201
|
Abstract
Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism-secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications.
Collapse
Affiliation(s)
- Yisang Yoon
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
202
|
Billing O, Kao G, Naredi P. Mitochondrial function is required for secretion of DAF-28/insulin in C. elegans. PLoS One 2011; 6:e14507. [PMID: 21264209 PMCID: PMC3022011 DOI: 10.1371/journal.pone.0014507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/06/2010] [Indexed: 12/13/2022] Open
Abstract
While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function.
Collapse
Affiliation(s)
- Ola Billing
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Gautam Kao
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
- * E-mail:
| | - Peter Naredi
- Department of Surgery and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
203
|
Chen J, Gusdon AM, Piganelli J, Leiter EH, Mathews CE. mt-Nd2(a) Modifies resistance against autoimmune type 1 diabetes in NOD mice at the level of the pancreatic β-cell. Diabetes 2011; 60:355-9. [PMID: 20980458 PMCID: PMC3012193 DOI: 10.2337/db10-1241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate whether a single nucleotide polymorphism (SNP) in the mitochondrial gene for NADH dehydrogenase 2 (mt-Nd2) can modulate susceptibility to type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS NOD/ShiLtJ mice conplastic for the alloxan resistant (ALR)/Lt-derived mt-Nd2(a) allele (NOD.mt(ALR)) were created and compared with standard NOD (carrying the mt-Nd2(c) allele) for susceptibility to spontaneous autoimmune diabetes, or to diabetes elicited by reciprocal adoptive splenic leukocyte transfers, as well as by adoptive transfer of diabetogenic T-cell clones. β-Cell lines derived from either the NOD (NIT-1) or the NOD.mt(ALR) (NIT-4) were also created to compare their susceptibility to cytolysis by diabetogenic CD8(+) T-cells in vitro. RESULTS NOD mice differing at this single SNP developed spontaneous or adoptively transferred diabetes at comparable rates and percentages. However, conplastic mice with the mt-Nd2(a) allele exhibited resistance to transfer of diabetes by the CD4(+) T-cell clone BDC 2.5 as well as the CD8(+) AI4 T-cell clones from T-cell receptor transgenic animals. NIT-4 cells with mt-Nd2(a) were also more resistant to AI4-mediated destruction in vitro than NIT-1 cells. CONCLUSIONS Conplastic introduction into NOD mice of a variant mt-Nd2 allele alone was not sufficient to prevent spontaneous autoimmune diabetes. Subtle nonhematopoietic type 1 diabetes resistance was observed during adoptive transfer experiments with T-cell clones. This study confirms that genetic polymorphisms in mitochondria can modulate β-cell sensitivity to autoimmune T-cell effectors.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Aaron M. Gusdon
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Jon Piganelli
- Division of Immunogenetics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
- Corresponding author: Clayton E. Mathews,
| |
Collapse
|
204
|
Keller MP, Attie AD. Physiological insights gained from gene expression analysis in obesity and diabetes. Annu Rev Nutr 2010; 30:341-64. [PMID: 20415584 DOI: 10.1146/annurev.nutr.012809.104747] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microarray technology permits the interrogation of nearly all expressed genes under a wide range of conditions. Patterns of gene expression in response to obesity and diabetes have yielded important insights into the pathogenesis of diabetes and its relationship to obesity. In muscle, microarray studies have motivated research into mitochondrial function. In adipose tissue, clues have pointed to the importance of inflammation in obesity. New adipocyte-derived hormones involved in insulin resistance have been found; a notable example is retinol binding protein 4. In liver, genes responsive to master regulators of lipid metabolism have been identified. In beta-cells, genes involved in cell survival, cell proliferation, and insulin secretion have been identified. These studies have greatly expanded our understanding of mechanisms underlying the pathogenesis of obesity-induced diabetes. When combined with genetic information, microarray data can be used to construct causal network models linking gene expression with disease.
Collapse
Affiliation(s)
- Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
205
|
Hyperglycemia-induced mitochondrial alterations in liver. Life Sci 2010; 87:197-214. [DOI: 10.1016/j.lfs.2010.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/21/2010] [Accepted: 06/05/2010] [Indexed: 01/07/2023]
|
206
|
Li J, Gao S, Wang J, Zhang C. Construction of comprehensive gene network for human mitochondria. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-3028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
207
|
Mezghani N, Mkaouar-Rebai E, Mnif M, Charfi N, Rekik N, Youssef S, Abid M, Fakhfakh F. The heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in two Tunisian families with mitochondrial diabetes. J Diabetes Complications 2010; 24:270-7. [PMID: 20045353 DOI: 10.1016/j.jdiacomp.2009.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/26/2009] [Accepted: 11/18/2009] [Indexed: 11/26/2022]
Abstract
UNLABELLED Diabetes mellitus (DM) is a heterogeneous disorder characterized by the presence of chronic hyperglycemia. Genetic factors play an important role in the development of this disorder, and several studies reported mutations in nuclear genes implicated in the insulin function. Besides, DM can be maternally transmitted in some families, possibly due to the maternal mitochondrial inheritance. In fact, mitochondrial genes may be plausible causative agents for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. MATERIALS AND METHODS In this report, we screened two Tunisian families with mitochondrial diabetes for the m.3243A>G and the m.14709T>C mutations, respectively, in the tRNA(Leu(UUR)) and the tRNA(Glu) genes. RESULTS The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the sequence-specific primers by polymerase chain reaction (SSP-PCR) analysis in the leucocytes and the buccal mucosa in the members of the two families showed the absence of the m.3243A>G mutation and the presence of the heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in the two tested tissues. CONCLUSIONS We conclude that the m.14709T>C mutation in the tRNA(Glu) gene could be a cause of mitochondrial diabetes in Tunisian affected families. In addition, the heteroplasmic loads correlated with the severity and the onset of mitochondrial diabetes in one family but not in the other, suggesting the presence of environmental factors or nuclear modifier genes.
Collapse
Affiliation(s)
- Najla Mezghani
- Faculty of Medicine of Sfax, Human Molecular Genetic Laboratory, Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
The pathophysiology of type 2 diabetes mellitus (DM) is varied and complex. However, the association of DM with obesity and inactivity indicates an important, and potentially pathogenic, link between fuel and energy homeostasis and the emergence of metabolic disease. Given the central role for mitochondria in fuel utilization and energy production, disordered mitochondrial function at the cellular level can impact whole-body metabolic homeostasis. Thus, the hypothesis that defective or insufficient mitochondrial function might play a potentially pathogenic role in mediating risk of type 2 DM has emerged in recent years. Here, we summarize current literature on risk factors for diabetes pathogenesis, on the specific role(s) of mitochondria in tissues involved in its pathophysiology, and on evidence pointing to alterations in mitochondrial function in these tissues that could contribute to the development of DM. We also review literature on metabolic phenotypes of existing animal models of impaired mitochondrial function. We conclude that, whereas the association between impaired mitochondrial function and DM is strong, a causal pathogenic relationship remains uncertain. However, we hypothesize that genetically determined and/or inactivity-mediated alterations in mitochondrial oxidative activity may directly impact adaptive responses to overnutrition, causing an imbalance between oxidative activity and nutrient load. This imbalance may lead in turn to chronic accumulation of lipid oxidative metabolites that can mediate insulin resistance and secretory dysfunction. More refined experimental strategies that accurately mimic potential reductions in mitochondrial functional capacity in humans at risk for diabetes will be required to determine the potential pathogenic role in human insulin resistance and type 2 DM.
