| |
Collapse
|
206
|
Szychowiak P, Villageois-Tran K, Patrier J, Timsit JF, Ruppé É. The role of the microbiota in the management of intensive care patients. Ann Intensive Care 2022; 12:3. [PMID: 34985651 PMCID: PMC8728486 DOI: 10.1186/s13613-021-00976-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter's consequences. Last, we assess the means to prevent or correct microbiota alteration.
Collapse
Affiliation(s)
- Piotr Szychowiak
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Régional Universitaire de Tours, 37000, Tours, France
| | - Khanh Villageois-Tran
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Laboratoire de Bactériologie, AP-HP, Hôpital Beaujon, 92110, Paris, France
| | - Juliette Patrier
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Jean-François Timsit
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Étienne Ruppé
- Université de Paris, IAME, INSERM, 75018, Paris, France.
- Laboratoire de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
207
|
Teng T, Clarke G, Maes M, Jiang Y, Wang J, Li X, Yin B, Xiang Y, Fan L, Liu X, Wang J, Liu S, Huang Y, Licinio J, Zhou X, Xie P. Biogeography of the large intestinal mucosal and luminal microbiome in cynomolgus macaques with depressive-like behavior. Mol Psychiatry 2022; 27:1059-1067. [PMID: 34719692 PMCID: PMC9054659 DOI: 10.1038/s41380-021-01366-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Most previous studies in the pathophysiology of major depressive disorder (MDD) focused on fecal samples, which limit the identification of the gut mucosal and luminal microbiome in depression. Here, we address this knowledge gap. Male cynomolgus macaques (Macaca fascicularis) were randomly assigned to a chronic unpredictable mild stress (CUMS) group, or to an unstressed control group. Behavioral tests were completed in both groups. At endpoint, microbe composition of paired mucosal and luminal samples from cecum, ascending, transverse, and descending colons were determined by 16S ribosomal RNA gene sequencing. The levels of 34 metabolites involved in carbohydrate or energy metabolism in luminal samples were measured by targeted metabolomics profiling. CUMS macaques demonstrated significantly more depressive-like behaviors than controls. We found differences in mucosal and luminal microbial composition between the two groups, which were characterized by Firmicutes and Bacteriodetes at the phylum level, as well as Prevotellaceae and Lachnospiraceae at the family level. The majority of discriminative microbes correlated with the depressive-like behavioral phenotype. In addition, we found 27 significantly different microbiome community functions between the two groups in mucosa, and one in lumen, which were mainly involved in carbohydrate and energy metabolism. A total of nine metabolites involved in these pathways were depleted in CUMS animals. Together, CUMS macaques with depressive-like behaviors associated with distinct alterations of covarying microbiota, carbohydrate and energy metabolism in mucosa and lumen. Further studies should focus on the mucosal and luminal microbiome to provide a deeper spatiotemporal perspective of microbial alterations in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Teng Teng
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- grid.7872.a0000000123318773Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael Maes
- grid.7922.e0000 0001 0244 7875Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.35371.330000 0001 0726 0380Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria ,grid.1021.20000 0001 0526 7079School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC Australia
| | - Yuanliang Jiang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shouhuan Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.70000 0004 1758 417XDepartment of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqing Huang
- Shanghai Applied Protein Technology Co., Ltd, Shanghai, China
| | - Julio Licinio
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY USA ,grid.411023.50000 0000 9159 4457Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
208
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
209
|
Li C, Qu Z, Liu J, Ruan S, Chen B, Ran J, Shu W, Chen Y, Hou W. Effect of electroacupuncture on the intestinal microflora in rats with stress urinary incontinence. Front Endocrinol (Lausanne) 2022; 13:860100. [PMID: 35992152 PMCID: PMC9390059 DOI: 10.3389/fendo.2022.860100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To examine the effect of electroacupuncture on the urodynamics and gut microbiota of rats with stress urinary incontinence (SUI). MATERIALS AND METHODS Thirty 2-month-old female Sprague-Dawley (SD) rats were randomly assigned to 4 groups: normal (N), model (M), nonacupoint electric acupuncture control (NAAC), and electroacupuncture (EA). An SUI rat model was established through vaginal balloon dilatation and bilateral oophorectomy. After various treatments, urodynamic tests were performed, and feces were collected. 16S rRNA sequencing analysis was used to investigate SUI-related changes in the intestinal flora. RESULTS After treatment, compared with those of the M group, the leak point pressure and maximum bladder capacity of the electroacupuncture groups increased (P<0.05). The species community compositions of the N and M groups differed at the genus level, and there were 15 differentially abundant bacterial genera (P<0.05). The Blautia proportion was increased by electroacupuncture treatment (P<0.05) and was significantly positively correlated with the electroacupuncture treatment of SUI (according to Spearman correlation analysis). CONCLUSION Electroacupuncture treatment can improve signs of urine leakage in rats with SUI rats by increasing the leak point pressure and maximum bladder capacity. The enrichment of Blautia by electroacupuncture treatment enrichment may be related to SUI sign improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuelai Chen
- *Correspondence: Wenguang Hou, ; Yuelai Chen,
| | | |
Collapse
|
210
|
Sun C, Chen L, Yang H, Sun H, Xie Z, Zhao B, Jiang X, Qin B, Shen Z. Involvement of Gut Microbiota in the Development of Psoriasis Vulgaris. Front Nutr 2021; 8:761978. [PMID: 34881280 PMCID: PMC8646027 DOI: 10.3389/fnut.2021.761978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives: Psoriasis is a common chronic recurrent dermatitis. Accumulating observations show gut microbiota dysbiosis in psoriasis. We intend to further investigate the relationship between intestinal microbiota and psoriasis development. Design: We first performed an epidemiological investigation on differences of gastrointestinal discomfort symptoms between patients with psoriasis and general population. Then variation of gut microbiota in patients with psoriasis (un)treated with acitretin plus narrow-band ultraviolet B (NB-UVB) was analyzed by 16S rRNA sequencing. We last compared recovery status and vital cytokines (lesion and intestine) of mouse psoriasiform models, which were transplanted with fecal microbiota from patients with psoriasis or healthy controls. Results: (1) About 85.5% of patients with psoriasis vs. 58.1% of healthy controls presented with at least one gastrointestinal symptom. The prevalence of investigated symptoms (e.g., abdominal distension and constipation) were significantly higher in patients, compared with controls (p < 0.05). Passing flatus and constipation were significantly correlated with psoriasis (p < 0.05 in both cases). (2) The abundance of Ruminococcaceae family, Coprococcus_1 genus, and Blautia genus were decreased with psoriasis improvement (p < 0.05, respectively), which had been demonstrated significantly increased in psoriasis. (3) Mice receiving psoriatic microbes transplantation showed delayed recovery of psoriasiform dermatitis and less reduction of interleukin (IL)-17A than those receiving healthy microbiota or blank control (p < 0.05 and p < 0.01, respectively). Conclusion: Multiple evidence we provided here preliminarily demonstrates the involvement of gut microbiota in the different degree of psoriasis activity. The strategy based on overall microbial communities is expected to be a promising supplementary for long-term management of psoriasis.
Collapse
Affiliation(s)
- Chaonan Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, School of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hongjiang Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhen Xie
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Bei Zhao
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xuemei Jiang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Bi Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Acupuncture & Moxibustion Research Institute, Sichuan Academy of Traditional Chinese Medicine, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Zhu Shen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
211
|
A prospective interventional trial on the effect of periodontal treatment on Fusobacterium nucleatum abundance in patients with colorectal tumours. Sci Rep 2021; 11:23719. [PMID: 34887459 PMCID: PMC8660914 DOI: 10.1038/s41598-021-03083-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 12/09/2022] Open
Abstract
Fusobacterium nucleatum is associated with the progression of colorectal cancer. Thus, the possibility of preventing colorectal cancer or its progression by targeting F. nucleatum has been explored. As F. nucleatum is associated with periodontitis, we analysed whether treating periodontitis could influence F. nucleatum abundance in the colon. Patients with colorectal tumours who underwent colonoscopy were recruited. Patients diagnosed with periodontitis by a dentist were treated for approximately 3 months. Endoscopic resection of colorectal tumours was performed after periodontitis treatment, and resected tumours were pathologically classified as high-(HGD) or low-grade dysplasia (LGD). Saliva and stool samples were collected before and after the treatment. Of the 58 patients with colorectal tumours, 31 were included in the study, 16 showed improvement in periodontitis, and 11 showed no improvement. Stool F. nucleatum levels before treatment were significantly lower in the LGD group than in the HGD group. A significant decrease in faecal F. nucleatum levels was observed in patients who underwent successful treatment but not in those whose treatment failed. Salivary F. nucleatum levels were not altered in patients despite periodontal treatment. Thus, successful periodontitis treatment reduces stool F. nucleatum levels and may aid research on periodontitis and suppression of colorectal cancer development.
