201
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
202
|
Molloy EN, Mueller K, Beinhölzl N, Blöchl M, Piecha FA, Pampel A, Steele CJ, Scharrer U, Zheleva G, Regenthal R, Sehm B, Nikulin VV, Möller HE, Villringer A, Sacher J. Modulation of premotor cortex response to sequence motor learning during escitalopram intake. J Cereb Blood Flow Metab 2021; 41:1449-1462. [PMID: 33148103 PMCID: PMC8138331 DOI: 10.1177/0271678x20965161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The contribution of selective serotonin reuptake inhibitors to motor learning by inducing motor cortical plasticity remains controversial given diverse findings from positive preclinical data to negative findings in recent clinical trials. To empirically address this translational disparity, we use functional magnetic resonance imaging in a double-blind, randomized controlled study to assess whether 20 mg escitalopram improves sequence-specific motor performance and modulates cortical motor response in 64 healthy female participants. We found decreased left premotor cortex responses during sequence-specific learning performance comparing single dose and steady escitalopram state. Escitalopram plasma levels negatively correlated with the premotor cortex response. We did not find evidence in support of improved motor performance after a week of escitalopram intake. These findings do not support the conclusion that one week escitalopram intake increases motor performance but could reflect early adaptive plasticity with improved neural processing underlying similar task performance when steady peripheral escitalopram levels are reached.
Collapse
Affiliation(s)
- Eóin N Molloy
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nathalie Beinhölzl
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maria Blöchl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, University of Münster, Münster, Germany
| | - Fabian A Piecha
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Pampel
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Ulrike Scharrer
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gergana Zheleva
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Harald E Möller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany.,MindBrainBody Institute, Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Sacher
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
203
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
204
|
Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress. Mol Psychiatry 2021; 26:2286-2298. [PMID: 32332995 PMCID: PMC8214244 DOI: 10.1038/s41380-020-0730-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 11/08/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by persistent fear memory of remote traumatic events, mental re-experiencing of the trauma, long-term cognitive deficits, and PTSD-associated hippocampal dysfunction. Extinction-based therapeutic approaches acutely reduce fear. However, many patients eventually relapse to the original conditioned fear response. Thus, understanding the underlying molecular mechanisms of this condition is critical to developing new treatments for patients. Mutations in the neuropsychiatric risk gene CACNA1C, which encodes the Cav1.2 isoform of the L-type calcium channel, have been implicated in both PTSD and highly comorbid neuropsychiatric conditions, such as anxiety and depression. Here, we report that male mice with global heterozygous loss of cacna1c exhibit exacerbated contextual fear that persists at remote time points (up to 180 days after shock), despite successful acute extinction training, reminiscent of PTSD patients. Because dopamine has been implicated in contextual fear memory, and Cav1.2 is a downstream target of dopamine D1-receptor (D1R) signaling, we next generated mice with specific deletion of cacna1c from D1R-expressing neurons (D1-cacna1cKO mice). Notably, D1-cacna1cKO mice also show the same exaggerated remote contextual fear, as well as persistently elevated anxiety-like behavior and impaired spatial memory at remote time points, reminiscent of chronic anxiety in treatment-resistant PTSD. We also show that D1-cacna1cKO mice exhibit elevated death of young hippocampal neurons, and that treatment with the neuroprotective agent P7C3-A20 eradicates persistent remote fear. Augmenting survival of young hippocampal neurons may thus provide an effective therapeutic approach for promoting durable remission of PTSD, particularly in patients with CACNA1C mutations or other genetic aberrations that impair calcium signaling or disrupt the survival of young hippocampal neurons.
Collapse
|
205
|
Wilson C, Rogers J, Chen F, Li S, Adlard PA, Hannan AJ, Renoir T. Exercise ameliorates aberrant synaptic plasticity without enhancing adult-born cell survival in the hippocampus of serotonin transporter knockout mice. Brain Struct Funct 2021; 226:1991-1999. [PMID: 34052925 DOI: 10.1007/s00429-021-02283-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Deficits in hippocampal cellular and synaptic plasticity are frequently associated with cognitive and mood disorders, and indeed common mechanisms of antidepressants are thought to involve neuroplastic processes. Here, we investigate hippocampal adult-born cell survival and synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in serotonin transporter (5-HTT) knockout (KO) mice. From 8 weeks of age, mice either continued in standard-housing conditions or were given access to voluntary running wheels for 1 month. Electrophysiology was performed on hippocampal slices to measure LTP and LTD, and immunohistochemistry was used to assess cell proliferation and subsequent survival in the dentate gyrus. The results revealed a reduced LTP in 5-HTT KO mice that was restored to wild-type (WT) levels after chronic exercise. While LTD appeared normal in 5-HTT KO, exercise decreased the magnitude of LTD in both WT and 5-HTT KO mice. Furthermore, although 5-HTT KO mice had normal hippocampal adult-born cell survival, they did not benefit from the pro-proliferative effects of exercise observed in WT animals. Taken together, these findings suggest that reduced 5-HTT expression is associated with significant alterations to functional neuroplasticity. Interestingly, 5-HTT appeared necessary for exercise-induced augmentation of adult-born hippocampal cell survival, yet exercise corrected the LTP impairment displayed by 5-HTT KO mice. Together, our findings further highlight the salience of serotonergic signalling in mediating the neurophysiological benefits of exercise.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
206
|
Turkin A, Tuchina O, Klempin F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front Cell Dev Biol 2021; 9:665739. [PMID: 34109176 PMCID: PMC8182052 DOI: 10.3389/fcell.2021.665739] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are the resident immune cells of the adult brain that become activated in response to pathogen- or damage-associated stimuli. The acute inflammatory response to injury, stress, or infection comprises the release of cytokines and phagocytosis of damaged cells. Accumulating evidence indicates chronic microglia-mediated inflammation in diseases of the central nervous system, most notably neurodegenerative disorders, that is associated with disease progression. To understand microglia function in pathology, knowledge of microglia communication with their surroundings during normal state and the release of neurotrophins and growth factors in order to maintain homeostasis of neural circuits is of importance. Recent evidence shows that microglia interact with serotonin, the neurotransmitter crucially involved in adult neurogenesis, and known for its role in antidepressant action. In this chapter, we illustrate how microglia contribute to neuroplasticity of the hippocampus and interact with local factors, e.g., BDNF, and external stimuli that promote neurogenesis. We summarize the recent findings on the role of various receptors in microglia-mediated neurotransmission and particularly focus on microglia’s response to serotonin signaling. We review microglia function in neuroinflammation and neurodegeneration and discuss their novel role in antidepressant mechanisms. This synopsis sheds light on microglia in healthy brain and pathology that involves serotonin and may be a potential therapeutic model by which microglia play a crucial role in the maintenance of mood.
