201
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
202
|
Sarno E, Moeser AJ, Robison AJ. Neuroimmunology of depression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:259-292. [PMID: 34099111 DOI: 10.1016/bs.apha.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Depression is one of the leading causes of disability worldwide and a major contributor to the global burden of disease, yet the cellular and molecular etiology of depression remain largely unknown. Major Depressive Disorder (MDD) is associated with a variety of chronic physical inflammatory and autoimmune disorders, and mood disorders may act synergistically with other medical disorders to worsen patient outcomes. Here, we outline the neuroimmune complement, explore the evidence for altered immune system function in MDD, and present some of the potential mechanisms by which immune cells and molecules may drive the onset and course of MDD. These include pro-inflammatory signaling, alterations in the hypothalamic-pituitary-adrenal axis, dysregulation of the serotonergic and noradrenergic neurotransmitter systems, neuroinflammation, and meningeal immune dysfunction. Finally, we discuss the interactions between current antidepressants and the immune system and propose the possibility of immunomodulatory drugs as potential novel antidepressant treatments.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
203
|
Planchez B, Lagunas N, Le Guisquet AM, Legrand M, Surget A, Hen R, Belzung C. Increasing Adult Hippocampal Neurogenesis Promotes Resilience in a Mouse Model of Depression. Cells 2021; 10:cells10050972. [PMID: 33919292 PMCID: PMC8143348 DOI: 10.3390/cells10050972] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies evaluated the functional role of adult hippocampal neurogenesis (AHN) and its key role in cognitive functions and mood regulation. The effects of promoting AHN on the recovery of stress-induced symptoms have been well studied, but its involvement in stress resilience remains elusive. We used a mouse model enabling us to foster AHN before the exposure to unpredictable chronic mild stress (UCMS) to evaluate the potential protective effects of AHN on stress, assessing the depressive-like phenotype and executive functions. For this purpose, an inducible transgenic mouse model was used to delete the pro-apoptotic gene Bax from neural progenitors four weeks before UCMS, whereby increasing the survival of adult-generated neurons. Our results showed that UCMS elicited a depressive-like phenotype, highlighted by a deteriorated coat state, a higher immobility duration in the tail suspension test (TST), and a delayed reversal learning in a water maze procedure. Promoting AHN before UCMS was sufficient to prevent the development of stressed-induced behavioral changes in the TST and the water maze, reflecting an effect of AHN on stress resilience. Taken together, our data suggest that increasing AHN promotes stress resilience on some depressive-like symptoms but also in cognitive symptoms, which are often observed in MD.
Collapse
Affiliation(s)
- Barbara Planchez
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Natalia Lagunas
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Anne-Marie Le Guisquet
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Marc Legrand
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - Alexandre Surget
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
| | - René Hen
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY 10027, USA;
- Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY 10027, USA
| | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, CEDEX 1, 37032 Tours, France; (B.P.); (N.L.); (A.-M.L.G.); (M.L.); (A.S.)
- Correspondence:
| |
Collapse
|
204
|
Mosiołek A, Pięta A, Jakima S, Zborowska N, Mosiołek J, Szulc A. Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). J Clin Med 2021; 10:jcm10081706. [PMID: 33920992 PMCID: PMC8071355 DOI: 10.3390/jcm10081706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent mental illness and a leading cause of disability worldwide. Despite a range of effective treatments, more than 30% of patients do not achieve remission as a result of conventional therapy. In these circumstances the identification of novel drug targets and pathogenic factors becomes essential for selecting more efficacious and personalized treatment. Increasing evidence has implicated the role of inflammation in the pathophysiology of depression, revealing potential new pathways and treatment options. Moreover, convergent evidence indicates that MDD is related to disturbed neurogenesis and suggests a possible role of neurotrophic factors in recovery of function in patients. Although the influence of antidepressants on inflammatory cytokines balance was widely reported in various studies, the exact correlation between drugs used and specific cytokines and neurotrophins serum levels often remains inconsistent. Available data suggest anti-inflammatory properties of selective serotonin reuptake inhibitors (SSRIs), selective serotonin and noradrenaline inhibitors (SNRIs), and tricyclic antidepressants (TCAs) as a possible additional mechanism of reduction of depressive symptoms. In this review, we outline emerging data regarding the influence of different antidepressant drugs on a wide array of peripheral biomarkers such as interleukin (IL)-1ß, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein (CRP), or interferon (IFN)-γ. Presented results indicate anti-inflammatory effect for selected drugs or lack of such effect. Research in this field is insufficient to define the role of inflammatory markers as a predictor of treatment response in MDD.
Collapse
Affiliation(s)
- Anna Mosiołek
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
- Correspondence:
| | - Aleksandra Pięta
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Sławomir Jakima
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Natalia Zborowska
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Jadwiga Mosiołek
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1 Street, 50-367 Wrocław, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| |
Collapse
|
205
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
206
|
Sahu MP, Pazos-Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, Piepponen TP, Castrén E. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci 2021; 14:616178. [PMID: 33935645 PMCID: PMC8082189 DOI: 10.3389/fnmol.2021.616178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
Neurotrophin brain-derived neurotrophic factor (BDNF) and neurotransmitter serotonin (5-HT) regulate each other and have been implicated in several neuronal mechanisms, including neuroplasticity. We have investigated the effects of BDNF on serotonergic neurons by deleting BDNF receptor TrkB from serotonergic neurons in the adult brain. The transgenic mice show increased 5-HT and Tph2 levels with abnormal behavioral phenotype. In spite of increased food intake, the transgenic mice are significantly leaner than their wildtype littermates, which may be due to increased metabolic activity. Consistent with increased 5-HT, the proliferation of hippocampal progenitors is significantly increased, however, long-term survival of newborn cells is unchanged. Our data indicates that BDNF-TrkB signaling regulates the functional phenotype of 5-HT neurons with long-term behavioral consequences.
Collapse
Affiliation(s)
- Madhusmita P Sahu
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yago Pazos-Boubeta
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Steinzeig
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katja Kaurinkoski
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michela Palmisano
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olgierd Borowecki
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.,Faculty of Philosopy and Social Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Eero Castrén
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
207
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
208
|
A longitudinal study of the association between basal ganglia volumes and psychomotor symptoms in subjects with late life depression undergoing ECT. Transl Psychiatry 2021; 11:199. [PMID: 33795659 PMCID: PMC8017007 DOI: 10.1038/s41398-021-01314-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Psychomotor dysfunction (PMD) is a core element and key contributor to disability in late life depression (LLD), which responds well to electroconvulsive therapy (ECT). The neurobiology of PMD and its response to ECT are not well understood. We hypothesized that PMD in LLD is associated with lower striatal volume, and that striatal volume increase following ECT explains PMD improvement. We analyzed data from a two-center prospective cohort study of 110 LLD subjects (>55 years) receiving ECT. Brain MRI and assessment of mood, cognition, and PMD was performed 1 week before, 1 week after, and 6 months after ECT. Volumetry of the caudate nucleus, putamen, globus pallidus, and nucleus accumbens was derived from automatically segmented brain MRIs using Freesurfer®. Linear multiple regression analyses were used to study associations between basal ganglia volume and PMD. Brain MRI was available for 66 patients 1 week post ECT and in 22 patients also six months post ECT. Baseline PMD was associated with a smaller left caudate nucleus. One week after ECT, PMD improved and volume increases were detected bilaterally in the caudate nucleus and putamen, and in the right nucleus accumbens. Improved PMD after ECT did not relate to the significant volume increases in these structures, but was predicted by a nonsignificant volume change in the right globus pallidus. No volume differences were detected 6 months after ECT, compared to baseline. Although PMD is related to lower striatal volume in LLD, ECT-induced increase of striatal volume does not explain PMD improvement.