Collapse
|
212
|
Chen Y, Lin H, Cole M, Morris A, Martinson J, Mckay H, Mimiaga M, Margolick J, Fitch A, Methe B, Srinivas VR, Peddada S, Rinaldo CR. Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. MICROBIOME 2021; 9:237. [PMID: 34879869 PMCID: PMC8656045 DOI: 10.1186/s40168-021-01168-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Men who have sex with men (MSM) have been disproportionately affected by HIV-1 since the beginning of the AIDS pandemic, particularly in the USA and Europe. Compared to men who have sex with women (MSW), MSM have a distinct fecal microbiome regardless of HIV-1 infection. However, it is unclear whether the MSM-associated gut microbiome affects the susceptibility and progression of HIV-1 infection. We studied fecal microbiome profiles, short-chain fatty acids, and blood plasma inflammatory cytokines of 109 HIV-1 seroconverters (SC) from the early, 1984-1985 phase of the HIV-1 pandemic in the Multicenter AIDS Cohort Study (MACS) before and after HIV-1 infection compared to 156 HIV-1-negative MACS MSM (negative controls [NC]). RESULTS We found that family Succinivibrionaceae, S24-7, Mogibacteriaceae, Coriobacteriaceae, and Erysipelotrichaceae were significantly higher (p<0.05), whereas Odoribacteraceae, Verucomicrobiaceae, Bacteroidaceae, Barnesiellaceae, and Rikenellaceae were significantly lower (p<0.05), in SC before HIV-1 infection compared to NC. At the species level, Prevotella stercorea, Eubacterium biforme, and Collinsella aerofaciens were significantly higher (p<0.05), and Eubacterium dolichum, Desulfovibrio D168, Alistipes onderdonkii, Ruminococcus torques, Bacteroides fragilis, Bacteroides caccae, Alistipes putredinis, Akkermansia muciniphila, Bacteroides uniformis, and Bacteroides ovatus were significantly lower (p<0.05) in SC before HIV-1 infection compared to NC. After HIV-1 infection, family Prevotellaceae and Victivallaceae and species Bacteroides fragilis and Eubacterium cylindroides were significantly higher (p<0.05) in SC who developed AIDS within 5 years compared to the SC who were AIDS free for more than 10 years without antiretroviral therapy (ART). In addition, family Victivallaceae and species Prevotella stercorea, Coprococcus eutactus, and Butyrivibrio crossotus were significantly higher (p<0.05) and Gemmiger formicilis and Blautia obeum were significantly lower (p<0.05) after HIV-1 infection in SC who developed AIDS within 5-10 years compared to the SC who were AIDS-free for more than 10 years without ART. Furthermore, plasma inflammatory cytokine levels of sCD14, sCD163, interleukin 6, and lipopolysaccharide binding protein were significantly higher in SC with p<0.05 before HIV-1 infection compared to NC. CONCLUSIONS Our results suggest that pathogenic changes in the gut microbiome were present in MSM several months prior to infection with HIV-1 in the early phase of the AIDS pandemic in the USA. This was associated with increased inflammatory biomarkers in the blood and risk for development of AIDS. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Huang Lin
- Current address: Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD USA
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Mariah Cole
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Heather Mckay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Matthew Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA USA
| | - Joseph Margolick
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Adam Fitch
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Barbara Methe
- Present address: Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY USA
| | - Vatsala Rangachar Srinivas
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Shyamal Peddada
- Current address: Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD USA
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| |
Collapse
|
213
|
Pal G, Ramirez V, Engen PA, Naqib A, Forsyth CB, Green SJ, Mahdavinia M, Batra PS, Tajudeen BA, Keshavarzian A. Deep nasal sinus cavity microbiota dysbiosis in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:111. [PMID: 34880258 PMCID: PMC8655044 DOI: 10.1038/s41531-021-00254-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Olfactory dysfunction is a pre-motor symptom of Parkinson’s disease (PD) that appears years prior to diagnosis and can affect quality of life in PD. Changes in microbiota community in deep nasal cavity near the olfactory bulb may trigger the olfactory bulb-mediated neuroinflammatory cascade and eventual dopamine loss in PD. To determine if the deep nasal cavity microbiota of PD is significantly altered in comparison to healthy controls, we characterized the microbiota of the deep nasal cavity using 16S rRNA gene amplicon sequencing in PD subjects and compared it to that of spousal and non-spousal healthy controls. Correlations between microbial taxa and PD symptom severity were also explored. Olfactory microbial communities of PD individuals were more similar to those of their spousal controls than to non-household controls. In direct comparison of PD and spousal controls and of PD and non-spousal controls, significantly differently abundant taxa were identified, and this included increased relative abundance of putative opportunistic-pathobiont species such as Moraxella catarrhalis. M. catarrhalis was also significantly correlated with more severe motor scores in PD subjects. This proof-of-concept study provides evidence that potential pathobionts are detected in the olfactory bulb and that a subset of changes in the PD microbiota community could be a consequence of unique environmental factors associated with PD living. We hypothesize that an altered deep nasal microbiota, characterized by a putative pro-inflammatory microbial community, could trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Gian Pal
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Vivian Ramirez
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Phillip A Engen
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Ankur Naqib
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA.,Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| | - Mahboobeh Mahdavinia
- Department of Internal Medicine, Allergy/Immunology Division, Rush University Medical Center, Chicago, IL, USA
| | - Pete S Batra
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Bobby A Tajudeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA. .,Department of Medicine & Physiology, Rush University Medical Center, Chicago, IL, USA. .,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
214
|
Cai C, Zhang X, Liu Y, Shen E, Feng Z, Guo C, Han Y, Ouyang Y, Shen H. Gut microbiota imbalance in colorectal cancer patients, the risk factor of COVID-19 mortality. Gut Pathog 2021; 13:70. [PMID: 34863291 PMCID: PMC8643189 DOI: 10.1186/s13099-021-00466-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background COVID-19 pandemic is sweeping across the world. Previous studies have shown that gut microbiota is associated with COVID-19, and operational taxonomic unit (OTU) composed of Blautia genus, Lactobacillus genus, and Ruminococcus genus of Firmicutes is correlated with the severity of COVID-19. Gut microbiota imbalance in colorectal cancer patients may lead to the variation of OTU. Results Based on the GMrepo database, the gut microbiota of 1374 patients with colorectal neoplasms and 27,329 healthy people was analyzed to investigate the differences in the abundance of microbes between colorectal neoplasms patients and healthy people. Furthermore, We collected feces samples from 12 patients with colorectal cancer and 8 healthy people in Xiangya hospital for metabolomic analysis to investigate the potential mechanisms. Our study showed that the abundance of Blautia and Ruminococcus was significantly increased in colorectal neoplasms, which may increase the severity of COVID-19. The gender and age of patients may affect the severity of COVID-19 by shaping the gut microbiota, but the BMI of patients does not. Conclusions Our work draws an initial point that gut microbiota imbalance is a risk factor of COVID-19 mortality and gut microbiota may provide a new therapeutic avenue for colorectal cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00466-w.
Collapse
Affiliation(s)
- Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiuhua Road, Haikou, 570311, Hainan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
215
|
Wassenaar TM. Functional insights on probiotics activity in the gut from metagenomic data. Benef Microbes 2021; 12:613-615. [PMID: 34674608 DOI: 10.3920/bm2021.x002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| |
Collapse
|
216
|
Zhang J, Yang Y, Han H, Zhang L, Wang T. Bisdemethoxycurcumin attenuates lipopolysaccharide-induced intestinal damage through improving barrier integrity, suppressing inflammation, and modulating gut microbiota in broilers. J Anim Sci 2021; 99:6401757. [PMID: 34664650 DOI: 10.1093/jas/skab296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bisdemethoxycurcumin has good antioxidant and anti-inflammatory effects and has been widely used as food and feed supplements in the form of curcuminoids. However, the beneficial effect of individual bisdemethoxycurcumin on preventing lipopolysaccharide (LPS)-induced inflamed intestinal damage is unclear. The present study aimed to investigate whether dietary bisdemethoxycurcumin supplementation could attenuate LPS-induced intestinal damage and alteration of cecal microbiota in broiler chickens. In total, 320 one-day-old male Arbor Acres broiler chickens with a similar weight were randomly divided into four treatments. The treatments were designed as a 2 × 2 factorial arrangement: basal diet (CON); 150 mg/kg bisdemethoxycurcumin diet (BUR); LPS challenge + basal diet (LPS); LPS challenge + 150 mg/kg bisdemethoxycurcumin diet (L-BUR). Results showed that dietary bisdemethoxycurcumin supplementation attenuated the LPS-induced decrease of average daily feed intake. LPS challenge compromised the intestinal morphology and disrupted the intestinal tight junction barrier. Dietary bisdemethoxycurcumin supplementation significantly increased villus length:crypt depth ratio and upregulated the mRNA expression of intestinal tight junction proteins. Moreover, a remarkably reduced mRNA expression of inflammatory mediators was observed following bisdemethoxycurcumin supplementation. The cecal microbiota analysis showed that bisdemethoxycurcumin supplementation increased the relative abundance of the genus Faecalibacterium while decreased the relative abundance of the genera Bacteroides and Subdoligranulum. In conclusion, dietary bisdemethoxycurcumin supplementation could counteract LPS-induced inflamed intestinal damage in broiler chickens by improving intestinal morphology, maintaining intestinal tight junction, downregulating pro-inflammatory mediators, and restoring cecal microbiota.
Collapse
Affiliation(s)
- Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxiang Yang
- Bluestar Adisseo Nanjing Co. Ltd., Nanjing, 210000, China
| | - Hongli Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
217
|
Teh JJ, Berendsen EM, Hoedt EC, Kang S, Zhang J, Zhang F, Liu Q, Hamilton AL, Wilson-O’Brien A, Ching J, Sung JJY, Yu J, Ng SC, Kamm MA, Morrison M. Novel strain-level resolution of Crohn's disease mucosa-associated microbiota via an ex vivo combination of microbe culture and metagenomic sequencing. THE ISME JOURNAL 2021; 15:3326-3338. [PMID: 34035441 PMCID: PMC8528831 DOI: 10.1038/s41396-021-00991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The mucosa-associated microbiota is widely recognized as a potential trigger for Crohn's disease pathophysiology but remains largely uncharacterised beyond its taxonomic composition. Unlike stool microbiota, the functional characterisation of these communities using current DNA/RNA sequencing approaches remains constrained by the relatively small microbial density on tissue, and the overwhelming amount of human DNA recovered during sample preparation. Here, we have used a novel ex vivo approach that combines microbe culture from anaerobically preserved tissue with metagenome sequencing (MC-MGS) to reveal patient-specific and strain-level differences among these communities in post-operative Crohn's disease patients. The 16 S rRNA gene amplicon profiles showed these cultures provide a representative and holistic representation of the mucosa-associated microbiota, and MC-MGS produced both high quality metagenome-assembled genomes of recovered novel bacterial lineages. The MC-MGS approach also produced a strain-level resolution of key Enterobacteriacea and their associated virulence factors and revealed that urease activity underpins a key and diverse metabolic guild in these communities, which was confirmed by culture-based studies with axenic cultures. Collectively, these findings using MC-MGS show that the Crohn's disease mucosa-associated microbiota possesses taxonomic and functional attributes that are highly individualistic, borne at least in part by novel bacterial lineages not readily isolated or characterised from stool samples using current sequencing approaches.