Collapse
Affiliation(s)
- Andrei Turkin
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Oksana Tuchina
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Friederike Klempin
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
207
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|
208
|
Fung TKH, Lau BWM, Ngai SPC, Tsang HWH. Therapeutic Effect and Mechanisms of Essential Oils in Mood Disorders: Interaction between the Nervous and Respiratory Systems. Int J Mol Sci 2021; 22:ijms22094844. [PMID: 34063646 PMCID: PMC8125361 DOI: 10.3390/ijms22094844] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Essential oils (EOs) are extracted from plants and contain active components with therapeutic effects. Evidence shows that various types of EOs have a wide range of health benefits. In our previous studies, the potential of lavender EO for prevention and even treatment of depression and anxiety symptoms was demonstrated. The favourable outcomes may be due to multiple mechanisms, including the regulation of monoamine level, the induction of neurotrophic factor expression, the regulation of the endocrine system and the promotion of neurogenesis. The molecules of EOs may reach the brain and exert an effect through two distinctive pathways, namely, the olfactory system and the respiratory system. After inhalation, the molecules of the EOs would either act directly on the olfactory mucosa or pass into the respiratory tract. These two delivery pathways suggest different underlying mechanisms of action. Different sets of responses would be triggered, such as increased neurogenesis, regulation of hormonal levels, activation of different brain regions, and alteration in blood biochemistry, which would ultimately affect both mood and emotion. In this review, we will discuss the clinical effects of EOs on mood regulation and emotional disturbances as well as the cellular and molecular mechanisms of action. Emphasis will be put on the interaction between the respiratory and central nervous system and the involved potential mechanisms. Further evidence is needed to support the use of EOs in the clinical treatment of mood disturbances. Exploration of the underlying mechanisms may provide insight into the future therapeutic use of EO components treatment of psychiatric and physical symptoms.
Collapse
|
209
|
Effects of classical PKC activation on hippocampal neurogenesis and cognitive performance: mechanism of action. Neuropsychopharmacology 2021; 46:1207-1219. [PMID: 33335309 PMCID: PMC8115324 DOI: 10.1038/s41386-020-00934-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Hippocampal neurogenesis has widely been linked to memory and learning performance. New neurons generated from neural stem cells (NSC) within the dentate gyrus of the hippocampus (DG) integrate in hippocampal circuitry participating in memory tasks. Several neurological and neuropsychiatric disorders show cognitive impairment together with a reduction in DG neurogenesis. Growth factors secreted within the DG promote neurogenesis. Protein kinases of the protein kinase C (PKC) family facilitate the release of several of these growth factors, highlighting the role of PKC isozymes as key target molecules for the development of drugs that induce hippocampal neurogenesis. PKC activating diterpenes have been shown to facilitate NSC proliferation in neurogenic niches when injected intracerebroventricularly. We show in here that long-term administration of diterpene ER272 promotes neurogenesis in the subventricular zone and in the DG of mice, affecting neuroblasts differentiation and neuronal maturation. A concomitant improvement in learning and spatial memory tasks performance can be observed. Insights into the mechanism of action reveal that this compound facilitates classical PKCα activation and promotes transforming growth factor alpha (TGFα) and, to a lesser extent, neuregulin release. Our results highlight the role of this molecule in the development of pharmacological drugs to treat neurological and neuropsychiatric disorders associated with memory loss and a deficient neurogenesis.
Collapse
|
210
|
Schoenfeld EM, Gupta NK, Syed SA, Rozenboym AV, Fulton SL, Jackowski AP, Perera TD, Coplan JD. Developmental Antecedents of Adult Macaque Neurogenesis: Early-Life Adversity, 5-HTTLPR Polymorphisms, and Adolescent Hippocampal Volume. J Affect Disord 2021; 286:204-212. [PMID: 33740637 DOI: 10.1016/j.jad.2021.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant ('s') of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis. We investigate these potential developmental precursors of neurogenic alterations using a bonnet macaque model. METHODS Twenty-five male infant bonnet macaques were randomized to stressed [variable foraging demand (VFD)] or normative [low foraging demand (LFD)] rearing protocols and genotyped for 5-HTTLPR polymorphisms. Adolescent MRI brain scans (mean age 4.2y) were available for 14 subjects. Adult-born neurons were detected post-mortem (mean age 8.6y) via immunohistochemistry targeting the microtubule protein doublecortin (DCX). Models were adjusted for age and weight. RESULTS A putative vulnerability group (VG) of VFD-reared 's'-carriers (all 's/l') exhibited reduced neurogenesis compared to non-VG subjects. Neurogenesis levels were positively predicted by ipsilateral hippocampal volume normalized for total brain volume, but not by contralateral or raw hippocampal volume. LIMITATIONS No 's'-carriers were identified in LFD-reared subjects, precluding a 2×2 factorial analysis. CONCLUSION The 's' allele (with adverse rearing) and low adolescent hippocampal volume portend a neurogenic deficit in adult macaques, suggesting persistent alterations in hippocampal plasticity may contribute to these developmental factors' affective risk in humans.
Collapse
Affiliation(s)
- Eric M Schoenfeld
- Department of Psychiatry and Behavioral Sciences, State University of New York-Downstate Medical Center, Brooklyn, NY.
| | - Nishant K Gupta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shariful A Syed
- Department of Psychiatry and Behavioral Sciences, Stony Brook, NY
| | - Anna V Rozenboym
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY
| | | | - Andrea P Jackowski
- UNIFESP Departamento de Psiquiatria, Universidade Federal de Sao Paulo, SP, Brazil
| | | | - Jeremy D Coplan
- Department of Psychiatry and Behavioral Sciences, State University of New York-Downstate Medical Center, Brooklyn, NY.
| |
Collapse
|
211
|
Phelps CE, Navratilova E, Porreca F. Cognition in the Chronic Pain Experience: Preclinical Insights. Trends Cogn Sci 2021; 25:365-376. [PMID: 33509733 PMCID: PMC8035230 DOI: 10.1016/j.tics.2021.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Acutely, pain is protective. It promotes escape from, and future avoidance of, noxious stimuli through strong and often lifetime associative memories. However, with persistent acute pain or when pain becomes chronic, these memories can promote negative emotions and poor decisions often associated with deleterious behaviors. In this review, we discuss how preclinical studies can provide insights into the relationship between cognition and chronic pain. We also discuss the concept of pain as a cognitive disorder and new strategies for treating chronic pain that emphasize inhibiting the formation of pain memories or promoting 'forgetting' of established pain memories.