Collapse
|
209
|
Höflich A, Kraus C, Pfeiffer RM, Seiger R, Rujescu D, Zarate CA, Kasper S, Winkler D, Lanzenberger R. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl Psychiatry 2021; 11:200. [PMID: 33795646 PMCID: PMC8016970 DOI: 10.1038/s41398-021-01318-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Anna Höflich
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Ruth M. Pfeiffer
- grid.94365.3d0000 0001 2297 5165Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Rene Seiger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carlos A. Zarate
- grid.94365.3d0000 0001 2297 5165Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
210
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
211
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
212
|
Pten is a key intrinsic factor regulating raphe 5-HT neuronal plasticity and depressive behaviors in mice. Transl Psychiatry 2021; 11:186. [PMID: 33771970 PMCID: PMC7998026 DOI: 10.1038/s41398-021-01303-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin (5-HT)-based antidepressants, selective serotonin reuptake inhibitors (SSRIs) aim to enhance serotonergic activity by blocking its reuptake. We propose PTEN as a target for an alternative approach for regulating 5-HT neuron activity in the brain and depressive behaviors. We show that PTEN is elevated in central 5-HT neurons in the raphe nucleus by chronic stress in mice, and selective deletion of Pten in the 5-HT neurons induces its structural plasticity shown by increases of dendritic branching and density of PSD95-positive puncta in the dendrites. 5-HT levels are elevated and electrical stimulation of raphe neurons evokes more 5-HT release in the brain of condition knockout (cKO) mice with Pten-deficient 5-HT neurons. In addition, the 5-HT neurons remain normal electrophysiological properties but have increased excitatory synaptic inputs. Single-cell RNA sequencing revealed gene transcript alterations that may underlay morphological and functional changes in Pten-deficient 5-HT neurons. Finally, Pten cKO mice and wild-type mice treated with systemic application of PTEN inhibitor display reduced depression-like behaviors. Thus, PTEN is an intrinsic regulator of 5-HT neuron activity, representing a novel therapeutic strategy for producing antidepressant action.
Collapse
|
213
|
Chronic Inhibition of FAAH Reduces Depressive-Like Behavior and Improves Dentate Gyrus Proliferation after Chronic Unpredictable Stress Exposure. Behav Neurol 2021; 2021:6651492. [PMID: 33833828 PMCID: PMC8016565 DOI: 10.1155/2021/6651492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.
Collapse
|
214
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
215
|
Madrid LI, Jimenez-Martin J, Coulson EJ, Jhaveri DJ. Cholinergic regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. Int J Biochem Cell Biol 2021; 134:105969. [PMID: 33727042 DOI: 10.1016/j.biocel.2021.105969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The production and circuit integration of new neurons is one of the defining features of the adult mammalian hippocampus. A wealth of evidence has established that adult hippocampal neurogenesis is exquisitely sensitive to neuronal activity-mediated regulation. How these signals are interpreted and contribute to neurogenesis and hippocampal functions has been a subject of immense interest. In particular, neurotransmitters, in addition to their synaptic roles, have been shown to offer important trophic support. Amongst these, acetylcholine, which has a prominent role in cognition, has been implicated in regulating neurogenesis. In this review, we appraise the evidence linking the contribution of cholinergic signalling to the regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. We discuss open questions that need to be addressed to gain a deeper mechanistic understanding of the role and translational potential of acetylcholine and its receptors in regulating this form of cellular neuroplasticity.
Collapse
Affiliation(s)
- Lidia I Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
216
|
The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Sci Rep 2021; 11:6300. [PMID: 33737521 PMCID: PMC7973813 DOI: 10.1038/s41598-021-85284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis impairment is a key determinant of intellectual disability in Down syndrome (DS), a genetic pathology due to triplication of chromosome 21. Since neurogenesis ceases after birth, apart in the hippocampus and olfactory bulb, the only means to tackle the problem of neurogenesis impairment in DS at its root is to intervene during gestation. A few studies in DS mouse models show that this is possible, although the drugs used may raise caveats in terms of safety. We previously found that neonatal treatment with 7,8-dihydroxyflavone (7,8-DHF), a flavonoid present in plants, restores hippocampal neurogenesis in the Ts65Dn model of DS. The goal of the current study was to establish whether prenatal treatment with 7,8-DHF improves/restores overall brain proliferation potency. Pregnant Ts65Dn females received 7,8-DHF from embryonic day 10 until delivery. On postnatal day 2 (P2) the pups were injected with BrdU and were killed after either 2 h or 52–60 days (P52–60). Evaluation of the number of proliferating (BrdU+) cells in various forebrain neurogenic niches of P2 mice showed that in treated Ts65Dn mice proliferation potency was improved or even restored in most of the examined regions, including the hippocampus. Quantification of the surviving BrdU+ cells in the dentate gyrus of P52–60 mice showed no difference between treated and untreated Ts65Dn mice. At P52–60, however, treated Ts65Dn mice exhibited a larger number of granule cells in comparison with their untreated counterparts, although their number did not reach that of euploid mice. Results show that 7,8-DHF has a widespread impact on prenatal proliferation potency in Ts65Dn mice and exerts mild long-term effects. It remains to be established whether treatment extending into the neonatal period can lead to an improvement in brain development that is retained in adulthood.
Collapse
|
217
|
Clozapine protects adult neural stem cells from ketamine-induced cell death in correlation with decreased apoptosis and autophagy. Biosci Rep 2021; 40:221825. [PMID: 31919522 PMCID: PMC6981094 DOI: 10.1042/bsr20193156] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG). However, phenotypic determination by immunohistochemistry analysis could not reveal whether BrdU-positive cells were indeed NSCs. Using a previously established cell model for analysing NSC protection in vitro, we investigated a protective effect of clozapine on NSCs. Primary NSCs were isolated from the mouse subventricular zone (SVZ), we show that clozapine had a NSC protective activity alone, as evident by employing an ATP cell viability assay. In contrast, haloperidol did not show any NSC protective properties. Subsequently, cells were exposed to the non-competitive NMDA-receptor antagonist ketamine. Clozapine, but not haloperidol, had a NSC protective/anti-apoptotic activity against ketamine-induced cytotoxicity. The observed NSC protective activity of clozapine was associated with increased expression of the anti-apoptotic marker Bcl-2, decreased expression of the pro-apoptotic cleaved form of caspase-3 and associated with decreased expression of the autophagosome marker 1A/1B-light chain 3 (LC3-II). Collectively, our findings suggest that clozapine may have a protective/anti-apoptotic effect on NSCs, supporting previous in vivo observations, indicating a neurogenesis-promoting activity for clozapine. If the data are further confirmed in vivo, the results may encourage an expanded use of clozapine to restore impaired neurogenesis in schizophrenia.