Collapse
Affiliation(s)
- J. J. Teh
- grid.1003.20000 0000 9320 7537The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD Australia
| | - E. M. Berendsen
- grid.1003.20000 0000 9320 7537The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD Australia ,Present Address: Wacker Biotech B.V., Amsterdam, The Netherlands
| | - E. C. Hoedt
- grid.1003.20000 0000 9320 7537The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD Australia ,grid.413648.cPresent Address: NHMRC Centre of Research Excellence (CRE) in Digestive Health, Hunter Medical Research Institute (HMRI), Newcastle, NSW Australia
| | - S. Kang
- grid.1003.20000 0000 9320 7537The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD Australia
| | - J. Zhang
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - F. Zhang
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Q. Liu
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - A. L. Hamilton
- grid.413105.20000 0000 8606 2560Department of Gastroenterology, St Vincent’s Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, The University of Melbourne, Melbourne, VIC Australia
| | - A. Wilson-O’Brien
- grid.413105.20000 0000 8606 2560Department of Gastroenterology, St Vincent’s Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, The University of Melbourne, Melbourne, VIC Australia
| | - J. Ching
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - J. J. Y. Sung
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China ,grid.59025.3b0000 0001 2224 0361Present Address: Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - J. Yu
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China ,grid.10784.3a0000 0004 1937 0482Center for Gut Microbiota Research, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - S. C. Ng
- grid.10784.3a0000 0004 1937 0482Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China ,grid.10784.3a0000 0004 1937 0482Center for Gut Microbiota Research, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - M. A. Kamm
- grid.413105.20000 0000 8606 2560Department of Gastroenterology, St Vincent’s Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, The University of Melbourne, Melbourne, VIC Australia
| | - M. Morrison
- grid.1003.20000 0000 9320 7537The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD Australia
| |
Collapse
|
218
|
Giannari D, Ho CH, Mahadevan R. A gap-filling algorithm for prediction of metabolic interactions in microbial communities. PLoS Comput Biol 2021; 17:e1009060. [PMID: 34723959 PMCID: PMC8584699 DOI: 10.1371/journal.pcbi.1009060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The study of microbial communities and their interactions has attracted the interest of the scientific community, because of their potential for applications in biotechnology, ecology and medicine. The complexity of interspecies interactions, which are key for the macroscopic behavior of microbial communities, cannot be studied easily experimentally. For this reason, the modeling of microbial communities has begun to leverage the knowledge of established constraint-based methods, which have long been used for studying and analyzing the microbial metabolism of individual species based on genome-scale metabolic reconstructions of microorganisms. A main problem of genome-scale metabolic reconstructions is that they usually contain metabolic gaps due to genome misannotations and unknown enzyme functions. This problem is traditionally solved by using gap-filling algorithms that add biochemical reactions from external databases to the metabolic reconstruction, in order to restore model growth. However, gap-filling algorithms could evolve by taking into account metabolic interactions among species that coexist in microbial communities. In this work, a gap-filling method that resolves metabolic gaps at the community level was developed. The efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was applied to resolve metabolic gaps and predict metabolic interactions in a community of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the human gut microbiota, and in an experimentally studied community of Dehalobacter and Bacteroidales species of the ACT-3 community. The community gap-filling method can facilitate the improvement of metabolic models and the identification of metabolic interactions that are difficult to identify experimentally in microbial communities.
Collapse
Affiliation(s)
- Dafni Giannari
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- The Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
219
|
Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases 2021; 9:diseases9040079. [PMID: 34842660 PMCID: PMC8628792 DOI: 10.3390/diseases9040079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed cancers worldwide. Traditionally, mechanisms of colorectal cancer formation have focused on genetic alterations including chromosomal damage and microsatellite instability. In recent years, there has been a growing body of evidence supporting the role of inflammation in colorectal cancer formation. Multiple cytokines, immune cells such T cells and macrophages, and other immune mediators have been identified in pathways leading to the initiation, growth, and metastasis of colorectal cancer. Outside the previously explored mechanisms and pathways leading to colorectal cancer, initiatives have been shifted to further study the role of inflammation in pathogenesis. Inflammatory pathways have also been linked to some traditional risk factors of colorectal cancer such as obesity, smoking and diabetes, as well as more novel associations such as the gut microbiome, the gut mycobiome and exosomes. In this review, we will explore the roles of obesity and diet, smoking, diabetes, the microbiome, the mycobiome and exosomes in colorectal cancer, with a specific focus on the underlying inflammatory and metabolic pathways involved. We will also investigate how the study of colon cancer from an inflammatory background not only creates a more holistic and inclusive understanding of this disease, but also creates unique opportunities for prevention, early diagnosis and therapy.
Collapse
|
220
|
Ma C, He J, Lai L, Chen Y, Xue W, Chen J, Dai W, Tang D, Yan Q, Dai Y. Intestinal microbiome and metabolome analyses reveal metabolic disorders in the early stage of renal transplantation. Mol Omics 2021; 17:985-996. [PMID: 34676841 DOI: 10.1039/d1mo00279a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Renal transplantation is the most effective treatment for end-stage renal disease, but the long-term prognosis of organs after transplantation is not ideal. In recent years, the importance of gut microbes and metabolites in the study of disease mechanisms has gradually received attention. However, the coordination between gut microbes and the metabolism of renal transplant patients needs further study. We integrated 16s sequencing and metabolomics data to describe the changes in the serum and fecal metabolites of renal transplant patients. Our data revealed that the gut microbial diversity decreased and the relative abundance of many bacteria, such as Enterococcus and Streptococcus, significantly changed after transplantation. In addition, a large number of amino acids and peptides in serum and feces significantly changed, suggesting an abnormal amino acid metabolism after transplantation. Spearman's correlation analysis revealed the changes in the co-metabolism pattern between gut microbes and the host metabolism after transplantation. Furthermore, Enterococcus was found to be correlated with renal functions and metabolites reflecting renal damage. This study provides potential gut microbes and metabolites impacting renal health, which helps in understanding the renal damage in patients with kidney transplantation.
Collapse
Affiliation(s)
- Chiyu Ma
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China. .,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Liusheng Lai
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China.
| | - Yumei Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wen Xue
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China.
| | - Jieping Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Donge Tang
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China. .,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China.
| | - Yong Dai
- Guangxi Key Laboratory of Metabolic Disease Research, Nephrology Department, Central Laboratory of Guilin, NO. 924 Hospital, Guilin, 541002, China. .,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| |
Collapse
|
221
|
Montalban-Arques A, Katkeviciute E, Busenhart P, Bircher A, Wirbel J, Zeller G, Morsy Y, Borsig L, Glaus Garzon JF, Müller A, Arnold IC, Artola-Boran M, Krauthammer M, Sintsova A, Zamboni N, Leventhal GE, Berchtold L, de Wouters T, Rogler G, Baebler K, Schwarzfischer M, Hering L, Olivares-Rivas I, Atrott K, Gottier C, Lang S, Boyman O, Fritsch R, Manz MG, Spalinger MR, Scharl M. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe 2021; 29:1573-1588.e7. [PMID: 34453895 DOI: 10.1016/j.chom.2021.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Despite overall success, T cell checkpoint inhibitors for cancer treatment are still only efficient in a minority of patients. Recently, intestinal microbiota was found to critically modulate anti-cancer immunity and therapy response. Here, we identify Clostridiales members of the gut microbiota associated with a lower tumor burden in mouse models of colorectal cancer (CRC). Interestingly, these commensal species are also significantly reduced in CRC patients compared with healthy controls. Oral application of a mix of four Clostridiales strains (CC4) in mice prevented and even successfully treated CRC as stand-alone therapy. This effect depended on intratumoral infiltration and activation of CD8+ T cells. Single application of Roseburia intestinalis or Anaerostipes caccae was even more effective than CC4. In a direct comparison, the CC4 mix supplementation outperformed anti-PD-1 therapy in mouse models of CRC and melanoma. Our findings provide a strong preclinical foundation for exploring gut bacteria as novel stand-alone therapy against solid tumors.
