201
|
Leetanasaksakul K, Roytrakul S, Phaonakrop N, Kittisenachai S, Thaisakun S, Srithuanok N, Sriroth K, Soulard L. Discovery of potential protein biomarkers associated with sugarcane white leaf disease susceptibility using a comparative proteomic approach. PeerJ 2022; 10:e12740. [PMID: 35036104 PMCID: PMC8742537 DOI: 10.7717/peerj.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Sugarcane white leaf disease (SCWLD) is caused by phytoplasma, a serious sugarcane phytoplasma pathogen, which causes significant decreases in crop yield and sugar quality. The identification of proteins involved in the defense mechanism against SCWLD phytoplasma may help towards the development of varieties resistant to SCWLD. We investigated the proteomes of four sugarcane varieties with different levels of susceptibility to SCWLD phytoplasma infection, namely K88-92 and K95-84 (high), KK3 (moderate), and UT1 (low) by quantitative label-free nano-liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). A total of 248 proteins were identified and compared among the four sugarcane varieties. Two potential candidate protein biomarkers for reduced susceptibility to SCWLD phytoplasma were identified as proteins detected only in UT1. The functions of these proteins are associated with protein folding, metal ion binding, and oxidoreductase. The candidate biomarkers could be useful for further study of the sugarcane defense mechanism against SCWLD phytoplasma, and in molecular and conventional breeding strategies for variety improvement.
Collapse
Affiliation(s)
- Kantinan Leetanasaksakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Suthathip Kittisenachai
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Nitiya Srithuanok
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| | - Klanarong Sriroth
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| | - Laurent Soulard
- Mitr Phol Innovation and Research Center, Khoksa-at, Phu Khiao, Chaiyaphum, Thailand
| |
Collapse
|
202
|
Molecular characterization, expression profile and transcriptional regulation of the CYP19 gene in goose ovarian follicles. Gene 2022; 806:145928. [PMID: 34455027 DOI: 10.1016/j.gene.2021.145928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 Family 19 (CYP19) is a crucial enzyme to catalyze the conversion of androgens to estrogens. However, the regulatory mechanism of goose CYP19 gene remains poorly understood. The present study attempted to obtain the full-length coding sequence (CDS) and 5'-flanking sequence of CYP19 gene, to investigate its expression and distribution profiles in different sized follicles, and to analyze the transcriptional regulatory mechanism of CYP19 gene in goose. Results showed that its CDS consisted of 1512 nucleotides and the encoded amino acid sequence contained a classical P450 structural domain. Homology analysis showed that there were high homologies of nucleotide and amino acid sequences between goose and other avian species. Its promoter sequence spanned from -1925 bp to the transcription start site (ATG) and several transcriptional factors were predicted in this region. Further analysis from luciferase assay showed that the luciferase activity was the highest spanning from -118 to -1 bp by constructing deletion promoter reporter vector. In addition, result from quantitative real-time polymerase chain reaction indicated that the mRNA level of CYP19 gene were highly expressed in theca layer of the fifth largest follicle, and the cellular location was in the theca externa cells by immunohistochemistry. Taken together, it could be concluded that the transcription activity of CYP19 gene was activated by transcriptional factors in its proximal region of promoter to promote the synthesis of estrogens, regulating the selection of pre-hierarchical into hierarchical follicle in goose.
Collapse
|
203
|
Usman M, Bokhari SAM, Fatima B, Rashid B, Nadeem F, Sarwar MB, Nawaz-ul-Rehman MS, Shahid M, Ayub CM. Drought Stress Mitigating Morphological, Physiological, Biochemical, and Molecular Responses of Guava ( Psidium guajava L.) Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:878616. [PMID: 35720611 PMCID: PMC9201916 DOI: 10.3389/fpls.2022.878616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 05/08/2023]
Abstract
Guava (Psidium guajava L.), a major fruit crop of the sub-tropical region, is facing a production decline due to drought stress. Morphophysiological responses to drought stress and underlying transcriptional regulations in guava are, largely, unknown. This study evaluated the drought stress tolerance of two guava cultivars, viz. "Gola" and "Surahi," at morphological and physiological levels regulated differentially by ESTs (Expressed Sequence Tags). The treatments comprises three moisture regimes, viz. To = 100% (control), T1 = 75%, and T2 = 50% of field capacity. There was an overall decrease in both morphological and physiological attributes of studied guava cultivars in response to drought stress. Nonetheless, the water use efficiency of the "Surahi" cultivar increased (41.86%) speculating its higher drought tolerance based on enhanced peroxidase (402%) and catalase (170.21%) activities under 50% field capacity (T2). Moreover, higher proline and flavonoid contents reinforced drought stress retaliation of the "Surahi" cultivar. The differential expression of a significant number of ESTs in "Surahi" (234) as compared to "Gola" (117) cultivar, somehow, regulated its cellular, biological, and molecular functions to strengthen morphophysiological attributes against drought stress as indicated by the upregulation of ESTs related to peroxidase, sucrose synthase (SUS), alcohol dehydrogenase (ADH), and ubiquitin at morphological, biochemical, and physiological levels. In conclusion, the drought stress acclimation of pear-shaped guava cultivar "Surahi" is due to the increased activities of peroxidase (POD) and catalase (CAT) complimented by the upregulation of related ESTs.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Muhammad Usman
| | - Syeda Anum Masood Bokhari
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
- Department of Horticulture, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Bilquees Fatima
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Bushra Rashid
| | - Faisal Nadeem
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal Sarwar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
204
|
Kim NK, Lee SH, Kim Y, Park HD. Current understanding and perspectives in anaerobic digestion based on genome-resolved metagenomic approaches. BIORESOURCE TECHNOLOGY 2022; 344:126350. [PMID: 34813924 DOI: 10.1016/j.biortech.2021.126350] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a technique that can be used to treat high concentrations of various organic wastes using a consortium of functionally diverse microorganisms under anaerobic conditions. Methane gas, a beneficial by-product of the AD process, is a renewable energy source that can replace fossil fuels following purification. However, detailed functional roles and metabolic interactions between microbial populations involved in organic waste removal and methanogenesis are yet to be known. Recent metagenomic approaches based on advanced high-throughput sequencing techniques have enabled the exploration of holistic microbial taxonomy and functionality of complex microbial populations involved in the AD process. Gene-centric and genome-centric analyses based on metagenome-assembled genomes are a platform that can be used to study the composition of microbial communities and their roles during AD. This review looks at how these up-to-date metagenomic analyses can be applied to promote our understanding and improved the development of the AD process.
Collapse
Affiliation(s)
- Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Yonghoon Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
205
|
|
206
|
Hoang NV, Park S, Park C, Suh H, Kim S, Chae E, Kang B, Lee J. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:144-163. [PMID: 34724278 PMCID: PMC9298717 DOI: 10.1111/tpj.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/10/2023]
Abstract
Radish, Raphanus sativus L., is an important root crop that is cultivated worldwide. Owing to its evolutionary proximity to Arabidopsis thaliana, radish can be used as a model root crop in research on the molecular basis of agronomic traits. Pithiness is a significant defect that reduces the production of radish with commercial value; however, traditional breeding to eliminate this trait has thus far been unsuccessful. Here, we performed transcriptomics and genotype-by-sequencing (GBS)-based quantitative trait locus (QTL) analyses of radish inbred lines to understand the molecular basis of pithiness in radish roots. The transcriptome data indicated that pithiness likely stems from the response to oxidative stress, leading to cell death of the xylem parenchyma during the root-thickening process. Subsequently, we narrowed down a list of candidates responsible for pithiness near a major QTL and found polymorphisms in a radish homologue of Arabidopsis ANAC013 (RsNAC013), an endoplasmic reticulum bound NAC transcription factor that is targeted to the nucleus to mediate the mitochondrial retrograde signal. We analysed the effects of polymorphisms in RsNAC013 using Arabidopsis transgenic lines overexpressing RsNAC013 alleles as well as in radish inbred lines bearing these alleles. This analysis indicated that non-synonymous variations within the coding sequence result in different levels of RsNAC013 activities, thereby providing a genetic condition for root pithiness. The elevated oxidative stress or hypoxia that activates RsNAC013 for mitochondrial signalling enhances this process. Collectively, this study serves as an exemplary case of translational research taking advantage of the extensive information available from a model organism.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Suhyoung Park
- National Institute of Horticultural & Herbal ScienceRural Development AdministrationWanju55365Korea
| | - Chulmin Park
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Hannah Suh
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Sang‐Tae Kim
- Department of Medical & Biological SciencesThe Catholic University of KoreaJibong‐roBucheon‐siGyeonggi‐do14662Korea
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Byoung‐Cheorl Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversityGwanak‐roSeoul08826Korea
| | - Ji‐Young Lee
- School of Biological SciencesSeoul National UniversityGwanak‐roSeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversityGwanak‐roSeoul08826Korea
| |
Collapse
|
207
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
208
|
Abdul Kader S, Dib S, Achkar IW, Thareja G, Suhre K, Rafii A, Halama A. Defining the landscape of metabolic dysregulations in cancer metastasis. Clin Exp Metastasis 2021; 39:345-362. [PMID: 34921655 PMCID: PMC8971193 DOI: 10.1007/s10585-021-10140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.
Collapse
Affiliation(s)
- Sara Abdul Kader
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Shaima Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Iman W Achkar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- University of Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, 24144, Doha, Qatar.
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
209
|
Delaveau T, Thiébaut A, Benchouaia M, Merhej J, Devaux F. Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen Candida glabrata. Front Cell Infect Microbiol 2021; 11:731988. [PMID: 34900750 PMCID: PMC8662346 DOI: 10.3389/fcimb.2021.731988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022] Open
Abstract
The CCAAT-binding complex (CBC) is a conserved heterotrimeric transcription factor which, in fungi, requires additional regulatory subunits to act on transcription. In the pathogenic yeast Candida glabrata, CBC has a dual role. Together with the Hap4 regulatory subunit, it activates the expression of genes involved in respiration upon growth with non-fermentable carbon sources, while its association with the Yap5 regulatory subunit is required for the activation of iron tolerance genes in response to iron excess. In the present work, we investigated further the interplay between CBC, Hap4 and Yap5. We showed that Yap5 regulation requires a specific Yap Response Element in the promoter of its target gene GRX4 and that the presence of Yap5 considerably strengthens the binding of CBC to the promoters of iron tolerance genes. Chromatin immunoprecipitation (ChIP) and transcriptome experiments showed that Hap4 can also bind these promoters but has no impact on the expression of those genes when Yap5 is present. In the absence of Yap5 however, GRX4 is constitutively regulated by Hap4, similarly to the genes involved in respiration. Our results suggest that the distinction between the two types of CBC targets in C. glabrata is mainly due to the dependency of Yap5 for very specific DNA sequences and to the competition between Hap4 and Yap5 at the promoter of the iron tolerance genes.