Collapse
|
218
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
219
|
Bolzan JA, Lino de Oliveira C. Protocol for systematic review and meta-analysis of the evidence linking hippocampal neurogenesis to the effects of antidepressants on mood and behaviour. BMJ OPEN SCIENCE 2021; 5:e100077. [PMID: 35047697 PMCID: PMC8647582 DOI: 10.1136/bmjos-2020-100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Studies in rodents associated the deficits of adult hippocampal neurogenesis with behavioural anomalies which may be reversed by antidepressant treatments. A previous systematic review (SR) and meta-analysis (MA) indicated a hierarchy within the proneurogenic effects of different antidepressants in naive rodents. The present review aims to evaluate a more comprehensive sample of studies investigating the links between the effects of different antidepressants and adult hippocampal neurogenesis. SEARCH STRATEGY SCREENING ANNOTATION DATA MANAGEMENT Protocols were planned following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Searches in Embase, Medline, Scopus and Web of Science followed by screening with inclusion/exclusion criteria will provide relevant publications. First SR will summarise the effects of antidepressants on adult hippocampal neurogenesis on different laboratory rodents. Second SR will summarise the correlations between neurogenic and behavioural effects of antidepressants while the third will focus on cause-effect relationships between them. If feasible, data will be analysed by pairwise or network random-effect or multivariate MA to determine the direction, magnitude, significance and heterogeneity (I2) of the estimated effect sizes on global or subgroup levels. Funnel plotting, Egger regression, 'trim and fill' will be used to estimate the risk of publication bias. Quality assessment of the included publications will be performed by applying adapted CAMARADES, Syrcles' risk of bias or CINeMA tools. REPORTING Find a preliminary version of this protocol at the Open Science Framework (https://osf.io/gmsvd/). Data extraction has already started. Results shall be published in a peer-reviewed journal. Due to the continuous production in the field, the implementation of a 'living SR' is intended.
Collapse
Affiliation(s)
- Juliana Aparecida Bolzan
- Departamento de Ciências Fisiológica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
220
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
221
|
Seiger R, Gryglewski G, Klöbl M, Kautzky A, Godbersen GM, Rischka L, Vanicek T, Hienert M, Unterholzner J, Silberbauer LR, Michenthaler P, Handschuh P, Hahn A, Kasper S, Lanzenberger R. The Influence of Acute SSRI Administration on White Matter Microstructure in Patients Suffering From Major Depressive Disorder and Healthy Controls. Int J Neuropsychopharmacol 2021; 24:542-550. [PMID: 33667309 PMCID: PMC8299824 DOI: 10.1093/ijnp/pyab008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are predominantly prescribed for people suffering from major depressive disorder. These antidepressants exert their effects by blocking the serotonin transporter (SERT), leading to increased levels of serotonin in the synaptic cleft and subsequently to an attenuation of depressive symptoms and elevation in mood. Although long-term studies investigating white matter (WM) alterations after exposure to antidepressant treatment exist, results on the acute effects on the brain's WM microstructure are lacking. METHODS In this interventional longitudinal study, 81 participants were included (33 patients and 48 healthy controls). All participants underwent diffusion weighted imaging on 2 separate days, receiving either citalopram or placebo using a randomized, double-blind, cross-over design. Fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS The repeated-measures ANOVA model revealed significant decreases after SSRI administration in mean diffusivity, axial diffusivity, and radial diffusivity regardless of the group (P < .05, family-wise error [FWE] corrected). Results were predominantly evident in frontal WM regions comprising the anterior corona radiata, corpus callosum, and external capsule and in distinct areas of the frontal blade. No increases in diffusivity were found, and no changes in fractional anisotropy were present. CONCLUSIONS Our investigation provides the first evidence, to our knowledge, that fast WM microstructure adaptations within 1 hour after i.v. SSRI administration precede elevations in mood due to SSRI treatment. These results add a new facet to the complex mode of action of antidepressant therapy. This study was registered at clinicaltrials.gov with the identifier NCT02711215.
Collapse
Affiliation(s)
- R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - A Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - L Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - M Hienert
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - L R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - P Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - P Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - S Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria,Correspondence: Prof. Rupert Lanzenberger, PD MD, Neuroimaging Labs (NIL) – PET, MRI, EEG, TMS and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria ()
| |
Collapse
|
222
|
Sinha P, Cree SL, Miller AL, Pearson JF, Kennedy MA. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. THE PHARMACOGENOMICS JOURNAL 2021; 21:359-375. [PMID: 33649518 DOI: 10.1038/s41397-021-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Allison L Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. .,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
223
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
224
|
Jehna M, Wurm W, Pinter D, Vogel K, Holl A, Hofmann P, Ebner C, Ropele S, Fuchs G, Kapfhammer HP, Deutschmann H, Enzinger C. Do increases in deep grey matter volumes after electroconvulsive therapy persist in patients with major depression? A longitudinal MRI-study. J Affect Disord 2021; 281:908-917. [PMID: 33279261 DOI: 10.1016/j.jad.2020.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Previous MRI studies reported deep grey matter volume increases after electroconvulsive therapy (ECT) in patients with major depressive disorder (MDD). However, the clinical correlates of these changes are still unclear. It remains debated whether such volume changes are transient, and if they correlate with affective changes over time. We here investigated if ECT induces deep grey matter volume increases in MDD-patients; and, if so, whether volume changes persist over more than 9 months and whether they are related to the clinical outcome. METHODS We examined 16 MDD-patients with 3Tesla MRI before (baseline) and after an ECT-series and followed 12 of them up for 10-36 months. Patients' data were compared to 16 healthy controls. Affective scales were used to investigate the relationship between therapy-outcome and MRI changes. RESULTS At baseline, MDD-patients had lower values in global brain volume, white matter and peripheral grey matter compared to healthy controls, but we observed no significant differences in deep grey matter volumes. After ECT, the differences in peripheral grey matter disappeared, and patients demonstrated significant volume increases in the right hippocampus and both thalami, followed by subsequent decreases after 10-36 months, especially in ECT-responders. Controls did not show significant changes over time. LIMITATIONS Beside the relatively small, yet carefully characterized cohort, we address the variability in time between the third scanning session and the baseline. CONCLUSIONS ECT-induced deep grey matter volume increases are transient. Our results suggest that the thalamus might be a key region for the understanding of the mechanisms of ECT action.