Collapse
|
209
|
Hopkins SE, Somoza A, Gilbert DL. Rare autosomal dominant POLG1 mutation in a family with metabolic strokes, posterior column spinal degeneration, and multi-endocrine disease. J Child Neurol 2010; 25:752-6. [PMID: 19815814 DOI: 10.1177/0883073809343313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA POLG is the only mitochondrial DNA polymerase and is encoded by nuclear DNA. Depending on the location and inheritance, mutations in POLG1, the catalytic subunit, can cause symptoms including severe infantile epilepsy, metabolic strokes, chronic ataxia, neuropathy, and ophthalmoplegia. We reviewed medical records and conducted extensive interviews with the family of identical twin probands with a mutation in the linker region of DNA polymerase gamma 1 (POLG1) (G517V) and discuss postmortem findings from their grandmother. Both twins developed type I diabetes, adrenal insufficiency, hypothyroidism, and psychiatric problems in addition to neurological difficulties including bilateral basal ganglia infarcts, headaches, and seizures. The maternal grandmother, now deceased, had psychosis and balance problems, and postmortem findings include lacunar infarcts in the basal ganglia (caudate nucleus, putamen, and globus pallidus) and posterior spinal column degeneration. We discuss novel aspects of their presentation and implications for practice.
Collapse
Affiliation(s)
- Sarah E Hopkins
- Divisions of Neurology, Cincinnati Children's Hospital Medical Center, and Pathology University of Cincinnati, Ohio, USA
| | | | | |
Collapse
|
210
|
Cann JA, Kavanagh K, Jorgensen MJ, Mohanan S, Howard TD, Gray SB, Hawkins GA, Fairbanks LA, Wagner JD. Clinicopathologic characterization of naturally occurring diabetes mellitus in vervet monkeys. Vet Pathol 2010; 47:713-8. [PMID: 20460450 DOI: 10.1177/0300985810370011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus (DM) is a group of chronic metabolic diseases characterized by persistent fasting hyperglycemia, and it can be of either polygenic or monogenic origin. Animal models have played an important role in elucidating the pathophysiology of the polygenic Type 1 and type 2 DM forms; however, useful animal models of the monogenic forms do not exist. The authors describe 4 cases of naturally occurring DM in vervet monkeys (Chlorocebus aethiops sabaeus), 1 of which has clinicopathologic findings consistent with type 2 DM, including persistent hyperglycemia, hypertriglyceridemia, islet amyloidosis, and reduced islet insulin immunostaining. In contrast, the 3 remaining animals have clinicopathologic similarities to a monogenic form of the disease, including a lack of islet amyloidosis and hypertriglyceridemia, as well as normal islet insulin immunostaining. In addition, pedigree analysis conducted on one of these animals is consistent with either an autosomal dominant or mitochondrial inheritance pattern, which supports a monogenic form of DM. The authors thus hypothesize that a naturally occurring monogenic form of diabetes may occur in vervet monkeys, making them a potential animal model for future studies.
Collapse
Affiliation(s)
- J A Cann
- Department of Pathology, Section on Comparative Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12:537-77. [PMID: 19650713 PMCID: PMC2824521 DOI: 10.1089/ars.2009.2531] [Citation(s) in RCA: 535] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes.
Collapse
Affiliation(s)
- William I Sivitz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Iowa City Veterans Affairs Medical Center and University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
212
|
Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147-54. [PMID: 20194621 DOI: 10.1128/mcb.01614-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in mitochondrial tRNA genes are associated with a wide spectrum of human diseases. In particular, the tRNA(Leu(UUR)) A3243G mutation causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms (MELAS) and 2% of cases of type 2 diabetes. The primary defect in this mutation was an inefficient aminoacylation of the tRNA(Leu(UUR)). In the present study, we have investigated the molecular mechanism of the A3243G mutation and whether the overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) in the cytoplasmic hybrid (cybrid) cells carrying the A3243G mutation corrects the mitochondrial dysfunctions. Human LARS2 localizes exclusively to mitochondria, and LARS2 is expressed ubiquitously but most abundantly in tissues with high metabolic rates. We showed that the alteration of aminoacylation tRNA(Leu(UUR)) caused by the A3243G mutation led to mitochondrial translational defects and thereby reduced the aminoacylated efficiencies of tRNA(Leu(UUR)) as well as tRNA(Ala) and tRNA(Met). We demonstrated that the transfer of human mitochondrial leucyl-tRNA synthetase into the cybrid cells carrying the A3243G mutation improved the efficiency of aminoacylation and stability of mitochondrial tRNAs and then increased the rates of mitochondrial translation and respiration, consequently correcting the mitochondrial dysfunction. These findings provide new insights into the molecular mechanism of maternally inherited diseases and a step toward therapeutic interventions for these disorders.
Collapse
|
213
|
Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CSJ, Chen YT, Wu JY. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 2010; 6:e1000847. [PMID: 20174558 PMCID: PMC2824763 DOI: 10.1371/journal.pgen.1000847] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/18/2010] [Indexed: 12/16/2022] Open
Abstract
To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations. Type 2 diabetes (T2D) is a complex disease that involves many genes and environmental factors. Genome-wide and candidate-gene association studies have thus far identified at least 19 regions containing genes that may confer a risk for T2D. However, most of these studies were conducted with patients of European descent. We studied Chinese patients with T2D and identified two genes, PTPRD and SRR, that were not previously known to be involved in diabetes and are involved in biological pathways different from those implicated in T2D by previous association reports. PTPRD is a protein tyrosine phosphatase and may affect insulin signaling on its target cells. SRR encodes a serine racemase that synthesizes D-serine from L-serine. Both D-serine (coagonist) and the neurotransmitter glutamate bind to NMDA receptors and trigger excitatory neurotransmission in the brain. Glutamate signaling also regulates insulin and glucagon secretion in pancreatic islets. Thus, SRR and D-serine, in addition to regulating insulin and glucagon secretion, may play a role in the etiology of T2D. Our study suggests that, in different patient populations, different genes may confer risks for diabetes. Our findings may lead to a better understanding of the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Hsiang Lu
- Department of Internal Medicine, Endocrinology and Metabolism, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chwen-Tzuei Chang
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Yuan Wang
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Rong-Hsing Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chiung-Fang Shiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Min Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Chun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
| | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (Y-TC); (J-YW)
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (Y-TC); (J-YW)
| |
Collapse
|
214
|
Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 2010; 59:448-59. [PMID: 19903739 PMCID: PMC2809957 DOI: 10.2337/db09-0129] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The inability of pancreatic beta-cells to appropriately respond to glucose and secrete insulin are primary defects associated with beta-cell failure in type 2 diabetes. Mitochondrial dysfunction has been implicated as a key factor in the development of type 2 diabetes; however, a link between mitochondrial dysfunction and defective insulin secretion is unclear. RESEARCH DESIGN AND METHODS We investigated the changes in islet mitochondrial function and morphology during progression from insulin resistance (3 weeks old), immediately before hyperglycemia (5 weeks old), and after diabetes onset (10 weeks old) in transgenic MKR mice compared with controls. The molecular and protein changes at 10 weeks were determined using microarray and iTRAQ proteomic screens. RESULTS At 3 weeks, MKR mice were hyperinsulinemic but normoglycemic and beta-cells showed negligible mitochondrial or morphological changes. At 5 weeks, MKR islets displayed abrogated hyperpolarization of mitochondrial membrane potential (DeltaPsi(m)), reduced mitochondrial Ca(2+) uptake, slightly enlarged mitochondria, and reduced glucose-stimulated insulin secretion. By 10 weeks, MKR mice were hyperglycemic and hyperinsulinemic and beta-cells contained swollen mitochondria with disordered cristae. beta-Cells displayed impaired stimulus-secretion coupling including reduced hyperpolarization of DeltaPsi(m), impaired Ca(2+)-signaling, and reduced glucose-stimulated ATP/ADP and insulin release. Furthermore, decreased cytochrome c oxidase-dependent oxygen consumption and signs of oxidative stress were observed in diabetic islets. Protein profiling of diabetic islets revealed that 36 mitochondrial proteins were differentially expressed, including inner membrane proteins of the electron transport chain. CONCLUSIONS We provide novel evidence for a critical role of defective mitochondrial oxidative phosphorylation and morphology in the pathology of insulin resistance-induced beta-cell failure.