Collapse
Affiliation(s)
- Ana Montalban-Arques
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Busenhart
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Anne Müller
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mariela Artola-Boran
- Institute for Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Department of Quantitative Biomedicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Olivares-Rivas
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Claudia Gottier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph Fritsch
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
222
|
Li Y, Liu Y, Wu J, Chen Q, Zhou Q, Wu F, Zhang R, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Wu D, Che L. Comparative effects of enzymatic soybean, fish meal and milk powder in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. J Anim Sci Biotechnol 2021; 12:106. [PMID: 34615550 PMCID: PMC8496045 DOI: 10.1186/s40104-021-00625-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background The objective of this study was to evaluate the replacement effects of milk powder (MK) and fish meal (FM) by enzymatic soybean (ESB) in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. Methods A total of 128 piglets with initial body weight at 6.95 ± 0.46 kg, were randomly assigned into 4 dietary treatments with 8 replicates per treatment and 4 piglets per replicate for a period of 14 d. Piglets were offered iso-nitrogenous and iso-energetic diets as follows: CON diet with MK and FM as high quality protein sources, ESB plus FM diet with ESB replacing MK, ESB plus MK diet with ESB replacing FM, and ESB diet with ESB replacing both MK and FM. Results No significant differences were observed in growth performance among all treatments (P > 0.05). However, piglets fed ESB plus FM or ESB diet had increased diarrhea index (P<0.01), and lower digestibility of dry matter (DM), gross energy (GE) or crude protein (CP), relative to piglets fed CON diet (P < 0.01). Moreover, the inclusion of ESB in diet markedly decreased the plasma concentration of HPT and fecal concentration of butyric acid (BA) (P<0.01). The High-throughput sequencing of 16S rRNA gene V3−V4 region of gut microbiome revealed that the inclusion of ESB in diet increased the alpha diversity, and the linear discriminant analysis effect size (LEfSe) showed that piglets fed with ESB plus FM or ESB diet contained more gut pathogenic bacteria, such as g_Peptococcus, g_Veillonella and g_Helicobacter. Conclusion The inclusion of ESB in diet did not markedly affect growth performance of piglets, but the replacement of MK or both MK and FM by ESB increased diarrhea index, which could be associated with lower nutrients digestibility and more gut pathogenic bacteria. However, piglets fed diet using ESB to replace FM did not markedly affect gut health-related parameters, indicating the potential for replacing FM with ESB in weaning diet.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiangnan Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiuhong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
223
|
16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms221910747. [PMID: 34639088 PMCID: PMC8509685 DOI: 10.3390/ijms221910747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the Western world and intestinal dysbiosis might contribute to its pathogenesis. The mucosal colon microbiome and C-C motif chemokine 2 (CCL2) were investigated in 20 healthy controls (HC) and 20 CRC patients using 16S rRNA sequencing and immunoluminescent assay, respectively. A total of 10 HC subjects were classified as overweight/obese (OW/OB_HC) and 10 subjects were normal weight (NW_HC); 15 CRC patients were classified as OW/OB_CRC and 5 patients were NW_CRC. Results: Fusobacterium nucleatum and Escherichia coli were more abundant in OW/OB_HC than in NW_HC microbiomes. Globally, Streptococcus intermedius, Gemella haemolysans, Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli were significantly increased in CRC patient tumor/lesioned tissue (CRC_LT) and CRC patient unlesioned tissue (CRC_ULT) microbiomes compared to HC microbiomes. CCL2 circulating levels were associated with tumor presence and with the abundance of Fusobacterium nucleatum, Bacteroides fragilis and Gemella haemolysans. Our data suggest that mucosal colon dysbiosis might contribute to CRC pathogenesis by inducing inflammation. Notably, Fusobacterium nucleatum, which was more abundant in the OW/OB_HC than in the NW_HC microbiomes, might represent a putative link between obesity and increased CRC risk.
Collapse
|
224
|
Cui S, Gu J, Liu X, Li D, Mao B, Zhang H, Zhao J, Chen W. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5721-5729. [PMID: 33650140 DOI: 10.1002/jsfa.11181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lactulose was one of the earliest prebiotics to be identified. To assess the potential risk of large intakes of lactulose to the intestinal microbiota, mice were fed a diet containing lactulose (0%, 5% and 15%, w/w) for 2 weeks and the changes in the fecal microbiota were evaluated by 16S rRNA high-throughput sequencing. RESULTS Lactulose intervention decreased the α-diversity of the fecal microbiota in both low-dose and high-dose groups. The relative abundance of Actinobacteria was significantly increased, while that of Bacteroidetes was significantly decreased after lactulose intervention. At the genus level, the relative abundance of Bifidobacterium belonging to Actinobacteria was significantly increased, and that of Alistipes belonging to Bacteroidetes was decreased in both low-dose and high-dose groups. The relative abundance of Blautia was significantly increased from 0.2% to 7.9% in the high-dose group and one strain of Blautia producta was isolated from the mice feces. However, the strain could not utilize lactulose. CONCLUSION Overall, the microbial diversity was decreased after lactulose treatment, with significant increases in the relative abundance of Bifidobacterium. We also provide a strategy to increase the relative abundance of Blautia in the intestine by lactulose feeding at high doses, although the mechanism is not revealed. This will help us understand the prebiotic effect of lactulose on the host health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, P. R. China
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| |
Collapse
|
225
|
Zwinsová B, Petrov VA, Hrivňáková M, Smatana S, Micenková L, Kazdová N, Popovici V, Hrstka R, Šefr R, Bencsiková B, Zdražilová-Dubská L, Brychtová V, Nenutil R, Vídeňská P, Budinská E. Colorectal Tumour Mucosa Microbiome Is Enriched in Oral Pathogens and Defines Three Subtypes That Correlate with Markers of Tumour Progression. Cancers (Basel) 2021; 13:cancers13194799. [PMID: 34638284 PMCID: PMC8507728 DOI: 10.3390/cancers13194799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer (CRC) progression and explains part of the observed heterogeneity of the disease. Even though the shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape of the microbiome within CRC and its associations with clinical variables remain under-explored. We performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and stool swabs of 178 patients with stage 0-IV CRC to describe the tumour microbiome and its association with clinical variables. We identified new genera associated either with CRC tumour mucosa or CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI status. We found that the CRC microbiome is strongly correlated with the grade, location and stage, but these associations are dependent on the microbial environment. Our study opens new research avenues in the microbiome CRC biomarker detection of disease progression while identifying its limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).
Collapse
Affiliation(s)
- Barbora Zwinsová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Vyacheslav A. Petrov
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Martina Hrivňáková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Research Centre of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, 601 90 Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Natálie Kazdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Vlad Popovici
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Roman Šefr
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Beatrix Bencsiková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Lenka Zdražilová-Dubská
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Laboratory Medicine-Clinical Microbiology and Immunology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Veronika Brychtová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Petra Vídeňská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Eva Budinská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Correspondence:
| |
Collapse
|
226
|
Nouri R, Hasani A, Shirazi KM, Aliand MR, Sepehri B, Sotoodeh S, Hemmati F, Rezaee MA. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr Pharm Biotechnol 2021; 23:1257-1268. [PMID: 34514986 DOI: 10.2174/1389201022666210910094827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world. Specific strains of intestinal Escherichia coli (E. coli) may influence the initiation and development of CRC by exploiting virulence factors and inflammatory pathways. Mucosa-associated E. coli strains are more prevalent in CRC biopsies in comparison to healthy controls. Moreover, these strains can survive and replicate within macrophages and induce a pro-inflammatory response. Chronic exposure to inflammatory mediators can lead to increased cell proliferation and cancer. Production of colobactin toxin by the majority of mucosa-associated E. coli isolated from CRC patients is another notable finding. Colibactin-producing E. coli strains, in particular, induce double-strand DNA breaks, stop the cell cycle, involve in chromosomal rearrangements of mammalian cells and are implicated in carcinogenic effects in animal models. Moreover, some enteropathogenic E. coli (EPEC) strains are able to survive and replicate in colon cells as chronic intracellular pathogens and may promote susceptibility to CRC by downregulation of DNA Mismatch Repair (MMR) proteins. In this review, we discuss current evidence and focus on the mechanisms by which E. coli can influence the development of CRC.
Collapse
Affiliation(s)
- Rogayeh Nouri
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Kourosh Masnadi Shirazi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Reza Aliand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bita Sepehri
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Simin Sotoodeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | | |
Collapse
|
227
|
Fei N, Choo-Kang C, Reutrakul S, Crowley SJ, Rae D, Bedu-Addo K, Plange-Rhule J, Forrester TE, Lambert EV, Bovet P, Riesen W, Korte W, Luke A, Layden BT, Gilbert JA, Dugas LR. Gut microbiota alterations in response to sleep length among African-origin adults. PLoS One 2021; 16:e0255323. [PMID: 34495955 PMCID: PMC8425534 DOI: 10.1371/journal.pone.0255323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are increasingly being characterized in modern society as contributing to a host of serious medical problems, including obesity and metabolic syndrome. Changes to the microbial community in the human gut have been reportedly associated with many of these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on the gut microbiota in a large cohort of 655 participants of African descent, aged 25-45, from Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was self-reported via a questionnaire. Participants were classified into 3 sleep groups: short (<7hrs), normal (7-<9hrs), and long (≥9hrs). Forty-seven percent of US participants were classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial composition analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity negatively correlated with sleep length (p<0.05). Furthermore, sleep length significantly contributed to the inter-individual beta diversity dissimilarity in gut microbial composition (p<0.01). Participants with both short and long-sleep durations exhibited significantly higher abundances of several taxonomic features, compared to normal sleep duration participants. The predicted relative proportion of two genes involved in the butyrate synthesis via lysine pathway were enriched in short sleep duration participants. Finally, co-occurrence relationships revealed by network analysis showed unique interactions among the short, normal and long duration sleepers. These results suggest that sleep length in humans may alter gut microbiota by driving population shifts of the whole microbiota and also specific changes in Exact Sequence Variants abundance, which may have implications for chronic inflammation associated diseases. The current findings suggest a possible relationship between disrupted sleep patterns and the composition of the gut microbiota. Prospective investigations in larger and more prolonged sleep researches and causally experimental studies are needed to confirm these findings, investigate the underlying mechanism and determine whether improving microbial homeostasis may buffer against sleep-related health decline in humans.
Collapse
Affiliation(s)
- Na Fei
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
| | - Sirimon Reutrakul
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
| | - Stephanie J. Crowley
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Kweku Bedu-Addo
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacob Plange-Rhule
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V. Lambert
- Department of Physiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | - Walter Riesen
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | - Wolfgang Korte
- Center for Laboratory Medicine, Canton Hospital, St. Gallen, Switzerland
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
| | - Brian T. Layden
- Department of Psychiatry & Behavioral Sciences, Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Jack A. Gilbert
- University of California San Diego, San Diego, California, United States of America
| | - Lara R. Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States of America
- Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
228
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
229
|
Sánchez-Alcoholado L, Laborda-Illanes A, Otero A, Ordóñez R, González-González A, Plaza-Andrades I, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Relationships of Gut Microbiota Composition, Short-Chain Fatty Acids and Polyamines with the Pathological Response to Neoadjuvant Radiochemotherapy in Colorectal Cancer Patients. Int J Mol Sci 2021; 22:9549. [PMID: 34502456 PMCID: PMC8430739 DOI: 10.3390/ijms22179549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has suggested that dysbiosis of the gut microbiota may influence the drug efficacy of colorectal cancer (CRC) patients during cancer treatment by modulating drug metabolism and the host immune response. Moreover, gut microbiota can produce metabolites that may influence tumor proliferation and therapy responsiveness. In this study we have investigated the potential contribution of the gut microbiota and microbial-derived metabolites such as short chain fatty acids and polyamines to neoadjuvant radiochemotherapy (RCT) outcome in CRC patients. First, we established a profile for healthy gut microbiota by comparing the microbial diversity and composition between CRC patients and healthy controls. Second, our metagenomic analysis revealed that the gut microbiota composition of CRC patients was relatively stable over treatment time with neoadjuvant RCT. Nevertheless, treated patients who achieved clinical benefits from RTC (responders, R) had significantly higher microbial diversity and richness compared to non-responder patients (NR). Importantly, the fecal microbiota of the R was enriched in butyrate-producing bacteria and had significantly higher levels of acetic, butyric, isobutyric, and hexanoic acids than NR. In addition, NR patients exhibited higher serum levels of spermine and acetyl polyamines (oncometabolites related to CRC) as well as zonulin (gut permeability marker), and their gut microbiota was abundant in pro-inflammatory species. Finally, we identified a baseline consortium of five bacterial species that could potentially predict CRC treatment outcome. Overall, our results suggest that the gut microbiota may have an important role in the response to cancer therapies in CRC patients.