Collapse
Affiliation(s)
- Thierry Delaveau
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Médine Benchouaia
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Jawad Merhej
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
210
|
Fang Y, Chang J, Shi T, Luo W, Ou Y, Wan D, Li J. Evolution of RGF/GLV/CLEL Peptide Hormones and Their Roles in Land Plant Growth and Regulation. Int J Mol Sci 2021; 22:ijms222413372. [PMID: 34948169 PMCID: PMC8708909 DOI: 10.3390/ijms222413372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Rooting is a key innovation during plant terrestrialization. RGFs/GLVs/CLELs are a family of secreted peptides, playing key roles in root stem cell niche maintenance and pattern formation. The origin of this peptide family is not well characterized. RGFs and their receptor genes, RGIs, were investigated comprehensively using phylogenetic and genetic analyses. We identified 203 RGF genes from 24 plant species, representing a variety of land plant lineages. We found that the RGF genes originate from land plants and expand via multiple duplication events. The lineage-specific RGF duplicates are retained due to their regulatory divergence, while a majority of RGFs experienced strong purifying selection in most land plants. Functional analysis indicated that RGFs and their receptor genes, RGIs, isolated from liverwort, tomato, and maize possess similar biological functions with their counterparts from Arabidopsis in root development. RGFs and RGIs are likely coevolved in land plants. Our studies shed light on the origin and functional conservation of this important peptide family in plant root development.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Wenchun Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Yang Ou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
| | - Dongshi Wan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- Correspondence: (D.W.); (J.L.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (W.L.); (Y.O.)
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (D.W.); (J.L.)
| |
Collapse
|
211
|
Elshalofy A, Wagener K, Weber K, Blanco M, Bauersachs S, Bollwein H. Identification of genes associated with susceptibility to persistent breeding-induced endometritis by RNA-sequencing of uterine cytobrush samples. Reprod Biol 2021; 22:100577. [PMID: 34883452 DOI: 10.1016/j.repbio.2021.100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the susceptibility to persistent breeding-induced endometritis (PBIE). Cytobrush samples were collected from 81 broodmares 1-3 days before artificial insemination (AI). Susceptibility to PBIE was evaluated by the presence of ≥ 2 cm of intrauterine fluid 24 h after AI, besides the fertility was determined by a sonographic pregnancy diagnosis 2 weeks after ovulation. RNA expressions were compared between susceptible non-pregnant (SNP) mares (n=9) and resistant pregnant (RP) mares (n=9) as well as between susceptible pregnant (SP) mares (n=9) and susceptible non-pregnant (SNP) mares. 66 differentially expressed genes (DEGs) were identified between SNP and RP mares and 60 DEGs between SP and SNP mares. In SNP compared to RP mares, transcript levels of genes regulating steroid hormone metabolism and neutrophil chemotaxis were lower, while higher for genes participating in uterine inflammation.Transcripts of genes related to extracellular matrix degradation, tissue adhesions, and fibrosis were lower in SP mares than in SNP mares, while higher for genes related to uterine cell proliferation, differentiation, and angiogenesis in SP mares than SNP mares. In conclusion, increased transcript levels of apolipoprotein E (APOE) and roundabout 2 (ROBO2), cluster domain 44 (CD44), integrin beta 3 (ITGB3), and epidermal growth factor (EGF) are possible biomarkers for susceptibility to PBIE. While higher expression of fibroblast growth factor 9 (FGF9), kinase domain receptor (KDR), and C-X-C motif chemokine ligand (CXCL) 16, collagen type V alpha 2 (COL5A2) and fibronectin (FN1) are suggested indicators of fertility in susceptible mares if they receive proper breeding management.
Collapse
Affiliation(s)
- Amr Elshalofy
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Karen Wagener
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Katharina Weber
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland
| | | | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Switzerland.
| |
Collapse
|
212
|
Understanding host-microbiota interactions in the commercial piglet around weaning. Sci Rep 2021; 11:23488. [PMID: 34873196 PMCID: PMC8648723 DOI: 10.1038/s41598-021-02754-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Weaning is a critical period in the life of pigs with repercussions on their health and welfare and on the economy of the swine industry. This study aimed to assess the effect of the commercial early weaning on gut microbiota, intestinal gene expression and serum metabolomic response via an integrated-omic approach combining 16S rRNA gene sequencing, the OpenArray gene expression technology and 1H-NMR spectroscopy. Fourteen piglets from different litters were sampled for blood, jejunum tissue and caecal content two days before (− 2d), and three days after (+ 3d) weaning. A clearly differential ordination of caecal microbiota was observed. Higher abundances of Roseburia, Ruminococcus, Coprococcus, Dorea and Lachnospira genera in weaned piglets compared to prior to weaning showed the quick microbial changes of the piglets’ gut microbiota. Downregulation of OCLN, CLDN4, MUC2, MUC13, SLC15A1 and SLC13A1 genes, also evidenced the negative impact of weaning on gut barrier and digestive functions. Metabolomic approach pinpointed significant decreases in choline, LDL, triglycerides, fatty acids, alanine and isoleucine and increases in 3-hydroxybutyrate after weaning. Moreover, the correlation between microbiota and metabolome datasets revealed the existence of metabolic clusters interrelated to different bacterial clusters. Our results demonstrate the impact of weaning stress on the piglet and give insights regarding the associations between gut microbiota and the animal gene activity and metabolic response.
Collapse
|
213
|
Kayani SI, Shen Q, Rahman SU, Fu X, Li Y, Wang C, Hassani D, Tang K. Transcriptional regulation of flavonoid biosynthesis in Artemisia annua by AaYABBY5. HORTICULTURE RESEARCH 2021; 8:257. [PMID: 34848710 PMCID: PMC8632904 DOI: 10.1038/s41438-021-00693-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
Artemisia annua is a medicinal plant rich in terpenes and flavonoids with useful biological activities such as antioxidant, anticancer, and antimalarial activities. The transcriptional regulation of flavonoid biosynthesis in A. annua has not been well-studied. In this study, we identified a YABBY family transcription factor, AaYABBY5, as a positive regulator of anthocyanin and total flavonoid contents in A. annua. AaYABBY5 was selected based on its similar expression pattern to the phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) genes. A transient dual-luciferase assay in Nicotiana bethamiana with the AaYABBY5 effector showed a significant increase in the activity of the downstream LUC gene, with reporters AaPAL, AaCHS, AaCHI, and AaUFGT. The yeast one-hybrid system further confirmed the direct activation of these promoters by AaYABBY5. Gene expression analysis of stably transformed AaYABBY5 overexpression, AaYABBY5 antisense, and control plants revealed a significant increase in the expression of AaPAL, AaCHS, AaCHI, AaFLS, AaFSII, AaLDOX, and AaUFGT in AaYABBY5 overexpression plants. Moreover, their total flavonoid content and anthocyanin content were also found to increase. AaYABBY5 antisense plants showed a significant decrease in the expression of flavonoid biosynthetic genes, as well as a decrease in anthocyanin and total flavonoid contents. In addition, phenotypic analysis revealed deep purple-pigmented stems, an increase in the leaf lamina size, and higher trichome densities in AaYABBY5 overexpression plants. Together, these data proved that AaYABBY5 is a positive regulator of flavonoid biosynthesis in A. annua. Our study provides candidate transcription factors for the improvement of flavonoid concentrations in A. annua and can be further extended to elucidate its mechanism of regulating trichome development.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Saeed-Ur Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
214
|
Huang Y, Shen Z, Huang C, Lin C, Tsai T. Cisd2 slows down liver aging and attenuates age-related metabolic dysfunction in male mice. Aging Cell 2021; 20:e13523. [PMID: 34811857 PMCID: PMC8672792 DOI: 10.1111/acel.13523] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro‐longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down‐regulation of Cisd2 may result in the aging liver exhibiting non‐alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age‐related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3‐month‐old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age‐associated dysregulation of various transcription regulators (Nrf2, IL‐6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.
Collapse
Affiliation(s)
- Yi‐Long Huang
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
| | - Zhao‐Qing Shen
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chen‐Hua Huang
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chao‐Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
| | - Ting‐Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| |
Collapse
|
215
|
Catalano T, D’Amico E, Moscatello C, Di Marcantonio MC, Ferrone A, Bologna G, Selvaggi F, Lanuti P, Cotellese R, Curia MC, Lattanzio R, Aceto GM. Oxidative Distress Induces Wnt/β-Catenin Pathway Modulation in Colorectal Cancer Cells: Perspectives on APC Retained Functions. Cancers (Basel) 2021; 13:6045. [PMID: 34885156 PMCID: PMC8656656 DOI: 10.3390/cancers13236045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/β-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/β-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and β-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/β-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote β-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
| | - Alessio Ferrone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Federico Selvaggi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Unit of General Surgery, Ospedale Floraspe Renzetti, Lanciano, 66034 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (A.F.); (G.B.); (P.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi, 65013 Città Sant’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.C.D.M.); (R.L.)