Collapse
Affiliation(s)
- Hongfang Lu
- From the Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Vasilij Koshkin
- From the Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Emma M. Allister
- From the Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Armen V. Gyulkhandanyan
- From the Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael B. Wheeler
- From the Departments of Physiology and Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
- Corresponding author: Michael B. Wheeler,
| |
Collapse
|
215
|
Sanaker PS, Nakkestad HL, Downham E, Bindoff LA. A novel mutation in the mitochondrial tRNA for tryptophan causing a late-onset mitochondrial encephalomyopathy. Acta Neurol Scand 2010; 121:109-13. [PMID: 19744136 DOI: 10.1111/j.1600-0404.2009.01243.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are increasingly being recognized as causes of late-onset disease. We report a patient with a late-onset mitochondrial encephalomyopathy caused by a novel G > C transition in mtDNA at position 5556 in the gene encoding the tRNA for tryptophan (MTTW). AIMS To investigate the cause of disease and assess the pathogenicity of this new mutation. METHODS Clinical, histopathological and gene sequencing studies. Quantification of the mutation was performed in different tissues from the patient and two relatives and in single muscle fibres. RESULTS The mutation was heteroplasmic, segregated in biochemically affected muscle fibres and was absent in blood. The level of mutation in skeletal muscle was higher than in brain, although the brain was clinically the most affected tissue. DISCUSSION The 5556G > C mutation appears sporadic. It was not found in any of the family members tested, although some of them manifested disorders that can be associated with mtDNA disease. In addition to reporting the eighth mutation in MTTW, our case illustrates the challenges posed when assigning pathogenicity to mtDNA mutations.
Collapse
Affiliation(s)
- P S Sanaker
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
216
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
217
|
Role of mitochondria in beta-cell function and dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:193-216. [PMID: 20217499 DOI: 10.1007/978-90-481-3271-3_9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pancreatic beta-cells are poised to sense glucose and other nutrient secretagogues to regulate insulin exocytosis, thereby maintaining glucose homeostasis. This process requires translation of metabolic substrates into intracellular messengers recognized by the exocytotic machinery. Central to this metabolism-secretion coupling, mitochondria integrate and generate metabolic signals, thereby connecting glucose recognition to insulin exocytosis. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin release. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. Mitochondrial defects, such as mutations and reactive oxygen species production, are discussed in the context of beta-cell failure that may participate to the etiology of diabetes.
Collapse
|
218
|
Hyperinsulinism and diabetes: genetic dissection of beta cell metabolism-excitation coupling in mice. Cell Metab 2009; 10:442-53. [PMID: 19945402 PMCID: PMC3245718 DOI: 10.1016/j.cmet.2009.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/27/2009] [Indexed: 12/24/2022]
Abstract
The role of metabolism-excitation coupling in insulin secretion has long been apparent, but in recent years, in parallel with studies of human hyperinsulinism and diabetes, genetic manipulation of proteins involved in glucose transport, metabolism, and excitability in mice has brought the central importance of this pathway into sharp relief. We focus on these animal studies and how they provide important insights into not only metabolic and electrical regulation of insulin secretion, but also downstream consequences of alterations in this pathway and the etiology and treatment of insulin-secretion diseases in humans.
Collapse
|
219
|
Schiff M, Loublier S, Coulibaly A, Bénit P, Ogier de Baulny H, Rustin P. Mitochondria and diabetes mellitus: untangling a conflictive relationship? J Inherit Metab Dis 2009; 32:684-698. [PMID: 19821144 DOI: 10.1007/s10545-009-1263-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is occasionally observed in patients with skeletal muscle respiratory chain deficiency, suggesting that skeletal muscle mitochondrial dysfunction might play a pathogenic role in type 2 diabetes (T2D). In support of this hypothesis, decreased muscle mitochondrial activity has been reported in T2D patients and in mouse models of diabetes. However, recent work by several groups suggests that decreased muscle mitochondrial function may be a consequence rather than a cause of diabetes, since decreased mitochondrial function in mice affords protection from diabetes and obesity. We review the data on this controversial but important issue of potential links between mitochondrial dysfunction and diabetes.
Collapse
Affiliation(s)
- M Schiff
- Hôpital Robert Debré, Paris, France
- Université Paris 7, Faculté de médecine Denis Diderot, IFR02, Paris, France
- Centre de référence Maladies Métaboliques, Hôpital Robert Debré, APHP, Paris, France
| | - S Loublier
- Hôpital Robert Debré, Paris, France
- Université Paris 7, Faculté de médecine Denis Diderot, IFR02, Paris, France
| | - A Coulibaly
- Hôpital Robert Debré, Paris, France
- Université Paris 7, Faculté de médecine Denis Diderot, IFR02, Paris, France
| | - P Bénit
- Hôpital Robert Debré, Paris, France
- Université Paris 7, Faculté de médecine Denis Diderot, IFR02, Paris, France
| | - H Ogier de Baulny
- Centre de référence Maladies Métaboliques, Hôpital Robert Debré, APHP, Paris, France
| | - P Rustin
- Hôpital Robert Debré, Paris, France.
- Université Paris 7, Faculté de médecine Denis Diderot, IFR02, Paris, France.
- INSERM U676, Bâtiment Ecran, Hôpital Robert Debré, 48, boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
220
|
Bergamin CS, Rolim LC, Dib SA, Moisés RS. Unusual occurrence of intestinal pseudo obstruction in a patient with maternally inherited diabetes and deafness (MIDD) and favorable outcome with coenzyme Q10. ACTA ACUST UNITED AC 2009; 52:1345-9. [PMID: 19169492 DOI: 10.1590/s0004-27302008000800023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/16/2008] [Indexed: 11/22/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) has been related to an A to G transition in the mitochondrial tRNA Leu (UUR) gene at the base pair 3243. This subtype of diabetes is characterized by maternal transmission, young age at onset and bilateral hearing impairment. Besides diabetes and deafness, the main diagnostic features, a wide range of multisystemic symptoms may be associated with the A3243G mutation. Organs that are most metabolically active, such as muscles, myocardium, retina, cochlea, kidney and brain are frequently affected. Gastrointestinal tract symptoms are also common in patients with mitochondrial disease and constipation and diarrhea are the most frequent manifestations. However, there are few prior reports of intestinal pseudo obstruction in MIDD patients. Here we report the case of a patient with MIDD associated with the mtDNA A3243G mutation who developed chronic intestinal pseudo obstruction, and the introduction of Coenzyme Q10 as adjunctive therapy led to a solution of the pseudo obstruction.
Collapse
Affiliation(s)
- Carla S Bergamin
- Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
221
|
Crispim D, Estivalet AAF, Roisenberg I, Gross JL, Canani LH. Prevalence of 15 mitochondrial DNA mutations among type 2 diabetic patients with or without clinical characteristics of maternally inherited diabetes and deafness. ACTA ACUST UNITED AC 2009; 52:1228-35. [PMID: 19169474 DOI: 10.1590/s0004-27302008000800005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/23/2008] [Indexed: 11/21/2022]
Abstract
The aim of the present study is to investigate the prevalence of ten described mitochondrial DNA (mtDNA) mutations in patients with type 2 diabetes, and search for new mutations in four mtDNA genes in a subgroup of patients with characteristics of maternally inherited diabetes and deafness (MIDD). These mutations were investigated in 407 type 2 diabetic patients without characteristics of mitochondrial diabetes ('classical' type 2 diabetes group) and in 38 type 2 diabetic patients with characteristics suggestive of MIDD. Through sequencing of four mtDNA genes in MIDD patients, we selected five others potentially pathogenic mutations that were also screened in the remaining patients. Overall, the frequency of the fifteen analyzed mutations was 36.84% in the MIDD group and 2.45% in the 'classical' type 2 diabetes group (p < 0.001). In conclusion, our study reinforces the importance of mtDNA mutations in the pathogenesis of MIDD.