Collapse
Grants
- CPI13/00003 Miguel Servet Type II" program, ISCIII, Spain; co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
- C-0030-2018 "Nicolas Monardes" research program of the Consejería de Salud, Junta de Andalucía, Spain
- CP19/00098 Miguel Servet Type I" program, ISCIII, Spain; co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
- PE-0106-2019 Predoctoral grant from the Consejería de Salud y Familia, co-funded by the Fondo Europeo de Desarrollo Regional-FEDER, Andalucia, Spain
- FI19-00112 predoctoral grant PFIS-ISCIII, co-funded by the Fondo Europeo de Desarrollo Regional-FEDER, Madrid, Spain.
- PI15/00256 Institute of Health "Carlos III" (ISCIII), co-funded by the Fondo Europeo de Desarrollo Regional-FEDER
Collapse
Affiliation(s)
- Lidia Sánchez-Alcoholado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Aurora Laborda-Illanes
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Ana Otero
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - Rafael Ordóñez
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Isaac Plaza-Andrades
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| | - Bruno Ramos-Molina
- Grupo de Obesidad y Metabolismo, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), 30120 Murcia, Spain;
| | - Jaime Gómez-Millán
- Unidad de Gestión Clínica de Oncología Radioterápica, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.O.); (R.O.)
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (L.S.-A.); (A.L.-I.); (A.G.-G.); (I.P.-A.)
| |
Collapse
|
230
|
Yuan B, Ma B, Yu J, Meng Q, Du T, Li H, Zhu Y, Sun Z, Ma S, Song C. Fecal Bacteria as Non-Invasive Biomarkers for Colorectal Adenocarcinoma. Front Oncol 2021; 11:664321. [PMID: 34447694 PMCID: PMC8383742 DOI: 10.3389/fonc.2021.664321] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal adenocarcinoma (CRC) ranks one of the five most lethal malignant tumors both in China and worldwide. Early diagnosis and treatment of CRC could substantially increase the survival rate. Emerging evidence has revealed the importance of gut microbiome on CRC, thus fecal microbial community could be termed as a potential screen for non-invasive diagnosis. Importantly, few numbers of bacteria genus as non-invasive biomarkers with high sensitivity and specificity causing less cost would be benefitted more in clinical compared with the whole microbial community analysis. Here we analyzed the gut microbiome between CRC patients and healthy people using 16s rRNA sequencing showing the divergence of microbial composition between case and control. Furthermore, ExtraTrees classifier was performed for the classification of CRC gut microbiome and heathy control, and 13 bacteria were screened as biomarkers for CRC. In addition, 13 biomarkers including 12 bacteria genera and FOBT showed an outstanding sensitivity and specificity for discrimination of CRC patients from healthy controls. This method could be used as a non-invasive method for CRC early diagnosis.
Collapse
Affiliation(s)
- Biao Yuan
- Department of Gastroenterological Surgery, Shanghai East Hospital, Tongji University of Medicine, Shanghai, China
| | - Bin Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jing Yu
- Research and Development Department, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China.,ECNU-PERSONAL Joint Laboratory of Genetic Detection and Application, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China
| | - Qingkai Meng
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tao Du
- Department of Gastroenterological Surgery, Shanghai East Hospital, Tongji University of Medicine, Shanghai, China
| | - Hongyi Li
- Research and Development Department, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China
| | - Yueyan Zhu
- Research and Development Department, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China
| | - Zikui Sun
- Research and Development Department, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China.,ECNU-PERSONAL Joint Laboratory of Genetic Detection and Application, Shanghai Personal Biotechnology Co., Ltd, Shanghai, China
| | - Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Chun Song
- Department of Gastroenterological Surgery, Shanghai East Hospital, Tongji University of Medicine, Shanghai, China
| |
Collapse
|
231
|
Wang J, Wang Y, Li Z, Gao X, Huang D. Global Analysis of Microbiota Signatures in Four Major Types of Gastrointestinal Cancer. Front Oncol 2021; 11:685641. [PMID: 34422640 PMCID: PMC8375155 DOI: 10.3389/fonc.2021.685641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
The gut microbiota has been previously linked with tumorigenesis and gastrointestinal cancer progression; however, intra-tumor microbiota analysis has just emerged and deserves increasing attention. Based on the public databases of The Cancer Microbiome Atlas (TCMA) and The Cancer Genome Atlas (TCGA), this study identified the tissue/organ microbial signatures generated from 443 biosamples of four major gastrointestinal cancer types, including esophageal carcinoma (ESCA), which further includes esophageal adenocarcinoma (EAD) and esophageal squamous cell carcinoma (ESCC), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ). According to partial least squares discrimination analysis (PLS-DA), the profile differences in microbial communities between the tumor and normal samples were not particularly noticeable across the four cancer cohorts, whereas paired comparison analyses revealed several specific differences in bacteria between tumor and normal samples in the EAD, STAD, and COAD samples. The taxa classified from the phylum to genus level revealed a trend of distinguishable microbial profiles between upper and lower gastrointestinal tumors. The Bacteroidetes/Firmicutes ratio in lower gastrointestinal tract tumors was nearly three times that in upper gastrointestinal tract tumors. We also determined the relative tissue/organ-prevalent microbes for each of the four cohorts at the order and genus levels. Microbe Alistipes, Blautia, Pasteurellales, and Porphyromonas compositions were correlated with the clinical characteristics of patients with gastrointestinal cancer, particularly colorectal cancer. Taken together, our findings indicate that microbial profiles shift across different gastrointestinal cancer types and that microbial colonization is highly site-specific. Composition of specific microbes can be indicative of cancer stage or disease progression. Overall, this study indicates that the microbial community and abundance in human tissues can be determined using publicly available data, and provides a new perspective for intra-tissue/organ microbiota research.
Collapse
Affiliation(s)
- Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhen Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Gao
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
232
|
Fan X, Jin Y, Chen G, Ma X, Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion 2021; 102:508-515. [PMID: 32932258 DOI: 10.1159/000508328] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gut microbiota is a diverse community of microbes that maintain the stability of the intestinal environment. Dysbiosis of the gut microbiota has been linked to gastrointestinal diseases, such as colorectal cancer (CRC) - a leading cause of death for cancer patients. SUMMARY Candidate pathogens have been identified using bacterial culture and high-throughput sequencing techniques. Currently, there is evidence to show that specific intestinal microbes drive CRC development and progression, yet their pathogenic mechanisms are still unclear. Key Messages: In this review, we describe the known healthy gut microbiota and its changes in CRC. We especially focus on exploring the pathogenic mechanisms of gut microbiota dysbiosis in CRC. This is crucial for explaining how gut microbiota dysbiosis drives the process of colorectal carcinogenesis and tumor progression. Evaluation of changes in the gut microbiota during CRC development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China.,Department of Neurology, Taizhou Second People's Hospital, Taizhou, China
| | - Yuelei Jin
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Xueqiang Ma
- Department of Gastrointestinal Surgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China
| | - Lixia Zhang
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, China,
| |
Collapse
|
233
|
Chen P, Tong M, Zeng H, Zheng B, Hu X. Structural characterization and in vitro fermentation by rat intestinal microbiota of a polysaccharide from Porphyra haitanensis. Food Res Int 2021; 147:110546. [PMID: 34399523 DOI: 10.1016/j.foodres.2021.110546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
A sulfated polysaccharide (PHP1) produced by the marine red alga Porphyra haitanensis was structurally characterized, and its effect on rat fecal microbiota fermentations and short chain fatty acids production were investigated. PHP1 was mainly composed of galactose and the main linkage types were identified as → 3)G4Sβ(1 → 3)G(1 → 6)G4Sα(1 → 4)LA(1 → 6)G4Sα(1→. The surface morphology of dried PHP1 films appears to be related to its chemical structure. PHP1 promoted the growth of both propionic acid-producing bacteria and propionic acid production, as well as influencing the composition and abundance of beneficial microbiota species in rats, which may be related to its high level of sulfation. The molecular weight of PHP1 decreased significantly after fermentation, which may result from hydrolysis of the galactan (with α- and β-linkages between galactose residues) by α- or β-galactosidase secreted by the microbiota. These results provided new insights into the structure-activity relationships between P. haitanensis polysaccharide and its regulation of microbiota in vivo.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyao Tong
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
234
|
Zhang M, Lv Y, Hou S, Liu Y, Wang Y, Wan X. Differential Mucosal Microbiome Profiles across Stages of Human Colorectal Cancer. Life (Basel) 2021; 11:831. [PMID: 34440574 PMCID: PMC8401903 DOI: 10.3390/life11080831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Emerging evidences link gut microbiota to colorectal cancer (CRC) initiation and development. However, the CRC stage- and spatial-specific bacterial taxa were less investigated, especially in a Chinese cohort, leading to our incomplete understanding of the functional roles of gut microbiota in promoting CRC progression and recurrence. Here, we report the composition and structure of gut microbiota across CRC stages I, II and III, by analyzing the gut mucosal microbiomes of 75 triplet-paired samples collected from on-tumor, adjacent-tumor and off-tumor sites and 26 healthy controls. We observed tumor-specific pattern of mucosal microbiome profiles as CRC progressed and identified ten bacterial taxa with high abundances (>1%) as potential biomarkers for tumor initiation and development. Peptostreptococcus and Parvimonas can serve as biomarkers for CRC stage I. Fusobacterium, Streptococcus, Parvimonas, Burkholderiales, Caulobacteraceae, Delftia and Oxalobacteraceae can serve as biomarkers for CRC stage II, while Fusobacterium, Burkholderiales, Caulobacteraceae, Oxalobacteraceae, Faecalibacterium and Sutterella can serve as biomarkers for CRC stage III. These biomarkers classified CRC stages I, II and III distinguished from each other with an area under the receiver-operating curve (AUC) > 0.5. Moreover, co-occurrence and co-excluding network analysis of these genera showed strong correlations in CRC stage I, which were subsequently reduced in CRC stages II and III. Our findings provide a reference index for stage-specific CRC diagnosis and suggest stage-specific roles of Peptostreptococcus, Fusobacterium, Streptococcus and Parvimonas in driving CRC progression.