Collapse
Affiliation(s)
- Margit Jehna
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Walter Wurm
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria
| | - Katrin Vogel
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Anna Holl
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Peter Hofmann
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Christoph Ebner
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria
| | - Gottfried Fuchs
- Department of Anesthesiology and Intensive Care Medicine, Division of Special Anesthesiology, Pain and Intensive Care Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, 8036 Graz, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, 8036 Graz, Medical University of Graz, Austria; Department of Neurology, Division of General Neurology, 8036 Graz, Medical University of Graz, Austria; Research Unit for Neuronal Repair and Plasticity, 8036 Graz, Medical University of Graz, Austria.
| |
Collapse
|
225
|
Elesawy BH, Raafat BM, Muqbali AA, Abbas AM, Sakr HF. The Impact of Intermittent Fasting on Brain-Derived Neurotrophic Factor, Neurotrophin 3, and Rat Behavior in a Rat Model of Type 2 Diabetes Mellitus. Brain Sci 2021; 11:brainsci11020242. [PMID: 33671898 PMCID: PMC7918995 DOI: 10.3390/brainsci11020242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with an increased risk of dementia, specifically Alzheimer’s disease and vascular dementia. Intermittent fasting (IF) has been proposed to produce neuroprotective effects through the activation of several signaling pathways. In this study, we investigated the effect of IF on rat behavior in type 2 diabetic rats. Forty male Wistar Kyoto rats were divided into four groups (n = 10 for each): the ad libitum (Ad) group, the intermittent fasting group (IF), the streptozotocin-induced diabetic 2 group (T2DM) fed a high-fat diet for 4 weeks followed by a single intraperitoneal (i.p.) injection of streptozotocin (STZ) 25 mg kg−1, and the diabetic group with intermittent fasting (T2DM+IF). We evaluated the impact of 3 months of IF (16 h of food deprivation daily) on the levels of brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), serotonin, dopamine, and glutamate in the hippocampus, and rat behavior was assessed by the forced swim test and elevated plus maze. IF for 12 weeks significantly increased (p < 0.05) the levels of NT3 and BDNF in both control and T2DM rats. Additionally, it increased serotonin, dopamine, and glutamic acid in diabetic rats. Moreover, IF modulated glucose homeostasis parameters, with a significant decrease (p < 0.05) in insulin resistance and downregulation of serum corticosterone level. Interestingly, T2DM rats showed a significant increase in anxiety and depression behaviors, which were ameliorated by IF. These findings suggest that IF could produce a potentially protective effect by increasing the levels of BDNF and NT3 in both control and T2DM rats. IF could be considered as an additional therapy for depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aya Al Muqbali
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
| | - Amr M. Abbas
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Koudh, Muscat PC 123, Oman;
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
226
|
Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci 2021; 11:brainsci11020221. [PMID: 33670277 PMCID: PMC7918687 DOI: 10.3390/brainsci11020221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Our access to computer-generated worlds changes the way we feel, how we think, and how we solve problems. In this review, we explore the utility of different types of virtual reality, immersive or non-immersive, for providing controllable, safe environments that enable individual training, neurorehabilitation, or even replacement of lost functions. The neurobiological effects of virtual reality on neuronal plasticity have been shown to result in increased cortical gray matter volumes, higher concentration of electroencephalographic beta-waves, and enhanced cognitive performance. Clinical application of virtual reality is aided by innovative brain–computer interfaces, which allow direct tapping into the electric activity generated by different brain cortical areas for precise voluntary control of connected robotic devices. Virtual reality is also valuable to healthy individuals as a narrative medium for redesigning their individual stories in an integrative process of self-improvement and personal development. Future upgrades of virtual reality-based technologies promise to help humans transcend the limitations of their biological bodies and augment their capacity to mold physical reality to better meet the needs of a globalized world.
Collapse
|
227
|
Seno S, Tomura S, Miyazaki H, Sato S, Saitoh D. Effects of Selective Serotonin Reuptake Inhibitors on Depression-Like Behavior in a Laser-Induced Shock Wave Model. Front Neurol 2021; 12:602038. [PMID: 33643190 PMCID: PMC7902879 DOI: 10.3389/fneur.2021.602038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Primary blast injury can result in depression-like behavior in the long-term. However, the effects of the selective serotonin reuptake inhibitor (SSRI) on the depression induced by mild blast traumatic brain injury (bTBI) in the long-term remain unclear. We generated a mouse model of mild bTBI using laser-induced shock wave (LISW) and administered an SSRI to mice by oral gavage for 14 days after LISW exposure. This study aimed to investigate the mechanisms of SSRI-mediated alleviation of depression-like behavior induced by mild bTBI. Animals were divided into three groups: sham, LISW-Vehicle, and LISW-SSRI. LISW was applied to the head of anesthetized mice at 0.5 J/cm2. Twenty-eight days after the LISW, mice in the LISW-SSRI group exhibited reduced depression-like behavior, a significant increase in the number of cells co-stained for 5-bromo-2'-deoxyuridine (Brd-U) and doublecortin (DCX) in the dentate gyrus (DG) as well as increased brain-derived neurotrophic factor (BDNF) and serotonin levels in the hippocampus compared to the sham and LISW-Vehicle groups. Additionally, levels of phosphorylated cAMP response element binding protein (pCREB) in the DG were significantly decreased in the LISW-Vehicle group compared to that in the sham group. Importantly, pCREB levels were not significantly different between LISW-SSRI and sham groups suggesting that SSRI treatment may limit the downregulation of pCREB induced by mild bTBI. In conclusion, recovery from depression-like behavior after mild bTBI may be mediated by hippocampal neurogenesis induced by increased BDNF and serotonin levels as well as the inhibition of pCREB downregulation in the hippocampus.
Collapse
Affiliation(s)
- Soichiro Seno
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Hiromi Miyazaki
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, Research Institute, National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Saitama, Japan
| |
Collapse
|
228
|
Houben S, Homa M, Yilmaz Z, Leroy K, Brion JP, Ando K. Tau Pathology and Adult Hippocampal Neurogenesis: What Tau Mouse Models Tell us? Front Neurol 2021; 12:610330. [PMID: 33643196 PMCID: PMC7902892 DOI: 10.3389/fneur.2021.610330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains. A growing body of evidence points to the fact that AHN sustains hippocampal-dependent functions such as learning and memory. Impaired AHN has been reported in post-mortem human brain hippocampus of Alzheimer's disease (AD) and is considered to contribute to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal tau proteins accumulating in many brain areas during the progression of the disease, including in the hippocampus. The physiological role of tau and impact of tau pathology on AHN is still poorly understood. Modifications in AHN have also been reported in some tau transgenic and tau-deleted mouse models. We present here a brief review of advances in the relationship between development of tau pathology and AHN in AD and what insights have been gained from studies in tau mouse models.