Collapse
Affiliation(s)
- Daisy Crispim
- Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
222
|
Liu HY, Cao SY, Hong T, Han J, Liu Z, Cao W. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem 2009; 284:27090-100. [PMID: 19654321 PMCID: PMC2785638 DOI: 10.1074/jbc.m109.016675] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/22/2009] [Indexed: 12/13/2022] Open
Abstract
Subjects with type 1 diabetes mellitus (T1DM) eventually develop insulin resistance and other features of T2DM such as cardiovascular disorders. The exact mechanism has been not been completely understood. In this study, we tested the hypothesis that excessive or inappropriate exposure to insulin is a primary mediator of insulin resistance in T1DM. We found that continuous exposure of mice with non-obese diabetes to insulin detemir, which is similar to some current conventional treatment of human T1DM, induced severe insulin resistance, whereas untreated hyperglycemia for the same amount of time (2 weeks) did not cause obvious insulin resistance. Insulin resistance was accompanied by decreased mitochondrial production as evaluated by mitochondrial DNA and levels of transcripts and proteins of mitochondrion-associated genes, increased ectopic fat accumulation in liver and skeletal muscle (gastrocnemius) evaluated by measurements of triglyceride content, and elevated oxidative stress detected by the GSH/GSSG ratio. Prolonged exposure of cultured hepatocytes to insulin induced significant insulin resistance, whereas the same length of exposure to a high level of glucose (33 mm) did not cause obvious insulin resistance. Furthermore, our results showed that prolonged exposure to insulin caused oxidative stress, and blockade of mitochondrion-derived oxidative stress by overexpression of manganese-superoxide dismutase prevented insulin resistance induced by the prolonged exposure to insulin. Together, our results show that excessive exposure to insulin is a primary inducer of insulin resistance in T1DM in mice.
Collapse
Affiliation(s)
- Hui-Yu Liu
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Sophia Y. Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Tao Hong
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jianmin Han
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Zhenqi Liu
- Department of Medicine (Endocrinology), University of Virginia Medical Science Center, Charlottesville, Virginia 22908, and
| | - Wenhong Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
- Department of Internal Medicine (Endocrinology), Duke University Medical System, Durham, North Carolina 27705
| |
Collapse
|
223
|
Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284:31484-92. [PMID: 19758991 DOI: 10.1074/jbc.m109.033936] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is essential for maintaining both survival and health of cells. Autophagy is normally suppressed by amino acids and insulin. It is unclear what happens to the autophagy activity in the presence of insulin resistance and hyperinsulinemia. In this study, we examined the autophagy activity in the presence of insulin resistance and hyperinsulinemia and the associated mechanism. Insulin resistance and hyperinsulinemia were induced in mice by a high fat diet, followed by measurements of autophagy markers. Our results show that autophagy was suppressed in the livers of mice with insulin resistance and hyperinsulinemia. Transcript levels of some key autophagy genes were also suppressed in the presence of insulin resistance and hyperinsulinemia. Conversely, autophagy activity was increased in the livers of mice with streptozotocin-induced insulin deficiency. Levels of vps34, atg12, and gabarapl1 transcripts were elevated in the livers of mice with insulin deficiency. To study the mechanism, autophagy was induced by nutrient deprivation or glucagon in cultured hepatocytes in the presence or absence of insulin. Autophagy activity and transcript levels of vps34, atg12, and gabarapl1 genes were reduced by insulin. The effect of insulin was largely prevented by overexpression of the constitutive nuclear form of FoxO1. Importantly, autophagy of mitochondria (mitophagy) in cultured cells was suppressed by insulin in the presence of insulin resistance. Together, our results show that autophagy activity and expression of some key autophagy genes were suppressed in the presence of insulin resistance and hyperinsulinemia. Insulin suppression of autophagy involves FoxO1-mediated transcription of key autophagy genes.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Translational Biology, The Hamner Institutes for Health Sciences, Durham, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
García-Montalvo EA, Reyes-Pérez H, Del Razo LM. Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress. Toxicology 2009; 263:75-83. [DOI: 10.1016/j.tox.2009.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/25/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
225
|
Zhang S, Tong AL, Zhang Y, Nie M, Li YX, Wang H. Heteroplasmy level of the mitochondrial tRNaLeu(UUR) A3243G mutation in a Chinese family is positively associated with earlier age-of-onset and increasing severity of diabetes. ACTA ACUST UNITED AC 2009; 24:20-5. [PMID: 19382419 DOI: 10.1016/s1001-9294(09)60053-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the mutations of mitochondrial genome in a pedigree with suspected maternally inherited diabetes and deafness and to explore the correlations between the mutations and clinical features. METHODS Genomic DNA was isolated from blood leucocytes of each member of the pedigree. The mitochondrial genome was amplified with 24-pair primers that could cover the entire mitochondrial DNA. Direct sequencing of PCR products was used to identify any mitochondrial DNA mutations. RESULTS Family members on the maternal side all harbored the tRNALeu(UUR) A3243G mutation. The paternal side family members did not have the mutation. The age-of-onset of diabetes of the 4 maternal side family members was 15, 41, 44, and 65 years old, and their corresponding heteroplasmy level of the mutation was 34.5%, 14.9%, 14.6%, and 5.9%, respectively. The age-of-onset of diabetes and heteroplasmy level of A3243G mutation were negatively correlated with a correlation coefficient of -0.980 (P = 0.02). Meanwhile, patient with high heteroplasmy level of A3243G mutation had relatively low severity of disease. Moreover, 6 reported polymorphisms and 2 new variants were found. CONCLUSIONS The main cause of diabetes in this pedigree is the tRNALeu(UUR) A3243G mutation. However, other gene variants may contribute to its pathogenicity. The heteroplasmy level of the tRNALeu(UUR) A3243G mutation is positively associated with earlier age-of-onset and increasing severity of diabetes.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
226
|
Frederiksen AL, Jeppesen TD, Vissing J, Schwartz M, Kyvik KO, Schmitz O, Poulsen PL, Andersen PH. High prevalence of impaired glucose homeostasis and myopathy in asymptomatic and oligosymptomatic 3243A>G mitochondrial DNA mutation-positive subjects. J Clin Endocrinol Metab 2009; 94:2872-9. [PMID: 19470628 DOI: 10.1210/jc.2009-0235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The point mutation of 3243A>G mtDNA is the most frequent cause of mitochondrial diabetes, often presenting as the syndrome maternally inherited diabetes and deafness (MIDD). The mutation may also cause myopathy, ataxia, strokes, ophthalmoplegia, epilepsy, and cardiomyopathy in various combinations. Consequently, it is difficult to predict the "phenotypic risk profile" of 3243A>G mutation-positive subjects. The 3243A>G mutation coexists in cells with wild-type mtDNA, a phenomenon called heteroplasmy. The marked variability in mutation loads in different tissues is the main explanation for the different phenotypes associated with this mutation. AIM The aim of the study was to screen asymptomatic and oligosymptomatic 3243A>G mtDNA carriers for diabetes and myopathy. METHODS The study is a case-control study. Nineteen adult 3243A>G carriers presumed to be normoglycemic and matched healthy controls were subjected to an oral glucose tolerance test. Twenty-six adult 3243A>G carriers with unknown myopathy status and 17 healthy controls had a maximal cycle test and a muscle biopsy performed. The mutation loads were quantified in blood and muscle biopsies and correlated to the clinical manifestations of the mutation. RESULTS In the presumed normoglycemic 3243A>G-positive subjects, one subject had overt diabetes, and 10 subjects had impaired glucose tolerance. Sixteen of the 26 subjects with unknown oxidative capacity fulfilled criteria for myopathy. The mutation load in blood and muscle correlated with the age for diagnosis of impaired glucose homeostasis and hearing impairment (rho = -0.71 to -0.78; P < 0.0001). CONCLUSION The findings suggest that 3243A>G mutation carriers should be screened for diabetes and myopathy.
