201
|
Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. A field guide for the compositional analysis of any-omics data. Gigascience 2019; 8:giz107. [PMID: 31544212 PMCID: PMC6755255 DOI: 10.1093/gigascience/giz107] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) has made it possible to determine the sequence and relative abundance of all nucleotides in a biological or environmental sample. A cornerstone of NGS is the quantification of RNA or DNA presence as counts. However, these counts are not counts per se: their magnitude is determined arbitrarily by the sequencing depth, not by the input material. Consequently, counts must undergo normalization prior to use. Conventional normalization methods require a set of assumptions: they assume that the majority of features are unchanged and that all environments under study have the same carrying capacity for nucleotide synthesis. These assumptions are often untestable and may not hold when heterogeneous samples are compared. RESULTS Methods developed within the field of compositional data analysis offer a general solution that is assumption-free and valid for all data. Herein, we synthesize the extant literature to provide a concise guide on how to apply compositional data analysis to NGS count data. CONCLUSIONS In highlighting the limitations of total library size, effective library size, and spike-in normalizations, we propose the log-ratio transformation as a general solution to answer the question, "Relative to some important activity of the cell, what is changing?"
Collapse
Affiliation(s)
- Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, 1 Gheringhap Street, Geelong Victoria 3220, Australia
- Centre for Molecular and Medical Research, Deakin University, 1 Gheringhap Street, Geelong Victoria 3220, Australia
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Greg Gloor
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London ON N6A 3K7, Canada
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Mark F Richardson
- Bioinformatics Core Research Group, Deakin University, 1 Gheringhap Street, Geelong Victoria 3220, Australia
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, 1 Gheringhap Street, Geelong Victoria 3220, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 1 Gheringhap Street, Geelong Victoria 3220, Australia
| | - Tamsyn M Crowley
- Poultry Hub Australia, University of New England, Elm Avenue, Armidale New South Wales 2351, Australia
| |
Collapse
|
202
|
Abstract
The covalent immobilization of an enzyme to a solid support can broaden its applicability in various workflows. Immobilized enzymes facilitate catalyst re-use, adaptability to automation or high-throughput applications and removal of the enzyme without heat inactivation or reaction purification. In this report, we demonstrate a step-by-step procedure to carry out the bio-orthogonal immobilization of DNA modifying enzymes employing the self-labelling activity of the SNAP-tag to covalently conjugate the enzyme of interest to the solid support. We also demonstrate how modifying the surface functionality of the support can improve the activity of the immobilized enzyme. Finally, the utility of immobilized DNA-modifying enzymes is depicted through sequential processing of genomic DNA libraries for Illumina next-generation sequencing (NGS), resulting in improved read coverage across AT-rich sequences.
Collapse
|
203
|
A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples. Mol Biol Rep 2019; 46:5919-5930. [PMID: 31410687 DOI: 10.1007/s11033-019-05025-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
In the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasis-associated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no clear cross-cancer biomarker profile has emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNA- and miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that metastatic samples have a common cross-cancer signature when compared with their primary tumour pair, and that these miRNA biomarkers can be used to predict metastatic status as well as mRNA expression.
Collapse
|
204
|
Tramontano A, Jarc L, Jankowicz-Cieslak J, Hofinger BJ, Gajek K, Szurman-Zubrzycka M, Szarejko I, Ingelbrecht I, Till BJ. Fragmentation of Pooled PCR Products for Highly Multiplexed TILLING. G3 (BETHESDA, MD.) 2019; 9:2657-2666. [PMID: 31213514 PMCID: PMC6686939 DOI: 10.1534/g3.119.400301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023]
Abstract
Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multi-dimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Sequencing performance was evaluated in a total of 32 pooled PCR products produced from 4096 chemically mutagenized Hordeum vulgare DNAs pooled in three dimensions. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.
Collapse
Affiliation(s)
- Andrea Tramontano
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Luka Jarc
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Joanna Jankowicz-Cieslak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Bernhard J Hofinger
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Katarzyna Gajek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Miriam Szurman-Zubrzycka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | - Ivan Ingelbrecht
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| | - Bradley J Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria and
| |
Collapse
|
205
|
Park YS, Kim S, Park DG, Kim DH, Yoon KW, Shin W, Han K. Comparison of library construction kits for mRNA sequencing in the Illumina platform. Genes Genomics 2019; 41:1233-1240. [PMID: 31350733 DOI: 10.1007/s13258-019-00853-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The emergence of next-generation sequencing (NGS) technologies has made a tremendous contribution to the deciphering and significance of transcriptome analysis in biological fields. Since the advent of NGS technology in 2007, Illumina, Inc. has provided one of the most widely used sequencing platforms for NGS analysis. OBJECTIVE Although reagents and protocols provided by Illumina are adequately performed in transcriptome sequencing, recently, alternative reagents and protocols which are relatively cost effective are accessible. However, the kits derived from various manufacturers have advantages and disadvantages when researchers carry out the transcriptome library construction. METHODS We compared them using a variety of protocols to produce Illumina-compatible libraries based on transcriptome. Three different mRNA sequencing kits were selected for this study: TruSeq® RNA Sample Preparation V2 (Illumina, Inc., USA), Universal Plus mRNA-Seq (NuGEN, Ltd., UK), and NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® (New England BioLabs, Ltd., USA). We compared them focusing on cost, experimental time, and data output. RESULTS The quality and quantity of sequencing data obtained through the NGS technique were strongly influenced by the type of the sequencing library kits. It suggests that for transcriptome studies, researchers should select a suitable library construction kit according to the goal and resources of experiments. CONCLUSION The present work will help researchers to choose the right sequencing library construction kit for transcriptome analyses.
Collapse
Affiliation(s)
- Yong-Soo Park
- Department of Equine Industry, Korea National College of Agriculture and Fisheries, Jeonju, 54874, Republic of Korea
| | - Songmi Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Guk Park
- Department of Surgery, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Dong Hee Kim
- Department of Anesthesiology and Pain Management, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Kyeong-Wook Yoon
- Department of Neurosurgery, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Wonseok Shin
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
206
|
RNase H-dependent PCR-enabled T-cell receptor sequencing for highly specific and efficient targeted sequencing of T-cell receptor mRNA for single-cell and repertoire analysis. Nat Protoc 2019; 14:2571-2594. [PMID: 31341290 DOI: 10.1038/s41596-019-0195-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/07/2019] [Indexed: 11/08/2022]
Abstract
RNase H-dependent PCR-enabled T-cell receptor sequencing (rhTCRseq) can be used to determine paired alpha/beta T-cell receptor (TCR) clonotypes in single cells or perform alpha and beta TCR repertoire analysis in bulk RNA samples. With the enhanced specificity of RNase H-dependent PCR (rhPCR), it achieves TCR-specific amplification and addition of dual-index barcodes in a single PCR step. For single cells, the protocol includes sorting of single cells into plates, generation of cDNA libraries, a TCR-specific amplification step, a second PCR on pooled sample to generate a sequencing library, and sequencing. In the bulk method, sorting and cDNA library steps are replaced with a reverse-transcriptase (RT) reaction that adds a unique molecular identifier (UMI) to each cDNA molecule to improve the accuracy of repertoire-frequency measurements. Compared to other methods for TCR sequencing, rhTCRseq has a streamlined workflow and the ability to analyze single cells in 384-well plates. Compared to TCR reconstruction from single-cell transcriptome sequencing data, it improves the success rate for obtaining paired alpha/beta information and ensures recovery of complete complementarity-determining region 3 (CDR3) sequences, a prerequisite for cloning/expression of discovered TCRs. Although it has lower throughput than droplet-based methods, rhTCRseq is well-suited to analysis of small sorted populations, especially when analysis of 96 or 384 single cells is sufficient to identify predominant T-cell clones. For single cells, sorting typically requires 2-4 h and can be performed days, or even months, before library construction and data processing, which takes ~4 d; the bulk RNA protocol takes ~3 d.