Collapse
Affiliation(s)
- Caroline E Phelps
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
212
|
Murphy SE, de Cates AN, Gillespie AL, Godlewska BR, Scaife JC, Wright LC, Cowen PJ, Harmer CJ. Translating the promise of 5HT 4 receptor agonists for the treatment of depression. Psychol Med 2021; 51:1111-1120. [PMID: 32241310 PMCID: PMC8188527 DOI: 10.1017/s0033291720000604] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Animal experimental studies suggest that 5-HT4 receptor activation holds promise as a novel target for the treatment of depression and cognitive impairment. 5-HT4 receptors are post-synaptic receptors that are located in striatal and limbic areas known to be involved in cognition and mood. Consistent with this, 5-HT4 receptor agonists produce rapid antidepressant effects in a number of animal models of depression, and pro-cognitive effects in tasks of learning and memory. These effects are accompanied by molecular changes, such as the increased expression of neuroplasticity-related proteins that are typical of clinically useful antidepressant drugs. Intriguingly, these antidepressant-like effects have a fast onset of their action, raising the possibility that 5-HT4 receptor agonists may be a particularly useful augmentation strategy in the early stages of SSRI treatment. Until recently, the translation of these effects to humans has been challenging. Here, we review the evidence from animal studies that the 5-HT4 receptor is a promising target for the treatment of depression and cognitive disorders, and outline a potential pathway for the efficient and cost-effective translation of these effects into humans and, ultimately, to the clinic.
Collapse
Affiliation(s)
- Susannah E Murphy
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Angharad N de Cates
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Amy L Gillespie
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Beata R Godlewska
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Jessica C Scaife
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Lucy C Wright
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
213
|
Ge R, Gregory E, Wang J, Ainsworth N, Jian W, Yang C, Wang G, Vila-Rodriguez F. Magnetic seizure therapy is associated with functional and structural brain changes in MDD: Therapeutic versus side effect correlates. J Affect Disord 2021; 286:40-48. [PMID: 33676262 DOI: 10.1016/j.jad.2021.02.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Magnetic Seizure therapy (MST) is an effective treatment for major depressive disorder (MDD) but its mechanism of action is not fully understood. The present study sought to characterize neuroimaging correlates of response and side effects of MST in a MDD cohort. METHODS Fifteen severe MDD patients underwent a six-day course of MST treatment to the vertex. Before and after treatment, participants received rs-fMRI and structural MRI scans as well as assessments of depressive symptoms and neuropsychological functioning. 10 healthy volunteers received functional and structural MRI scans at similar time intervals. RESULTS MST treatment was associated with increased functional connectivity between the subgenual anterior cingulate cortex (sgACC) and the parietal cortex, which positively correlated with clinical improvement. In contrast, greater decrease in functional connectivity between the right anterior hippocampus and the prefrontal cortex was correlated with lesser clinical and cognitive improvements. Changes in gray matter volume were evident in the bilateral parietal cortex, but were not associated with treatment outcomes. LIMITATIONS The sample size was small and results warrant replication. CONCLUSIONS This is the first quantitative fMRI study to investigate the neural correlates of MST treatment for MDD patients. While preliminary, these findings suggest that the modulation of sgACC activity is integral to the antidepressant mechanisms of MST. In contrast, changes in the hippocampus were not associated with symptom improvement, and appeared to contribute instead to side effects. Future studies in larger samples are warranted and explore the effect of e-electric field and correlates of response.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jian Wang
- Department of psychiatry, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Nicholas Ainsworth
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Wei Jian
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Chunlin Yang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China
| | - Gang Wang
- The National Clinical Research Centre for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, School of Mental Health, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
214
|
Levone BR, Moloney GM, Cryan JF, O'Leary OF. Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiol Stress 2021; 14:100331. [PMID: 33997156 PMCID: PMC8100619 DOI: 10.1016/j.ynstr.2021.100331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
Current antidepressants are suboptimal due incomplete understanding of the neurobiology underlying their behavioral effects. However, imaging studies suggest the hippocampus is a key brain region underpinning antidepressant action. There is increasing attention on the functional segregation of the hippocampus into a dorsal region (dHi) predominantly involved in spatial learning and memory, and a ventral region (vHi) which regulates anxiety, a symptom often co-morbid with depression. However, little is known about the roles of these hippocampal sub-regions in the antidepressant response. Moreover, the area between them, the intermediate hippocampus (iHi), has received little attention. Here, we investigated the impact of dHi, iHi or vHi lesions on anxiety- and depressive-like behaviors under baseline or antidepressant treatment conditions in male C57BL/6 mice (n = 8-10). We found that in the absence of fluoxetine, vHi lesions reduced anxiety-like behavior, while none of the lesions affected other antidepressant-sensitive behaviors. vHi lesions prevented the acute antidepressant-like behavioral effects of fluoxetine in the tail suspension test and its anxiolytic effects in the novelty-induced hypophagia test. Intriguingly, only iHi lesions prevented the antidepressant effects of chronic fluoxetine treatment in the forced swim test. dHi lesions did not impact any behaviors either in the absence or presence of fluoxetine. In summary, we found that vHi plays a key role in anxiety-like behavior and its modulation by fluoxetine, while both iHi and vHi play distinct roles in fluoxetine-induced antidepressant-like behaviors.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
215
|
Treccani G, Schlegelmilch AL, Schultz N, Herzog DP, Bessa JM, Sotiropoulos I, Müller MB, Wennström M. Hippocampal NG2+ pericytes in chronically stressed rats and depressed patients: a quantitative study. Stress 2021; 24:353-358. [PMID: 32546032 DOI: 10.1080/10253890.2020.1781083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE The suggested link between major depression disorder (MDD) and blood-brain barrier (BBB) alterations supports an impact on the neurovascular unit in this disease condition. Here we investigate how pericytes, a major component in the neurovascular unit, respond to stress, stress hormones, proinflammatory cytokine and depression. METHOD Hippocampal sections of chronic unpredictable stressed (CMS) rats, MDD patients and respective controls were immuno-stained against NG2, where the number of NG2+ pericytes in the molecular layer was counted. Proliferation of cultured pericytes after treatment with cortisol and IL-1β was analyzed using radioactive-labeled thymidine. FINDINGS The number of NG2+ pericytes was significantly higher in CMS animals than controls. Higher number of NG2+ pericytes was also detected in MDD patients, but the increase did not reach significance. IL-1β, but not cortisol, induced a significant increase in proliferation of cultured pericytes. CONCLUSION Our results indicate that exposure to stressful conditions affects the hippocampal pericyte population. These findings add to our knowledge about the impact of stress on the neurovascular unit, which might be relevant for understanding the alterations in BBB found in MDD patients.