Collapse
|
227
|
Giaccari A, Sorice G, Muscogiuri G. Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes - mechanisms and potentials for treatment. Nutr Metab Cardiovasc Dis 2009; 19:365-377. [PMID: 19428228 DOI: 10.1016/j.numecd.2009.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 01/09/2023]
Abstract
AIM Although it is now well established that the deleterious effects of chronic hyperglycaemia (i.e., glucose toxicity) play an important role in the progressive impairment of insulin secretion and sensitivity, the two major actors of the pathogenesis of type 2 diabetes mellitus, the precise biochemical and molecular mechanisms responsible for the defects induced by glucose toxicity still remain to be defined. DATA SYNTHESIS here we will briefly report on convincing evidence that glucose toxicity acts through oxidative stress, modifications in the exosamine pathway, protein kinase C and others. After inducing or contributing to the genesis of type 2 diabetes, these same mechanisms are considered responsible for the appearance and worsening of diabetic specific microvascular complications, while its role in increasing the risk of cardiovascular diseases is less clear. Recent intervention studies (ADVANCE, ACCORD, VADT), conducted to evaluate the effects of strict glycaemic control, apparently failed to demonstrate an effect of glucose toxicity on cardiovascular diseases, at least in secondary prevention or when diabetes is present for a prolonged time. The re-examination, 20 years later, of the population studied in the UKPDS study, however, clearly demonstrated that the earliest is the strict glycaemic control reached, the lowest is the incidence of cardiovascular diseases observed, including myocardial infarction. CONCLUSION The acquaintance of the role of glucose toxicity should strongly influence the usual therapeutic choices and glycaemic targets where the reduced or absent risk of hypoglycaemia, durability of action, and data on prolonged safety should be the preferred characteristics of the drug of choice in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- A Giaccari
- Endocrinology, Catholic University, Rome, Italy.
| | | | | |
Collapse
|
228
|
Fernandez-Ayala DJM, Sanz A, Vartiainen S, Kemppainen KK, Babusiak M, Mustalahti E, Costa R, Tuomela T, Zeviani M, Chung J, O'Dell KMC, Rustin P, Jacobs HT. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 2009; 9:449-60. [PMID: 19416715 DOI: 10.1016/j.cmet.2009.03.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/27/2008] [Accepted: 03/11/2009] [Indexed: 11/20/2022]
Abstract
Defects in mitochondrial OXPHOS are associated with diverse and mostly intractable human disorders. The single-subunit alternative oxidase (AOX) found in many eukaryotes, but not in arthropods or vertebrates, offers a potential bypass of the OXPHOS cytochrome chain under conditions of pathological OXPHOS inhibition. We have engineered Ciona intestinalis AOX for conditional expression in Drosophila melanogaster. Ubiquitous AOX expression produced no detrimental phenotype in wild-type flies. However, mitochondrial suspensions from AOX-expressing flies exhibited a significant cyanide-resistant substrate oxidation, and the flies were partially resistant to both cyanide and antimycin. AOX expression was able to complement the semilethality of partial knockdown of both cyclope (COXVIc) and the complex IV assembly factor Surf1. It also rescued the locomotor defect and excess mitochondrial ROS production of flies mutated in dj-1beta, a Drosophila homolog of the human Parkinson's disease gene DJ1. AOX appears to offer promise as a wide-spectrum therapeutic tool in OXPHOS disorders.
Collapse
Affiliation(s)
- Daniel J M Fernandez-Ayala
- Institute of Medical Technology, Tampere University Hospital, University of Tampere, 33014 Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
230
|
Kuznetsov AV, Hermann M, Troppmair J, Margreiter R, Hengster P. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging. J Cell Mol Med 2009; 14:417-25. [PMID: 19382913 PMCID: PMC3837585 DOI: 10.1111/j.1582-4934.2009.00750.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innrain, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
231
|
Abstract
In 1998, Wallace et al. (Science 1988; 242: 1427-30) published evidence that the mutation m.11778G>A was responsible for causing Leber's hereditary optic neuropathy. This was the first account of a mitochondrial DNA mutation being irrefutably linked with a human disease and was swiftly followed by a report from Holt et al. (Nature 1988; 331: 717-9) identifying deletions in mitochondrial DNA as a cause for myopathy. During the subsequent 20 years there has been an exponential growth in 'mitochondrial medicine', with clinical, biochemical and genetic characterizations of a wide range of mitochondrial diseases and evidence implicating mitochondria in a host of many other clinical conditions including ageing, neurodegenerative illness and cancer. In this review we shall focus on the diagnosis and management of mitochondrial diseases that lead directly or indirectly to disruption of the process of oxidative phosphorylation.
Collapse
Affiliation(s)
- R McFarland
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, Newcastle University, Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
232
|
Hosszúfalusi N, Karcagi V, Horváth R, Palik E, Várkonyi J, Rajczy K, Prohászka Z, Szentirmai C, Karádi I, Romics L, Pánczél P. A detailed investigation of maternally inherited diabetes and deafness (MIDD) including clinical characteristics, C-peptide secretion, HLA-DR and -DQ status and autoantibody pattern. Diabetes Metab Res Rev 2009; 25:127-35. [PMID: 19116951 DOI: 10.1002/dmrr.841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND This article presents a clinically characterization of the mitochondrial DNA mutation (A3243G) associated with maternally inherited diabetes and deafness (MIDD) syndrome in two families. METHODS Six patients with MIDD and one mutation-positive relative with normal glucose tolerance (NGT) were examined. Fasting serum C-peptide was measured in all subjects and compared with controls having NGT (n = 14). C-peptide response to an intravenous glucose tolerance test (IVGTT) was investigated in the diabetic patients not treated with insulin (n = 3) and in the mutation-positive healthy individual and compared with the controls. RESULTS The A3243G heteroplasmy value varied between 5 and 30%. All A3243G carriers had HLA-DR1-DQ5 haplotype, and either the -DQ5 or the -DQ6 allele. The fasting and the serum C-peptide levels at 120 min during the IVGTT did not differ between the A3243G carriers and the controls. A missing first phase and a decreased total C-peptide response was detected in the mutation-positive diabetics compared with controls (p < 0.0001). The same abnormality was found in the A3243G carrier with NGT. Circulating islet cell antibody (ICA) was present in three patients with MIDD. Glutamic acid decarboxylase (GAD), tyrosine phosphatase-like protein IA-2 (IA-2) and mitochondrial antibodies were missing. The diagnosis of MIDD was delayed in each case. CONCLUSIONS A missing first phase and a decreased total C-peptide response during an IVGTT was characteristic for the A3243G mutation. The fasting C-peptide level of the carriers did not differ from the controls. Circulating ICA was present in some patients, but GAD, IA-2 and mitochondrial antibodies were absent. All subjects had HLA-DR1-DQ5 haplotype, and either -DQ5 or -DQ6 alleles.
Collapse
Affiliation(s)
- Nóra Hosszúfalusi
- Semmelweis University, Budapest, 3rd Department of Internal Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 2008; 1142:133-58. [PMID: 18990125 DOI: 10.1196/annals.1444.011] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since the initial description almost 25 years ago, the syndrome of mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) has been a useful model to study the complex interplay of factors that define mitochondrial disease. This syndrome, most commonly caused by an A-to-G transition mutation at position 3243 of the mitochondrial genome, is typified by characteristic neurological manifestations including seizures, encephalopathy, and strokelike episodes, as well as other frequent secondary manifestations including short stature, cognitive impairment, migraines, depression, cardiomyopathy, cardiac conduction defects, and diabetes mellitus. In this review, we discuss the history, pathogenesis, clinical features, and diagnostic and management strategies of mitochondrial disease in general and of MELAS in particular. We explore features of mitochondrial genetics, including the concepts of heteroplasmy, mitotic segregation, and threshold effect, as a basis for understanding the variability and complicated inheritance patterns seen with this group of diseases. We also describe systemic manifestations of MELAS-associated mutations, including cardiac, renal, endocrine, gastrointestinal, and endothelial abnormalities and pathology, as well as the hypothetical role of derangements to COX enzymatic function in driving the unique pathology and clinical manifestations of MELAS. Although therapeutic options for MELAS and other mitochondrial diseases remain limited, and recent trials have been disappointing, we also consider current and potential therapeutic modalities.