Collapse
|
207
|
Chen H, Lin L, Xie M, Zhong Y, Zhang G, Su W. Survey of the Bradysia odoriphaga Transcriptome Using PacBio Single-Molecule Long-Read Sequencing. Genes (Basel) 2019; 10:genes10060481. [PMID: 31242713 PMCID: PMC6627194 DOI: 10.3390/genes10060481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022] Open
Abstract
The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.
Collapse
Affiliation(s)
- Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Yongzhi Zhong
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
208
|
Computational Workflow for Small RNA Profiling in Virus-Infected Plants. Methods Mol Biol 2019; 2028:185-214. [PMID: 31228116 DOI: 10.1007/978-1-4939-9635-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In this chapter we describe a series of computational pipelines for the in silico analysis of small RNAs (sRNA) produced in response to viral infections in plants. Our workflow is primarily focused on the analysis of sRNA populations derived from known or previously undescribed viruses infecting host plants. Furthermore, we provide an additional pipeline to examine host-specific endogenous sRNAs activated or specifically expressed during viral infections in plants. We present some key points for a successful and cost-efficient processing of next generation sequencing sRNA libraries, from purification of high quality RNA to guidance for library preparation and sequencing strategies. We report a series of free available tools and programs as well as in-house Perl scripts to perform customized sRNA-seq data mining. Previous bioinformatic background is not required, but experience with basic Unix commands is desirable.
Collapse
|
209
|
Wright C, Rajpurohit A, Burke EE, Williams C, Collado-Torres L, Kimos M, Brandon NJ, Cross AJ, Jaffe AE, Weinberger DR, Shin JH. Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genomics 2019; 20:513. [PMID: 31226924 PMCID: PMC6588940 DOI: 10.1186/s12864-019-5870-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA sequencing offers advantages over other quantification methods for microRNA (miRNA), yet numerous biases make reliable quantification challenging. Previous evaluations of these biases have focused on adapter ligation bias with limited evaluation of reverse transcription bias or amplification bias. Furthermore, evaluations of the quantification of isomiRs (miRNA isoforms) or the influence of starting amount on performance have been very limited. No study had yet evaluated the quantification of isomiRs of altered length or compared the consistency of results derived from multiple moderate starting inputs. We therefore evaluated quantifications of miRNA and isomiRs using four library preparation kits, with various starting amounts, as well as quantifications following removal of duplicate reads using unique molecular identifiers (UMIs) to mitigate reverse transcription and amplification biases. RESULTS All methods resulted in false isomiR detection; however, the adapter-free method tested was especially prone to false isomiR detection. We demonstrate that using UMIs improves accuracy and we provide a guide for input amounts to improve consistency. CONCLUSIONS Our data show differences and limitations of current methods, thus raising concerns about the validity of quantification of miRNA and isomiRs across studies. We advocate for the use of UMIs to improve accuracy and reliability of miRNA quantifications.
Collapse
Affiliation(s)
- Carrie Wright
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,AstraZeneca Postdoc Program, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Emily E Burke
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Martha Kimos
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, Cambridge, MA, 01239, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
210
|
Excess primer degradation by Exo I improves the preparation of 3' cDNA ligation-based sequencing libraries. Biotechniques 2019; 67:110-116. [PMID: 31208218 DOI: 10.2144/btn-2018-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RNA sequencing library construction using single-stranded ligation of a DNA adapter to 3' ends of cDNAs often produces primer-adapter byproducts, which compete with cDNA-adapter ligation products during library amplification and, therefore, reduces the number of informative sequencing reads. We find that Escherichia coli Exo I digestion efficiently and selectively removes surplus reverse transcription primer and thereby reduces the primer-adapter product contamination in 3' cDNA ligation-based sequencing libraries, including small RNA libraries, which are typically similar in size to the primer-adapter products. We further demonstrate that Exo I treatment does not lead to trimming of the cDNA 3' end when duplexed with the RNA template. Exo I digestion is easy to perform and implement in other protocols and could facilitate a more widespread use of 3' cDNA ligation for sequencing-based applications.
Collapse
|
211
|
England R, Harbison S. A review of the method and validation of the MiSeq FGx™ Forensic Genomics Solution. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/wfs2.1351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ryan England
- Forensic Science Program, School of Chemical Sciences University of Auckland Auckland New Zealand
| | - Sallyann Harbison
- Institute of Environmental Science and Research Ltd Auckland New Zealand
| |
Collapse
|
212
|
POURMOHAMMADI REZA, ABOUEI JAMSHID, ANPALAGAN ALAGAN. PROBABILISTIC MODELING AND ANALYSIS OF DNA FRAGMENTATION. J BIOL SYST 2019. [DOI: 10.1142/s0218339019500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deoxyribonucleic Acid (DNA) sequencing has become indispensable to the modern biological and medicine sciences. DNA fragmentation is a preliminary step in a dominant technique called shotgun sequencing that provides a time and cost effective strategy for the DNA sequencing. In this paper, we propose a probabilistic model for the random DNA fragmentation and derive an average number of fragments with the suitable length along with the probability of covering the entire DNA strand through the de novo assembly or the referenced-based mapping assembly. We formulate the coverage problem in terms of the probability of bond breaking between nucleotides and the number of DNA molecules participating in the fragmentation process, and provide insights into the optimal DNA fragmentation. We obtain the lower bound for the minimum number of suitable fragments required to reconstruct the DNA strand with the specified reliability. We evaluate the derived results with our DNA Fragmentation Tool which demonstrate, the validity of these results based on our model. Finally, we update our model with respect to the fragments’ size distribution of real data.
Collapse
Affiliation(s)
- REZA POURMOHAMMADI
- WINEL Research Laboratory, Department of Electrical Engineering, Yazd University, Yazd, Iran
| | - JAMSHID ABOUEI
- WINEL Research Laboratory, Department of Electrical Engineering, Yazd University, Yazd, Iran
| | - ALAGAN ANPALAGAN
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
213
|
|
214
|
Zhang B, Niu X, Zhang Q, Wang C, Liu B, Yue D, Li C, Giaccone G, Li S, Gao L, Zhang H, Wang J, Yang H, Wu R, Ni P, Wang C, Ye M, Liu W. Circulating tumor DNA detection is correlated to histologic types in patients with early-stage non-small-cell lung cancer. Lung Cancer 2019; 134:108-116. [PMID: 31319968 DOI: 10.1016/j.lungcan.2019.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Circulating tumor DNA (ctDNA) testing in plasma in patients with non-small-cell lung cancer (NSCLC) has the potential to be a supplemental or surrogate tool for tissue biopsy. Detection of genomic abnormalities in ctDNA and their association with clinical characteristics in early-stage NSCLC need to be clarified. MATERIALS AND METHODS Here, we comprehensively analyzed gene variations of 48 tumor tissues and 48 matched preoperative (pre-op) plasma and 25 postoperative (post-op) plasma from early-stage NSCLC patients using a targeted 546 genes capture-based next generation sequencing (NGS) assay. RESULTS In early-stage NSCLC, the average mutation allele frequency (MAF) in pre-op plasma ctDNA was lower than that in tissue DNA (tDNA). The concordant gene variations between pre-op ctDNA and tDNA were difficult to detect. However, we found the tissue- pre-op plasma concordant ctDNA mutation detection ratio in lung squamous cell carcinoma (LUSC) was much higher than that in lung adenocarcinoma (LUAD). We also established a LUSC-LUAD classification model by a least absolute shrinkage and selection operator (LASSO) based approach to help separate LUAD from LUSC based on ctDNA profiling. This model included 14 gene mutations and extracted an accuracy of 89.2% in the training set and 91.5% in the testing set. Correlation analysis showed tDNA-ctDNA concordant ratio was related to histologic subtype, gene mutations and tumor size in early-stage NSCLC. CONCLUSION This study suggests histology subtype and gene mutations could affect ctDNA detection in early-stage NSCLC. NGS-based ctDNA profile has the potential utility in LUSC-LUAD classification.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xueliang Niu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qiang Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunli Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Bo Liu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dongsheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Giuseppe Giaccone
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China; Georgetown University, Washington, District of Columbia, USA
| | - Shiyong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China; BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, China
| | - Liuwei Gao
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Renhua Wu
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Peixiang Ni
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China; BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Mingzhi Ye
- BGI Genomics, BGI-Shenzhen, Shenzhen, China; BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou, China; BGI-Guangzhou, Guangzhou Key Laboratory of Cancer Trans-Omics Research, Guangzhou, China.