Collapse
Affiliation(s)
- Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Anna-Lena Schlegelmilch
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nina Schultz
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - David P Herzog
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joao M Bessa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Malin Wennström
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
216
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
217
|
Sarno E, Moeser AJ, Robison AJ. Neuroimmunology of depression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:259-292. [PMID: 34099111 DOI: 10.1016/bs.apha.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Depression is one of the leading causes of disability worldwide and a major contributor to the global burden of disease, yet the cellular and molecular etiology of depression remain largely unknown. Major Depressive Disorder (MDD) is associated with a variety of chronic physical inflammatory and autoimmune disorders, and mood disorders may act synergistically with other medical disorders to worsen patient outcomes. Here, we outline the neuroimmune complement, explore the evidence for altered immune system function in MDD, and present some of the potential mechanisms by which immune cells and molecules may drive the onset and course of MDD. These include pro-inflammatory signaling, alterations in the hypothalamic-pituitary-adrenal axis, dysregulation of the serotonergic and noradrenergic neurotransmitter systems, neuroinflammation, and meningeal immune dysfunction. Finally, we discuss the interactions between current antidepressants and the immune system and propose the possibility of immunomodulatory drugs as potential novel antidepressant treatments.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
218
|
Planchez B, Lagunas N, Le Guisquet AM, Legrand M, Surget A, Hen R, Belzung C. Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells 2021; 10:cells10050972. [PMID: 33919292 PMCID: PMC8143348 DOI: 10.3390/cells10050972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies evaluated the functional role of adult hippocampal neurogenesis (AHN) and its key role in cognitive functions and mood regulation. The effects of promoting AHN on the recovery of stress-induced symptoms have been well studied, but its involvement in stress resilience remains elusive. We used a mouse model enabling us to foster AHN before the exposure to unpredictable chronic mild stress (UCMS) to evaluate the potential protective effects of AHN on stress, assessing the depressive-like phenotype and executive functions. For this purpose, an inducible transgenic mouse model was used to delete the pro-apoptotic gene Bax from neural progenitors four weeks before UCMS, whereby increasing the survival of adult-generated neurons. Our results showed that UCMS elicited a depressive-like phenotype, highlighted by a deteriorated coat state, a higher immobility duration in the tail suspension test (TST), and a delayed reversal learning in a water maze procedure. Promoting AHN before UCMS was sufficient to prevent the development of stressed-induced behavioral changes in the TST and the water maze, reflecting an effect of AHN on stress resilience. Taken together, our data suggest that increasing AHN promotes stress resilience on some depressive-like symptoms but also in cognitive symptoms, which are often observed in MD.
Collapse
Affiliation(s)
- Barbara Planchez
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Natalia Lagunas
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Anne-Marie Le Guisquet
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Marc Legrand
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Alexandre Surget
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - René Hen
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY 10027, USA;
- Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY 10027, USA
| | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
- Correspondence:
| |
Collapse
|
219
|
Mosiołek A, Pięta A, Jakima S, Zborowska N, Mosiołek J, Szulc A. Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). J Clin Med 2021; 10:jcm10081706. [PMID: 33920992 PMCID: PMC8071355 DOI: 10.3390/jcm10081706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent mental illness and a leading cause of disability worldwide. Despite a range of effective treatments, more than 30% of patients do not achieve remission as a result of conventional therapy. In these circumstances the identification of novel drug targets and pathogenic factors becomes essential for selecting more efficacious and personalized treatment. Increasing evidence has implicated the role of inflammation in the pathophysiology of depression, revealing potential new pathways and treatment options. Moreover, convergent evidence indicates that MDD is related to disturbed neurogenesis and suggests a possible role of neurotrophic factors in recovery of function in patients. Although the influence of antidepressants on inflammatory cytokines balance was widely reported in various studies, the exact correlation between drugs used and specific cytokines and neurotrophins serum levels often remains inconsistent. Available data suggest anti-inflammatory properties of selective serotonin reuptake inhibitors (SSRIs), selective serotonin and noradrenaline inhibitors (SNRIs), and tricyclic antidepressants (TCAs) as a possible additional mechanism of reduction of depressive symptoms. In this review, we outline emerging data regarding the influence of different antidepressant drugs on a wide array of peripheral biomarkers such as interleukin (IL)-1ß, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein (CRP), or interferon (IFN)-γ. Presented results indicate anti-inflammatory effect for selected drugs or lack of such effect. Research in this field is insufficient to define the role of inflammatory markers as a predictor of treatment response in MDD.
Collapse
Affiliation(s)
- Anna Mosiołek
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
- Correspondence:
| | - Aleksandra Pięta
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Sławomir Jakima
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Natalia Zborowska
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Jadwiga Mosiołek
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1 Street, 50-367 Wrocław, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| |
Collapse
|
220
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
221
|
Sahu MP, Pazos-Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, Piepponen TP, Castrén E. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci 2021; 14:616178. [PMID: 33935645 PMCID: PMC8082189 DOI: 10.3389/fnmol.2021.616178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Neurotrophin brain-derived neurotrophic factor (BDNF) and neurotransmitter serotonin (5-HT) regulate each other and have been implicated in several neuronal mechanisms, including neuroplasticity. We have investigated the effects of BDNF on serotonergic neurons by deleting BDNF receptor TrkB from serotonergic neurons in the adult brain. The transgenic mice show increased 5-HT and Tph2 levels with abnormal behavioral phenotype. In spite of increased food intake, the transgenic mice are significantly leaner than their wildtype littermates, which may be due to increased metabolic activity. Consistent with increased 5-HT, the proliferation of hippocampal progenitors is significantly increased, however, long-term survival of newborn cells is unchanged. Our data indicates that BDNF-TrkB signaling regulates the functional phenotype of 5-HT neurons with long-term behavioral consequences.
Collapse
Affiliation(s)
- Madhusmita P Sahu
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yago Pazos-Boubeta
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Kaurinkoski
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michela Palmisano
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olgierd Borowecki
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Faculty of Philosopy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
222
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
223
|
A longitudinal study of the association between basal ganglia volumes and psychomotor symptoms in subjects with late life depression undergoing ECT. Transl Psychiatry 2021; 11:199. [PMID: 33795659 PMCID: PMC8017007 DOI: 10.1038/s41398-021-01314-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Psychomotor dysfunction (PMD) is a core element and key contributor to disability in late life depression (LLD), which responds well to electroconvulsive therapy (ECT). The neurobiology of PMD and its response to ECT are not well understood. We hypothesized that PMD in LLD is associated with lower striatal volume, and that striatal volume increase following ECT explains PMD improvement. We analyzed data from a two-center prospective cohort study of 110 LLD subjects (>55 years) receiving ECT. Brain MRI and assessment of mood, cognition, and PMD was performed 1 week before, 1 week after, and 6 months after ECT. Volumetry of the caudate nucleus, putamen, globus pallidus, and nucleus accumbens was derived from automatically segmented brain MRIs using Freesurfer®. Linear multiple regression analyses were used to study associations between basal ganglia volume and PMD. Brain MRI was available for 66 patients 1 week post ECT and in 22 patients also six months post ECT. Baseline PMD was associated with a smaller left caudate nucleus. One week after ECT, PMD improved and volume increases were detected bilaterally in the caudate nucleus and putamen, and in the right nucleus accumbens. Improved PMD after ECT did not relate to the significant volume increases in these structures, but was predicted by a nonsignificant volume change in the right globus pallidus. No volume differences were detected 6 months after ECT, compared to baseline. Although PMD is related to lower striatal volume in LLD, ECT-induced increase of striatal volume does not explain PMD improvement.