Collapse
Affiliation(s)
- Douglas M Sproule
- Columbia University, Pediatric Neurology, 180 Fort Washington Ave., Harkness Pavilion, 5th floor, New York, NY 10032, USA.
| | | |
Collapse
|
234
|
Malecki MT, Mlynarski W, Skupien J. Can geneticists help clinicians to understand and treat non-autoimmune diabetes? Diabetes Res Clin Pract 2008; 82 Suppl 2:S83-93. [PMID: 19010562 DOI: 10.1016/j.diabres.2008.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Approximately, a few percent of the European population suffers from diabetes. Scientific evidence showed that specific treatment of this disease could be successfully tailored on the basis of proper differential diagnosis that in many instances also requires genetic testing. This may be helpful in achieving metabolic control of the disease, increasing quality of life and potentially reducing the prevalence of chronic complications. Identification of the molecular background of these specific forms of diabetes gives new insight into the underlying aetiology. This knowledge helps to optimize treatment in specific clinical situations. Monogenic diabetes is an excellent example of a clinical area where new advances in molecular genetics can aid patient care and treatment decisions. The most frequently diagnosed forms of monogenic diabetes are MODY, mitochondrial diabetes, permanent and transient neonatal diabetes (PNDM and TNDM). These rare forms probably constitute at least a few percent of all diabetes cases seen in diabetic clinics. The proper differential diagnosis also helps to predict the progress of diabetes in affected individuals and defines the prognosis in the family. Recently, several genome wide association studies added new facts to the knowledge on complex forms of type 2 diabetes mellitus (T2DM) as the scientists substantially extended the short list of previously identified genes. Most newly identified variants influence beta-cell insulin secretion, while a few modulate peripheral insulin action. It is not clear whether in the future the genetic testing of frequent polymorphisms will influence the treatment of T2DM. In this review, we present the clinical application of genetic testing in non-autoimmune diabetes, mostly monogenic forms of disease.
Collapse
Affiliation(s)
- Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University, Medical College, 15 Kopernika Street, 31-501 Krakow, Poland.
| | | | | |
Collapse
|
235
|
Rammos G, Peppes V, Zakopoulos N. Transient insulin resistance in normal subjects: acute hyperglycemia inhibits endothelial-dependent vasodilatation in normal subjects. Metab Syndr Relat Disord 2008; 6:159-70. [PMID: 18699719 DOI: 10.1089/met.2007.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postprandial hyperglycemia is a powerful and independent risk factor for cardiovascular morbidity and mortality. The pathogenesis of vascular damage in the context of acute hyperglycemia is probably multifactorial, yet the overproduction of reactive oxygen species (ROS) is of particular importance. In normal subjects, acute hyperglycemia induces temporary endothelial dysfunction, reflected in an increase in arterial blood pressure. Because hyperglycemia, hyperinsulinemia, and hypertension are characteristic features of insulin resistance, it is hypothesized that during acute hyperglycemia in normal subjects, where similar changes are induced, transient insulin resistance occurs. The hypothesis that the frequency and grade of daily fluctuations of glycemia in conjunction with nutritional changes and lifestyle might participate in the chronic atherosclerotic process is an important issue. The effort to reduce postprandial hyperglycemia should be part of a strategy to prevent and treat cardiovascular disease in normal subjects and in prediabetic patients as well as in diabetic patients. In this review, we describe the mechanisms of transient endothelial dysfunction caused by acute hyperglycemia in normal subjects and suggest ways to treat it.
Collapse
Affiliation(s)
- George Rammos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | | |
Collapse
|
236
|
Waterfield T, Gloyn AL. Monogenic β-cell dysfunction in children: clinical phenotypes, genetic etiology and mutational pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17455111.2.4.517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Monogenic diabetes accounts for 1–2% of all cases of diabetes mellitus and presentation is often in childhood. Recognizing the clinical features of monogenic β-cell dysfunction prevents misdiagnosis and allows for more effective management and genetic counseling. Monogenic β-cell dysfunction is a diverse collection of clinical phenotypes underpinned by common mutational pathways. Mutations affecting the glycolytic glucokinase enzyme, the mitochondria, the KATP channels and transcription factors have been known for some time. Until recently, the role of endoplasmic reticulum stress was underestimated in the pathogenesis of diabetes. It is becoming increasingly clear that endoplasmic reticulum stress is an important etiological factor in the development of monogenic and polygenic diabetes. In this article, we aim to define the etiology of pediatric monogenic β-cell dysfunction and provide guidance on the investigation and management of children presenting with monogenic β-cell dysfunction.
Collapse
Affiliation(s)
- Thomas Waterfield
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Anna L Gloyn
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
237
|
Cree LM, Patel SK, Pyle A, Lynn S, Turnbull DM, Chinnery PF, Walker M. Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets. Diabetologia 2008; 51:1440-3. [PMID: 18528676 DOI: 10.1007/s00125-008-1054-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/30/2008] [Indexed: 11/28/2022]
Abstract
AIM/HYPOTHESIS Pancreatic beta cell function has been shown to decline with age in man. Depletion of mitochondrial DNA (mtDNA) copy number is associated with impaired insulin secretion in pancreatic beta cell lines, and decreased mtDNA copy number has been observed with age in skeletal muscle in man. We investigated whether mtDNA copy number decreases with age in human pancreatic beta cells, which might in turn contribute to the age-related decline in insulin secretory capacity. METHODS We quantified mtDNA copy number in isolated human islet preparations from 15 pancreas donors aged between 17 and 75 years. Islets (n = 20) were individually hand-picked and pooled from each donor isolate for the quantification of mtDNA copy number and deleted mtDNA (%), which were determined using real-time PCR methods. RESULTS There was a significant negative correlation between mtDNA copy number and islet donor age (r = -0.53, p = 0.044). mtDNA copy number was significantly decreased in islet preparations from donors aged > or =50 years (n = 8) compared with those aged <50 years (n = 7) (median [interquartile range]: 418 [236-503] vs 596 [554-729] mtDNA copy number/diploid genome; p = 0.032). None of the islet preparations harboured high levels of deleted mtDNA affecting the major arc. CONCLUSION/INTERPRETATION Given the correlation between mtDNA content and respiratory chain activity, the age-related decrease in mtDNA copy number that we observed in human pancreatic islet preparations may contribute to the age-dependent decline in pancreatic beta cell insulin secretory capacity.
Collapse
Affiliation(s)
- L M Cree
- Mitochondrial Research Group, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
There are two major forms of diabetes: type 1 and type 2. However, monogenic diabetes, associated with severe beta-cell dysfunction or with severe resistance to insulin action, is diagnosed with increasing frequency by genetic testing. The list of such forms of diabetes includes MODY, mitochondrial diabetes, permanent neonatal diabetes (PNDM) and transient neonatal diabetes, familial lipodystrophies and some others. These rare forms constitute probably at least a few per cent of all diabetes cases seen in diabetic clinics. The identification of the molecular background of specific forms of diabetes gives new insight into the underlying aetiology. This knowledge helps to optimize treatment in specific clinical situations. The proper differential diagnosis also helps to predict the progress of diabetes in affected individuals and defines the prognosis in the family. For example, in patients with MODY2 because of glucokinase mutations who have very mild diabetes characterized by modest fasting, hyperglycaemia diet is frequently sufficient. Some other forms of monogenic diabetes associated with impaired function of the beta-cell, such as MODY3 and PNDM linked to mutations in Kir6.2 and SUR1 genes, can be successfully managed by sulphonylurea agents. Although the examples of pharmacogenetics seem to be less spectacular in rare syndromes of insulin resistance, those patients can also benefit from genetic testing. In this paper, the aetiology of some monogenic diabetes forms is reviewed together with the clinical aspects of management of the affected individuals.