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (E.D.); (C.M.); (F.S.); (R.C.); (M.C.C.)
| |
Collapse
|
216
|
Liu J, An B, Luo H, He C, Wang Q. The histone acetyltransferase FocGCN5 regulates growth, conidiation, and pathogenicity of the banana wilt disease causal agent Fusarium oxysporum f.sp. cubense tropical race 4. Res Microbiol 2021; 173:103902. [PMID: 34838989 DOI: 10.1016/j.resmic.2021.103902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Chromatin structure modifications by histone acetyltransferase are involved in multiple biological processes in eukaryotes. In the present study, the GCN5 homologue FocGCN5 was identified in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). The coding gene was then knocked out to investigate the roles of FocGNC5. The mutant ΔFocGCN5 was found significantly reduced in growth rate and conidiation, and almost completely lost pathogenicity to banana plantlets. The RNA-seq analysis provide an insight into the underlying mechanism. Firstly, transcription of the genes involved in carbohydrate metabolism and fungal cell wall synthesis was reduced in ΔFocGCN5, leading to the impairment of apical deposition of cell-wall material. Secondly, FocabaA, one of the pivotal regulators of conidiation, was significantly reduced in expression in ΔFocGCN5, which might be the main cause of the conidiation reduction. Thirdly, the pathogenicity-associated factors, including effectors and plant cell wall degrading enzymes, were almost all down-regulated in ΔFocGCN5, which accounts for the decrease of pathogenicity. In addition, the stress tolerance to salt, heat, and cell wall inhibitors was slightly increased in ΔFocGCN5. Taken together, our studies clarify the roles of FocGCN5 in growth, conidiation, and pathogenicity of Foc TR4, and explore the possible mechanism behind its biological functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China.
| |
Collapse
|
217
|
Zhu L, Qiu C, Dai L, Zhang L, Feng M, Yang Y, Qiu C, Zhang A, Huang J, Wang Y, Wan Y, Zhao C, Wu H, Lyu J, Zhang X, Xu J. Hsa-miR-31 Governs T-Cell Homeostasis in HIV Protection via IFN-γ-Stat1-T-Bet Axis. Front Immunol 2021; 12:771279. [PMID: 34804062 PMCID: PMC8602903 DOI: 10.3389/fimmu.2021.771279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
It remains poorly defined whether any human miRNAs play protective roles during HIV infection. Here, focusing on a unique cohort of HIV-infected former blood donors, we identified miR-31 (hsa-miR-31) by comparative miRNA profiling as the only miRNA inversely correlating with disease progression. We further validated this association in two prospective cohort studies. Despite conservation during evolution, hsa-miR-31, unlike its mouse counterpart (mmu-miR-31), was downregulated in human T cell upon activation. Our ex vivo studies showed that inhibiting miR-31 in naïve CD4+ T cells promoted a transcriptional profile with activation signature. Consistent with this skewing effect, miR-31 inhibition led to remarkably increased susceptibility to HIV infection. The suppressive nature of miR-31 in CD4+ T cell activation was pinpointed to its ability to decrease T-bet, the key molecule governing IFN-γ production and activation of CD4+ T cells, by directly targeting the upstream STAT1 transcriptional factor for downregulation, thus blunting Th1 response. Our results implicated miR-31 as a useful biomarker for tracking HIV disease progression and, by demonstrating its importance in tuning the activation of CD4+ T cells, suggested that miR-31 may play critical roles in other physiological contexts where the CD4+ T cell homeostasis needs to be deliberately controlled.
Collapse
Affiliation(s)
- Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lili Dai
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meiqi Feng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Huang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
218
|
Takei H, Coelho-Silva JL, Tavares Leal C, Queiroz Arantes Rocha A, Mantello Bianco T, Welner RS, Mishima Y, Kobayashi IS, Mullally A, Lima K, Machado-Neto JA, Kobayashi SS, Lobo de Figueiredo-Pontes L. Suppression of multiple anti-apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms. Cancer Sci 2021; 113:597-608. [PMID: 34808021 PMCID: PMC8819353 DOI: 10.1111/cas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Several lines of research suggest that Bcl‐xL‐mediated anti‐apoptotic effects may contribute to the pathogenesis of myeloproliferative neoplasms driven by JAK2V617F and serve as therapeutic target. Here, we used a knock‐in JAK2V617F mouse model and confirmed that Bcl‐xL was overexpressed in erythroid progenitors. The myeloproliferative neoplasm (MPN)‐induced phenotype in the peripheral blood by conditional knock‐in of JAK2V617F was abrogated by conditional knockout of Bcl2l1, which presented anemia and thrombocytopenia independently of JAK2 mutation status. Mx1‐Cre Jak2V617W/VF/Bcl2l1f/f mice presented persistent splenomegaly as a result of extramedullary hematopoiesis and pro‐apoptotic stimuli in terminally differentiated erythroid progenitors. The pan‐BH3 mimetic inhibitor obatoclax showed superior cytotoxicity in JAK2V617F cell models, and reduced clonogenic capacity in ex vivo assay using Vav‐Cre Jak2V617F bone marrow cells. Both ruxolitinib and obatoclax significantly reduced spleen weights in a murine Jak2V617F MPN model but did not show additive effect. The tumor burden reduction was observed with either ruxolitinib or obatoclax in terminal differentiation stage neoplastic cells but not in myeloid‐erythroid precursors. Therefore, disrupting the BCL2 balance is not sufficient to treat MPN at the stem cell level, but it is certainly an additional option for controlling the critical myeloid expansion of the disease.
Collapse
Affiliation(s)
- Hisashi Takei
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Gunma University Graduate School of Medicine, Maebashi-shi, Japan
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina Tavares Leal
- Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Thiago Mantello Bianco
- Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Robert S Welner
- Department of Medicine, Division Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuta Mishima
- Department of Clinical Medicine, Faculty of Medicine, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorena Lobo de Figueiredo-Pontes
- Department of Medical Images, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
219
|
Co-activation of Sonic hedgehog and Wnt signaling in murine retinal precursor cells drives ocular lesions with features of intraocular medulloepithelioma. Oncogenesis 2021; 10:78. [PMID: 34785636 PMCID: PMC8595639 DOI: 10.1038/s41389-021-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Intraocular medulloepithelioma (IO-MEPL) is a rare embryonal ocular neoplasm, prevalently occurring in children. IO-MEPLs share histomorphological features with CNS embryonal tumors with multilayered rosettes (ETMRs), referred to as intracranial medulloepitheliomas. While Sonic hedgehog (SHH) and WNT signaling pathways are crucial for ETMR pathogenesis, the impact of these pathways on human IO-MEPL development is unclear. Gene expression analyses of human embryonal tumor samples revealed similar gene expression patterns and significant overrepresentation of SHH and WNT target genes in both IO-MEPL and ETMR. In order to unravel the function of Shh and Wnt signaling for IO-MEPL pathogenesis in vivo, both pathways were activated in retinal precursor cells in a time point specific manner. Shh and Wnt co-activation in early Sox2- or Rax-expressing precursor cells resulted in infiltrative ocular lesions that displayed extraretinal expansion. Histomorphological, immunohistochemical, and molecular features showed a strong concordance with human IO-MEPL. We demonstrate a relevant role of WNT and SHH signaling in IO-MEPL and report the first mouse model to generate tumor-like lesions with features of IO-MEPL. The presented data may be fundamental for comprehending IO-MEPL initiation and developing targeted therapeutic approaches.
Collapse
|
220
|
Rudolf Vegas A, Podico G, Canisso IF, Bollwein H, Almiñana C, Bauersachs S. Spatiotemporal endometrial transcriptome analysis revealed the luminal epithelium as key player during initial maternal recognition of pregnancy in the mare. Sci Rep 2021; 11:22293. [PMID: 34785745 PMCID: PMC8595723 DOI: 10.1038/s41598-021-01785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
During the period of maternal recognition of pregnancy (MRP) in the mare, the embryo needs to signal its presence to the endometrium to prevent regression of the corpus luteum and prepare for establishment of pregnancy. This is achieved by mechanical stimuli and release of various signaling molecules by the equine embryo while migrating through the uterus. We hypothesized that embryo's signals induce changes in the endometrial gene expression in a highly cell type-specific manner. A spatiotemporal transcriptomics approach was applied combining laser capture microdissection and low-input-RNA sequencing of luminal and glandular epithelium (LE, GE), and stroma of biopsy samples collected from days 10-13 of pregnancy and the estrous cycle. Two comparisons were performed, samples derived from pregnancies with conceptuses ≥ 8 mm in diameter (comparison 1) and conceptuses ≤ 8 mm (comparison 2) versus samples from cyclic controls. The majority of gene expression changes was identified in LE and much lower numbers of differentially expressed genes (DEGs) in GE and stroma. While 1253 DEGs were found for LE in comparison 1, only 248 were found in comparison 2. Data mining mainly focused on DEGs in LE and revealed regulation of genes related to prostaglandin transport, metabolism, and signaling, as well as transcription factor families that could be involved in MRP. In comparison to other mammalian species, differences in regulation of genes involved in epithelial barrier formation and conceptus attachment and implantation reflected the unique features of equine reproduction at the time of MRP at the molecular level.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland.
| |
Collapse
|
221
|
Malovichko MV, Abplanalp WT, McFall SA, Taylor BS, Wickramasinghe NS, Sithu ID, Zelko IN, Uchida S, Hill BG, Sutaria SR, Nantz MH, Bhatnagar A, Conklin DJ, O'Toole TE, Srivastava S. Subclinical markers of cardiovascular toxicity of benzene inhalation in mice. Toxicol Appl Pharmacol 2021; 431:115742. [PMID: 34624356 PMCID: PMC8647905 DOI: 10.1016/j.taap.2021.115742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity. We examined the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation significantly increased the biomarkers of endothelial activation and injury including endothelial microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, lung endothelial microparticles, and activated lung and endothelial microparticles while having no effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we exposed human aortic endothelial cells to benzene metabolites. Of the metabolites tested, trans,trans-mucondialdehyde (10 μM, 18h) was the most toxic. It induced caspases-3, -7 and -9 (intrinsic pathway) activation and enhanced microparticle formation by 2.4-fold. Levels of platelet-leukocyte aggregates, platelet macroparticles, and a proportion of CD4+ and CD8+ T-cells were also significantly elevated in the blood of the benzene-exposed mice. We also found that benzene exposure increased the transcription of genes associated with endothelial cell and platelet activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the lungs and the liver. Together, these data suggest that benzene exposure induces endothelial injury, enhances platelet activation and inflammatory processes; and circulatory levels of endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are excellent biomarkers of cardiovascular toxicity of benzene.
Collapse
Affiliation(s)
- Marina V Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Wesley T Abplanalp
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Samantha A McFall
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Breandon S Taylor
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Nalinie S Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Israel D Sithu
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Igor N Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Shizuka Uchida
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Bradford G Hill
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Saurin R Sutaria
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Chemistry, University of Louisville, Louisville, KY 40202, United States of America
| | - Michael H Nantz
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Department of Chemistry, University of Louisville, Louisville, KY 40202, United States of America
| | - Aruni Bhatnagar
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Daniel J Conklin
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Timothy E O'Toole
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; American Heart Association-Tobacco Center of Regulatory Science, University of Louisville, Louisville, KY 40202, United States of America; Envirome Institute, University of Louisville, Louisville, KY 40202, United States of America; Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202, United States of America.
| |
Collapse
|
222
|
Morinaka H, Mamiya A, Tamaki H, Iwamoto A, Suzuki T, Kawamura A, Ikeuchi M, Iwase A, Higashiyama T, Sugimoto K, Sugiyama M. Transcriptome Dynamics of Epidermal Reprogramming during Direct Shoot Regeneration in Torenia fournieri. PLANT & CELL PHYSIOLOGY 2021; 62:1335-1354. [PMID: 34223624 PMCID: PMC8579340 DOI: 10.1093/pcp/pcab101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 07/05/2021] [Indexed: 05/26/2023]
Abstract
Shoot regeneration involves reprogramming of somatic cells and de novo organization of shoot apical meristems (SAMs). In the best-studied model system of shoot regeneration using Arabidopsis, regeneration is mediated by the auxin-responsive pluripotent callus formation from pericycle or pericycle-like tissues according to the lateral root development pathway. In contrast, shoot regeneration can be induced directly from fully differentiated epidermal cells of stem explants of Torenia fournieri (Torenia), without intervening the callus mass formation in culture with cytokinin; yet, its molecular mechanisms remain unaddressed. Here, we characterized this direct shoot regeneration by cytological observation and transcriptome analyses. The results showed that the gene expression profile rapidly changes upon culture to acquire a mixed signature of multiple organs/tissues, possibly associated with epidermal reprogramming. Comparison of transcriptomes between three different callus-inducing cultures (callus induction by auxin, callus induction by wounding and protoplast culture) of Arabidopsis and the Torenia stem culture identified genes upregulated in all the four culture systems as candidates of common factors of cell reprogramming. These initial changes proceeded independently of cytokinin, followed by cytokinin-dependent, transcriptional activations of nucleolar development and cell cycle. Later, SAM regulatory genes became highly expressed, leading to SAM organization in the foci of proliferating cells in the epidermal layer. Our findings revealed three distinct phases with different transcriptomic and regulatory features during direct shoot regeneration from the epidermis in Torenia, which provides a basis for further investigation of shoot regeneration in this unique culture system.