Collapse
|
224
|
Höflich A, Kraus C, Pfeiffer RM, Seiger R, Rujescu D, Zarate CA, Kasper S, Winkler D, Lanzenberger R. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl Psychiatry 2021; 11:200. [PMID: 33795646 PMCID: PMC8016970 DOI: 10.1038/s41398-021-01318-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Anna Höflich
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Ruth M. Pfeiffer
- grid.94365.3d0000 0001 2297 5165Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Rene Seiger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carlos A. Zarate
- grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
225
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
226
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
227
|
Pten is a key intrinsic factor regulating raphe 5-HT neuronal plasticity and depressive behaviors in mice. Transl Psychiatry 2021; 11:186. [PMID: 33771970 PMCID: PMC7998026 DOI: 10.1038/s41398-021-01303-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin (5-HT)-based antidepressants, selective serotonin reuptake inhibitors (SSRIs) aim to enhance serotonergic activity by blocking its reuptake. We propose PTEN as a target for an alternative approach for regulating 5-HT neuron activity in the brain and depressive behaviors. We show that PTEN is elevated in central 5-HT neurons in the raphe nucleus by chronic stress in mice, and selective deletion of Pten in the 5-HT neurons induces its structural plasticity shown by increases of dendritic branching and density of PSD95-positive puncta in the dendrites. 5-HT levels are elevated and electrical stimulation of raphe neurons evokes more 5-HT release in the brain of condition knockout (cKO) mice with Pten-deficient 5-HT neurons. In addition, the 5-HT neurons remain normal electrophysiological properties but have increased excitatory synaptic inputs. Single-cell RNA sequencing revealed gene transcript alterations that may underlay morphological and functional changes in Pten-deficient 5-HT neurons. Finally, Pten cKO mice and wild-type mice treated with systemic application of PTEN inhibitor display reduced depression-like behaviors. Thus, PTEN is an intrinsic regulator of 5-HT neuron activity, representing a novel therapeutic strategy for producing antidepressant action.
Collapse
|
228
|
Chronic Inhibition of FAAH Reduces Depressive-Like Behavior and Improves Dentate Gyrus Proliferation after Chronic Unpredictable Stress Exposure. Behav Neurol 2021; 2021:6651492. [PMID: 33833828 PMCID: PMC8016565 DOI: 10.1155/2021/6651492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.
Collapse
|
229
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
230
|
Madrid LI, Jimenez-Martin J, Coulson EJ, Jhaveri DJ. Cholinergic regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. Int J Biochem Cell Biol 2021; 134:105969. [PMID: 33727042 DOI: 10.1016/j.biocel.2021.105969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The production and circuit integration of new neurons is one of the defining features of the adult mammalian hippocampus. A wealth of evidence has established that adult hippocampal neurogenesis is exquisitely sensitive to neuronal activity-mediated regulation. How these signals are interpreted and contribute to neurogenesis and hippocampal functions has been a subject of immense interest. In particular, neurotransmitters, in addition to their synaptic roles, have been shown to offer important trophic support. Amongst these, acetylcholine, which has a prominent role in cognition, has been implicated in regulating neurogenesis. In this review, we appraise the evidence linking the contribution of cholinergic signalling to the regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. We discuss open questions that need to be addressed to gain a deeper mechanistic understanding of the role and translational potential of acetylcholine and its receptors in regulating this form of cellular neuroplasticity.
Collapse
Affiliation(s)
- Lidia I Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
231
|
The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Sci Rep 2021; 11:6300. [PMID: 33737521 PMCID: PMC7973813 DOI: 10.1038/s41598-021-85284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis impairment is a key determinant of intellectual disability in Down syndrome (DS), a genetic pathology due to triplication of chromosome 21. Since neurogenesis ceases after birth, apart in the hippocampus and olfactory bulb, the only means to tackle the problem of neurogenesis impairment in DS at its root is to intervene during gestation. A few studies in DS mouse models show that this is possible, although the drugs used may raise caveats in terms of safety. We previously found that neonatal treatment with 7,8-dihydroxyflavone (7,8-DHF), a flavonoid present in plants, restores hippocampal neurogenesis in the Ts65Dn model of DS. The goal of the current study was to establish whether prenatal treatment with 7,8-DHF improves/restores overall brain proliferation potency. Pregnant Ts65Dn females received 7,8-DHF from embryonic day 10 until delivery. On postnatal day 2 (P2) the pups were injected with BrdU and were killed after either 2 h or 52–60 days (P52–60). Evaluation of the number of proliferating (BrdU+) cells in various forebrain neurogenic niches of P2 mice showed that in treated Ts65Dn mice proliferation potency was improved or even restored in most of the examined regions, including the hippocampus. Quantification of the surviving BrdU+ cells in the dentate gyrus of P52–60 mice showed no difference between treated and untreated Ts65Dn mice. At P52–60, however, treated Ts65Dn mice exhibited a larger number of granule cells in comparison with their untreated counterparts, although their number did not reach that of euploid mice. Results show that 7,8-DHF has a widespread impact on prenatal proliferation potency in Ts65Dn mice and exerts mild long-term effects. It remains to be established whether treatment extending into the neonatal period can lead to an improvement in brain development that is retained in adulthood.
Collapse
|
232
|
Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy. Biosci Rep 2021; 40:221825. [PMID: 31919522 PMCID: PMC6981094 DOI: 10.1042/bsr20193156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs. Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II). Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.