| | - Weiran Liu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
215
|
Improved TGIRT-seq methods for comprehensive transcriptome profiling with decreased adapter dimer formation and bias correction. Sci Rep 2019; 9:7953. [PMID: 31138886 PMCID: PMC6538698 DOI: 10.1038/s41598-019-44457-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023] Open
Abstract
Thermostable group II intron reverse transcriptases (TGIRTs) with high fidelity and processivity have been used for a variety of RNA sequencing (RNA-seq) applications, including comprehensive profiling of whole-cell, exosomal, and human plasma RNAs; quantitative tRNA-seq based on the ability of TGIRT enzymes to give full-length reads of tRNAs and other structured small ncRNAs; high-throughput mapping of post-transcriptional modifications; and RNA structure mapping. Here, we improved TGIRT-seq methods for comprehensive transcriptome profiling by rationally designing RNA-seq adapters that minimize adapter dimer formation. Additionally, we developed biochemical and computational methods for remediating 5′- and 3′-end biases, the latter based on a random forest regression model that provides insight into the contribution of different factors to these biases. These improvements, some of which may be applicable to other RNA-seq methods, increase the efficiency of TGIRT-seq library construction and improve coverage of very small RNAs, such as miRNAs. Our findings provide insight into the biochemical basis of 5′- and 3′-end biases in RNA-seq and suggest general approaches for remediating biases and decreasing adapter dimer formation.
Collapse
|
216
|
Babarinde IA, Li Y, Hutchins AP. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput Struct Biotechnol J 2019; 17:628-637. [PMID: 31193391 PMCID: PMC6526290 DOI: 10.1016/j.csbj.2019.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.
Collapse
Affiliation(s)
| | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China
| |
Collapse
|
217
|
Zhang L, Yan J, Liu Q, Xie Z, Jiang H. LncRNA Rik-203 contributes to anesthesia neurotoxicity via microRNA-101a-3p and GSK-3β-mediated neural differentiation. Sci Rep 2019; 9:6822. [PMID: 31048708 PMCID: PMC6497879 DOI: 10.1038/s41598-019-42991-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanism of anesthesia neurotoxicity remains largely to be determined. The effects of long noncoding RNAs (LncRNAs) on neural differentiation and the underlying mechanisms are unknown. We thus identified LncRNA Rik-203 (C130071C03Rik) and studied its role on neural differentiation and its interactions with anesthetic sevoflurane, miRNA and GSK-3β. We found that levels of Rik-203 were higher in hippocampus than other tissues and increased during neural differentiation. Sevoflurane decreased the levels of Rik-203. Rik-203 knockdown reduced mRNA levels of Sox1 and Nestin, the markers of neural progenitor cells, and decreased the count of Sox1 positive cells. RNA-RNA pull-down showed that miR-101a-3p was highly bound to Rik-203. Finally, sevoflurane, knockdown of Rik-203, and miR-101a-3p overexpression all decreased GSK-3β levels. These data suggest that Rik-203 facilitates neural differentiation by inhibiting miR-101a-3p's ability to reduce GSK-3β levels and that LncRNAs would serve as the mechanism of the anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China
| | - Qidong Liu
- Shanghai Tenth People's Hospital, Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room, 4310, Charlestown, MA, USA.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, P.R. China.
| |
Collapse
|
218
|
Pereira De Martinis EC, Almeida OGGD. Relating next-generation sequencing and bioinformatics concepts to routine microbiological testing. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/108690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
219
|
Wunsch BH, Kim SC, Gifford SM, Astier Y, Wang C, Bruce RL, Patel JV, Duch EA, Dawes S, Stolovitzky G, Smith JT. Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement. LAB ON A CHIP 2019; 19:1567-1578. [PMID: 30920559 DOI: 10.1039/c8lc01408f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We studied the trajectories of polymers being advected while diffusing in a pressure driven flow along a periodic pillar nanostructure known as nanoscale deterministic lateral displacement (nanoDLD) array. We found that polymers follow different trajectories depending on their length, flow velocity and pillar array geometry, demonstrating that nanoDLD devices can be used as a continuous polymer fractionation tool. As a model system, we used double-stranded DNA (dsDNA) with various contour lengths and demonstrated that dsDNA in the range of 100-10 000 base pairs (bp) can be separated with a size-selective resolution of 200 bp. In contrast to spherical colloids, a polymer elongates by shear flow and the angle of polymer trajectories with respect to the mean flow direction decreases as the mean flow velocity increases. We developed a phenomenological model that explains the qualitative dependence of the polymer trajectories on the gap size and on the flow velocity. Using this model, we found the optimal separation conditions for dsDNA of different sizes and demonstrated the separation and extraction of dsDNA fragments with over 75% recovery and 3-fold concentration. Importantly, this velocity dependence provides a means of fine-tuning the separation efficiency and resolution, independent of the nanoDLD pillar geometry.
Collapse
Affiliation(s)
- Benjamin H Wunsch
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Oude Munnink BB, Kik M, de Bruijn ND, Kohl R, van der Linden A, Reusken CBEM, Koopmans M. Towards high quality real-time whole genome sequencing during outbreaks using Usutu virus as example. INFECTION GENETICS AND EVOLUTION 2019; 73:49-54. [PMID: 31014969 DOI: 10.1016/j.meegid.2019.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/29/2022]
Abstract
Recently, protocols for amplicon based whole genome sequencing using Nanopore technology have been described for Ebola virus, Zika virus, yellow fever virus and West Nile virus. However, there is some debate regarding reliability of sequencing using this technology, which is important for applications beyond diagnosis such as linking lineages to outbreaks, tracking transmission pathways and pockets of circulation, or mapping specific markers. To our knowledge, no in depth analyses of the required read coverage to compensate for the error profile in Nanopore sequencing have been described. Here, we describe the validation of a protocol for whole genome sequencing of USUV using Nanopore sequencing by direct comparison to Illumina sequencing. To that point we selected brain tissue samples with high viral loads, typical for birds which died from USUV infection. We conclude that the low-cost MinION Nanopore sequencing platform can be used for characterization and tracking of Usutu virus outbreaks.