Collapse
Affiliation(s)
- Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mégane Homa
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
229
|
Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, Ren Q, Rahman SU, Li N, Yu ZJ, Li S. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation 2021; 18:38. [PMID: 33526073 PMCID: PMC7852137 DOI: 10.1186/s12974-021-02091-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selective serotonin reuptaker inhibitors, including fluoxetine, are widely studied and prescribed antidepressants, while their exact molecular and cellular mechanism are yet to be defined. We investigated the involvement of HDAC1 and eEF2 in the antidepressant mechanisms of fluoxetine using a lipopolysaccharide (LPS)-induced depression-like behavior model. METHODS For in vivo analysis, mice were treated with LPS (2 mg/kg BW), fluoxetine (20 mg/kg BW), HDAC1 activator (Exifone: 54 mg/kg BW) and NH125 (1 mg/kg BW). Depressive-like behaviors were confirmed via behavior tests including OFT, FST, SPT, and TST. Cytokines were measured by ELISA while Iba-1 and GFAP expression were determined by immunofluorescence. Further, the desired gene expression was measured by immunoblotting. For in vitro analysis, BV2 cell lines were cultured; treated with LPS, exifone, and fluoxetine; collected; and analyzed. RESULTS Mice treated with LPS displayed depression-like behaviors, pronounced neuroinflammation, increased HDAC1 expression, and reduced eEF2 activity, as accompanied by altered synaptogenic factors including BDNF, SNAP25, and PSD95. Fluoxetine treatment exhibited antidepressant effects and ameliorated the molecular changes induced by LPS. Exifone, a selective HDAC1 activator, reversed the antidepressant and anti-inflammatory effects of fluoxetine both in vivo and in vitro, supporting a causing role of HDAC1 in neuroinflammation allied depression. Further molecular mechanisms underlying HDAC1 were explored with NH125, an eEF2K inhibitor, whose treatment reduced immobility time, altered pro-inflammatory cytokines, and NLRP3 expression. Moreover, NH125 treatment enhanced eEF2 and GSK3β activities, BDNF, SNAP25, and PSD95 expression, but had no effects on HDAC1. CONCLUSIONS Our results showed that the antidepressant effects of fluoxetine may involve HDAC1-eEF2 related neuroinflammation and synaptogenesis.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, 18000, Pakistan
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052 China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
230
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
231
|
Abstract
The adult brain is the result of a multistages complex neurodevelopmental process involving genetic, molecular and microenvironmental factors as well as diverse patterns of electrical activity. In the postnatal life, immature neuronal circuits undergo an experience-dependent maturation during critical periods of plasticity, but the brain still retains plasticity during adult life. In all these stages, the neurotransmitter GABA plays a pivotal role. In this chapter, we will describe the interaction of 5-HT with GABA in regulating neurodevelopment and plasticity.
Collapse
|
232
|
Kimura H, Kanahara N, Iyo M. Rationale and neurobiological effects of treatment with antipsychotics in patients with chronic schizophrenia considering dopamine supersensitivity. Behav Brain Res 2021; 403:113126. [PMID: 33460681 DOI: 10.1016/j.bbr.2021.113126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The long-term treatment of patients with schizophrenia often involves the management of relapses for most patients and the development of treatment resistance in some patients. To stabilize the clinical course and allow as many patients as possible to recover, clinicians need to recognize dopamine supersensitivity, which can be provoked by administration of high dosages of antipsychotics, and deal with it properly. However, no treatment guidelines have addressed this issue. The present review summarized the characteristics of long-acting injectable antipsychotics, dopamine partial agonists, and clozapine in relation to dopamine supersensitivity from the viewpoints of receptor profiles and pharmacokinetics. The potential merits and limitations of these medicines are discussed, as well as the risks of treating patients with established dopamine supersensitivity with these classes of drugs. Finally, the review discussed the biological influence of antipsychotic treatment on the human brain based on findings regarding the relationship between the hippocampus and antipsychotics.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Chiba, Japan; Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Psychiatry, Gakuji-kai Kimura Hospital, Chiba, Japan.
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
233
|
Dentate gyrus activin signaling mediates the antidepressant response. Transl Psychiatry 2021; 11:7. [PMID: 33414389 PMCID: PMC7791138 DOI: 10.1038/s41398-020-01156-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Antidepressants that target monoaminergic systems, such as selective serotonin reuptake inhibitors (SSRIs), are widely used to treat neuropsychiatric disorders including major depressive disorder, several anxiety disorders, and obsessive-compulsive disorder. However, these treatments are not ideal because only a subset of patients achieve remission. The reasons why some individuals remit to antidepressant treatments while others do not are unknown. Here, we developed a paradigm to assess antidepressant treatment resistance in mice. Exposure of male C57BL/6J mice to either chronic corticosterone administration or chronic social defeat stress induces maladaptive affective behaviors. Subsequent chronic treatment with the SSRI fluoxetine reverses these maladaptive affective behavioral changes in some, but not all, of the mice, permitting stratification into persistent responders and non-responders to fluoxetine. We found several differences in expression of Activin signaling-related genes between responders and non-responders in the dentate gyrus (DG), a region that is critical for the beneficial behavioral effects of fluoxetine. Enhancement of Activin signaling in the DG converted behavioral non-responders into responders to fluoxetine treatment more effectively than commonly used second-line antidepressant treatments, while inhibition of Activin signaling in the DG converted responders into non-responders. Taken together, these results demonstrate that the behavioral response to fluoxetine can be bidirectionally modified via targeted manipulations of the DG and suggest that molecular- and neural circuit-based modulations of DG may provide a new therapeutic avenue for more effective antidepressant treatments.
Collapse
|
234
|
Herzog DP, Pascual Cuadrado D, Treccani G, Jene T, Opitz V, Hasch A, Lutz B, Lieb K, Sillaber I, van der Kooij MA, Tiwari VK, Müller MB. A distinct transcriptional signature of antidepressant response in hippocampal dentate gyrus granule cells. Transl Psychiatry 2021; 11:4. [PMID: 33414410 PMCID: PMC7791134 DOI: 10.1038/s41398-020-01136-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.
Collapse
Affiliation(s)
- David P. Herzog
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Diego Pascual Cuadrado
- grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Giulia Treccani
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Tanja Jene
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Verena Opitz
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Annika Hasch
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Beat Lutz
- grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Institute of Physiological Chemistry, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Klaus Lieb
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | | | - Michael A. van der Kooij
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Vijay K. Tiwari
- grid.5802.f0000 0001 1941 7111Institute of Molecular Biology, Johannes Gutenberg University Mainz, Mainz, Germany ,grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Marianne B. Müller
- grid.410607.4Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany ,grid.410607.4Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
235
|