Collapse
|
233
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
234
|
Bolzan JA, Lino de Oliveira C. Protocol for systematic review and meta-analysis of the evidence linking hippocampal neurogenesis to the effects of antidepressants on mood and behaviour. BMJ OPEN SCIENCE 2021; 5:e100077. [PMID: 35047697 PMCID: PMC8647582 DOI: 10.1136/bmjos-2020-100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Studies in rodents associated the deficits of adult hippocampal neurogenesis with behavioural anomalies which may be reversed by antidepressant treatments. A previous systematic review (SR) and meta-analysis (MA) indicated a hierarchy within the proneurogenic effects of different antidepressants in naive rodents. The present review aims to evaluate a more comprehensive sample of studies investigating the links between the effects of different antidepressants and adult hippocampal neurogenesis. SEARCH STRATEGY SCREENING ANNOTATION DATA MANAGEMENT Protocols were planned following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Searches in Embase, Medline, Scopus and Web of Science followed by screening with inclusion/exclusion criteria will provide relevant publications. First SR will summarise the effects of antidepressants on adult hippocampal neurogenesis on different laboratory rodents. Second SR will summarise the correlations between neurogenic and behavioural effects of antidepressants while the third will focus on cause-effect relationships between them. If feasible, data will be analysed by pairwise or network random-effect or multivariate MA to determine the direction, magnitude, significance and heterogeneity (I2) of the estimated effect sizes on global or subgroup levels. Funnel plotting, Egger regression, 'trim and fill' will be used to estimate the risk of publication bias. Quality assessment of the included publications will be performed by applying adapted CAMARADES, Syrcles' risk of bias or CINeMA tools. REPORTING Find a preliminary version of this protocol at the Open Science Framework (https://osf.io/gmsvd/). Data extraction has already started. Results shall be published in a peer-reviewed journal. Due to the continuous production in the field, the implementation of a 'living SR' is intended.
Collapse
Affiliation(s)
- Juliana Aparecida Bolzan
- Departamento de Ciências Fisiológica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
235
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
236
|
Seiger R, Gryglewski G, Klöbl M, Kautzky A, Godbersen GM, Rischka L, Vanicek T, Hienert M, Unterholzner J, Silberbauer LR, Michenthaler P, Handschuh P, Hahn A, Kasper S, Lanzenberger R. The Influence of Acute SSRI Administration on White Matter Microstructure in Patients Suffering From Major Depressive Disorder and Healthy Controls. Int J Neuropsychopharmacol 2021; 24:542-550. [PMID: 33667309 PMCID: PMC8299824 DOI: 10.1093/ijnp/pyab008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are predominantly prescribed for people suffering from major depressive disorder. These antidepressants exert their effects by blocking the serotonin transporter (SERT), leading to increased levels of serotonin in the synaptic cleft and subsequently to an attenuation of depressive symptoms and elevation in mood. Although long-term studies investigating white matter (WM) alterations after exposure to antidepressant treatment exist, results on the acute effects on the brain's WM microstructure are lacking. METHODS In this interventional longitudinal study, 81 participants were included (33 patients and 48 healthy controls). All participants underwent diffusion weighted imaging on 2 separate days, receiving either citalopram or placebo using a randomized, double-blind, cross-over design. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS The repeated-measures ANOVA model revealed significant decreases after SSRI administration in mean diffusivity, axial diffusivity, and radial diffusivity regardless of the group (P < .05, family-wise error [FWE] corrected). Results were predominantly evident in frontal WM regions comprising the anterior corona radiata, corpus callosum, and external capsule and in distinct areas of the frontal blade. No increases in diffusivity were found, and no changes in fractional anisotropy were present. CONCLUSIONS Our investigation provides the first evidence, to our knowledge, that fast WM microstructure adaptations within 1 hour after i.v. SSRI administration precede elevations in mood due to SSRI treatment. These results add a new facet to the complex mode of action of antidepressant therapy. This study was registered at clinicaltrials.gov with the identifier NCT02711215.
Collapse
Affiliation(s)
- R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - A Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - L Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - M Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - L R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - P Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - P Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria,Correspondence: Prof. Rupert Lanzenberger, PD MD, Neuroimaging Labs (NIL) – PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria ()
| |
Collapse
|
237
|
Sinha P, Cree SL, Miller AL, Pearson JF, Kennedy MA. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. THE PHARMACOGENOMICS JOURNAL 2021; 21:359-375. [PMID: 33649518 DOI: 10.1038/s41397-021-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Allison L Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. .,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
238
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
239
|
Jehna M, Wurm W, Pinter D, Vogel K, Holl A, Hofmann P, Ebner C, Ropele S, Fuchs G, Kapfhammer HP, Deutschmann H, Enzinger C. Do increases in deep grey matter volumes after electroconvulsive therapy persist in patients with major depression? A longitudinal MRI-study. J Affect Disord 2021; 281:908-917. [PMID: 33279261 DOI: 10.1016/j.jad.2020.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Previous MRI studies reported deep grey matter volume increases after electroconvulsive therapy (ECT) in patients with major depressive disorder (MDD). However, the clinical correlates of these changes are still unclear. It remains debated whether such volume changes are transient, and if they correlate with affective changes over time. We here investigated if ECT induces deep grey matter volume increases in MDD-patients; and, if so, whether volume changes persist over more than 9 months and whether they are related to the clinical outcome. METHODS We examined 16 MDD-patients with 3Tesla MRI before (baseline) and after an ECT-series and followed 12 of them up for 10-36 months. Patients' data were compared to 16 healthy controls. Affective scales were used to investigate the relationship between therapy-outcome and MRI changes. RESULTS At baseline, MDD-patients had lower values in global brain volume, white matter and peripheral grey matter compared to healthy controls, but we observed no significant differences in deep grey matter volumes. After ECT, the differences in peripheral grey matter disappeared, and patients demonstrated significant volume increases in the right hippocampus and both thalami, followed by subsequent decreases after 10-36 months, especially in ECT-responders. Controls did not show significant changes over time. LIMITATIONS Beside the relatively small, yet carefully characterized cohort, we address the variability in time between the third scanning session and the baseline. CONCLUSIONS ECT-induced deep grey matter volume increases are transient. Our results suggest that the thalamus might be a key region for the understanding of the mechanisms of ECT action.
Collapse
Affiliation(s)
- Margit Jehna
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Walter Wurm
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria
| | - Katrin Vogel
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Anna Holl
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Peter Hofmann
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Christoph Ebner
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria
| | - Gottfried Fuchs
- Department of Anesthesiology and Intensive Care Medicine, Division of Special Anesthesiology, Pain and Intensive Care Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria; Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria.