Collapse
Affiliation(s)
- B B Oude Munnink
- ErasmusMC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - M Kik
- Veterinary Pathology Centre, University of Utrecht, the Netherlands
| | | | - R Kohl
- ErasmusMC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - A van der Linden
- ErasmusMC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - C B E M Reusken
- ErasmusMC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - M Koopmans
- ErasmusMC, Department of Viroscience, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands.
| |
Collapse
|
221
|
Ignatov KB, Blagodatskikh KA, Shcherbo DS, Kramarova TV, Monakhova YA, Kramarov VM. Fragmentation Through Polymerization (FTP): A new method to fragment DNA for next-generation sequencing. PLoS One 2019; 14:e0210374. [PMID: 30933980 PMCID: PMC6443234 DOI: 10.1371/journal.pone.0210374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/16/2019] [Indexed: 01/23/2023] Open
Abstract
Fragmentation of DNA is the very important first step in preparing nucleic acids for next-generation sequencing. Here we report a novel Fragmentation Through Polymerization (FTP) technique, which is a simple, robust, and low-cost enzymatic method of fragmentation. This method generates double-stranded DNA fragments that are suitable for direct use in NGS library construction and allows the elimination of the additional step of reparation of DNA ends.
Collapse
Affiliation(s)
- Konstantin B. Ignatov
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | | | | | - Tatiana V. Kramarova
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yulia A. Monakhova
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Syntol JSC, Moscow, Russia
| | - Vladimir M. Kramarov
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
222
|
Glantz ST, Berlew EE, Chow BY. Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions. Methods Enzymol 2019; 622:249-270. [PMID: 31155055 DOI: 10.1016/bs.mie.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to rapidly screen interactions between proteins and membrane-like interfaces would aid in establishing the structure-function of protein-lipid interactions, provide a platform for engineering lipid-interacting protein tools, and potentially inform the signaling mechanisms and dynamics of membrane-associated proteins. Here, we describe the preparation and application of water-in-oil (w/o) emulsions with lipid-stabilized droplet interfaces that emulate the plasma membrane inner leaflet with tunable composition. Fluorescently labeled proteins are easily visualized in these synthetic cell-like droplets on an automated inverted fluorescence microscope, thus allowing for both rapid screening of relative binding and spatiotemporally resolved analyses of for example, protein-interface association and dissociation dynamics and competitive interactions, using commonplace instrumentation. We provide protocols for droplet formation, automated imaging assays and analysis, and the production of the positive control protein BcLOV4, a natural photoreceptor with a directly light-regulated interaction with anionic membrane phospholipids that is useful for optogenetic membrane recruitment.
Collapse
Affiliation(s)
- Spencer T Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
223
|
Zebrowska J, Jezewska-Frackowiak J, Wieczerzak E, Kasprzykowski F, Zylicz-Stachula A, Skowron PM. Novel parameter describing restriction endonucleases: Secondary-Cognate-Specificity and chemical stimulation of TsoI leading to substrate specificity change. Appl Microbiol Biotechnol 2019; 103:3439-3451. [PMID: 30879089 PMCID: PMC6449304 DOI: 10.1007/s00253-019-09731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4–8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit ‘affinity star’ activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue—sinefungin (SIN). Here, we define a novel type of inherently built-in ‘star’ activity, exemplified by TsoI. The TsoI ‘star’ activity cannot be described under the definition of the classic ‘star’ activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.
Collapse
Affiliation(s)
- Joanna Zebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Franciszek Kasprzykowski
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| |
Collapse
|
224
|
Li Q, Zhao X, Zhang W, Wang L, Wang J, Xu D, Mei Z, Liu Q, Du S, Li Z, Liang X, Wang X, Wei H, Liu P, Zou J, Shen H, Chen A, Drmanac S, Liu JS, Li L, Jiang H, Zhang Y, Wang J, Yang H, Xu X, Drmanac R, Jiang Y. Reliable multiplex sequencing with rare index mis-assignment on DNB-based NGS platform. BMC Genomics 2019; 20:215. [PMID: 30866797 PMCID: PMC6416933 DOI: 10.1186/s12864-019-5569-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Massively-parallel-sequencing, coupled with sample multiplexing, has made genetic tests broadly affordable. However, intractable index mis-assignments (commonly exceeds 1%) were repeatedly reported on some widely used sequencing platforms. RESULTS Here, we investigated this quality issue on BGI sequencers using three library preparation methods: whole genome sequencing (WGS) with PCR, PCR-free WGS, and two-step targeted PCR. BGI's sequencers utilize a unique DNA nanoball (DNB) technology which uses rolling circle replication for DNA-nanoball preparation; this linear amplification is PCR free and can avoid error accumulation. We demonstrated that single index mis-assignment from free indexed oligos occurs at a rate of one in 36 million reads, suggesting virtually no index hopping during DNB creation and arraying. Furthermore, the DNB-based NGS libraries have achieved an unprecedentedly low sample-to-sample mis-assignment rate of 0.0001 to 0.0004% under recommended procedures. CONCLUSIONS Single indexing with DNB technology provides a simple but effective method for sensitive genetic assays with large sample numbers.
Collapse
Affiliation(s)
- Qiaoling Li
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xia Zhao
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Guangdong High-throughput Sequencing Research Center, Shenzhen, China
| | - Lin Wang
- Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA
| | - Jingjing Wang
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Dongyang Xu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Qiang Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shiyi Du
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhanqing Li
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiaman Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanmin Wei
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Pengjuan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jing Zou
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanjie Shen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Snezana Drmanac
- BGI-Shenzhen, Shenzhen, 518083, China.,Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA
| | - Jia Sophie Liu
- Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA
| | - Li Li
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Hui Jiang
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yongwei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.,Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Radoje Drmanac
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China. .,Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA. .,MGI, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yuan Jiang
- Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, California, 95134, USA.
| |
Collapse
|
225
|
Slesarev A, Viswanathan L, Tang Y, Borgschulte T, Achtien K, Razafsky D, Onions D, Chang A, Cote C. CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS. Sci Rep 2019; 9:3587. [PMID: 30837529 PMCID: PMC6401131 DOI: 10.1038/s41598-019-39667-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.
Collapse
Affiliation(s)
- Alexei Slesarev
- BioReliance Corp., 14920 Broschart Road, Rockville, MD, 20850, USA.
| | | | - Yitao Tang
- BioReliance Corp., 14920 Broschart Road, Rockville, MD, 20850, USA
| | | | | | - David Razafsky
- MilliporeSigma, 2909 Laclede Avenue, Saint Louis, MO, 63103, USA
| | - David Onions
- BioReliance Corp., 14920 Broschart Road, Rockville, MD, 20850, USA
| | - Audrey Chang
- BioReliance Corp., 14920 Broschart Road, Rockville, MD, 20850, USA
| | - Colette Cote
- BioReliance Corp., 14920 Broschart Road, Rockville, MD, 20850, USA
| |
Collapse
|
226
|
Belair CD, Hu T, Chu B, Freimer JW, Cooperberg MR, Blelloch RH. High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing. Sci Rep 2019; 9:2262. [PMID: 30783180 PMCID: PMC6381177 DOI: 10.1038/s41598-018-38458-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs hold great promise as biomarkers of disease. However, there are few efficient and robust methods for measuring microRNAs from low input samples. Here, we develop a high-throughput sequencing protocol that efficiently captures small RNAs while minimizing inherent biases associated with library production. The protocol is based on early barcoding such that all downstream manipulations can be performed on a pool of many samples thereby reducing reagent usage and workload. We show that the optimization of adapter concentrations along with the addition of nucleotide modifications and random nucleotides increases the efficiency of small RNA capture. We further show, using unique molecular identifiers, that stochastic capture of low input RNA rather than PCR amplification influences the biased quantitation of intermediately and lowly expressed microRNAs. Our improved method allows the processing of tens to hundreds of samples simultaneously while retaining high efficiency quantitation of microRNAs in low input samples from tissues or bodily fluids.