Collapse
Affiliation(s)
- Hatsune Morinaka
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akihito Mamiya
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-8555, Japan
| | - Akitoshi Iwamoto
- Department of Biological Science, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Ikeuchi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Akira Iwase
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
223
|
Qi J, Zhang R, Wang Y. Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J Cell Mol Med 2021; 25:11016-11030. [PMID: 34741385 PMCID: PMC8642676 DOI: 10.1111/jcmm.17024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells' proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.
Collapse
Affiliation(s)
- Jin Qi
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, People's Republic of China
| | - Ruihao Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, People's Republic of China
| | - Yapeng Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
224
|
Hu J, Huang L, Chen G, Liu H, Zhang Y, Zhang R, Zhang S, Liu J, Hu Q, Hu F, Wang W, Ding Y. The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. RICE (NEW YORK, N.Y.) 2021; 14:90. [PMID: 34727228 PMCID: PMC8563897 DOI: 10.1186/s12284-021-00531-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/16/2021] [Indexed: 05/18/2023]
Abstract
Grain weight and grain number, the two important yield traits, are mainly determined by grain size and panicle architecture in rice. Herein, we report the identification and functional analysis of OsSPL4 in panicle and grain development of rice. Using CRISPR/Cas9 system, two elite alleles of OsSPL4 were obtained, which exhibited an increasing number of grains per panicle and grain size, resulting in increase of rice yield. Cytological analysis showed that OsSPL4 could regulate spikelet development by promoting cell division. The results of RNA-seq and qRT-PCR validations also demonstrated that several MADS-box and cell-cycle genes were up-regulated in the mutation lines. Co-expression network revealed that many yield-related genes were involved in the regulation network of OsSPL4. In addition, OsSPL4 could be cleaved by the osa-miR156 in vivo, and the OsmiR156-OsSPL4 module might regulate the grain size in rice. Further analysis indicated that the large-grain allele of OsSPL4 in indica rice might introgress from aus varieties under artificial selection. Taken together, our findings suggested that OsSPL4 could be as a key regulator of grain size by acting on cell division control and provided a strategy for panicle architecture and grain size modification for yield improvement in rice.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liyu Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Guanglong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- BGI-Baoshan, Baoshan, 678004, Yunnan, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shilai Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Jintao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qingyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Fengyi Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
225
|
Sayce AC, Martinez FO, Tyrrell BE, Perera N, Hill ML, Dwek RA, Miller JL, Zitzmann N. Pathogen-induced inflammation is attenuated by the iminosugar MON-DNJ via modulation of the unfolded protein response. Immunology 2021; 164:587-601. [PMID: 34287854 PMCID: PMC8517592 DOI: 10.1111/imm.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Sepsis is a life-threatening condition involving a dysregulated immune response to infectious agents that cause injury to host tissues and organs. Current treatments are limited to early administration of antibiotics and supportive care. While appealing, the strategy of targeted inhibition of individual molecules in the inflammatory cascade has not proved beneficial. Non-targeted, systemic immunosuppression with steroids has shown limited efficacy and raises concern for secondary infection. Iminosugars are a class of small molecule glycomimetics with distinct inhibition profiles for glycan processing enzymes based on stereochemistry. Inhibition of host endoplasmic reticulum resident glycoprotein processing enzymes has demonstrated efficacy as a broad-spectrum antiviral strategy, but limited consideration has been given to the effects on host glycoprotein production and consequent disruption of signalling cascades. This work demonstrates that iminosugars inhibit dengue virus, bacterial lipopolysaccharide and fungal antigen-stimulated cytokine responses in human macrophages. In spite of decreased inflammatory mediator production, viral replication is suppressed in the presence of iminosugar. Transcriptome analysis reveals the key interaction of pathogen-induced endoplasmic reticulum stress, the resulting unfolded protein response and inflammation. Our work shows that iminosugars modulate these interactions. Based on these findings, we propose a new therapeutic role for iminosugars as treatment for sepsis-related inflammatory disorders associated with excess cytokine secretion.
Collapse
Affiliation(s)
- Andrew C. Sayce
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
- Vanderbilt University School of MedicineVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Beatrice E. Tyrrell
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nilanka Perera
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
- Faculty of Medical SciencesUniversity of Sri JayewardenepuraGangodawilaNugegodaSri Lanka
| | - Michelle L. Hill
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Raymond A. Dwek
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Joanna L. Miller
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nicole Zitzmann
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| |
Collapse
|
226
|
Martínez-Martínez E, Tölle R, Donauer J, Gretzmeier C, Bruckner-Tuderman L, Dengjel J. Increased abundance of Cbl E3 ligases alters PDGFR signaling in recessive dystrophic epidermolysis bullosa. Matrix Biol 2021; 103-104:58-73. [PMID: 34706254 DOI: 10.1016/j.matbio.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
In recessive dystrophic epidermolysis bullosa (RDEB), loss of collagen VII, the main component of anchoring fibrils critical for epidermal-dermal cohesion, affects several intracellular signaling pathways and leads to impaired wound healing and fibrosis. In skin fibroblasts, wound healing is also affected by platelet-derived growth factor receptor (PDGFR) signaling. To study a potential effect of loss of collagen VII on PDGFR signaling we performed unbiased disease phosphoproteomics. Whereas RDEB fibroblasts exhibited an overall weaker response to PDGF, Cbl E3 ubiquitin ligases, negative regulators of growth factor signaling, were stronger phosphorylated. This increase in phosphorylation was linked to higher Cbl mRNA and protein levels due to increased TGFβ signaling in RDEB. In turn, increased Cbl levels led to increased PDGFR ubiquitination, internalization, and degradation negatively affecting MAPK and AKT downstream signaling pathways. Thus, our results indicate that elevated TGFβ signaling leads to an attenuated response to growth factors, which contributes to impaired dermal wound healing in RDEB.
Collapse
Affiliation(s)
| | - Regine Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Julia Donauer
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland.
| |
Collapse
|
227
|
Mostovenko E, Dahm MM, Schubauer-Berigan MK, Eye T, Erdely A, Young TL, Campen MJ, Ottens AK. Serum peptidome: diagnostic window into pathogenic processes following occupational exposure to carbon nanomaterials. Part Fibre Toxicol 2021; 18:39. [PMID: 34711247 PMCID: PMC8555107 DOI: 10.1186/s12989-021-00431-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Growing industrial use of carbon nanotubes and nanofibers (CNT/F) warrants consideration of human health outcomes. CNT/F produces pulmonary, cardiovascular, and other toxic effects in animals along with a significant release of bioactive peptides into the circulation, the augmented serum peptidome. While epidemiology among CNT/F workers reports on few acute symptoms, there remains concern over sub-clinical CNT/F effects that may prime for chronic disease, necessitating sensitive health outcome diagnostic markers for longitudinal follow-up. METHODS Here, the serum peptidome was assessed for its biomarker potential in detecting sub-symptomatic pathobiology among CNT/F workers using label-free data-independent mass spectrometry. Studies employed a stratified design between High (> 0.5 µg/m3) and Low (< 0.1 µg/m3) inhalable CNT/F exposures in the industrial setting. Peptide biomarker model building and refinement employed linear regression and partial least squared discriminant analyses. Top-ranked peptides were then sequence identified and evaluated for pathological-relevance. RESULTS In total, 41 peptides were found to be highly discriminatory after model building with a strong linear correlation to personal CNT/F exposure. The top-five peptide model offered ideal prediction with high accuracy (Q2 = 0.99916). Unsupervised validation affirmed 43.5% of the serum peptidomic variance was attributable to CNT/F exposure. Peptide sequence identification reveals a predominant association with vascular pathology. ARHGAP21, ADAM15 and PLPP3 peptides suggest heightened cardiovasculature permeability and F13A1, FBN1 and VWDE peptides infer a pro-thrombotic state among High CNT/F workers. CONCLUSIONS The serum peptidome affords a diagnostic window into sub-symptomatic pathology among CNT/F exposed workers for longitudinal monitoring of systemic health risks.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA
| | - Matthew M Dahm
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS-R12, Cincinnati, OH, 45226, USA
| | - Mary K Schubauer-Berigan
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS-R12, Cincinnati, OH, 45226, USA
- Evidence Synthesis and Classification Section, International Agency for Research On Cancer, 150 Cours Albert Thomas, 69372, Lyon, CEDEX 08, France
| | - Tracy Eye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS-2015, Morgantown, WV, 26505, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, MS-2015, Morgantown, WV, 26505, USA
| | - Tamara L Young
- Department of Pharmaceutical Sciences, University of New Mexico, MSC09 53601, Albuquerque, NM, 87131, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, MSC09 53601, Albuquerque, NM, 87131, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
228
|
Bhattarai S, Sugita BM, Bortoletto SM, Fonseca AS, Cavalli LR, Aneja R. QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation. Int J Mol Sci 2021; 22:11548. [PMID: 34768979 PMCID: PMC8584247 DOI: 10.3390/ijms222111548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) can be further classified into androgen receptor (AR)-positive TNBC and AR-negative TNBC or quadruple-negative breast cancer (QNBC). Here, we investigated genomic instability in 53 clinical cases by array-CGH and miRNA expression profiling. Immunohistochemical analysis revealed that 64% of TNBC samples lacked AR expression. This group of tumors exhibited a higher level of copy number alterations (CNAs) and a higher frequency of cases affected by CNAs than TNBCs. CNAs in genes of the chromosome instability 25 (CIN25) and centrosome amplification (CA) signatures were more frequent in the QNBCs and were similar between the groups, respectively. However, expression levels of CIN25 and CA20 genes were higher in QNBCs. miRNA profiling revealed 184 differentially expressed miRNAs between the groups. Fifteen of these miRNAs were mapped at cytobands with CNAs, of which eight (miR-1204, miR-1265, miR-1267, miR-23c, miR-548ai, miR-567, miR-613, and miR-943), and presented concordance of expression and copy number levels. Pathway enrichment analysis of these miRNAs/mRNAs pairings showed association with genomic instability, cell cycle, and DNA damage response. Furthermore, the combined expression of these eight miRNAs robustly discriminated TNBCs from QNBCs (AUC = 0.946). Altogether, our results suggest a significant loss of AR in TNBC and a profound impact in genomic instability characterized by CNAs and deregulation of miRNA expression.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (B.M.S.); (S.M.B.); (A.S.F.)
| | - Stefanne M. Bortoletto
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (B.M.S.); (S.M.B.); (A.S.F.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (B.M.S.); (S.M.B.); (A.S.F.)