Collapse
Affiliation(s)
- Maciej T Malecki
- Department of Metabolic Diseases, Medical College, Jagiellonian University, Krakow, Poland. ;
| | | |
Collapse
|
239
|
Takahashi Y, Iida K, Takeno R, Kitazawa R, Kitazawa S, Kitamura H, Fujioka Y, Yamada H, Kanda F, Ohta S, Nishimaki K, Fujimoto M, Kondo T, Iguchi G, Takahashi K, Kaji H, Okimura Y, Chihara K. Hepatic failure and enhanced oxidative stress in mitochondrial diabetes. Endocr J 2008; 55:509-14. [PMID: 18445996 DOI: 10.1507/endocrj.k07e-091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial diabetes is characterized by diabetes and hearing loss in maternal transmission with a heteroplasmic A3243G mutation in the mitochondrial gene. In patients with the mutation, it has been reported that hepatic involvement is rarely observed. We demonstrated a case of hypertrophic cardiomyopathy and hepatic failure with mitochondrial diabetes. To clarify the pathogenesis we analyzed the mitochondrial ultrastructure in the myocytes, the reactive oxygen species (ROS) production in the liver and the status of heteroplasmy of the mitochondrial A3243G mutation in the organs involved. In cardiomyocytes and skeletal muscle, electron microscopic analysis demonstrated typical morphological mitochondrial abnormalities. Immunohistochemical analysis demonstrated enhanced ROS production associated with marked steatosis in the liver, which is often associated with mitochondrial dysfunction. Analysis of the A3243G mutation revealed a substantial ratio of heteroplasmy in these organs including the liver. The presence of steatosis and enhanced oxidative stress in the liver suggested that hepatic failure was associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Saleh MC, Fatehi-Hassanabad Z, Wang R, Nino-Fong R, Wadowska DW, Wright GM, Harper ME, Chan CB. Mutated ATP synthase induces oxidative stress and impaired insulin secretion in beta-cells of female BHE/cdb rats. Diabetes Metab Res Rev 2008; 24:392-403. [PMID: 18273840 DOI: 10.1002/dmrr.819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Adenosine triphosphate (ATP) is a critical determinant of beta-cell insulin secretion in response to glucose. BHE/cdb rats have a mutation in ATP synthase that limits ATP production, yet develop mild diabetes only with ageing. We investigated the cellular basis for reduced insulin secretion and compensatory mechanisms that mitigate the effects of the ATP synthase mutation. METHODS In vitro beta-cell function in isolated islets and expression of key regulatory genes was compared with in vivo oral glucose tolerance and insulin sensitivity in BHE/cdb and control rats. RESULTS BHE/cdb rat islets had reduced responsiveness to glucose stimulation and ATP content was 35% lower than in control islets. Oral glucose tolerance was impaired at both 21 and 43 weeks of age because of a reduction in glucose-stimulated insulin secretion (GSIS). An increase in inducible nitric oxide synthase (INOS, 3-fold) and manganese superoxide dismutase (MnSOD, 1.6-fold), detection of nitrotyrosine, beta-cell apoptosis, and nucleocytoplasmic translocation of pancreas duodenum homeobox-1 (PDX-1) in beta-cells indicated increased oxygen radical formation. However, BHE/cdb rats partially compensated for low glucose responsiveness by increasing the number of small islets and beta-cell hypertrophy. There was also an increase in the proportion of mature insulin relative to proinsulin (PI) detected within beta-cell granules. Increased activation of AMP-dependent kinase (AMPK)-regulated pathways was consistent with increased oxidative stress and with induction of apoptosis and reduction of preproinsulin gene transcription. CONCLUSIONS The findings are consistent with impaired but partially compensated mechanisms of insulin secretion early in life, but progressive non-compensated impairments due to oxidative stress occurs by age 43 weeks.
Collapse
Affiliation(s)
- Monique C Saleh
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Bainbridge KE, Hoffman HJ, Cowie CC. Diabetes and hearing impairment in the United States: audiometric evidence from the National Health and Nutrition Examination Survey, 1999 to 2004. Ann Intern Med 2008; 149:1-10. [PMID: 18559825 PMCID: PMC2803029 DOI: 10.7326/0003-4819-149-1-200807010-00231] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Diabetes might affect the vasculature and neural system of the inner ear, leading to hearing impairment. OBJECTIVE To determine whether hearing impairment is more prevalent among U.S. adults with diabetes. DESIGN Cross-sectional analysis of nationally representative data. SETTING National Health and Nutrition Examination Survey, 1999 to 2004. PARTICIPANTS 5140 noninstitutionalized adults age 20 to 69 years who had audiometric testing. MEASUREMENTS Hearing impairment was assessed from the pure tone average of thresholds over low or mid-frequencies (500, 1000, and 2000 Hz) and high frequencies (3000, 4000, 6000, and 8000 Hz) and was defined as mild or greater severity (pure tone average >25 decibels hearing level [dB HL]) and moderate or greater severity (pure tone average >40 dB HL). RESULTS Hearing impairment was more prevalent among adults with diabetes. Age-adjusted prevalence of low- or mid-frequency hearing impairment of mild or greater severity in the worse ear was 21.3% (95% CI, 15.0% to 27.5%) among 399 adults with diabetes compared with 9.4% (CI, 8.2% to 10.5%) among 4741 adults without diabetes. Similarly, age-adjusted prevalence of high-frequency hearing impairment of mild or greater severity in the worse ear was 54.1% (CI, 45.9% to 62.3%) among those with diabetes compared with 32.0% (CI, 30.5% to 33.5%) among those without diabetes. The association between diabetes and hearing impairment was independent of known risk factors for hearing impairment, such as noise exposure, ototoxic medication use, and smoking (adjusted odds ratios for low- or mid-frequency and high-frequency hearing impairment were 1.82 [CI, 1.27 to 2.60] and 2.16 [CI, 1.47 to 3.18], respectively). LIMITATIONS The diagnosis of diabetes was based on self-report. The investigators could not distinguish between type 1 and type 2 diabetes. Noise exposure was based on participant recall. CONCLUSION Hearing impairment is common in adults with diabetes, and diabetes seems to be an independent risk factor for the condition.
Collapse
|
242
|
Koenig MK. Presentation and diagnosis of mitochondrial disorders in children. Pediatr Neurol 2008; 38:305-13. [PMID: 18410845 PMCID: PMC3099432 DOI: 10.1016/j.pediatrneurol.2007.12.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/07/2007] [Accepted: 12/03/2007] [Indexed: 02/04/2023]
Abstract
The first disorder of mitochondrial function was described by Luft in 1959. Over the ensuing decades, multiple cases of mitochondrial dysfunction were reported, and the term "mitochondrial disorder" arose to describe any defect in the mitochondrial electron transport chain. The sequence of the mitochondrial genome was elucidated in 1981 by Anderson et al., and during the next 20 years, >200 pathogenic point mutations, deletions, insertions, and rearrangements were described. Most of the original cases were adults, and the diagnosis of a mitochondrial disorder in an adult patient became relatively straightforward. Adults present with well-defined "mitochondrial syndromes" and generally carry mitochondrial DNA mutations that are easily identified. Children with mitochondrial disorders are much harder to define. Children are more likely to have a nuclear DNA mutation, whereas the "classic" syndromic findings tend to be absent. This review describes both the varying presentations of mitochondrial disorders and the common laboratory, imaging, and pathologic findings related to children.
Collapse
Affiliation(s)
- Mary Kay Koenig
- Department of Pediatrics and Department of Neurology, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
243
|
Abstract
An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Collapse
Affiliation(s)
- Lydia Aguilar-Bryan
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA.
| | | |
Collapse
|
244
|
Harihara S, Nakamura K, Fujiwara M, Arai T, Sawabe M, Takeuchi F, Takubo K. Markedly different clinical features in 2 diabetes mellitus patients with extremely high tissue levels of the mitochondrial DNA A3243G mutation. Gerontology 2008; 54:168-72. [PMID: 18417955 DOI: 10.1159/000127415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 01/24/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) A3243G mutation is one of the major causative factors of mitochondrial diabetes mellitus. We found that tissues from 2 of 142 diabetes mellitus patients showed extremely high levels of the mutation. OBJECTIVE To investigate the level of the mutation in each tissue and to find the relationship between the mutation level and clinical features of the patients. METHODS Patient 1 was a 51-year-old woman, diagnosed as having diabetes mellitus at the age of 17, and was admitted to hospital because of cerebral infarction. Patient 2 was an 82-year-old woman who was admitted because of respiratory failure. mtDNA A3243G levels were measured in tissues collected at autopsy. RESULTS In patient 1, mtDNA A3243G levels were found to vary among the tissues. The patient's highest mtDNA A3243G value was 42% and the lowest value was 9%, whereas the level in most individuals is usually less than 1%. Although patient 2 did not exhibit serious clinical symptoms of diabetes mellitus, the mtDNA A3243G level was extremely high in all of the tissues surveyed (range 32-47%). CONCLUSION Although both patients showed high levels of the mtDNA A3243G mutation, their clinical conditions differed greatly. Thus, mitochondrial diabetes mellitus patients may show a wide variety of clinical features and large variations in life span.