| |
Collapse
|
240
|
Elesawy BH, Raafat BM, Muqbali AA, Abbas AM, Sakr HF. The Impact of Intermittent Fasting on Brain-Derived Neurotrophic Factor, Neurotrophin 3, and Rat Behavior in a Rat Model of Type 2 Diabetes Mellitus. Brain Sci 2021; 11:brainsci11020242. [PMID: 33671898 PMCID: PMC7918995 DOI: 10.3390/brainsci11020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with an increased risk of dementia, specifically Alzheimer’s disease and vascular dementia. Intermittent fasting (IF) has been proposed to produce neuroprotective effects through the activation of several signaling pathways. In this study, we investigated the effect of IF on rat behavior in type 2 diabetic rats. Forty male Wistar Kyoto rats were divided into four groups (n = 10 for each): the ad libitum (Ad) group, the intermittent fasting group (IF), the streptozotocin-induced diabetic 2 group (T2DM) fed a high-fat diet for 4 weeks followed by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) 25 mg kg−1, and the diabetic group with intermittent fasting (T2DM+IF). We evaluated the impact of 3 months of IF (16 h of food deprivation daily) on the levels of brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), serotonin, dopamine, and glutamate in the hippocampus, and rat behavior was assessed by the forced swim test and elevated plus maze. IF for 12 weeks significantly increased (p < 0.05) the levels of NT3 and BDNF in both control and T2DM rats. Additionally, it increased serotonin, dopamine, and glutamic acid in diabetic rats. Moreover, IF modulated glucose homeostasis parameters, with a significant decrease (p < 0.05) in insulin resistance and downregulation of serum corticosterone level. Interestingly, T2DM rats showed a significant increase in anxiety and depression behaviors, which were ameliorated by IF. These findings suggest that IF could produce a potentially protective effect by increasing the levels of BDNF and NT3 in both control and T2DM rats. IF could be considered as an additional therapy for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aya Al Muqbali
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
| | - Amr M. Abbas
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
241
|
Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci 2021; 11:brainsci11020221. [PMID: 33670277 PMCID: PMC7918687 DOI: 10.3390/brainsci11020221] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Our access to computer-generated worlds changes the way we feel, how we think, and how we solve problems. In this review, we explore the utility of different types of virtual reality, immersive or non-immersive, for providing controllable, safe environments that enable individual training, neurorehabilitation, or even replacement of lost functions. The neurobiological effects of virtual reality on neuronal plasticity have been shown to result in increased cortical gray matter volumes, higher concentration of electroencephalographic beta-waves, and enhanced cognitive performance. Clinical application of virtual reality is aided by innovative brain–computer interfaces, which allow direct tapping into the electric activity generated by different brain cortical areas for precise voluntary control of connected robotic devices. Virtual reality is also valuable to healthy individuals as a narrative medium for redesigning their individual stories in an integrative process of self-improvement and personal development. Future upgrades of virtual reality-based technologies promise to help humans transcend the limitations of their biological bodies and augment their capacity to mold physical reality to better meet the needs of a globalized world.
Collapse
|
242
|
Seno S, Tomura S, Miyazaki H, Sato S, Saitoh D. Effects of Selective Serotonin Reuptake Inhibitors on Depression-Like Behavior in a Laser-Induced Shock Wave Model. Front Neurol 2021; 12:602038. [PMID: 33643190 PMCID: PMC7902879 DOI: 10.3389/fneur.2021.602038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Primary blast injury can result in depression-like behavior in the long-term. However, the effects of the selective serotonin reuptake inhibitor (SSRI) on the depression induced by mild blast traumatic brain injury (bTBI) in the long-term remain unclear. We generated a mouse model of mild bTBI using laser-induced shock wave (LISW) and administered an SSRI to mice by oral gavage for 14 days after LISW exposure. This study aimed to investigate the mechanisms of SSRI-mediated alleviation of depression-like behavior induced by mild bTBI. Animals were divided into three groups: sham, LISW-Vehicle, and LISW-SSRI. LISW was applied to the head of anesthetized mice at 0.5 J/cm2. Twenty-eight days after the LISW, mice in the LISW-SSRI group exhibited reduced depression-like behavior, a significant increase in the number of cells co-stained for 5-bromo-2'-deoxyuridine (Brd-U) and doublecortin (DCX) in the dentate gyrus (DG) as well as increased brain-derived neurotrophic factor (BDNF) and serotonin levels in the hippocampus compared to the sham and LISW-Vehicle groups. Additionally, levels of phosphorylated cAMP response element binding protein (pCREB) in the DG were significantly decreased in the LISW-Vehicle group compared to that in the sham group. Importantly, pCREB levels were not significantly different between LISW-SSRI and sham groups suggesting that SSRI treatment may limit the downregulation of pCREB induced by mild bTBI. In conclusion, recovery from depression-like behavior after mild bTBI may be mediated by hippocampal neurogenesis induced by increased BDNF and serotonin levels as well as the inhibition of pCREB downregulation in the hippocampus.
Collapse
Affiliation(s)
- Soichiro Seno
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Hiromi Miyazaki
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| |
Collapse
|
243
|
Houben S, Homa M, Yilmaz Z, Leroy K, Brion JP, Ando K. Tau Pathology and Adult Hippocampal Neurogenesis: What Tau Mouse Models Tell us? Front Neurol 2021; 12:610330. [PMID: 33643196 PMCID: PMC7902892 DOI: 10.3389/fneur.2021.610330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains. A growing body of evidence points to the fact that AHN sustains hippocampal-dependent functions such as learning and memory. Impaired AHN has been reported in post-mortem human brain hippocampus of Alzheimer's disease (AD) and is considered to contribute to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal tau proteins accumulating in many brain areas during the progression of the disease, including in the hippocampus. The physiological role of tau and impact of tau pathology on AHN is still poorly understood. Modifications in AHN have also been reported in some tau transgenic and tau-deleted mouse models. We present here a brief review of advances in the relationship between development of tau pathology and AHN in AD and what insights have been gained from studies in tau mouse models.
Collapse
Affiliation(s)
- Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mégane Homa
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
244
|
Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, Ren Q, Rahman SU, Li N, Yu ZJ, Li S. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation 2021; 18:38. [PMID: 33526073 PMCID: PMC7852137 DOI: 10.1186/s12974-021-02091-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selective serotonin reuptaker inhibitors, including fluoxetine, are widely studied and prescribed antidepressants, while their exact molecular and cellular mechanism are yet to be defined. We investigated the involvement of HDAC1 and eEF2 in the antidepressant mechanisms of fluoxetine using a lipopolysaccharide (LPS)-induced depression-like behavior model. METHODS For in vivo analysis, mice were treated with LPS (2 mg/kg BW), fluoxetine (20 mg/kg BW), HDAC1 activator (Exifone: 54 mg/kg BW) and NH125 (1 mg/kg BW). Depressive-like behaviors were confirmed via behavior tests including OFT, FST, SPT, and TST. Cytokines were measured by ELISA while Iba-1 and GFAP expression were determined by immunofluorescence. Further, the desired gene expression was measured by immunoblotting. For in vitro analysis, BV2 cell lines were cultured; treated with LPS, exifone, and fluoxetine; collected; and analyzed. RESULTS Mice treated with LPS displayed depression-like behaviors, pronounced neuroinflammation, increased HDAC1 expression, and reduced eEF2 activity, as accompanied by altered synaptogenic factors including BDNF, SNAP25, and PSD95. Fluoxetine treatment exhibited antidepressant effects and ameliorated the molecular changes induced by LPS. Exifone, a selective HDAC1 activator, reversed the antidepressant and anti-inflammatory effects of fluoxetine both in vivo and in vitro, supporting a causing role of HDAC1 in neuroinflammation allied depression. Further molecular mechanisms underlying HDAC1 were explored with NH125, an eEF2K inhibitor, whose treatment reduced immobility time, altered pro-inflammatory cytokines, and NLRP3 expression. Moreover, NH125 treatment enhanced eEF2 and GSK3β activities, BDNF, SNAP25, and PSD95 expression, but had no effects on HDAC1. CONCLUSIONS Our results showed that the antidepressant effects of fluoxetine may involve HDAC1-eEF2 related neuroinflammation and synaptogenesis.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, 18000, Pakistan
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052 China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
245
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
246
|
Abstract
The adult brain is the result of a multistages complex neurodevelopmental process involving genetic, molecular and microenvironmental factors as well as diverse patterns of electrical activity. In the postnatal life, immature neuronal circuits undergo an experience-dependent maturation during critical periods of plasticity, but the brain still retains plasticity during adult life. In all these stages, the neurotransmitter GABA plays a pivotal role. In this chapter, we will describe the interaction of 5-HT with GABA in regulating neurodevelopment and plasticity.