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (B.M.S.); (S.M.B.); (A.S.F.)
- Lombardi Comprehensive Cancer Center, Oncology Department, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
229
|
Xu W, Liu T, Zhang H, Zhu H. Mungbean DIRIGENT Gene Subfamilies and Their Expression Profiles Under Salt and Drought Stresses. Front Genet 2021; 12:658148. [PMID: 34630501 PMCID: PMC8493098 DOI: 10.3389/fgene.2021.658148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
DIRIGENT (DIR) genes are key players in environmental stress responses that have been identified in many vascular plant species. However, few studies have examined the VrDIR genes in mungbean. In this study, we characterized 37 VrDIR genes in mungbean using a genome-wide identification method. VrDIRs were distributed on seven of the 11 mungbean chromosomes, and chromosome three contained the most VrDIR genes, with seven members. Thirty-two of the 37 VrDIRs contained a typical DIR gene structure, with one exon; the conserved DIR domain (i.e., Pfam domain) occupied most of the protein in 33 of the 37 VrDIRs. The gene structures of VrDIR genes were analyzed, and a total of 19 distinct motifs were detected. VrDIR genes were classified into five groups based on their phylogenetic relationships, and 13 duplicated gene pairs were identified. In addition, a total of 92 cis-acting elements were detected in all 37 VrDIR promoter regions, and VrDIR genes contained different numbers and types of cis-acting elements. As a result, VrDIR genes showed distinct expression patterns in different tissues and in response to salt and drought stress.
Collapse
Affiliation(s)
- Wenying Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tong Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
230
|
García-Adrián S, Trilla-Fuertes L, Gámez-Pozo A, Chiva C, López-Vacas R, López-Camacho E, Zapater-Moros A, Lumbreras-Herrera MI, Hardisson D, Yébenes L, Zamora P, Sabidó E, Fresno Vara JÁ, Espinosa E. Molecular characterization of triple negative breast cancer formaldehyde-fixed paraffin-embedded samples by data-independent acquisition proteomics. Proteomics 2021; 22:e2100110. [PMID: 34624180 DOI: 10.1002/pmic.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/05/2022]
Abstract
Triple negative breast cancer accounts for 15%-20% of all breast carcinomas and is clinically characterized by an aggressive phenotype and poor prognosis. Triple negative tumors do not benefit from targeted therapies, so further characterization is needed to define subgroups with potential therapeutic value. In this work, the proteomes of 125 formalin-fixed paraffin-embedded samples from patients diagnosed with non-metastatic triple negative breast cancer were analyzed using data-independent acquisition + in a LTQ-Orbitrap Fusion Lumos mass spectrometer coupled to an EASY-nLC 1000. 1206 proteins were identified in at least 66% of the samples. Hierarchical clustering, probabilistic graphical models and Significance Analysis of Microarrays were combined to characterize proteomics-based molecular groups. Two molecular groups were defined with differences in biological processes such as glycolysis, translation and immune response. These two molecular groups showed also several differentially expressed proteins. This clinically homogenous dataset may serve to design new therapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Cristina Chiva
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rocío López-Vacas
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | | | | - María I Lumbreras-Herrera
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Pathology, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Laura Yébenes
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | - Pilar Zamora
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Enrique Espinosa
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
231
|
Ryu B, Son MY, Jung KB, Kim U, Kim J, Kwon O, Son YS, Jung CR, Park JH, Kim CY. Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells. Front Vet Sci 2021; 8:587659. [PMID: 34604364 PMCID: PMC8481684 DOI: 10.3389/fvets.2021.587659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is the most common exposure route of xenobiotics, and intestinal toxicity can result in systemic toxicity in most cases. It is important to develop intestinal toxicity assays mimicking the human system; thus, stem cells are rapidly being developed as new paradigms of toxicity assessment. In this study, we established human embryonic stem cell (hESC)-derived enterocyte-like cells (ELCs) and compared them to existing in vivo and in vitro models. We found that hESC-ELCs and the in vivo model showed transcriptomically similar expression patterns of a total of 10,020 genes than the commercialized cell lines. Besides, we treated the hESC-ELCs, in vivo rats, Caco-2 cells, and Hutu-80 cells with quarter log units of lethal dose 50 or lethal concentration 50 of eight drugs—chloramphenicol, cycloheximide, cytarabine, diclofenac, fluorouracil, indomethacin, methotrexate, and oxytetracycline—and then subsequently analyzed the biomolecular markers and morphological changes. While the four models showed similar tendencies in general toxicological reaction, hESC-ELCs showed a stronger correlation with the in vivo model than the immortalized cell lines. These results indicate that hESC-ELCs can serve as a next-generation intestinal toxicity model.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ohman Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ye Seul Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - C-Yoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
232
|
RNA-Seq and Electrical Penetration Graph Revealed the Role of Grh1-Mediated Activation of Defense Mechanisms towards Green Rice Leafhopper ( Nephotettix cincticeps Uhler) Resistance in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms221910696. [PMID: 34639042 PMCID: PMC8509599 DOI: 10.3390/ijms221910696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
The green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is one of the most important insect pests causing serious damage to rice production and yield loss in East Asia. Prior to performing RNA-Seq analysis, we conducted an electrical penetration graph (EPG) test to investigate the feeding behavior of GRH on Ilpum (recurrent parent, GRH-susceptible cultivar), a near-isogenic line (NIL carrying Grh1) compared to the Grh1 donor parent (Shingwang). Then, we conducted a transcriptome-wide analysis of GRH-responsive genes in Ilpum and NIL, which was followed by the validation of RNA-Seq data by qPCR. On the one hand, EPG results showed differential feeding behaviors of GRH between Ilpum and NIL. The phloem-like feeding pattern was detected in Ilpum, whereas the EPG test indicated a xylem-like feeding habit of GRH on NIL. In addition, we observed a high death rate of GRH on NIL (92%) compared to Ilpum (28%) 72 h post infestation, attributed to GRH failure to suck the phloem sap of NIL. On the other hand, RNA-Seq data revealed that Ilpum and NIL GRH-treated plants generated 1,766,347 and 3,676,765 counts per million mapped (CPM) reads, respectively. The alignment of reads indicated that more than 75% of reads were mapped to the reference genome, and 8859 genes and 15,815,400 transcripts were obtained. Of this number, 3424 differentially expressed genes (DEGs, 1605 upregulated in Ilpum and downregulated in NIL; 1819 genes upregulated in NIL and downregulated in Ilpum) were identified. According to the quantile normalization of the fragments per kilobase of transcript per million mapped reads (FPKM) values, followed by the Student’s t-test (p < 0.05), we identified 3283 DEGs in Ilpum (1935 upregulated and 1348 downregulated) and 2599 DEGs in NIL (1621 upregulated and 978 downregulated) with at least a log2 (logarithm base 2) twofold change (Log2FC ≥2) in the expression level upon GRH infestation. Upregulated genes in NIL exceeded by 13.3% those recorded in Ilpum. The majority of genes associated with the metabolism of carbohydrates, amino acids, lipids, nucleotides, the activity of coenzymes, the action of phytohormones, protein modification, homeostasis, the transport of solutes, and the uptake of nutrients, among others, were abundantly upregulated in NIL (carrying Grh1). However, a high number of upregulated genes involved in photosynthesis, cellular respiration, secondary metabolism, redox homeostasis, protein biosynthesis, protein translocation, and external stimuli response related genes were found in Ilpum. Therefore, all data suggest that Grh1-mediated resistance against GRH in rice would involve a transcriptome-wide reprogramming, resulting in the activation of bZIP, MYB, NAC, bHLH, WRKY, and GRAS transcription factors, coupled with the induction of the pathogen-pattern triggered immunity (PTI), systemic acquired resistance (SAR), symbiotic signaling pathway, and the activation of genes associated with the response mechanisms against viruses. This comprehensive transcriptome profile of GRH-responsive genes gives new insights into the molecular response mechanisms underlying GRH (insect pest)–rice (plant) interaction.
Collapse
|
233
|
Chang J, Guo Y, Yan J, Zhang Z, Yuan L, Wei C, Zhang Y, Ma J, Yang J, Zhang X, Li H. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. HORTICULTURE RESEARCH 2021; 8:210. [PMID: 34593768 PMCID: PMC8484660 DOI: 10.1038/s41438-021-00645-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Melatonin is a pleiotropic signaling molecule that regulates plant growth and responses to various abiotic stresses. The last step of melatonin synthesis in plants can be catalyzed by caffeic acid O-methyltransferase (COMT), a multifunctional enzyme reported to have N-acetylserotonin O-methyltransferase (ASMT) activity; however, the ASMT activity of COMT has not yet been characterized in nonmodel plants such as watermelon (Citrullus lanatus). Here, a total of 16 putative O-methyltransferase (ClOMT) genes were identified in watermelon. Among them, ClOMT03 (Cla97C07G144540) was considered a potential COMT gene (renamed ClCOMT1) based on its high identities (60.00-74.93%) to known COMT genes involved in melatonin biosynthesis, expression in almost all tissues, and upregulation under abiotic stresses. The ClCOMT1 protein was localized in the cytoplasm. Overexpression of ClCOMT1 significantly increased melatonin contents, while ClCOMT1 knockout using the CRISPR/Cas-9 system decreased melatonin contents in watermelon calli. These results suggest that ClCOMT1 plays an essential role in melatonin biosynthesis in watermelon. In addition, ClCOMT1 expression in watermelon was upregulated by cold, drought, and salt stress, accompanied by increases in melatonin contents. Overexpression of ClCOMT1 enhanced transgenic Arabidopsis tolerance against such abiotic stresses, indicating that ClCOMT1 is a positive regulator of plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Jingjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingyi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zixing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China.