Collapse
Affiliation(s)
- Shinji Harihara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
245
|
Park KS, Chan JC, Chuang LM, Suzuki S, Araki E, Nanjo K, Ji L, Ng M, Nishi M, Furuta H, Shirotani T, Ahn BY, Chung SS, Min HK, Lee SW, Kim JH, Cho YM, Lee HK. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 2008; 51:602-8. [PMID: 18251004 DOI: 10.1007/s00125-008-0933-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/01/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS This multinational study was conducted to investigate the association between a mitochondrial DNA (mtDNA) T16189C polymorphism and type 2 diabetes in Asians. The mtDNA 16189C variant has been reported to be associated with insulin resistance and type 2 diabetes. However, a recent meta-analysis concluded that it is negatively associated with type 2 diabetes in Europids. Since the phenotype of an mtDNA mutant may be influenced by environmental factors and ethnic differences in the nuclear and mitochondrial genomes, we investigated the association between the 16189C variant and type 2 diabetes in Asians. METHODS The presence of the mtDNA 16189C variant was determined in 2,469 patients with type 2 diabetes and 1,205 non-diabetic individuals from Korea, Japan, Taiwan, Hong Kong and China. An additional meta-analysis including previously published Asian studies was performed. Since mtDNA nucleotide position 16189 is very close to the mtDNA origin of replication, we performed DNA-linked affinity chromatography and reverse-phase liquid chromatography/tandem mass spectrometry and chromatin immunoprecipitation to identify protein bound to the 16189 region. RESULTS Analysis of participants from five Asian countries confirmed the association between the 16189C variant and type 2 diabetes [odds ratio (OR) 1.256, 95% CI 1.08-1.46, p=0.003]. Inclusion of data from three previously published Asian studies (type 2 diabetes n=3,283, controls n=2,176) in a meta-analysis showed similar results (OR 1.335, 95% CI 1.18-1.51, p=0.000003). Mitochondrial single-stranded DNA-binding protein (mtSSB) was identified as a candidate protein bound to the 16189 region. Chromatin immunoprecipitation in cybrid cells showed that mtSSB has a lower binding affinity for the 16189C variant than the wild-type sequence. CONCLUSIONS/INTERPRETATION The mtDNA 16189C variant is associated with an increased risk of type 2 diabetes in Asians.
Collapse
Affiliation(s)
- K S Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med 2008; 25:383-99. [PMID: 18294221 DOI: 10.1111/j.1464-5491.2008.02359.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families.
Collapse
Affiliation(s)
- R Murphy
- Institute of Biomedical Sciences, Peninsula Medical School, Exeter, UK.
| | | | | | | |
Collapse
|
247
|
Katulanda P, Groves CJ, Barrett A, Sheriff R, Matthews DR, McCarthy MI, Gloyn AL. Prevalence and clinical characteristics of maternally inherited diabetes and deafness caused by the mt3243A > G mutation in young adult diabetic subjects in Sri Lanka. Diabet Med 2008; 25:370-4. [PMID: 18279408 DOI: 10.1111/j.1464-5491.2007.02377.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The maternally inherited mt3243A > G mutation is associated with a variable clinical phenotype including diabetes and deafness (MIDD). We aimed to determine the prevalence and clinical characteristics of MIDD in a large South Asian cohort of young adult-onset diabetic patients from Sri Lanka. METHODS DNA was available from 994 subjects (age of diagnosis 16-40 years, age at recruitment < or = 45 years). Mutation screening was performed using a QRT-PCR method on an ABI 7900HT system using sequence-specific probes. Samples with heteroplasm > or = 5.0% were considered positive. RESULTS Nine (four males) mutation-positive subjects were identified (prevalence 0.9%). They were diagnosed at a younger age (25.9 +/- 4.8 years vs. 31.9 +/- 5.6 years, P = 0.002) and were lean (body mass index [BMI] 18.7 +/- 2.7 kg/m(2) vs. 24.7 +/- 4.0 kg/m(2), P < 0.001) compared to NMCs. One mutation-positive subject (11.1%) had metabolic syndrome, compared to 633 (64.3%) of NMCs. Insulin therapy within 6 months of diagnosis was used in four (44.0%) carriers compared to 6.9% of NMCs (P = 0.002). Combined screening criteria of any two of maternal history of diabetes, personal history of hearing impairment and family history of hearing impairment only identified five (55%) of the carriers, with a positive predictive value of 7.4%. CONCLUSIONS The prevalence of mt3243A > G mutation among young adult-onset diabetic subjects from Sri Lanka was 0.9%. Our study demonstrates that a maternal family history of diabetes and either a personal and/or family history of deafness only distinguish half of patients with MIDD from Sri Lankan subjects with young-onset diabetes.
Collapse
Affiliation(s)
- P Katulanda
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, UK, and Faculty of Medicine, University of Columbo, Sri Lanka
| | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
249
|
Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. ACTA ACUST UNITED AC 2008; 4:200-13. [PMID: 18301398 DOI: 10.1038/ncpendmet0778] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Monogenic diabetes resulting from mutations that primarily reduce beta-cell function accounts for 1-2% of diabetes cases, although it is often misdiagnosed as either type 1 or type 2 diabetes. Knowledge of the genetic etiology of diabetes enables more-appropriate treatment, better prediction of disease progression, screening of family members and genetic counseling. We propose that the old clinical classifications of maturity-onset diabetes of the young and neonatal diabetes are obsolete and that specific genetic etiologies should be sought in four broad clinical situations because of their specific treatment implications. Firstly, diabetes diagnosed before 6 months of age frequently results from mutation of genes that encode Kir6.2 (ATP-sensitive inward rectifier potassium channel) or sulfonylurea receptor 1 subunits of an ATP-sensitive potassium channel, and improved glycemic control can be achieved by treatment with high-dose sulfonylureas rather than insulin. Secondly, patients with stable, mild fasting hyperglycemia detected particularly when they are young could have a glucokinase mutation and might not require specific treatment. Thirdly, individuals with familial, young-onset diabetes that does not fit with either type 1 or type 2 diabetes might have mutations in the transcription factors HNF-1alpha (hepatocyte nuclear factor 1-alpha) or HNF-4alpha, and can be treated with low-dose sulfonylureas. Finally, extrapancreatic features, such as renal disease (caused by mutations in HNF-1beta) or deafness (caused by a mitochondrial m.3243A>G mutation), usually require early treatment with insulin.
Collapse
|
250
|
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2008; 2007:43603. [PMID: 17641741 PMCID: PMC1880867 DOI: 10.1155/2007/43603] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/08/2007] [Indexed: 12/11/2022]
Abstract
Oxygen metabolism is essential for sustaining aerobic life, and normal cellular homeostasis works on a fine balance between the formation and elimination of reactive oxygen species (ROS). Oxidative stress, a cytopathic consequence of excessive production of ROS and the suppression of ROS removal by antioxidant defense system, is implicated in the development of many diseases, including Alzheimer's disease, and diabetes and its complications. Retinopathy, a debilitating microvascular complication of diabetes, is the leading cause of acquired blindness in developed countries. Many diabetes-induced metabolic abnormalities are implicated in its development, and appear to be influenced by elevated oxidative stress; however the exact mechanism of its development remains elusive. Increased superoxide concentration is considered as a causal link between elevated glucose and the other metabolic abnormalities important in the pathogenesis of diabetic complications. Animal studies have shown that antioxidants have beneficial effects on the development of retinopathy, but the results from very limited clinical trials are somewhat ambiguous. Although antioxidants are being used for other chronic diseases, controlled clinical trials are warranted to investigate potential beneficial effects of antioxidants in the development of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|