Collapse
|
247
|
Kimura H, Kanahara N, Iyo M. Rationale and neurobiological effects of treatment with antipsychotics in patients with chronic schizophrenia considering dopamine supersensitivity. Behav Brain Res 2021; 403:113126. [PMID: 33460681 DOI: 10.1016/j.bbr.2021.113126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The long-term treatment of patients with schizophrenia often involves the management of relapses for most patients and the development of treatment resistance in some patients. To stabilize the clinical course and allow as many patients as possible to recover, clinicians need to recognize dopamine supersensitivity, which can be provoked by administration of high dosages of antipsychotics, and deal with it properly. However, no treatment guidelines have addressed this issue. The present review summarized the characteristics of long-acting injectable antipsychotics, dopamine partial agonists, and clozapine in relation to dopamine supersensitivity from the viewpoints of receptor profiles and pharmacokinetics. The potential merits and limitations of these medicines are discussed, as well as the risks of treating patients with established dopamine supersensitivity with these classes of drugs. Finally, the review discussed the biological influence of antipsychotic treatment on the human brain based on findings regarding the relationship between the hippocampus and antipsychotics.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan.
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
248
|
Dentate gyrus activin signaling mediates the antidepressant response. Transl Psychiatry 2021; 11:7. [PMID: 33414389 PMCID: PMC7791138 DOI: 10.1038/s41398-020-01156-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Antidepressants that target monoaminergic systems, such as selective serotonin reuptake inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive disorder, several anxiety disorders, and obsessive-compulsive disorder. However, these treatments are not ideal because only a subset of patients achieve remission. The reasons why some individuals remit to antidepressant treatments while others do not are unknown. Here, we developed a paradigm to assess antidepressant treatment resistance in mice. Exposure of male C57BL/6J mice to either chronic corticosterone administration or chronic social defeat stress induces maladaptive affective behaviors. Subsequent chronic treatment with the SSRI fluoxetine reverses these maladaptive affective behavioral changes in some, but not all, of the mice, permitting stratification into persistent responders and non-responders to fluoxetine. We found several differences in expression of Activin signaling-related genes between responders and non-responders in the dentate gyrus (DG), a region that is critical for the beneficial behavioral effects of fluoxetine. Enhancement of Activin signaling in the DG converted behavioral non-responders into responders to fluoxetine treatment more effectively than commonly used second-line antidepressant treatments, while inhibition of Activin signaling in the DG converted responders into non-responders. Taken together, these results demonstrate that the behavioral response to fluoxetine can be bidirectionally modified via targeted manipulations of the DG and suggest that molecular- and neural circuit-based modulations of DG may provide a new therapeutic avenue for more effective antidepressant treatments.
Collapse
|
249
|
Jiang YF, Liu J, Yang J, Guo Y, Hu W, Zhang J, La XM, Xie W, Wang HS, Zhang L. Involvement of the Dorsal Hippocampus 5-HT1A Receptors in the Regulation of Depressive-Like Behaviors in Hemiparkinsonian Rats. Neuropsychobiology 2021; 79:198-207. [PMID: 31940619 DOI: 10.1159/000505212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric disturbances in Parkinson's disease (PD), but its pathophysiology is not definite. Lines of evidence have indicated that the hippocampus and serotonin 1A (5-HT1A) receptors are related to the regulation of depression. OBJECTIVE The purpose of the present study was to observe the effect of 5-HT1A receptors in the dorsal hippocampus (dHIP) on PD-related depression in rats. METHODS Unilateral 6-hydroxydopamine lesioning of the medial forebrain bundle (MFB) was used to establish the hemiparkinsonian rat model. The effects of intra-dHIP injection of the 5-HT1A receptor -agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) or antagonist WAY-100635 on depressive-like behaviors were observed in sucrose preference and forced swim tests in control and lesioned rats. Monoamine levels including dopamine (DA), 5-HT, and noradrenaline (NA) in depression-related brain regions were determined by a neurochemical method in all groups. RESULTS Behavioral results showed that MFB lesions induced depressive-like behaviors. Intra-dHIP injection of 8-OH-DPAT produced antidepressant effects, while WAY-100635 induced or increased the depressive-like behaviors in both control and the lesioned rats. Neurochemical results found that intra-dHIP injection of 8-OH-DPAT significantly increased DA and 5-HT levels in the medial prefrontal cortex (mPFC), lateral habenula (LHb), ventral hippocampus and amygdala in the lesioned group and decreased NA levels in the mPFC and LHb in the control group. Moreover, after injection of WAY-100635, NA levels in all these regions of the lesioned group were significantly increased. CONCLUSIONS These findings suggest that hippocampal 5-HT1A receptors regulate depression and PD-related depression by neurochemical mechanisms.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Hu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xue-Mei La
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Stomatology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
250
|
Herzog DP, Pascual Cuadrado D, Treccani G, Jene T, Opitz V, Hasch A, Lutz B, Lieb K, Sillaber I, van der Kooij MA, Tiwari VK, Müller MB. A distinct transcriptional signature of antidepressant response in hippocampal dentate gyrus granule cells. Transl Psychiatry 2021; 11:4. [PMID: 33414410 PMCID: PMC7791134 DOI: 10.1038/s41398-020-01136-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.
Collapse
Affiliation(s)
- David P. Herzog
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Diego Pascual Cuadrado
- grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Giulia Treccani
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Jene
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Verena Opitz
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Annika Hasch
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Beat Lutz
- grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Klaus Lieb
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | | | - Michael A. van der Kooij
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Vijay K. Tiwari
- grid.5802.f0000 0001 1941 7111Institute of Molecular Biology, Johannes Gutenberg University Mainz, Mainz, Germany ,grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Marianne B. Müller
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| |
Collapse
|