Jiang YF, Liu J, Yang J, Guo Y, Hu W, Zhang J, La XM, Xie W, Wang HS, Zhang L. Involvement of the Dorsal Hippocampus 5-HT1A Receptors in the Regulation of Depressive-Like Behaviors in Hemiparkinsonian Rats. Neuropsychobiology 2021; 79:198-207. [PMID: 31940619 DOI: 10.1159/000505212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric disturbances in Parkinson's disease (PD), but its pathophysiology is not definite. Lines of evidence have indicated that the hippocampus and serotonin 1A (5-HT1A) receptors are related to the regulation of depression. OBJECTIVE The purpose of the present study was to observe the effect of 5-HT1A receptors in the dorsal hippocampus (dHIP) on PD-related depression in rats. METHODS Unilateral 6-hydroxydopamine lesioning of the medial forebrain bundle (MFB) was used to establish the hemiparkinsonian rat model. The effects of intra-dHIP injection of the 5-HT1A receptor -agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) or antagonist WAY-100635 on depressive-like behaviors were observed in sucrose preference and forced swim tests in control and lesioned rats. Monoamine levels including dopamine (DA), 5-HT, and noradrenaline (NA) in depression-related brain regions were determined by a neurochemical method in all groups. RESULTS Behavioral results showed that MFB lesions induced depressive-like behaviors. Intra-dHIP injection of 8-OH-DPAT produced antidepressant effects, while WAY-100635 induced or increased the depressive-like behaviors in both control and the lesioned rats. Neurochemical results found that intra-dHIP injection of 8-OH-DPAT significantly increased DA and 5-HT levels in the medial prefrontal cortex (mPFC), lateral habenula (LHb), ventral hippocampus and amygdala in the lesioned group and decreased NA levels in the mPFC and LHb in the control group. Moreover, after injection of WAY-100635, NA levels in all these regions of the lesioned group were significantly increased. CONCLUSIONS These findings suggest that hippocampal 5-HT1A receptors regulate depression and PD-related depression by neurochemical mechanisms.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Hu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xue-Mei La
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Stomatology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
236
|
Qiao YL, Zhou JJ, Liang JH, Deng XP, Zhang ZJ, Huang HL, Li S, Dai SF, Liu CQ, Luan ZL, Yu ZL, Sun CP, Ma XC. Uncaria rhynchophylla ameliorates unpredictable chronic mild stress-induced depression in mice via activating 5-HT 1A receptor: Insights from transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153436. [PMID: 33360346 DOI: 10.1016/j.phymed.2020.153436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Depression is a pervasive or persistent mental disorder that causes mood, cognitive and memory deficits. Uncaria rhynchophylla has been widely used to treat central nervous system diseases for a long history, although its efficacy and potential mechanism are still uncertain. PURPOSE The present study aimed to investigate anti-depression effect and potential mechanism of U. rhynchophylla extract (URE). STUDY DESIGN AND METHODS A mouse depression model was established using unpredictable chronic mild stress (UCMS). Effects of URE on depression-like behaviours, neurotransmitters, and neuroendocrine hormones were investigated in UCMS-induced mice. The potential target of URE was analyzed by transcriptomics and bioinformatics methods and validated by RT-PCR and Western blot. The agonistic effect on 5-HT1A receptor was assayed by dual-luciferase reporter system. RESULTS URE ameliorated depression-like behaviours, and modulated levels of neurotransmitters and neuroendocrine hormones, including 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), corticosterone (CORT), corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH), in UCMS-induced mice. Transcriptomics and bioinformatics results indicated that URE could regulate glutamatergic, cholinergic, serotonergic, and GABAergic systems, especially neuroactive ligand-receptor and cAMP signaling pathways, revealing that Htr1a encoding 5-HT1A receptor was a potential target of URE. The expression levels of downstream proteins of 5-HT1A signaling pathway 5-HT1A, CREB, BDNF, and PKA were increased in UCMS-induced mice after URE administration, and URE also displayed an agonistic effect against 5-HT1A receptor with an EC50 value of 17.42 μg/ml. CONCLUSION U. rhynchophylla ameliorated depression-like behaviours in UCMS-induced mice through activating 5-HT1A receptor.
Collapse
Affiliation(s)
- Yan-Ling Qiao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jun-Jun Zhou
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jia-Hao Liang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xiao-Peng Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Hui-Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Song Li
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Shu-Fang Dai
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chun-Qing Liu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhen-Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
237
|
Role of adult hippocampal neurogenesis in the antidepressant actions of lactate. Mol Psychiatry 2021; 26:6723-6735. [PMID: 33990772 PMCID: PMC8760055 DOI: 10.1038/s41380-021-01122-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
In addition to its role as a neuronal energy substrate and signaling molecule involved in synaptic plasticity and memory consolidation, recent evidence shows that lactate produces antidepressant effects in animal models. However, the mechanisms underpinning lactate's antidepressant actions remain largely unknown. In this study, we report that lactate reverses the effects of corticosterone on depressive-like behavior, as well as on the inhibition of both the survival and proliferation of new neurons in the adult hippocampus. Furthermore, the inhibition of adult hippocampal neurogenesis prevents the antidepressant-like effects of lactate. Pyruvate, the oxidized form of lactate, did not mimic the effects of lactate on adult hippocampal neurogenesis and depression-like behavior. Finally, our data suggest that conversion of lactate to pyruvate with the concomitant production of NADH is necessary for the neurogenic and antidepressant effects of lactate.
Collapse
|
238
|
Shukla R, Henkel ND, Alganem K, Hamoud AR, Reigle J, Alnafisah RS, Eby HM, Imami AS, Creeden JF, Miruzzi SA, Meller J, Mccullumsmith RE. Signature-based approaches for informed drug repurposing: targeting CNS disorders. Neuropsychopharmacology 2021; 46:116-130. [PMID: 32604402 PMCID: PMC7688959 DOI: 10.1038/s41386-020-0752-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.
Collapse
Affiliation(s)
- Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH, USA.
| | | | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Hunter M Eby
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
239
|
Yang J, Li S, Lv H, Wang W, Zhang J, Chu L, Zhang Y. CREB1 and BDNF gene polymorphisms are associated with early treatment response to escitalopram in panic disorder. J Affect Disord 2021; 278:536-541. [PMID: 33017682 DOI: 10.1016/j.jad.2020.09.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/08/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Increasing evidence shows that the alternations under escitalopram treatment for Panic disorder (PD) patients are related to the cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF). We aimed to explore the single nucleotide polymorphisms (SNPs) of genes BDNF and CREB1 in the treatment response to escitalopram on PD. METHODS There were 80 PD patients with DSM-5 diagnosis and 78 healthy controls. All PD patients have received escitalopram treatment for consecutive 8 weeks. The Chinese version of Panic Disorder Severity Scale (PDSS-CV) and the Hamilton Anxiety Scale (HAMA-14) were used to evaluate the severity of panic and anxious symptoms for PD patients at baseline, week-2, week-4, and week-8, respectively. Four SNPs (rs11904814, rs6740584, rs2253206, and rs2551941) in CREB1 gene and rs6265 in BDNF gene were genotyped using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS). Quantitative and binary genetic associations between SNPs and escitalopram treatment response were performed. RESULTS The comparisons of three genotypes in CREB1 SNPs rs11904814 and rs2551941 among the PDSS-CV responders showed significant differences at the end of week-2 (both p<0.05). The results remained significant after Bonferroni corrections. For candidate genes in our present study, the gene CREB1 SNP rs11904814 (p=0.007) was significantly associated with changes of PDSS-CV scores under escitalopram treatment for 12 weeks in PD patients. And the result was still significant after adjusting age and gender. CONCLUSIONS The findings provide preliminary evidence supporting the potential role of BDNF and CREB1 on a rapid response after escitalopram intervention in PD patients.