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
234
|
Zoh MG, Bonneville JM, Tutagata J, Laporte F, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, Reynaud S, David JP. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci Rep 2021; 11:19501. [PMID: 34593941 PMCID: PMC8484614 DOI: 10.1038/s41598-021-99061-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation. Clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with those conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was also observed on a P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure showed that selection retained a protein variant with a modified active site potentially enhancing clothianidin metabolism. In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jordan Tutagata
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Behi K Fodjo
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire
| | | | - Christabelle Gba Sadia
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire.,University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Justin McBeath
- Bayer CropScience Ltd, Cambridge Science Park, Cambridge, UK
| | | | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France.
| |
Collapse
|
235
|
Kim M, Hur S, Kim KH, Cho Y, Kim K, Kim HR, Nam KT, Lim KM. A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate. Biomol Ther (Seoul) 2021; 30:126-136. [PMID: 34580237 PMCID: PMC8902451 DOI: 10.4062/biomolther.2021.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/05/2022] Open
Abstract
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sumin Hur
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu 38430, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
236
|
Metabolic Analysis of the Development of the Plant-Parasitic Cyst Nematodes Heterodera schachtii and Heterodera trifolii by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Int J Mol Sci 2021; 22:ijms221910488. [PMID: 34638828 PMCID: PMC8508704 DOI: 10.3390/ijms221910488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
The cyst nematodes Heterodera schachtii and Heterodera trifolii, whose major hosts are sugar beet and clover, respectively, damage a broad range of plants, resulting in significant economic losses. Nematodes synthesize metabolites for organismal development and social communication. We performed metabolic profiling of H. schachtii and H. trifolii in the egg, juvenile 2 (J2), and female stages. In all, 392 peaks were analyzed by capillary electrophoresis time-of-flight mass spectrometry, which revealed a lot of similarities among metabolomes. Aromatic amino acid metabolism, carbohydrate metabolism, choline metabolism, methionine salvage pathway, glutamate metabolism, urea cycle, glycolysis, gluconeogenesis, coenzyme metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid (TCA) cycle for energy conversion (β-oxidation and branched-chain amino acid metabolism) energy storage were involved in all stages studied. The egg and female stages synthesized higher levels of metabolites compared to the J2 stage. The key metabolites detected were glycerol, guanosine, hydroxyproline, citric acid, phosphorylcholine, and the essential amino acids Phe, Leu, Ser, and Val. Metabolites, such as hydroxyproline, acetylcholine, serotonin, glutathione, and glutathione disulfide, which are associated with growth and reproduction, mobility, and neurotransmission, predominated in the J2 stage. Other metabolites, such as SAM, 3PSer, 3-ureidopropionic acid, CTP, UDP, UTP, 3-hydroxy-3-methylglutaric acid, 2-amino-2-(hydroxymethyl-1,3-propanediol, 2-hydroxy-4-methylvaleric acid, Gly Asp, glucuronic acid-3 + galacturonic acid-3 Ser-Glu, citrulline, and γ-Glu-Asn, were highly detected in the egg stage. Meanwhile, nicotinamide, 3-PG, F6P, Cys, ADP-Ribose, Ru5P, S7P, IMP, DAP, diethanolamine, p-Hydroxybenzoic acid, and γ-Glu-Arg_divalent were unique to the J2 stage. Formiminoglutamic acid, nicotinaminde riboside + XC0089, putrescine, thiamine 2,3-dihydroxybenzoic acid, 3-methyladenine, caffeic acid, ferulic acid, m-hydrobenzoic acid, o- and p-coumaric acid, and shikimic acid were specific to the female stage. Overall, highly similar identities and quantities of metabolites between the corresponding stages of the two species of nematode were observed. Our results will be a valuable resource for further studies of physiological changes related to the development of nematodes and nematode-plant interactions.
Collapse
|
237
|
Calanca N, Binato SMS, da Silva SD, Brentani HP, Sennes LU, Pinto CAL, Domingues MAC, Fonseca-Alves CE, Rainho CA, Rogatto SR. Master Regulators of Epithelial-Mesenchymal Transition and WNT Signaling Pathways in Juvenile Nasopharyngeal Angiofibromas. Biomedicines 2021; 9:1258. [PMID: 34572445 PMCID: PMC8469518 DOI: 10.3390/biomedicines9091258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
Juvenile nasopharyngeal angiofibroma (JNA) is a rare fibrovascular benign tumor showing an invasive growth pattern and affecting mainly male adolescents. We investigated the role of epithelial-mesenchymal transition (EMT) and WNT signaling pathways in JNA. Gene expression profiles using nine JNA paired with four inferior nasal turbinate samples were interrogated using a customized 2.3K microarray platform containing genes mainly involved in EMT and WNT/PI3K pathways. The expression of selected genes (BCL2, CAV1, CD74, COL4A2, FZD7, ING1, LAMB1, and RAC2) and proteins (BCL2, CAV1, CD74, FZD7, RAF1, WNT5A, and WNT5B) was investigated by RT-qPCR (28 cases) and immunohistochemistry (40 cases), respectively. Among 104 differentially expressed genes, we found a significantly increased expression of COL4A2 and LAMB1 and a decreased expression of BCL2 and RAC2 by RT-qPCR. The immunohistochemistry analysis revealed a low expression of BCL2 and a negative to moderate expression of FZD7 in most samples, while increased CAV1 and RAF1 expression were detected. Moderate to strong CD74 protein expression was observed in endothelial and inflammatory cells. A significant number of JNAs (78%) presented reduced WNT5A and increased WNT5B expression. Overall, the transcript and protein profile indicated the involvement of EMT and WNT pathways in JNA. These candidates are promising druggable targets for treating JNA.
Collapse
Affiliation(s)
- Naiade Calanca
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.C.); (C.A.R.)
| | | | - Sabrina Daniela da Silva
- Department of Otolaryngology—Head and Neck Surgery, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC H3A 1A1, Canada;
| | - Helena Paula Brentani
- Department of Psychiatry, LIM23 (FMUSP), University of São Paulo (USP), São Paulo 05403-010, Brazil;
| | - Luiz Ubirajara Sennes
- Department of Otorhinolaryngology, LIM23 (FMUSP), University of São Paulo (USP), São Paulo 05403-010, Brazil;
| | | | | | - Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University—UNIP, Bauru 17048-290, Brazil;
- Department of Veterinary Surgery and Anesthesiology, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Claudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.C.); (C.A.R.)
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
238
|
Huang CH, Huang YL, Shen ZQ, Lin CH, Tsai TF. Cisd2 Preserves the Youthful Pattern of the Liver Proteome during Natural Aging of Mice. Biomedicines 2021; 9:biomedicines9091229. [PMID: 34572415 PMCID: PMC8470730 DOI: 10.3390/biomedicines9091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and β-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
| | - Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (C.-H.L.); (T.-F.T.); Tel.: +886-2-2826-67280 (C.-H.L.); +886-2-2826-67293 (T.-F.T.)
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.H.); (Y.-L.H.); (Z.-Q.S.)
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan
- Correspondence: (C.-H.L.); (T.-F.T.); Tel.: +886-2-2826-67280 (C.-H.L.); +886-2-2826-67293 (T.-F.T.)
| |
Collapse
|
239
|
Mizobuchi H, Yamamoto K, Yamashita M, Nakata Y, Inagawa H, Kohchi C, Soma GI. Prevention of Diabetes-Associated Cognitive Dysfunction Through Oral Administration of Lipopolysaccharide Derived From Pantoea agglomerans. Front Immunol 2021; 12:650176. [PMID: 34512619 PMCID: PMC8429836 DOI: 10.3389/fimmu.2021.650176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/13/2021] [Indexed: 11/26/2022] Open
Abstract
Diabetes-related cognitive dysfunction (DRCD) is a serious complication induced by diabetes. However, there are currently no specific remedies for DRCD. Here, we show that streptozotocin-induced DRCD can be prevented without causing side effects through oral administration of lipopolysaccharide (LPS) derived from Pantoea agglomerans. Oral administration of LPS (OAL) prevented the cerebral cortex atrophy and tau phosphorylation induced by DRCD. Moreover, we observed that neuroprotective transformation of microglia (brain tissue-resident macrophages) is important for preventing DRCD through OAL. These findings are contrary to the general recognition of LPS as an inflammatory agent when injected systemically. Furthermore, our results strongly suggest that OAL promotes membrane-bound colony stimulating factor 1 (CSF1) expression on peripheral leukocytes, which activates the CSF1 receptor on microglia, leading to their transformation to the neuroprotective phenotype. Taken together, the present study indicates that controlling innate immune modulation through the simple and safe strategy of OAL can be an innovative prophylaxis for intractable neurological diseases such as DRCD. In a sense, for modern people living in an LPS-depleted environment, OAL is like a time machine that returns microglia to the good old LPS-abundant era.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | - Yoko Nakata
- Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan.,Research and Development Department Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
240
|
Yamashita T, Inui T, Yokota J, Kawakami K, Morinaga G, Takatani M, Hirayama D, Nomoto R, Ito K, Cui Y, Ruez S, Harada K, Kishimoto W, Nakase H, Mizuguchi H. Monolayer platform using human biopsy-derived duodenal organoids for pharmaceutical research. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:263-278. [PMID: 34485610 PMCID: PMC8399089 DOI: 10.1016/j.omtm.2021.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023]
Abstract
The human small intestine is the key organ for absorption, metabolism, and excretion of orally administered drugs. To preclinically predict these reactions in drug discovery research, a cell model that can precisely recapitulate the in vivo human intestinal monolayer is desired. In this study, we developed a monolayer platform using human biopsy-derived duodenal organoids for application to pharmacokinetic studies. The human duodenal organoid-derived monolayer was prepared by a simple method in 3-8 days. It consisted of polarized absorptive cells and had tight junctions. It showed much higher cytochrome P450 (CYP)3A4 and carboxylesterase (CES)2 activities than did the existing models (Caco-2 cells). It also showed efflux activity of P-glycoprotein (P-gp) and inducibility of CYP3A4. Finally, its gene expression profile was closer to the adult human duodenum, compared to the profile of Caco-2 cells. Based on these findings, this monolayer assay system using biopsy-derived human intestinal organoids is likely to be widely adopted.