Collapse
Affiliation(s)
- Mingqing Zhang
- Nankai University School of Medicine, Nankai University, Tianjin 300071, China;
- Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; (Y.L.); (Y.L.)
| | - Yongming Lv
- Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; (Y.L.); (Y.L.)
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI 96822, USA;
| | - Yanfei Liu
- Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; (Y.L.); (Y.L.)
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijia Wang
- Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; (Y.L.); (Y.L.)
| | - Xuehua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300071, China
| |
Collapse
|
235
|
Polysaccharides Obtained from Cordyceps militaris Alleviate Hyperglycemia by Regulating Gut Microbiota in Mice Fed a High-Fat/Sucrose Diet. Foods 2021; 10:foods10081870. [PMID: 34441649 PMCID: PMC8391476 DOI: 10.3390/foods10081870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023] Open
Abstract
Polysaccharides isolated from fungus Cordyceps militaris display multi-biofunctions, such as immunostimulation, down-regulation of hyperlipidemia, and anti-cancer function. The occurrence of obesity and metabolic syndrome is related to the imbalance of gut microbiota. In this study, the effects of C. militaris and its fractions on modifying metabolic syndrome in mice were evaluated. Mice were fed a high-fat/high-sucrose diet (HFSD) for 14 weeks to induce body weight increase and hyperlipidemia symptoms in mice, and then the mice were simultaneously given a HFSD and C. militaris samples for a further 8 weeks. The results indicated that the fruit body, polysaccharides, and cordycepin obtained from C. militaris had different efficacies on regulating metabolic syndrome and gut microbiota in HFSD-treated mice. Polysaccharides derived from C. militaris decreased the levels of blood sugar and serum lipids in mice fed HFSD. In addition, C. militaris-polysaccharide treatment obviously improved intestinal dysbiosis through promoting the population of next generation probiotic Akkermansia muciniphila in the gut of mice fed HFSD. In conclusion, polysaccharides derived from C. militaris have the potential to act as dietary supplements and health food products for modifying the gut microbiota to improve the metabolic syndrome.
Collapse
|
236
|
Costa LM, Mendes MM, Oliveira AC, Magalhães KG, Shivappa N, Hebert JR, da Costa THM, Botelho PB. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: a cross-sectional study. Eur J Nutr 2021; 61:341-355. [PMID: 34351455 DOI: 10.1007/s00394-021-02649-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether there is an association between the inflammatory potential of the diet, measured by the dietary inflammatory index (DII®), and the composition of intestinal microbiota in adults with functional constipation (FC). METHODS A cross-sectional study was carried out with 68 adults with FC. Energy-adjusted DII (E-DII) was calculated from data obtained from food surveys, serum inflammation markers were measured and the composition of the intestinal microbiota was evaluated using the 16S rRNA gene sequencing method. Participants were assigned into two groups: anti-inflammatory diet (AD: E-DII < 0) and pro-inflammatory diet (PD: E-DII ≥ 0). Associations of E-DII scores with microbial diversity and composition were examined using differences between the E-DII groups and linear and hierarchical regression. RESULTS E- DII was inversely correlated with relative abundance of Hungatella spp. and Bacteroides fragilis and positively correlated with Bacteroides thetaiotaomicron and Bacteroides caccae (p < 0.05). B. fragilis was positively correlated with IL-10. The AD group had higher relative abundances for the genus Blautia and Hungatella, lower abundances of Bacteroides thetaiotamicron and Bacteroides spp. (p < 0.05), as well as higher frequency of evacuation (p = 0.02) and lower use of laxatives (p = 0.05). The AD group showed a reduction in the abundance of Desulfovibrio spp. and Butyrivibrio, Butyrivibrio crossotus, Bacteroides clarus, Bacteroides coprophilus and Bacteroides intestinalis (all p < 0.05). The greater abundance of Bacteroides clarus increased the individual's chance of performing a manual evacuation maneuver. CONCLUSION Therefore, the results of this study demonstrated that the inflammatory potential of the diet is associated with the gut microbiota in individuals with FC.
Collapse
Affiliation(s)
- Lorena M Costa
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Marcela M Mendes
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Amanda C Oliveira
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasília, Brasília, DF, Brazil
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, USA
| | - Teresa H M da Costa
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Patrícia B Botelho
- Department of Nutrition, Faculty of Health Sciences, University of Brasília, Brasília, Brazil.
- Campus Universitário Darcy Ribeiro-Faculdade de Ciências da Saúde, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
237
|
Padakandla SR, Das T, Sai Prashanthi G, Angadi KK, Reddy SS, Reddy GB, Shivaji S. Dysbiosis in the Gut Microbiome in Streptozotocin-Induced Diabetes Rats and Follow-Up During Retinal Changes. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 34431974 PMCID: PMC8399471 DOI: 10.1167/iovs.62.10.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose To analyze the gut bacterial microbiome of streptozotocin-induced diabetic rats and rats with retinal changes. Methods Induction of diabetes was confirmed by an increase in blood sugar (>150 mg/dL), and the progression of diabetes with retinal changes was assessed by histology and immunohistochemistry of retinal sections. Microbiomes were generated using fecal DNA, and the V3–V4 amplicons were sequenced and analyzed by QIIME and R. Results Dysbiosis in the gut microbiome of diabetic rats and diabetic rats with retinal changes was observed at the phylum and genus levels compared with the control rats. Heat-map analysis based on the differentially abundant genera indicated that the microbiomes of controls and diabetic rats separated into two distinct clusters. The majority of the microbiomes in diabetic rats with retinal changes also formed a distinct cluster from the control rats. β-diversity analysis separated the microbiome of control rats from the microbiome of diabetic rats and diabetic rats with retinal changes, but the microbiomes of diabetic rats and diabetic rats with retinal changes showed an overlap. Functional analysis indicated that the enhanced inflammation in diabetic rats showing retinal changes could be ascribed to a decrease in anti-inflammatory bacteria and an increase in pathogenic and proinflammatory bacteria. Conclusions This study showed that the gut bacterial microbiome in diabetic rats with retinal changes was different compared with control rats. The results could help develop novel therapeutics for diabetics and diabetic individuals with retinal changes.
Collapse
Affiliation(s)
- Shalem Raj Padakandla
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Taraprasad Das
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gumpili Sai Prashanthi
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kiran Kumar Angadi
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - S Sreenivasa Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Sisinthy Shivaji
- Prof Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
238
|
Bisht V, Acharjee A, Gkoutos GV. NFnetFu: A novel workflow for microbiome data fusion. Comput Biol Med 2021; 135:104556. [PMID: 34216888 PMCID: PMC8404037 DOI: 10.1016/j.compbiomed.2021.104556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Microbiome data analysis and its interpretation into meaningful biological insights remain very challenging for numerous reasons, perhaps most prominently, due to the need to account for multiple factors, including collinearity, sparsity (excessive zeros) and effect size, that the complex experimental workflow and subsequent downstream data analysis require. Moreover, a meaningful microbiome data analysis necessitates the development of interpretable models that incorporate inferences across available data as well as background biomedical knowledge. We developed a multimodal framework that considers sparsity (excessive zeros), lower effect size, intrinsically microbial correlations, i.e., collinearity, as well as background biomedical knowledge in the form of a cluster-infused enriched network architecture. Finally, our framework also provides a candidate taxa/Operational Taxonomic Unit (OTU) that can be targeted for future validation experiments. We have developed a tool, the term NFnetFU (Neuro Fuzzy network Fusion), that encompasses our framework and have made it freely available at https://github.com/VartikaBisht6197/NFnetFu.
Collapse
Affiliation(s)
- Vartika Bisht
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB, UK; MRC Health Data Research UK HDR, UK.