Collapse
Affiliation(s)
- Junfeng Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shen Li
- Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China
| | - Hao Lv
- Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China
| | - Wenchen Wang
- Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China
| | - Jian Zhang
- Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China
| | - Lijun Chu
- Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China
| | - Yong Zhang
- Mental Health Institute, Tianjin Anding Hospital, Tianjin 300222, China.
| |
Collapse
|
240
|
Bis-Humbert C, García-Fuster MJ. Adolescent cocaine induced persistent negative affect in female rats exposed to early-life stress. Psychopharmacology (Berl) 2021; 238:3399-3410. [PMID: 34430991 PMCID: PMC8629899 DOI: 10.1007/s00213-021-05955-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
RATIONALE The combination of several risk factors (sex, a prior underlying psychiatric condition, or early drug initiation) could induce the emergence of negative affect during cocaine abstinence and increase the risk of developing addiction. However, most prior preclinical studies have been centered in male rodents, traditionally excluding females from these analyses. OBJECTIVES To ascertain the behavioral and neurochemical consequences of adolescent cocaine exposure when the combination of several risk factors is present (female, early-life stress). METHODS Whole litters of Sprague-Dawley rats were exposed to maternal deprivation for 24 h on postnatal day (PND) 9. Cocaine was administered in adolescence (15 mg/kg/day, i.p., PND 33-39). Negative affect was assessed by several behavioral tests (forced swim, open field, novelty-suppressed feeding, sucrose preference). Hippocampal cell fate markers were evaluated by western blot (FADD, Bax, cytochrome c) or immunohistochemistry (Ki-67; cell proliferation). RESULTS Maternal deprivation is a suitable model of psychiatric vulnerability in which to study the impact of adolescent cocaine in female rats. While adolescent cocaine did not alter affective-like behavior during adolescence, a pro-depressive-like state emerged during adulthood, exclusively in rats re-exposed to cocaine during abstinence. FADD regulation by cocaine in early-life stressed female rats might contribute to certain hippocampal neuroadaptations with some significance to the observed induced negative affect. CONCLUSIONS Adolescent cocaine induced persistent negative affect in female rats exposed to early-life stress, highlighting the risk of early drug initiation during adolescence for the emergence of negative reinforcement during abstinence likely driving cocaine addiction vulnerability, also in female rats.
Collapse
Affiliation(s)
- Cristian Bis-Humbert
- grid.9563.90000 0001 1940 4767IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, 07122 Palma, Spain ,grid.507085.fHealth Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M. Julia García-Fuster
- grid.9563.90000 0001 1940 4767IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, 07122 Palma, Spain ,grid.507085.fHealth Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
241
|
Malheiros RT, Delgado HO, Felber DT, Kraus SI, Dos Santos ARS, Manfredini V, da Silva MD. Mood disorders are associated with the reduction of brain derived neurotrophic factor in the hypocampus in rats submitted to the hipercaloric diet. Metab Brain Dis 2021; 36:145-151. [PMID: 33025299 DOI: 10.1007/s11011-020-00625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue accumulation, resulting from the consumption of hypercaloric foods, can cause a dysfunction of the endocrine system. Such endocrine changes can influence the expression of various neurochemicals including brain-derived neurotrophic factor (BDNF) - associated with cognitive and emotional problems. Here, we investigated the effects of a hypercaloric diet on depression- and anxiety-like behaviors in young rats along with concomitant changes in BDNF expression levels in the hippocampus. Eight week-old Wistar rats (n = 20) were divided in: control diet (CD) group which received industrial food (n = 8) and hypercaloric diet (HD) group which received animal fat and soybean oil (n = 12). After 45 days on the diet, the animals were evaluated: body weight and blood biochemical analisys. Changes in mood disposition were evaluated using forced swim test and the elevated plus-maze, whereas hippocampal BDNF expression levels were quantified by ELISA. After 45 weeks, the CD group showed a significant increase in body weight relative to the HD group. However, the HD rats had a body fat percentage and exhibited increased level of the biochemical markers. Furthermore, the animals in the HD group presented increased immobility time in the forced swimming test, as well as reduced response to plus-maze test suggesting a depression- and anxiety-like emotional state. In addition, the HD group also showed lower BDNF expression levels in the hippocampus. This study demonstrates that a hypercaloric diet induced increase in adipose tissue concentration in young rats was associated with reduced hippocampal BDNF expression and resulted in an increase in depression- and anxiety-like behaviors. Graphical abstract.
Collapse
Affiliation(s)
- Rafael Tamborena Malheiros
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Helena Oliveira Delgado
- Graduation of Physiotherapy, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Daniel Tassinari Felber
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Scheila Iria Kraus
- Post-graduate Program in Neurosciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adair Roberto Soares Dos Santos
- Post-graduate Program in Neurosciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Vanusa Manfredini
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Morgana Duarte da Silva
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil.
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
242
|
Hou B, Ji L, Chen Z, An L, Zhang N, Ren D, Yuan F, Liu L, Bi Y, Guo Z, Ma G, Xu F, Yang F, Yu S, Yi Z, Xu Y, He L, Liu C, Bai B, Yu T, Wu S, Zhao L, Cai C, Wu X, Li X, He G. Interaction of CEND1 gene and life events in susceptibility to depressive symptoms in Chinese Han college students. J Affect Disord 2021; 278:570-575. [PMID: 33027701 DOI: 10.1016/j.jad.2020.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/12/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND . The development of depressive symptoms (DSs) is a complex process caused by both genetic and environmental factors. CEND1 gene coordinates cell division, differentiation and maturation of neural precursor cells, which affects brain structure and function. Our study investigated whether CEND1 was a genetic factor for DSs, particularly under negative life events. METHODS . 272 freshmen with DSs and 467 healthy controls were recruited via the Center for Epidemiologic Studies Depression Scale (CES-D). The adolescent Self-rating Life Event Checklist (ASLEC) was adopted to assess stressful life events during the past 12 months. Two SNPs (rs7946354, rs6597982) within the CEND1 gene were genotyped using Agena MassARRAY iPLEX technology. We combined generalized multifactor dimensionality reduction (GMDR) with RStudio programming to assess the direct association and gene-environment interaction (G × E). RESULTS . Rs7946354 was associated with DSs in an overdominant model (GT vs. GG+TT). In addition, both rs7946354 and rs6597982 had considerable impacts on negative life events. GMDR showed a statistical G × E that the AG genotype of rs6597982 and GT genotype of rs7946354 contribute to the maximum risk of DSs under high negative life events. LIMITATIONS . Only two single nucleotide polymorphisms (SNPs) were examined. Verification studies with bigger sample size and more varied demographic background information could be adopted to further support the generalization of these findings. CONCLUSIONS .CEND1 can potentially cause high sensitivity to life events and affect DSs especially in the presence of negative life events, which contribute to the field of depression prevention and treatment.
Collapse
Affiliation(s)
- Binyin Hou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhixuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lin An
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Naixin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong 272067, China
| | - Bo Bai
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong 272067, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Shaochang Wu
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang 323000, China
| | - Longyou Zhao
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang 323000, China
| | - Changqun Cai
- Wuhu No.4 People's Hospital, 1 Xuxiashan Rd, Wuhu, Anhui 241002,China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
243
|
Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 2021; 91:519-530. [PMID: 33176182 DOI: 10.1016/j.bbi.2020.11.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.