Collapse
Affiliation(s)
- Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
| | - Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Kawakami
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido 003-0027, Japan
| | - Gaku Morinaga
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Masahito Takatani
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Ryuga Nomoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kohei Ito
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Yunhai Cui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Stephanie Ruez
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
- Corresponding author: Hiroyuki Mizuguchi, PhD, Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
241
|
Mahtha SK, Purama RK, Yadav G. StAR-Related Lipid Transfer (START) Domains Across the Rice Pangenome Reveal How Ontogeny Recapitulated Selection Pressures During Rice Domestication. Front Genet 2021; 12:737194. [PMID: 34567086 PMCID: PMC8455945 DOI: 10.3389/fgene.2021.737194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
The StAR-related lipid transfer (START) domain containing proteins or START proteins, encoded by a plant amplified family of evolutionary conserved genes, play important roles in lipid binding, transport, signaling, and modulation of transcriptional activity in the plant kingdom, but there is limited information on their evolution, duplication, and associated sub- or neo-functionalization. Here we perform a comprehensive investigation of this family across the rice pangenome, using 10 wild and cultivated varieties. Conservation of START domains across all 10 rice genomes suggests low dispensability and critical functional roles for this family, further supported by chromosomal mapping, duplication and domain structure patterns. Analysis of synteny highlights a preponderance of segmental and dispersed duplication among STARTs, while transcriptomic investigation of the main cultivated variety Oryza sativa var. japonica reveals sub-functionalization amongst genes family members in terms of preferential expression across various developmental stages and anatomical parts, such as flowering. Ka/Ks ratios confirmed strong negative/purifying selection on START family evolution, implying that ontogeny recapitulated selection pressures during rice domestication. Our findings provide evidence for high conservation of START genes across rice varieties in numbers, as well as in their stringent regulation of Ka/Ks ratio, and showed strong functional dependency of plants on START proteins for their growth and reproductive development. We believe that our findings advance the limited knowledge about plant START domain diversity and evolution, and pave the way for more detailed assessment of individual structural classes of START proteins among plants and their domain specific substrate preferences, to complement existing studies in animals and yeast.
Collapse
Affiliation(s)
- Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Ravi Kiran Purama
- Computational Biology Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, New Delhi, India
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
242
|
Sex-Biased Gene Expression and Isoform Profile of Brine Shrimp Artemia franciscana by Transcriptome Analysis. Animals (Basel) 2021; 11:ani11092630. [PMID: 34573596 PMCID: PMC8465105 DOI: 10.3390/ani11092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The brine shrimp Artemia is a promising model organism for ZW sex determination system, but the genes related to sex determination and differentiation of Artemia have not yet been examined in detail. In this study, the first isoform-level transcriptome sequencing was performed on female and male Artemia franciscana. By using PacBio Iso-Seq and Illumina RNA-Seq technologies, we found 39 candidate sex determination genes that showed sex-biased gene expression. The male-biased expressed genes included DMRT1 and Sad genes, which had three and seven isoforms, respectively. Among these, the Sad gene is an ecdysteroid biosynthetic pathway gene associated with arthropod molting and metamorphosis. We propose the importance and the necessity of further research on genes involved in ecdysteroid biosynthesis. These results will contribute to understand sex determination and differentiation of Artemia and other crustaceans having ZW systems. Abstract The brine shrimp Artemia has a ZW sex determination system with ZW chromosomes in females and ZZ chromosomes in males. Artemia has been considered a promising model organism for ZW sex-determining systems, but the genes involved in sex determination and differentiation of Artemia have not yet been identified. Here, we conducted transcriptome sequencing of female and male A. franciscana using PacBio Iso-Seq and Illumina RNA-Seq techniques to identify candidate sex determination genes. Among the 42,566 transcripts obtained from Iso-Seq, 23,514 were analyzed. Of these, 2065 (8.8%) were female specific, 2513 (10.7%) were male specific, and 18,936 (80.5%) were co-expressed in females and males. Based on GO enrichment analysis and expression values, we found 10 female-biased and 29 male-biased expressed genes, including DMRT1 and Sad genes showing male-biased expression. Our results showed that DMRT1 has three isoforms with five exons, while Sad has seven isoforms with 2–11 exons. The Sad gene is involved in ecdysteroid signaling related to molting and metamorphosis in arthropods. Further studies on ecdysteroid biosynthetic genes are needed to improve our understanding of Artemia sex determination. This study will provide a valuable resource for sex determination and differentiation studies on Artemia and other crustaceans with ZW systems.
Collapse
|
243
|
Miyake Y, Nagaoka Y, Okamura K, Takeishi Y, Tamaoki S, Hatta M. SNAI2 is induced by transforming growth factor-β1, but is not essential for epithelial-mesenchymal transition in human keratinocyte HaCaT cells. Exp Ther Med 2021; 22:1124. [PMID: 34466140 PMCID: PMC8383325 DOI: 10.3892/etm.2021.10558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial cells lose their epithelial traits and shift to the mesenchymal phenotype, and is associated with various biological events, such as embryogenesis, wound healing and cancer progression. The transcriptional program that promotes phenotype switching is dynamically controlled by transcription factors during EMT, including Snail (SNAI1), twist family bHLH transcription factor (TWIST) and zinc finger E-box binding homeobox 1 (ZEB1). The present study aimed to investigate the molecular mechanisms underlying EMT in squamous epithelial cells. Western blot analysis and immunocytochemical staining identified Slug (SNAI2) as a transcription factor that is induced during transforming growth factor (TGF)-β1-mediated EMT in the human keratinocyte cell line HaCaT. The effect of SNAI2 overexpression and knockdown on the phenotypic characteristics of HaCaT cells was evaluated. Filamentous actin staining and western blot analysis revealed that the overexpression of SNAI2 did not induce the observed EMT-related phenotypic changes. In addition, SNAI2 knockdown demonstrated almost no impact on the EMT phenotypes induced by TGF-β1. Notably, DNA microarray analysis followed by comprehensive bioinformatics analysis revealed that the differentially expressed genes upregulated by TGF-β1 were significantly enriched in cell adhesion and extracellular matrix binding, whereas the genes downregulated in response to TGF-β1 were significantly enriched in the cell cycle. No enriched gene ontology term and biological pathways were identified in the differentially expressed gene sets of SNAI2-overexpressing cells. In addition, the candidates for master transcription factors regulating the TGF-β1-induced EMT were identified using transcription factor enrichment analysis. In conclusion, the results of study demonstrated that SNAI2 does not play an essential role in the EMT of HaCaT cells and identified candidate transcription factors that may be involved in EMT-related gene expression induced by TGF-β1. These findings may enhance the understanding of molecular events in EMT and contribute to the development of a novel therapeutic approach against EMT in cancers and wound healing.
Collapse
Affiliation(s)
- Yuki Miyake
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yoshiyuki Nagaoka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yukimasa Takeishi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Mitsutoki Hatta
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|
244
|
Viana AJC, Matiolli CC, Newman DW, Vieira JGP, Duarte GT, Martins MCM, Gilbault E, Hotta CT, Caldana C, Vincentz M. The sugar-responsive circadian clock regulator bZIP63 modulates plant growth. THE NEW PHYTOLOGIST 2021; 231:1875-1889. [PMID: 34053087 PMCID: PMC9292441 DOI: 10.1111/nph.17518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Adjustment to energy starvation is crucial to ensure growth and survival. In Arabidopsis thaliana (Arabidopsis), this process relies in part on the phosphorylation of the circadian clock regulator bZIP63 by SUCROSE non-fermenting RELATED KINASE1 (SnRK1), a key mediator of responses to low energy. We investigated the effects of mutations in bZIP63 on plant carbon (C) metabolism and growth. Results from phenotypic, transcriptomic and metabolomic analysis of bZIP63 mutants prompted us to investigate the starch accumulation pattern and the expression of genes involved in starch degradation and in the circadian oscillator. bZIP63 mutation impairs growth under light-dark cycles, but not under constant light. The reduced growth likely results from the accentuated C depletion towards the end of the night, which is caused by the accelerated starch degradation of bZIP63 mutants. The diel expression pattern of bZIP63 is dictated by both the circadian clock and energy levels, which could determine the changes in the circadian expression of clock and starch metabolic genes observed in bZIP63 mutants. We conclude that bZIP63 composes a regulatory interface between the metabolic and circadian control of starch breakdown to optimize C usage and plant growth.
Collapse
Affiliation(s)
- Américo J. C. Viana
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Cleverson C. Matiolli
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - David W. Newman
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - João G. P. Vieira
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Gustavo T. Duarte
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Laboratory of Plant Physiological EcologyDepartment of BotanyInstitute of BiosciencesUniversity of São PauloSão Paulo, SPCEP 05508‐090Brazil
| | - Elodie Gilbault
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Carlos T. Hotta
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloSão Paulo, SPCEP 05508‐000Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Rua Giuseppe Máximo Scolfaro 10000CampinasSPCEP 13083‐970Brazil
- Max‐Planck Partner GroupBrazilian Bioethanol Science and Technology Laboratory (CTBE/CNPEM)Campinas, SPBrazil
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476 PotsdamGolmGermany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia GenéticaDepartamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCEP 13083‐875, CP 6010CampinasSPBrazil
| |
Collapse
|
245
|
Fernández-González AJ, Ramírez-Tejero JA, Nevado-Berzosa MP, Luque F, Fernández-López M, Mercado-Blanco J. Coupling the endophytic microbiome with the host transcriptome in olive roots. Comput Struct Biotechnol J 2021; 19:4777-4789. [PMID: 34504670 PMCID: PMC8411203 DOI: 10.1016/j.csbj.2021.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The connection between olive genetic responses to environmental and agro-climatic conditions and the composition, structure and functioning of host-associated, belowground microbiota has never been studied under the holobiont conceptual framework. Two groups of cultivars growing under the same environmental, pedological and agronomic conditions, and showing highest (AH) and lowest (AL) Actinophytocola relative abundances, were earlier identified. We aimed now to: i) compare the root transcriptome profiles of these two groups harboring significantly different relative abundances in the above-mentioned bacterial genus; ii) examine their rhizosphere and root-endosphere microbiota co-occurrence networks; and iii) connect the root host transcriptome pattern to the composition of the root microbial communities by correlation and co-occurrence network analyses. Significant differences in olive gene expression were found between the two groups. Co-occurrence networks of the root endosphere microbiota were clearly different as well. Pearson's correlation analysis enabled a first portray of the interaction occurring between the root host transcriptome and the endophytic community. To further identify keystone operational taxonomic units (OTUs) and genes, subsequent co-occurrence network analysis showed significant interactions between 32 differentially expressed genes (DEGs) and 19 OTUs. Overall, negative correlation was detected between all upregulated genes in the AH group and all OTUs except of Actinophytocola. While two groups of olive cultivars grown under the same conditions showed significantly different microbial profiles, the most remarkable finding was to unveil a strong correlation between these profiles and the differential gene expression pattern of each group. In conclusion, this study shows a holistic view of the plant-microbiome communication.