Collapse
Affiliation(s)
- Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Tianyi Hu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Brandon Chu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Jacob W Freimer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | | | - Robert H Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Urology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
227
|
Vecera M, Sana J, Oppelt J, Tichy B, Alena K, Lipina R, Smrcka M, Jancalek R, Hermanova M, Kren L, Slaby O. Testing of library preparation methods for transcriptome sequencing of real life glioblastoma and brain tissue specimens: A comparative study with special focus on long non-coding RNAs. PLoS One 2019; 14:e0211978. [PMID: 30742682 PMCID: PMC6370216 DOI: 10.1371/journal.pone.0211978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
Current progress in the field of next-generation transcriptome sequencing have contributed significantly to the study of various malignancies including glioblastoma multiforme (GBM). Differential sequencing of transcriptomes of patients and non-tumor controls has a potential to reveal novel transcripts with significant role in GBM. One such candidate group of molecules are long non-coding RNAs (lncRNAs) which have been proved to be involved in processes such as carcinogenesis, epigenetic modifications and resistance to various therapeutic approaches. To maximize the value of transcriptome sequencing, a proper protocol for library preparation from tissue-derived RNA needs to be found which would produce high quality transcriptome sequencing data and increase the number of detected lncRNAs. It is important to mention that success of library preparation is determined by the quality of input RNA, which is in case of real-life tissue specimens very often altered in comparison to high quality RNA commonly used by manufacturers for development of library preparation chemistry. In the present study, we used GBM and non-tumor brain tissue specimens and compared three different commercial library preparation kits, namely NEXTflex Rapid Directional qRNA-Seq Kit (Bioo Scientific), SENSE Total RNA-Seq Library Prep Kit (Lexogen) and NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB). Libraries generated using SENSE kit were characterized by the most normal distribution of normalized average GC content, the least amount of over-represented sequences and the percentage of ribosomal RNA reads (0.3–1.5%) and highest numbers of uniquely mapped reads and reads aligning to coding regions. However, NEBNext kit performed better having relatively low duplication rates, even transcript coverage and the highest number of hits in Ensembl database for every biotype of our interest including lncRNAs. Our results indicate that out of three approaches the NEBNext library preparation kit was most suitable for the study of lncRNAs via transcriptome sequencing. This was further confirmed by highly consistent data reached in an independent validation on an expanded cohort.
Collapse
Affiliation(s)
- Marek Vecera
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Kopkova Alena
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- 1st Department of Pathological Anatomy, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
228
|
Zhang X, Liang Z, Wang S, Lu S, Song Y, Cheng Y, Ying J, Liu W, Hou Y, Li Y, Liu Y, Hou J, Liu X, Shao J, Tai Y, Wang Z, Fu L, Li H, Zhou X, Bai H, Wang M, Lu Y, Yang J, Zhong W, Zhou Q, Yang X, Wang J, Huang C, Liu X, Zhou X, Zhang S, Tian H, Chen Y, Ren R, Liao N, Wu C, Zhu Z, Pan H, Gu Y, Wang L, Liu Y, Zhang S, Liu T, Chen G, Shao Z, Xu B, Zhang Q, Xu R, Shen L, Wu Y, Tumor Biomarker Committee OBOCSOCO(CSCO. Application of next-generation sequencing technology to precision medicine in cancer: joint consensus of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology. Cancer Biol Med 2019; 16:189-204. [PMID: 31119060 PMCID: PMC6528448 DOI: 10.20892/j.issn.2095-3941.2018.0142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Next-generation sequencing (NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously. Therefore, it represents a promising tool for the analysis of molecular targets for the initial diagnosis of disease, monitoring of disease progression, and identifying the mechanism of drug resistance. On behalf of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology (CSCO) and the China Actionable Genome Consortium (CAGC), the present expert group hereby proposes advisory guidelines on clinical applications of NGS technology for the analysis of cancer driver genes for precision cancer therapy. This group comprises an assembly of laboratory cancer geneticists, clinical oncologists, bioinformaticians, pathologists, and other professionals. After multiple rounds of discussions and revisions, the expert group has reached a preliminary consensus on the need of NGS in clinical diagnosis, its regulation, and compliance standards in clinical sample collection. Moreover, it has prepared NGS criteria, the sequencing standard operation procedure (SOP), data analysis, report, and NGS platform certification and validation.
Collapse
Affiliation(s)
- Xuchao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center, Cancer Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Affiliated Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou 510630, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
| | - Shengyue Wang
- National Research Center for Translational Medicine, Shanghai, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Shun Lu
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Song
- Division of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210029, China
| | - Ying Cheng
- Department of Oncology, Jilin Cancer Hospital, Changchun 132002, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 519000, China
| | - Yi Liu
- Laboratory of Oncology, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Hou
- Department of Oncology, First Clinical College of South China University of Technology/Guangdong Lung Cancer Institute, Guangzhou 510060, China
| | - Xiufeng Liu
- People's Liberation Army Cancer Center of Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jianyong Shao
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 519000, China
| | - Yanhong Tai
- Department of Pathology, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Zheng Wang
- Department of Pathology, Beijing Hospital, Beijing 100071, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory of Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Li
- Department of Oncology, Jilin Cancer Hospital, Changchun 132002, China
| | - Xiaojun Zhou
- Department of Pathology, Jinling Hospital Nanjing University School of Medicine, Nanjing 210029, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Mengzhao Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100006, China
| | - You Lu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jinji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincical Prople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincical Prople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincical Prople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xuening Yang
- Guangdong Lung Cancer Institute, Guangdong Provincical Prople's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Cheng Huang
- Department of Thoracic Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350001, China
| | - Xiaoqing Liu
- Department of Oncology, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoyan Zhou
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai 200433, China
| | - Shirong Zhang
- Center for Translational Medicine, Hangzhou First People's Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Tian
- Guangdong Lung Cancer Institute, Medical Research Center, Cancer Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Affiliated Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou 510630, China
| | - Yu Chen
- Guangdong Lung Cancer Institute, Medical Research Center, Cancer Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Affiliated Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou 510630, China
| | - Ruibao Ren
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200240, China
| | - Zhongzheng Zhu
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Ningbo 315040, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Liwei Wang
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110016, China
| | - Suzhan Zhang
- Department of Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Gong Chen
- Department of Colorectal, Sun Yat-sen University Cancer Center, Guangzhou 519000, China
| | - Zhimin Shao
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200433, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100006, China
| | - Qingyuan Zhang
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Harbin 150030, China
| | - Ruihua Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 519000, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Medical Research Center, Cancer Center of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Affiliated Guangdong Provincial People's Hospital, South China University of Technology, Guangzhou 510630, China
| | | |
Collapse
|
229
|
Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv 2019; 2:151-163. [PMID: 29365324 DOI: 10.1182/bloodadvances.2017006668] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis.
Collapse
|
230
|
Abstract
The increasingly complex functionality of RNA is contrasted by its simple chemical composition. RNA is generally built from only four different nucleotides (adenine, guanine, cytosine, and uracil). To date, >160 chemical modifications are known to decorate RNA molecules and thereby alter their function or stability. Many RNA modifications are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. Most known modifications occur at internal positions, while there is limited diversity at the termini. The dynamic nature of RNA modifications and newly discovered regulatory functions of some of these RNA modifications gave birth to a new field, now often referred to as "epitranscriptomics." This review highlights the major developments in this field and summarizes detection principles for internal as well as 5'-terminal mRNA modifications in prokaryotes and archaea to investigate their biological significance.