Collapse
Affiliation(s)
- Ben Bassett
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Selvaraj Subramaniyam
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Seth Varney
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hope Pan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chang Y Chung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Division of Natural Science, Duke Kunshan University, Kunshan 215316, China.
| |
Collapse
|
244
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
245
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2020; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
246
|
Mal’tsev DI, Podgornyi OV. Molecular and Cellular Mechanisms Regulating Quiescence and Division of Hippocampal Stem Cells. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
247
|
Tang W, He X, Feng L, Liu D, Yang Z, Zhang J, Xiao B, Yang Z. The Role of Hippocampal Neurogenesis in ANT-DBS for LiCl-Pilocarpine-Induced Epileptic Rats. Stereotact Funct Neurosurg 2020; 99:55-64. [PMID: 33302280 DOI: 10.1159/000509314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Abnormal neurogenesis in the hippocampus after status epilepticus (SE) has been suggested as a key pathogeny of temporal lobe epilepsy. This study aimed to investigate the effect of deep brain stimulation of the anterior thalamic nucleus (ANT-DBS) on hippocampal neurogenesis in LiCl-pilocarpine-induced epileptic rats and to analyze its relationship with postoperative spontaneous recurrent seizures (SRS) and anxiety. METHOD SE was induced by a systemic LiCl-pilocarpine injection in adult male rats. Rats in the DBS group underwent ANT-DBS immediately after successful SE induction. SRS was only recorded during the chronic stage. An elevated plus maze was used to evaluate the level of anxiety in rats 7, 28, and 60 days after SE onset. After the elevated plus-maze experiment, rats were sacrificed under anesthesia in order to evaluate hippocampal neurogenesis. Doublecortin (DCX) was used as a marker for neurogenesis. RESULTS During the chronic stage, SRS in rats in the DBS group were significantly decreased. The level of anxiety was increased significantly in rats in the DBS group 28 days after SE, while no significant differences in anxiety levels were found 7 and 60 days after SE. The number of DCX-positive cells in the hippocampus was significantly increased 7 days after SE and was significantly decreased 60 days after SE in all rats in which SE was induced. However, the number of DCX-positive cells in the DBS group was significantly lower than that in the other groups 28 days after SE. CONCLUSIONS ANT-DBS may suppress SRS and increase the postoperative anxiety of epileptic rats by influencing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Weiting Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Junmei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
248
|
Kuhn M, Maier JG, Wolf E, Mainberger F, Feige B, Maywald S, Bredl A, Michel M, Sendelbach N, Normann C, Klöppel S, Eckert A, Riemann D, Nissen C. Indices of cortical plasticity after therapeutic sleep deprivation in patients with major depressive disorder. J Affect Disord 2020; 277:425-435. [PMID: 32866801 DOI: 10.1016/j.jad.2020.08.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Therapeutic sleep deprivation (SD) presents a unique paradigm to study the neurobiology of major depressive disorder (MDD). However, the rapid antidepressant mechanism, which differs from today's slow first-line treatments, is not sufficiently understood. We recently integrated two prominent hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, into a synaptic plasticity model of therapeutic SD in MDD. Here, we further tested this model positing that homeostatically elevating net synaptic strength through therapeutic SD shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP)-like plasticity in patients with MDD into a more favorable window of associative plasticity. METHODS We used paired associative stimulation (PAS), a transcranial magnetic stimulation protocol (TMS), to quantify cortical LTP-like plasticity after one night of therapeutic sleep deprivation in 28 patients with MDD. RESULTS We demonstrate a significantly different inducibility of associative plasticity in clinical responders to therapeutic SD (> 50% improvement on the 6-item Hamilton-Rating-Scale for Depression, n=13) compared to non-responders (n=15), which was driven by a long-term depression (LTD)-like response in SD-non-responders. Indices of global net synaptic strength (wake EEG theta activity, intracortical inhibition and BDNF serum levels) were increased after SD in both groups, with responders showing a generally lower intracortical inhibition than non-responders. LIMITATIONS Repetitive assessments prior to and after treatment would be needed to further determine potential mechanisms. CONCLUSION After a night of therapeutic SD, clinical responders show a significantly higher inducibility of associative LTP-like plasticity than non-responders.
Collapse
Affiliation(s)
- Marion Kuhn
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jonathan G Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elias Wolf
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Florian Mainberger
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sarah Maywald
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Aliza Bredl
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Maike Michel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Sendelbach
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
249
|
García-Cabrerizo R, Ledesma-Corvi S, Bis-Humbert C, García-Fuster MJ. Sex differences in the antidepressant-like potential of repeated electroconvulsive seizures in adolescent and adult rats: Regulation of the early stages of hippocampal neurogenesis. Eur Neuropsychopharmacol 2020; 41:132-145. [PMID: 33160794 DOI: 10.1016/j.euroneuro.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Age and sex are critical factors for the diagnosis and treatment of major depression, since there is a well-known age-by-sex difference in the prevalence of major depression (being females the most vulnerable ones) and in antidepressant efficacy (being adolescence a less responsive period than adulthood). Although the induction of electroconvulsive seizures (ECS) is a very old technique in humans, there is not much evidence reporting sex- and age-specific aspects of this treatment. The present study evaluated the antidepressant- and neurogenic-like potential of repeated ECS across time in adolescent and adult rats (naïve or in a model of early life stress capable of mimicking a pro-depressive phenotype), while including a sex perspective. The main results demonstrated age- and sex-specific differences in the antidepressant-like potential of repeated ECS, since it worked when administered during adolescence or adulthood in male rats (although with a shorter length in adolescence), while in females rendered deleterious during adolescence and ineffective in adulthood. Yet, repeated ECS increased cell proliferation and vastly boosted young neuronal survival in a time-dependent manner for both sexes and independently of age. Moreover, pharmacological inhibition of basal cell proliferation prevented the antidepressant-like effect induced by repeated ECS in male rats, but only partially blocked the very robust increase in the initial cell markers of hippocampal neurogenesis. Overall, the present results suggest that the induction of the early phases of neurogenesis by ECS, besides having a role in mediating its antidepressant-like effect, might participate in some other neuroplastic actions, opening the path for future studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Present address: APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
250
|
Keeler J, Patsalos O, Thuret S, Ehrlich S, Tchanturia K, Himmerich H, Treasure J. Hippocampal volume, function, and related molecular activity in anorexia nervosa: A scoping review. Expert Rev Clin Pharmacol 2020; 13:1367-1387. [PMID: 33176113 DOI: 10.1080/17512433.2020.1850256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Anorexia nervosa (AN) is a serious and persistent eating disorder, characterized by severe dietary restriction and weight loss, with a third of patients developing a severe-enduring form. The factors contributing to this progression are poorly understood, although there is evidence for impairments in neural structures such as the hippocampus, an area particularly affected by malnutrition and chronic stress. AREAS COVERED This study aimed to map the evidence for alterations in hippocampal volume, function, and related molecular activity in anorexia nervosa. PubMed, PsycINFO, and Web of Science were searched for studies related to hippocampal function and integrity using a range of methodologies, such as neuropsychological paradigms, structural and functional magnetic resonance imaging, and analysis of blood components. EXPERT OPINION Thirty-nine studies were included in this review. The majority were neuroimaging studies, which found hippocampus-specific volumetric and functional impairments. Neuropsychological studies showed evidence for a specific memory and learning impairments. There was some evidence for molecular abnormalities (e.g. cortisol), although these were few studies. Taken together, our review suggests that the hippocampus might be a particular region of interest when considering neurobiological approaches to understanding AN. These findings warrant further investigation and may lead to novel treatment approaches.
Collapse
Affiliation(s)
- Johanna Keeler
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Olivia Patsalos
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience , UK
| | - Stefan Ehrlich
- Faculty of Medicine, Technische Universitat Dresden, Division of Psychological and Social Medicine and Developmental Neurosciences , Germany
| | - Kate Tchanturia
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Hubertus Himmerich
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| | - Janet Treasure
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology & Neuroscience ,UK
| |
Collapse
|