Collapse
Affiliation(s)
- Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jorge A. Ramírez-Tejero
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - María Patricia Nevado-Berzosa
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - Francisco Luque
- Departamento de Biología Experimental, Centro de Estudios Avanzados en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén 23071, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
246
|
Hong WJ, Jiang X, Choi SH, Kim YJ, Kim ST, Jeon JS, Jung KH. A Systemic View of Carbohydrate Metabolism in Rice to Facilitate Productivity. PLANTS 2021; 10:plants10081690. [PMID: 34451735 PMCID: PMC8401045 DOI: 10.3390/plants10081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Carbohydrate metabolism is an important biochemical process related to developmental growth and yield-related traits. Due to global climate change and rapid population growth, increasing rice yield has become vital. To understand whole carbohydrate metabolism pathways and find related clues for enhancing yield, genes in whole carbohydrate metabolism pathways were systemically dissected using meta-transcriptome data. This study identified 866 carbohydrate genes from the MapMan toolkit and the Kyoto Encyclopedia of Genes and Genomes database split into 11 clusters of different anatomical expression profiles. Analysis of functionally characterized carbohydrate genes revealed that source activity and eating quality are the most well-known functions, and they each have a strong correlation with tissue-preferred clusters. To verify the transcriptomic dissection, three pollen-preferred cluster genes were used and found downregulated in the gori mutant. Finally, we summarized carbohydrate metabolism as a conceptual model in gene clusters associated with morphological traits. This systemic analysis not only provided new insights to improve rice yield but also proposed novel tissue-preferred carbohydrate genes for future research.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Xu Jiang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Seok-Hyun Choi
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Sun-Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
247
|
Qian S, Chen X, Wu T, Sun Y, Li X, Fu Y, Zhang Z, Xu J, Han X, Ding H, Jiang Y. The accumulation of plasma acylcarnitines are associated with poor immune recovery in HIV-infected individuals. BMC Infect Dis 2021; 21:808. [PMID: 34384363 PMCID: PMC8362229 DOI: 10.1186/s12879-021-06525-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) can reduce opportunistic infections and mortality rates among individuals infected with human immunodeficiency virus (HIV); however, some HIV-infected individuals exhibit poor immune recovery after ART. Hence, we explored the association between metabolome profiles and immune recovery in HIV-infected individuals following ART. METHODS An untargeted metabolomics approach was used to analyze plasma samples from 18 HIV-negative individuals and 20 HIV-infected individuals, including 10 immunological non-responders (INR, CD4+ T cell rise < 100 cells/μl) and 10 immunological responders (IR, CD4+ T cell rise > 300 cells/μl) after 2 years of ART. These individuals were followed for the next 6 years and viral loads and CD4+ T cell count were measured regularly. Orthogonal projection on latent structures discriminant analysis (OPLS-DA), ANOVA, correlation, receiver operating characteristic (ROC), and survival analyses were used for selection of discriminant metabolites. RESULTS Eighteen lipid metabolites were identified which could distinguish among control, INR, and IR groups. Among them, myristoylcarnitine (MC), palmitoylcarnitine (PC), stearoylcarnitine (SC), and oleoylcarnitine (OC) were significantly elevated in INR plasma samples compared with those from the IR and control groups and were negatively associated with CD4+ T cell count. Additionally, ROC analysis using a combination of MC, PC, SC, and OC had high sensitivity and specificity for differentiating INR from IR (AUC = 0.94). Finally, survival analysis for the combination of MC, PC, SC, and OC demonstrated that it could predict CD4+ T cell count in patients undergoing long-term ART. CONCLUSIONS High levels of lipid metabolites, MC, PC, SC, and OC are associated with poor immune recovery in patients receiving ART and these data provide potential new insights into immune recovery mechanisms.
Collapse
Affiliation(s)
- Shi Qian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xi Chen
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tong Wu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yu Sun
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaolin Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
248
|
Lim WF, Forouhan M, Roberts TC, Dabney J, Ellerington R, Speciale AA, Manzano R, Lieto M, Sangha G, Banerjee S, Conceição M, Cravo L, Biscans A, Roux L, Pourshafie N, Grunseich C, Duguez S, Khvorova A, Pennuto M, Cortes CJ, La Spada AR, Fischbeck KH, Wood MJA, Rinaldi C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. SCIENCE ADVANCES 2021; 7:7/34/eabi6896. [PMID: 34417184 PMCID: PMC8378820 DOI: 10.1126/sciadv.abi6896] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.
Collapse
Affiliation(s)
- Wooi F Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gavinda Sangha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Subhashis Banerjee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lara Cravo
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loïc Roux
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Constanza J Cortes
- Department of Neurology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry and the UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
249
|
Baumann D, Drebant J, Hägele T, Burger L, Serger C, Lauenstein C, Dudys P, Erdmann G, Offringa R. p38 MAPK signaling in M1 macrophages results in selective elimination of M2 macrophages by MEK inhibition. J Immunother Cancer 2021; 9:jitc-2020-002319. [PMID: 34285105 PMCID: PMC8292803 DOI: 10.1136/jitc-2020-002319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
M2 macrophages promote tumor progression and therapy resistance, whereas proimmunogenic M1 macrophages can contribute to the efficacy of cytostatic and immunotherapeutic strategies. The abundance of M2 macrophages in the immune infiltrate of many cancer types has prompted the search for strategies to target and eliminate this subset. From our prior experiments in syngeneic mouse tumor models, we learned that pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) did not merely result in tumor cell death, but also in the modulation of the tumor immune infiltrate. This included a prominent decrease in the numbers of macrophages as well as an increase in the M1/M2 macrophage ratio. Investigation of the mechanism underlying this finding in primary murine macrophage cultures revealed that M2 macrophages are significantly more sensitive to MEK inhibition-induced cell death than their M1 counterparts. Further analyses showed that the p38 MAPK pathway, which is activated in M1 macrophages only, renders these cells resistant to death by MEK inhibition. In conclusion, the dependency of M2 macrophages on the MEK/extracellular-signal regulated kinase (ERK) pathway empowers MEK inhibitors to selectively eliminate this subset from the tumor microenvironment.
Collapse
Affiliation(s)
- Daniel Baumann
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Jennifer Drebant
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Tanja Hägele
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Luisa Burger
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Clara Serger
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | | | | | - Rienk Offringa
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany .,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
250
|
Tomasik B, Papis-Ubych A, Stawiski K, Fijuth J, Kędzierawski P, Sadowski J, Stando R, Bibik R, Graczyk Ł, Latusek T, Rutkowski T, Fendler W. Serum MicroRNAs as Xerostomia Biomarkers in Patients With Oropharyngeal Cancer Undergoing Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:1237-1249. [PMID: 34280472 DOI: 10.1016/j.ijrobp.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 02/09/2023]
Abstract
PURPOSE Severe xerostomia is noted in the majority of patients irradiated for oropharyngeal cancer. Extracellular microRNAs (miRNAs) may serve as effective tools allowing prediction of radiation-related toxicity. The aim of this study was to create an efficient prognostic miRNA-based test for severe, patient-rated xerostomia 3 months after primary treatment. METHODS AND MATERIALS This prospective study enrolled patients with oropharyngeal cancer treated between 2016 and 2018 in 3 centers in Poland. The primary endpoint was severe (grade ≥3) xerostomia as assessed by the European Organisation for Research and Treatment of Cancer H&N-35 questionnaires. Initially, a group of 10 patients with severe xerostomia was randomly selected and matched with a comparative group of 10 patients without severe xerostomia. Samples were collected before radiation therapy, after receiving 20 Gy, and within 24 hours after treatment completion. Quantitative real-time polymerase chain reaction arrays (QIAGEN, Hilden, Germany) were used to quantify expression levels of 752 miRNAs in the serum at all timepoints. The resulting logistic-regression based model was validated in additional 60 patients: 30 with grade >3 xerostomia and 30 without. RESULTS Of 152 eligible patients, we successfully recruited 111 patients. Severe xerostomia 3 months after treatment was reported by 63 patients (56.8%). Mean dose delivered to parotid glands was higher in both the exploratory and validation cohort. The model based on miR-185-5p and miR-425-5p expression levels measured before the start of radiation therapy had an area under the curve of 0.96 (95% confidence interval, 0.88-1.00). The model based on the same miRNAs remained robust when parameters were measured after 20 Gy (area under the curve 0.90; 95% confidence interval, 0.75-1.00). These results were confirmed in the validation group. In the validation group, preradiation therapy model application yielded 73.3% sensitivity and 80.0% specificity. In the samples taken after 20 Gy, the same 2 miRNAs yielded 67.7% sensitivity and 72.4% specificity. The model including pretreatment miR-185-5p and miR-425-5p levels together with mean parotid dose yielded 90.0% sensitivity and 80.0% specificity. In the validation cohort, this model yielded 80.6% sensitivity and 55.2% specificity. The model based on miRNA levels measured after 20 Gy and mean parotid dose had 80.0% sensitivity and 100% specificity in the exploratory group. In the validation cohort its performance fell to 71.0% sensitivity and 58.6% specificity. CONCLUSIONS Serum expression levels of miR-425-5p and miR-185-5p measured before the start of radiation therapy or during therapy (after 20 Gy) had significant prognostic value for the occurrence of severe xerostomia 3 months after treatment completion. The variability explained by miRNAs appears to be, at least partially, independent from that related to the dosimetric data.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anna Papis-Ubych
- Department of Radiotherapy, N. Copernicus Memorial Regional Specialist Hospital, Lodz, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
| | - Piotr Kędzierawski
- Radiotherapy Department, Holycross Cancer Centre, Kielce, Poland; Jan Kochanowski University, Collegium Medicum, Kielce, Poland
| | - Jacek Sadowski
- Radiotherapy Department, Holycross Cancer Centre, Kielce, Poland
| | - Rafał Stando
- Radiotherapy Department, Holycross Cancer Centre, Kielce, Poland
| | - Robert Bibik
- Department of Radiation Oncology, Oncology Center of Radom, Radom, Poland
| | - Łukasz Graczyk
- Department of Radiation Oncology, Oncology Center of Radom, Radom, Poland
| | - Tomasz Latusek
- Radiotherapy Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiation and Clinical Oncology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice branch, Gliwice, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|