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, B15 2TT, UK; Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, B15 2TT, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB, UK; MRC Health Data Research UK HDR, UK; NIHR Experimental Cancer Medicine Centre, B15 2TT, Birmingham, UK; NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
239
|
Schiepatti A, Bacchi S, Biagi F, Panelli S, Betti E, Corazza GR, Capelli E, Ciccocioppo R. Relationship between duodenal microbiota composition, clinical features at diagnosis, and persistent symptoms in adult Coeliac disease. Dig Liver Dis 2021; 53:972-979. [PMID: 33741248 DOI: 10.1016/j.dld.2021.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Duodenal dysbiosis has been suggested to possibly influence the clinical manifestations of coeliac disease (CD), both at onset and when symptoms persist despite a gluten-free diet (GFD). AIMS To evaluate the relationship between duodenal microbiota composition and: i) clinical phenotype of untreated CD (UCD); ii) presence and type of persistent symptoms despite a satisfactory serological and histological response to a strict GFD. METHODS Duodenal microbiota was analyzed by 16S rRNA sequencing and compared with i) clinical features in 12 adult UCD patients; ii) presence/absence and type of persistent symptoms (diarrhea-predominant vs. non-diarrhea predominant) in 25 adult treated coeliac patients (TCD) on a strict GFD. RESULTS UCD with iron deficiency anemia (IDA) had a pro-inflammatory shift in their duodenal microbiota (reduction of Firmicutes, p = 0.03; increase of beta-Proteobacteria, p = 0.02) than those without IDA. TCD with persistent diarrhea showed a reduction of Actinobacteria (p = 0.03) and Rothia spp (p = 0.046) compared to TCD suffering from other type of persistent symptoms. CONCLUSION A distinctive duodenal microbiota profile is associated with IDA in UCD, and diarrhea-predominant persistent symptoms in TCD. Clinical interventions may include reconsidering patients presenting with IDA as a specific disease subtype, and dietary rebalancing if diarrhea persists despite histological response to a GFD.
Collapse
Affiliation(s)
- Annalisa Schiepatti
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Gastroenterology Unit of Pavia Institute, University of Pavia, Pavia, Italy.
| | - Sara Bacchi
- Laboratory of Immunology and Genetic Analysis, Department of Earth and Environmental Science, University of Pavia, Pavia, Italy; Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Federico Biagi
- Istituti Clinici Scientifici Maugeri, I.R.C.C.S., Gastroenterology Unit of Pavia Institute, University of Pavia, Pavia, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Pediatric Clinical Research Center "Invernizzi", University of Milan, Milan, Italy
| | - Elena Betti
- First Department of Internal Medicine, I.R.C.C.S. San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, I.R.C.C.S. San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Enrica Capelli
- Laboratory of Immunology and Genetic Analysis, Department of Earth and Environmental Science, University of Pavia, Pavia, Italy; Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi and University of Verona, Verona, Italy
| |
Collapse
|
240
|
Stott K, Phillips B, Parry L, May S. Recent advancements in the exploitation of the gut microbiome in the diagnosis and treatment of colorectal cancer. Biosci Rep 2021; 41:BSR20204113. [PMID: 34236075 PMCID: PMC8314433 DOI: 10.1042/bsr20204113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last few decades it has been established that the complex interaction between the host and the multitude of organisms that compose the intestinal microbiota plays an important role in human metabolic health and disease. Whilst there is no defined consensus on the composition of a healthy microbiome due to confounding factors such as ethnicity, geographical locations, age and sex, there are undoubtably populations of microbes that are consistently dysregulated in gut diseases including colorectal cancer (CRC). In this review, we discuss the most recent advances in the application of the gut microbiota, not just bacteria, and derived microbial compounds in the diagnosis of CRC and the potential to exploit microbes as novel agents in the management and treatment of CRC. We highlight examples of the microbiota, and their derivatives, that have the potential to become standalone diagnostic tools or be used in combination with current screening techniques to improve sensitivity and specificity for earlier CRC diagnoses and provide a perspective on their potential as biotherapeutics with translatability to clinical trials.
Collapse
Affiliation(s)
- Katie J. Stott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Bethan Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Stephanie May
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| |
Collapse
|
241
|
The Role of DNA Damage Response in Dysbiosis-Induced Colorectal Cancer. Cells 2021; 10:cells10081934. [PMID: 34440703 PMCID: PMC8391204 DOI: 10.3390/cells10081934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The high incidence of colorectal cancer (CRC) in developed countries indicates a predominant role of the environment as a causative factor. Natural gut microbiota provides multiple benefits to humans. Dysbiosis is characterized by an unbalanced microbiota and causes intestinal damage and inflammation. The latter is a common denominator in many cancers including CRC. Indeed, in an inflammation scenario, cellular growth is promoted and immune cells release Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), which cause DNA damage. Apart from that, many metabolites from the diet are converted into DNA damaging agents by microbiota and some bacteria deliver DNA damaging toxins in dysbiosis conditions as well. The interactions between diet, microbiota, inflammation, and CRC are not the result of a straightforward relationship, but rather a network of multifactorial interactions that deserve deep consideration, as their consequences are not yet fully elucidated. In this paper, we will review the influence of dysbiosis in the induction of DNA damage and CRC.
Collapse
|
242
|
Liu Y, Huang W, Wang J, Ma J, Zhang M, Lu X, Liu J, Kou Y. Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Front Immunol 2021; 12:693479. [PMID: 34386004 PMCID: PMC8353228 DOI: 10.3389/fimmu.2021.693479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease, a common inflammatory disease, is considered a hazardous factor that contributes to the development of diseases of the digestive system as well as other systems. The bridge between periodontitis and systemic diseases is believed to be periodontal pathogens. The intestine, as part of the lower gastrointestinal tract, has a close connection with the oral cavity. Within the intestine, the intestinal barrier acts as a multifunctional system including microbial, mucous, physical and immune barrier. The intestinal barrier forms the body's first line of defense against external pathogens; its breakdown can lead to pathological changes in the gut and other organs or systems. Reports in the literature have described how oral periodontal pathogens and pathobiont-reactive immune cells can transmigrate to the intestinal mucosa, causing the destruction of intestinal barrier homeostasis. Such findings might lead to novel ideas for investigating the relationship between periodontal disease and other systemic diseases. This review summarizes studies on the effects of periodontal pathogens on the intestinal barrier, which might contribute to understanding the link between periodontitis and gastrointestinal diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxuan Huang
- School of Stomatology, Shenyang Medical College, Shenyang, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
243
|
Sin RWY, Foo DCC, Iyer DN, Fan MSY, Li X, Lo OSH, Law WL, Ng L. A Pilot Study Investigating the Expression Levels of Pluripotency-Associated Genes in Rectal Swab Samples for Colorectal Polyp and Cancer Diagnosis and Prognosis. Stem Cells Int 2021; 2021:4139528. [PMID: 34335790 PMCID: PMC8324395 DOI: 10.1155/2021/4139528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Change in gene expression is inevitable in cancer development. With more studies demonstrating the contributions of cancer stem cells (CSCs) in colorectal cancer (CRC) development, this study is aimed at investigating whether rectal swab specimen serves as a tool for detection of dysregulation of CSC or stem cell (SC) markers and at evaluating its potential as a new promising screening method for high-risk patients. Expression levels of 15 pluripotency-associated genes were assessed by quantitative PCR in 53 rectal swab specimens referred for endoscopic screening. Dysregulated genes and joint panels based on such genes were examined for their diagnostic potentials for both polyp and CRC. Out of 15 genes, Oct4, CD26, c-MYC, and CXCR4 showed significantly differential expression among normal, polyp, and CRC patients. A panel of Oct4 and CD26 showed an AUC value of 0.80 (p = 0.003) in identifying CRC patients from polyp/normal subjects, with sensitivity and specificity of 84.6% and 69.2%. A panel of c-MYC and CXCR4 achieved CRC/polyp identification with an AUC value of 0.79 (p = 0.002), with a sensitivity of 82.8% and specificity of 80.0%. The sensitivity for polyp and CRC was 80.0% and 85.7%, respectively. Further analysis showed that higher c-MYC and CXCR4 level was detected in normal subjects who developed polyps after 5-6 years, in comparison with subjects with no lesion developed, and the AUC of the c-MYC and CXCR4 panel increased to 0.88 (p < 0.001), with sensitivity and specificity of 84.4% and 92.3%, respectively, when these patients were included in the polyp group. This study suggests that the Oct4 and CD26 panel is a promising biomarker for distinguishing CRC from normal and polyp patients, whereas the c-MYC and CXCR4 panel may identify polyp and CRC from normal individuals.
Collapse
Affiliation(s)
- Ryan Wai-Yan Sin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dominic Chi-Chung Foo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deepak Narayanan Iyer
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Sau-Yee Fan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oswens Siu-Hung Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Lun Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
244
|
Fang CY, Chen JS, Hsu BM, Hussain B, Rathod J, Lee KH. Colorectal Cancer Stage-Specific Fecal Bacterial Community Fingerprinting of the Taiwanese Population and Underpinning of Potential Taxonomic Biomarkers. Microorganisms 2021; 9:microorganisms9081548. [PMID: 34442626 PMCID: PMC8401100 DOI: 10.3390/microorganisms9081548] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in the characterization of colorectal cancer (CRC), it still faces a poor prognosis. There is growing evidence that gut microbiota and their metabolites potentially contribute to the development of CRC. Thus, microbial dysbiosis and their metabolites associated with CRC, based on stool samples, may be used to advantage to provide an excellent opportunity to find possible biomarkers for the screening, early detection, prevention, and treatment of CRC. Using 16S rRNA amplicon sequencing coupled with statistical analysis, this study analyzed the cause–effect shift of the microbial taxa and their metabolites that was associated with the fecal gut microbiota of 17 healthy controls, 21 polyps patients, and 21 cancer patients. The microbial taxonomic shift analysis revealed striking differences among the healthy control, polyps and cancer groups. At the phylum level, Synergistetes was reduced significantly in the polyps group compared to the healthy control and cancer group. Additionally, at the genus level and in association with the cancer group, a total of 12 genera were highly enriched in abundance. In contrast, only Oscillosprira was significantly higher in abundance in the healthy control group. Comparisons of the polyps and cancer groups showed a total of 18 significantly enriched genera. Among them, 78% of the genera associated with the cancer group were in higher abundance, whereas the remaining genera showed a higher abundance in the polyps group. Additionally, the comparison of healthy control and polyp groups showed six significantly abundant genera. More than 66% of these genera showed a reduced abundance in the polyps group than in healthy controls, whereas the remaining genera were highly abundant in the polyps group. Based on tumor presence and absence, the abundance of Olsenella and Lactobacillus at the genus level was significantly reduced in the patient group compared to healthy controls. The significant microbial function prediction revealed an increase in the abundance of metabolites in the polyps and cancer groups compared to healthy controls. A correlation analysis revealed a higher contribution of Dorea in the predicted functions. This study showed dysbiosis of gut microbiota at the taxonomic level and their metabolic functions among healthy subjects and in two stages of colorectal cancer, including adenoma and adenocarcinoma, which might serve as potential biomarkers for the early diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 621, Taiwan;
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
- Correspondence: ; Tel.: +886-52720411 (ext. 66218)
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Kuo-Hsin Lee
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
245
|
Li DP, Cui M, Tan F, Liu XY, Yao P. High Red Meat Intake Exacerbates Dextran Sulfate-Induced Colitis by Altering Gut Microbiota in Mice. Front Nutr 2021; 8:646819. [PMID: 34355008 PMCID: PMC8329097 DOI: 10.3389/fnut.2021.646819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious hazard to public health, but the precise etiology of the disease is unclear. High intake of red meat diet is closely related to the occurrence of IBD. In this study, we investigated whether the high intake of red meat can increase the sensitivity of colitis and the underlying mechanism. Mice were fed with different levels of red meat for 8 weeks and then the colonic contents were analyzed by 16S rRNA sequencing. Then 3% dextran sulfate sodium was used to induce colitis in mice. We observed the severity of colitis and inflammatory cytokines. We found that high-dose red meat caused intestinal microbiota disorder, reduced the relative abundance of Lachnospiraceae_NK4A136_group, Faecalibaculum, Blautia and Dubosiella, and increased the relative abundance of Bacteroides and Alistipes. This in turn leads to an increase in colitis and inflammatory cytokine secretion. Moreover, we found that high red meat intake impaired the colon barrier integrity and decreased the expression of ZO-1, claudin, and occludin. We also found high red meat intake induced the production of more inflammatory cytokines such as IL-1β, TNF-α, IL-17, and IL-6 and inflammatory inducible enzymes such as COX-2 and iNOS in dextran sulfate sodium-induced colitis. These results suggest that we should optimize the diet and reduce the intake of red meat to prevent the occurrence of IBD.