Collapse
|
231
|
Naugler C, Church DL. Clinical laboratory utilization management and improved healthcare performance. Crit Rev Clin Lab Sci 2019. [DOI: 10.1080/10408363.2018.1526164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christopher Naugler
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Department of Family Medicine, University of Calgary, Calgary, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Deirdre L. Church
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
- Department of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
232
|
DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics 2019; 20:6. [PMID: 30611200 PMCID: PMC6321710 DOI: 10.1186/s12864-018-5362-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
Background Sequencing data has become a standard measure of diverse cellular activities. For example, gene expression is accurately measured by RNA sequencing (RNA-Seq) libraries, protein-DNA interactions are captured by chromatin immunoprecipitation sequencing (ChIP-Seq), protein-RNA interactions by crosslinking immunoprecipitation sequencing (CLIP-Seq) or RNA immunoprecipitation (RIP-Seq) sequencing, DNA accessibility by assay for transposase-accessible chromatin (ATAC-Seq), DNase or MNase sequencing libraries. The processing of these sequencing techniques involves library-specific approaches. However, in all cases, once the sequencing libraries are processed, the result is a count table specifying the estimated number of reads originating from each genomic locus. Differential analysis to determine which loci have different cellular activity under different conditions starts with the count table and iterates through a cycle of data assessment, preparation and analysis. Such complex analysis often relies on multiple programs and is therefore a challenge for those without programming skills. Results We developed DEBrowser as an R bioconductor project to interactively visualize every step of the differential analysis, without programming. The application provides a rich and interactive web based graphical user interface built on R’s shiny infrastructure. DEBrowser allows users to visualize data with various types of graphs that can be explored further by selecting and re-plotting any desired subset of data. Using the visualization approaches provided, users can determine and correct technical variations such as batch effects and sequencing depth that affect differential analysis. We show DEBrowser’s ease of use by reproducing the analysis of two previously published data sets. Conclusions DEBrowser is a flexible, intuitive, web-based analysis platform that enables an iterative and interactive analysis of count data without any requirement of programming knowledge. Electronic supplementary material The online version of this article (10.1186/s12864-018-5362-x) contains supplementary material, which is available to authorized users.
Collapse
|
233
|
Khan M, Fadaie Z, Cornelis SS, Cremers FPM, Roosing S. Identification and Analysis of Genes Associated with Inherited Retinal Diseases. Methods Mol Biol 2019; 1834:3-27. [PMID: 30324433 DOI: 10.1007/978-1-4939-8669-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
234
|
High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2019; 16:1-16. [PMID: 30592451 PMCID: PMC6812157 DOI: 10.1513/annalsats.201810-716ws] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-throughput, "next-generation" sequencing methods are now being broadly applied across all fields of biomedical research, including respiratory disease, critical care, and sleep medicine. Although there are numerous review articles and best practice guidelines related to sequencing methods and data analysis, there are fewer resources summarizing issues related to study design and interpretation, especially as applied to common, complex, nonmalignant diseases. To address these gaps, a single-day workshop was held at the American Thoracic Society meeting in May 2017, led by the American Thoracic Society Section on Genetics and Genomics. The aim of this workshop was to review the design, analysis, interpretation, and functional follow-up of high-throughput sequencing studies in respiratory, critical care, and sleep medicine research. This workshop brought together experts in multiple fields, including genetic epidemiology, biobanking, bioinformatics, and research ethics, along with physician-scientists with expertise in a range of relevant diseases. The workshop focused on application of DNA and RNA sequencing research in common chronic diseases and did not cover sequencing studies in lung cancer, monogenic diseases (e.g., cystic fibrosis), or microbiome sequencing. Participants reviewed and discussed study design, data analysis and presentation, interpretation, functional follow-up, and reporting of results. This report summarizes the main conclusions of the workshop, specifically addressing the application of these methods in respiratory, critical care, and sleep medicine research. This workshop report may serve as a resource for our research community as well as for journal editors and reviewers of sequencing-based manuscript submissions in our research field.
Collapse
|
235
|
Imamura H, Dujardin JC. A Guide to Next Generation Sequence Analysis of Leishmania Genomes. Methods Mol Biol 2019; 1971:69-94. [PMID: 30980298 DOI: 10.1007/978-1-4939-9210-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Next generation sequencing (NGS) technology transformed Leishmania genome studies and became an indispensable tool for Leishmania researchers. Recent Leishmania genomics analyses facilitated the discovery of various genetic diversities including single nucleotide polymorphisms (SNPs), copy number variations (CNVs), somy variations, and structural variations in detail and provided valuable insights into the complexity of the genome and gene regulation. Many aspects of Leishmania NGS analyses are similar to those of related pathogens like trypanosomes. However, the analyses of Leishmania genomes face a unique challenge because of the presence of frequent aneuploidy. This makes characterization and interpretation of read depth and somy a key part of Leishmania NGS analyses because read depth affects the accuracy of detection of all genetic variations. However, there are no general guidelines on how to explore and interpret the impact of aneuploidy, and this has made it difficult for biologists and bioinformaticians, especially for beginners, to perform their own analyses and interpret results across different analyses. In this guide we discuss a wide range of topics essential for Leishmania NGS analyses, ranging from how to set up a computational environment for genome analyses, to how to characterize genetic variations among Leishmania samples, and we will particularly focus on chromosomal copy number variation and its impact on genome analyses.
Collapse
Affiliation(s)
- Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
236
|
Abstract
RNA-sequencing (RNA-Seq) using next-generation sequencing (NGS) technique is a powerful tool for simultaneous analysis of global transcripts from both vaccinia virus and host cell. Here, we describe an RNA-Seq method for analyzing the vaccinia virus transcriptome from virus-infected HeLa cells. We pay particular attention to vaccinia virus-specific aspects of sample preparation, sequencing, and data analyses, but our method could be modified to analyze transcriptomes of other cells or tissues infected with different poxviruses.
Collapse
Affiliation(s)
- Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Yongquan Lin
- Division of Biology, Kansas State University, Manhattan, KS, USA.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
237
|
Zhao D, Zheng D. SMARTcleaner: identify and clean off-target signals in SMART ChIP-seq analysis. BMC Bioinformatics 2018; 19:544. [PMID: 30587107 PMCID: PMC6307164 DOI: 10.1186/s12859-018-2577-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Noises and artifacts may arise in several steps of the next-generation sequencing (NGS) process. Recently, an NGS library preparation method called SMART, or Switching Mechanism At the 5′ end of the RNA Transcript, is introduced to prepare ChIP-seq (chromatin immunoprecipitation and deep sequencing) libraries from small amount of DNA material, using the DNA SMART ChIP-seq Kit. The protocol adds Ts to the 3′ end of DNA templates, which is subsequently recognized and used by SMART poly(dA) primers for reverse transcription and then addition of PCR primers and sequencing adapters. The poly(dA) primers, however, can anneal to poly(T) sequences in a genome and amplify DNA fragments that are not enriched in the immunoprecipitated DNA templates. This off-target amplification results in false signals in the ChIP-seq data. Results Here, we show that the off-target ChIP-seq reads derived from false amplification of poly(T/A) genomic sequences have unique and strand-specific features. Accordingly, we develop a tool (called “SMARTcleaner”) that can exploit these features to remove SMART ChIP-seq artifacts. Application of SMARTcleaner to several SMART ChIP-seq datasets demonstrates that it can remove reads from off-target amplification effectively, leading to significantly improved ChIP-seq peaks and results. Conclusions SMARTcleaner could identify and clean the false signals in SMART-based ChIP-seq libraries, leading to improvement in peak calling, and downstream data analysis and interpretation. Electronic supplementary material The online version of this article (10.1186/s12859-018-2577-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York, USA. .,Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
238
|
Schön ME, Nieselt K, Garnica S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One 2018; 13:e0208493. [PMID: 30517179 PMCID: PMC6281267 DOI: 10.1371/journal.pone.0208493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Altitudinal gradients provide valuable information about the effects of environmental variables on changes in species richness and composition as well as the distribution of below ground fungal communities. Since most knowledge in this respect has been gathered on aboveground communities, we focused our study towards the characterization of belowground fungal communities associated with two different ages of Norway spruce (Picea abies) trees along an altitudinal gradient. By sequencing the internal transcribed spacer (ITS) region on the Illumina platform, we investigated the fungal communities in a floristically and geologically relatively well explored forest on the slope of Mt. Iseler of the Bavarian Alps. From fine roots and rhizosphere of a total of 90 of Norway spruce trees from 18 plots we detected 1285 taxa, with a range of 167 to 506 (average 377) taxa per plot. Fungal taxa are distributed over 96 different orders belonging to the phyla Ascomycota, Basidiomycota, Chrytridiomycota, Glomeromycota, and Mucoromycota. Overall the Agaricales (438 taxa) and Tremellales (81 taxa) belonging to the Basidiomycota and the Hypocreales (65 spp.) and Helotiales (61 taxa) belonging to the Ascomycota represented the taxon richest orders. The evaluation of our multivariate generalized mixed models indicate that the altitude has a significant influence on the composition of the fungal communities (p < 0.003) and that tree age determines community diversity (p < 0.05). A total of 47 ecological guilds were detected, of which the ectomycorrhizal and saprophytic guilds were the most taxon-rich. Our ITS amplicon Illumina sequencing approach allowed us to characterize a high fungal community diversity that would not be possible to capture with fruiting body surveys alone. We conclude that it is an invaluable tool for diverse monitoring tasks and inventorying biodiversity, especially in the detection of microorganisms developing very ephemeral and/or inconspicuous fruiting bodies or lacking them all together. Results suggest that the altitude mainly influences the community composition, whereas fungal diversity becomes higher in mature/older trees. Finally, we demonstrate that novel techniques from bacterial microbiome analyses are also useful for studying fungal diversity and community structure in a DNA metabarcoding approach, but that incomplete reference sequence databases so far limit effective identification.