Collapse
Affiliation(s)
- Dan-Ping Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Min Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Fang Tan
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xiao-Yan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ping Yao
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
246
|
Dalal N, Jalandra R, Bayal N, Yadav AK, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol 2021; 147:3141-3155. [PMID: 34273006 DOI: 10.1007/s00432-021-03729-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Based on recent research reports, dysbiosis and improper concentrations of microbial metabolites in the gut may result into the carcinogenesis of colorectal cancer. Recent advancement also highlights the involvement of bacteria and their secreted metabolites in the cancer causation. Gut microbial metabolites are functional output of the host-microbiota interactions and produced by anaerobic fermentation of food components in the diet. They contribute to influence variety of biological mechanisms including inflammation, cell signaling, cell-cycle disruption which are majorly disrupted in carcinogenic activities. PURPOSE In this review, we intend to discuss recent updates and possible molecular mechanisms to provide the role of bacterial metabolites, gut bacteria and diet in the colorectal carcinogenesis. Recent evidences have proposed the role of bacteria, such as Fusobacterium nucleaturm, Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis and Clostridium septicum, in the carcinogenesis of CRC. Metagenomic study confirmed that these bacteria are in increased abundance in CRC patient as compared to healthy individuals and can cause inflammation and DNA damage which can lead to development of cancer. These bacteria produce metabolites, such as secondary bile salts from primary bile salts, hydrogen sulfide, trimethylamine-N-oxide (TMAO), which are likely to promote inflammation and subsequently cancer development. CONCLUSION Recent studies suggest that gut microbiota-derived metabolites have a role in CRC progression and causation and hence, could be implicated in CRC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Nitin Bayal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, 110029, India
| | - Pramod Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
247
|
Li L, Fang Z, Lee YK, Zhao J, Zhang H, Lu W, Chen W. Prophylactic effects of oral administration of Lactobacillus casei on house dust mite-induced asthma in mice. Food Funct 2021; 11:9272-9284. [PMID: 33047743 DOI: 10.1039/d0fo01363c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the prophylactic effects of five Lactobacillus casei strains on house dust mite (HDM)-induced asthma in mice. BALB/c mice were orally administered with L. casei strains for one week before HDM treatment. Ketotifen and Lactobacillus rhamnosus GG were used as positive controls. All L. casei strains decreased the number of granulocytes and the levels of Th2 and Th17 inflammatory cytokines in the lungs, L. casei3 significantly decreased the airway inflammation score. Further studies showed that L. casei3, L. casei4, and L. casei5 decreased the chemokine levels, L. casei2, L. casei4, and L. casei5 promoted the secretion of secretory immunoglobulin A (sIgA), L. casei2 upregulated the interleukin (IL)-10 levels, and L. casei1 had no effect on these immune indices. L. casei1 and L. casei4 decreased the serum levels of total IgE and HDM-specific IgG1, respectively. L. casei3 and L. casei5 decreased both HDM-specific IgG1 and total IgE levels. L. casei2 did not affect the levels of these immunoglobulins. The gut microbiota analysis revealed that all five L. casei strains enhanced the richness of the gut microbiota mainly by increasing the abundance of Firmicutes, while there were differences at the genus level.Thus, the prophylactic effects of L. casei on HDM-induced mixed chronic airway inflammatory asthma exerted as they differentially affected the immune responses and gut microbiota composition. L. casei3, which exhibited the highest prophylactic effect, increased the acetate and propionate contents in a strain-dependent manner.
Collapse
Affiliation(s)
- Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China and Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
248
|
Mizutani T, Aboagye SY, Ishizaka A, Afum T, Mensah GI, Asante-Poku A, Asandem DA, Parbie PK, Abana CZY, Kushitor D, Bonney EY, Adachi M, Hori H, Ishikawa K, Matano T, Taniguchi K, Opare D, Arhin D, Asiedu-Bekoe F, Ampofo WK, Yeboah-Manu D, Koram KA, Anang AK, Kiyono H. Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Sci Rep 2021; 11:13945. [PMID: 34230563 PMCID: PMC8260788 DOI: 10.1038/s41598-021-93345-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Acute gastroenteritis associated with diarrhea is considered a serious disease in Africa and South Asia. In this study, we examined the trends in the causative pathogens of diarrhea and the corresponding gut microbiota in Ghana using microbiome analysis performed on diarrheic stools via 16S rRNA sequencing. In total, 80 patients with diarrhea and 34 healthy adults as controls, from 2017 to 2018, were enrolled in the study. Among the patients with diarrhea, 39 were norovirus-positive and 18 were rotavirus-positive. The analysis of species richness (Chao1) was lower in patients with diarrhea than that in controls. Beta-diversity analysis revealed significant differences between the two groups. Several diarrhea-related pathogens (e.g., Escherichia-Shigella, Klebsiella and Campylobacter) were detected in patients with diarrhea. Furthermore, co-infection with these pathogens and enteroviruses (e.g., norovirus and rotavirus) was observed in several cases. Levels of both Erysipelotrichaceae and Staphylococcaceae family markedly differed between norovirus-positive and -negative diarrheic stools, and the 10 predicted metabolic pathways, including the carbohydrate metabolism pathway, showed significant differences between rotavirus-positive patients with diarrhea and controls. This comparative study of diarrheal pathogens in Ghana revealed specific trends in the gut microbiota signature associated with diarrhea and that pathogen-dependent dysbiosis occurred in viral gastroenteritis.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Theophillus Afum
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gloria Ivy Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Diana Asema Asandem
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Kofi Parbie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Ansah Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
249
|
Alberti G, Mazzola M, Gagliardo C, Pitruzzella A, Fucarini A, Giammanco M, Tomasello G, Carini F. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer: new players? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:233-240. [PMID: 34282804 DOI: 10.5507/bp.2021.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
Collapse
Affiliation(s)
- Giusi Alberti
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Margherita Mazzola
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Carola Gagliardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Palermo, Italy
| | - Alessandro Pitruzzella
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Alberto Fucarini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Marco Giammanco
- Department of Surgery, Oncologicical and Stomatological Sciences (Di.Chir.On.S), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Giovanni Tomasello
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Francesco Carini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| |
Collapse
|
250
|
Wang P, Dong Y, Jiao J, Zuo K, Han C, Zhao L, Ding S, Yang X, Chen M, Li J. Cigarette smoking status alters dysbiotic gut microbes in hypertensive patients. J Clin Hypertens (Greenwich) 2021; 23:1431-1446. [PMID: 34029428 PMCID: PMC8678690 DOI: 10.1111/jch.14298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Smoking not only is one of the most important risk factors of hypertension (HTN), but also alters the composition of gut microbiota (GM) in previous studies. Although dysbiosis of GM has been implicated in HTN, how GM alters in patients with HTN under smoking status is still not clear. This study aimed to explore the difference in intestinal microflora among smokers with HTN (S-HTN), nonsmokers with HTN (NS-HTN), and smokers without HTN (S-CTR) and identify whether cigarette smoking led to disordered intestinal microbiota in patients with HTN. Metagenomic sequencing analysis of fecal specimens was conducted in nonsmokers without HTN (NS-CTR, n = 9), S-CTR (n = 9), NS-HTN (n = 18), and S-HTN (n = 23). Compared with S-CTR or NS-HTN, the GM in S-HTN was disordered, with lower microbial α-diversity and significant difference of β-diversity on axes as compared to S-CTR at genus and species level. The microbial enterotype in S-HTN was inclined to Prevotella-dominant type. Dramatic changes in the intestinal genera and species composition were observed in S-HTN, including reduced enrichment of Phycisphaera and Clostridium asparagiforme. Moreover, the intestinal function altered in S-HTN. Therefore, the findings of the present study revealed GM disorders in S-HTN and clarified the role of smoking in impairing the intestinal microbiome in HTN. Tobacco control is particularly important for improving GM in patients with HTN, and might be beneficial in preventing future cardiovascular events.
Collapse
Affiliation(s)
- Pan Wang
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kun Zuo
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chunming Han
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Lei Zhao
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Shu Ding
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|