Collapse
Affiliation(s)
- Max E. Schön
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Kay Nieselt
- University of Tübingen, Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Tübingen, Germany
| | - Sigisfredo Garnica
- University of Tübingen, Institute of Evolution and Ecology, Plant Evolutionary Ecology, Tübingen, Germany
- Universidad Austral de Chile, Instituto de Bioquímica y Microbiología, Casilla, Isla Teja, Valdivia, Chile
| |
Collapse
|
239
|
Profaizer T, Kumánovics A. Human Leukocyte Antigen Typing by Next-Generation Sequencing. Clin Lab Med 2018; 38:565-578. [DOI: 10.1016/j.cll.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
240
|
Wu S, Li C, Zheng Q, Xu L. Modelling DNA extension and fragmentation in contractive microfluidic devices: a Brownian dynamics and computational fluid dynamics approach. SOFT MATTER 2018; 14:8780-8791. [PMID: 30338769 DOI: 10.1039/c8sm00863a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fragmenting DNA into short pieces is an essential manipulation in many biological studies, ranging from genome sequencing to molecular diagnosis. Among various DNA fragmentation methods, microfluidic hydrodynamic DNA fragmentation has huge advantages especially in terms of handling small-volume samples and being integrated into automatic and all-in-one DNA analysis equipment. Despite the fast progress in experimental studies and applications, a systematic understanding of how DNA molecules are distributed, stretched and fragmented in a confined microfluidic field is still lacking. In this work, we investigate the extension and fragmentation of DNA in a typical contractive microfluidic field, which consists of a shear flow-dominated area and an elongational flow-dominated area, using the Brownian dynamics-computational fluid dynamics method. Our results show that the shear flow at the straight part of the microfluidic channel and the elongational flow at the contractive bottleneck together determine the performance of DNA fragmentation. The average fragment size of DNA decreases with the increase of the strain rate of the elongational flow, and the upstream shear flow can significantly precondition the conformation of DNA to produce shorter and more uniform fragments. A systematic study of the dynamics of DNA fragmentation shows that DNA tends to break at the mid-point when the strain rate of elongational flow is small, and the breakage point largely deviates from the midpoint as the strain rate increases. Our simulation of the thorough DNA fragmentation process in a realistic microfluidic field agrees well with experimental results. We expect that our study can shed new light on the development of future microfluidic devices for DNA fragmentation and integrated DNA analysis devices.
Collapse
Affiliation(s)
- Shuyi Wu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, China.
| | | | | | | |
Collapse
|
241
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
242
|
Kimble JC, Winter AS, Spilde MN, Sinsabaugh RL, Northup DE. A potential central role of Thaumarchaeota in N-Cycling in a semi-arid environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA. FEMS Microbiol Ecol 2018; 94:5079639. [PMID: 30165514 PMCID: PMC6669814 DOI: 10.1093/femsec/fiy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
Low biomass and productivity of arid-land caves with limited availability of nitrogen (N) raises the question of how microbes acquire and cycle this essential element. Caves are ideal environments for investigating microbial functional capabilities, as they lack phototrophic activity and have near constant temperatures and high relative humidity. From the walls of Fort Stanton Cave (FSC), multicolored secondary mineral deposits of soil-like material low in fixed N, known as ferromanganese deposits (FMD), were collected. We hypothesized that within FMD samples we would find the presence of microbial N cycling genes and taxonomy related to N cycling microorganisms. Community DNA were sequenced using Illumina shotgun metagenomics and 16S rRNA gene sequencing. Results suggest a diverse N cycle encompassing several energetic pathways including nitrification, dissimilatory nitrate reduction and denitrification. N cycling genes associated with assimilatory nitrate reduction were also identified. Functional gene sequences and taxonomic findings suggest several bacterial and archaeal phyla potentially play a role in nitrification pathways in FSC and FMD. Thaumarchaeota, a deep-branching archaeal division, likely play an essential and possibly dominant role in the oxidation of ammonia. Our results provide genomic evidence for understanding how microbes are potentially able to acquire and cycle N in a low-nutrient subterranean environment.
Collapse
Affiliation(s)
- Jason C Kimble
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ara S Winter
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael N Spilde
- Institute of Meteoritics, MSC03-2050, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert L Sinsabaugh
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
243
|
Zhang A, Li S, Apone L, Sun X, Chen L, Ettwiller LM, Langhorst BW, Noren CJ, Xu MQ. Solid-phase enzyme catalysis of DNA end repair and 3' A-tailing reduces GC-bias in next-generation sequencing of human genomic DNA. Sci Rep 2018; 8:15887. [PMID: 30367148 PMCID: PMC6203771 DOI: 10.1038/s41598-018-34079-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/06/2018] [Indexed: 01/28/2023] Open
Abstract
The use of next-generation sequencing (NGS) has been instrumental in advancing biological research and clinical diagnostics. To fully utilize the power of NGS, complete, uniform coverage of the entire genome is required. In this study, we identified the primary sources of bias observed in sequence coverage across AT-rich regions of the human genome with existing amplification-free DNA library preparation methods. We have found evidence that a major source of bias is the inefficient processing of AT-rich DNA in end repair and 3' A-tailing, causing under-representation of extremely AT-rich regions. We have employed immobilized DNA modifying enzymes to catalyze end repair and 3' A-tailing reactions, to notably reduce the GC bias observed with existing library construction methods.
Collapse
Affiliation(s)
- Aihua Zhang
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Shaohua Li
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Lynne Apone
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Xiaoli Sun
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Lixin Chen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | - Ming-Qun Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
244
|
Almeida OGG, De Martinis ECP. Bioinformatics tools to assess metagenomic data for applied microbiology. Appl Microbiol Biotechnol 2018; 103:69-82. [DOI: 10.1007/s00253-018-9464-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
|
245
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
246
|
Bruinsma S, Burgess J, Schlingman D, Czyz A, Morrell N, Ballenger C, Meinholz H, Brady L, Khanna A, Freeberg L, Jackson RG, Mathonet P, Verity SC, Slatter AF, Golshani R, Grunenwald H, Schroth GP, Gormley NA. Bead-linked transposomes enable a normalization-free workflow for NGS library preparation. BMC Genomics 2018; 19:722. [PMID: 30285621 PMCID: PMC6167868 DOI: 10.1186/s12864-018-5096-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transposome-based technologies have enabled the streamlined production of sequencer-ready DNA libraries; however, current methods are highly sensitive to the amount and quality of input nucleic acid. RESULTS We describe a new library preparation technology (Nextera DNA Flex) that utilizes a known concentration of transposomes conjugated directly to beads to bind a fixed amount of DNA, and enables direct input of blood and saliva using an integrated extraction protocol. We further report results from libraries generated outside the standard parameters of the workflow, highlighting novel applications for Nextera DNA Flex, including human genome builds and variant calling from below 1 ng DNA input, customization of insert size, and preparation of libraries from short fragments and severely degraded FFPE samples. Using this bead-linked library preparation method, library yield saturation was observed at an input amount of 100 ng. Preparation of libraries from a range of species with varying GC levels demonstrated uniform coverage of small genomes. For large and complex genomes, coverage across the genome, including difficult regions, was improved compared with other library preparation methods. Libraries were successfully generated from amplicons of varying sizes (from 50 bp to 11 kb), however, a decrease in efficiency was observed for amplicons smaller than 250 bp. This library preparation method was also compatible with poor-quality DNA samples, with sequenceable libraries prepared from formalin-fixed paraffin-embedded samples with varying levels of degradation. CONCLUSIONS In contrast to solution-based library preparation, this bead-based technology produces a normalized, sequencing-ready library for a wide range of DNA input types and amounts, largely obviating the need for DNA quantitation. The robustness of this bead-based library preparation kit and flexibility of input DNA facilitates application across a wide range of fields.
Collapse
|
247
|
Zhong R, Li H, Zhang S, Liu J, Cheng Y. [Advances on Recognizing and Managing Tumor Heterogeneity]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:712-718. [PMID: 30201072 PMCID: PMC6136997 DOI: 10.3779/j.issn.1009-3419.2018.09.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
肿瘤异质性是恶性肿瘤的特征之一,可使肿瘤的生长速度、侵袭与转移、药物敏感性、预后等各方面产生差异。肿瘤驱动基因和靶向药物的发现发展开启了战胜肿瘤的希望之门,然而异质性的存在又让肿瘤治疗陷入了难以攻克的困境。在肿瘤复发、进展演化的过程中肿瘤异质性如影随形,纷繁复杂。凭借不断进步的检测技术认识和理解肿瘤异质性,针对肿瘤异质性的原因和表型,定制治疗方案已成为当今精准医疗领域的重点范畴。本综述对肿瘤异质性进行了分析和探讨,从而更好的帮助我们了解肿瘤异质性,有利于我们通过多种手段对抗肿瘤异质性。
Collapse
Affiliation(s)
- Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Shuang Zhang
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Jingjing Liu
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Ying Cheng
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| |
Collapse
|
248
|
Espín-Pérez A, Portier C, Chadeau-Hyam M, van Veldhoven K, Kleinjans JCS, de Kok TMCM. Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data. PLoS One 2018; 13:e0202947. [PMID: 30161168 PMCID: PMC6117018 DOI: 10.1371/journal.pone.0202947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/13/2018] [Indexed: 01/26/2023] Open
Abstract
Batch effects are technical sources of variation introduced by the necessity of conducting gene expression analyses on different dates due to the large number of biological samples in population-based studies. The aim of this study is to evaluate the performances of linear mixed models (LMM) and Combat in batch effect removal. We also assessed the utility of adding quality control samples in the study design as technical replicates. In order to do so, we simulated gene expression data by adding “treatment” and batch effects to a real gene expression dataset. The performances of LMM and Combat, with and without quality control samples, are assessed in terms of sensitivity and specificity while correcting for the batch effect using a wide range of effect sizes, statistical noise, sample sizes and level of balanced/unbalanced designs. The simulations showed small differences among LMM and Combat. LMM identifies stronger relationships between big effect sizes and gene expression than Combat, while Combat identifies in general more true and false positives than LMM. However, these small differences can still be relevant depending on the research goal. When any of these methods are applied, quality control samples did not reduce the batch effect, showing no added value for including them in the study design.
Collapse
Affiliation(s)
- Almudena Espín-Pérez
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Chris Portier
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Karin van Veldhoven
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Theo M. C. M. de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
249
|
Wylezich C, Papa A, Beer M, Höper D. A Versatile Sample Processing Workflow for Metagenomic Pathogen Detection. Sci Rep 2018; 8:13108. [PMID: 30166611 PMCID: PMC6117295 DOI: 10.1038/s41598-018-31496-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Abstract
Metagenomics is currently the only generic method for pathogen detection. Starting from RNA allows the assessment of the whole sample community including RNA viruses. Here we present our modular concerted protocol for sample processing for diagnostic metagenomics analysis of human, animal, and food samples. The workflow does not rely on dedicated amplification steps at any stage in the process and, in contrast to published methods, libraries prepared accordingly will yield only minute amounts of unclassifiable reads. We confirmed the performance of the approach using a spectrum of pathogen/matrix-combinations showing it has the potential to become a commonly usable analytical framework.
Collapse
Affiliation(s)
- Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany.
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
250
|
Lim JW, Wong CJ, Yao Z, Tawil R, van der Maarel SM, Miller DG, Tapscott SJ, Filippova GN. Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures. Hum Mol Genet 2018; 27:2644-2657. [PMID: 29741619 PMCID: PMC6048983 DOI: 10.1093/hmg/ddy173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by insufficient epigenetic repression of D4Z4 macrosatellite repeat where DUX4, an FSHD causing gene is embedded. There are two forms of FSHD, FSHD1 with contraction of D4Z4 repeat and FSHD2 with chromatin compaction defects mostly due to SMCHD1 mutation. Previous reports showed DUX4-induced gene expression changes as well as changes in microRNA expression in FSHD muscle cells. However, a genome wide analysis of small noncoding RNAs that might be regulated by DUX4 or by mutations in SMCHD1 has not been reported yet. Here, we identified several types of small noncoding RNAs including known microRNAs that are differentially expressed in FSHD2 muscle cells compared to control. Although fewer small RNAs were differentially expressed during muscle differentiation in FSHD2 cells compared to controls, most of the known myogenic microRNAs, such as miR1, miR133a and miR206 were induced in both FSHD2 and control muscle cells during differentiation. Our small RNA sequencing data analysis also revealed both DUX4- and SMCHD1-specific changes in FSHD2 muscle cells. Six FSHD2 microRNAs were affected by DUX4 overexpression in control myoblasts, whereas increased expression of tRNAs and 5S rRNAs in FSHD2 muscle cells was largely recapitulated in SMCHD1-depleted control myoblasts. Altogether, our studies suggest that the small noncoding RNA transcriptome changes in FSHD2 might be different from those in FSHD1 and that these differences may provide new diagnostic and therapeutic tools specific to FSHD2.
Collapse
Affiliation(s)
- Jong-Won Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zizhen Yao
- MAT Department, Allen Brain Institute, Seattle, WA 98109, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | | | - Daniel G Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Galina N Filippova
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|