201
|
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, Radhakrishnan P, Liang J, Wang G, Muley T, Schneider M, Ruiz de Almodovar C, Diz-Muñoz A, Schmidt T. Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 2020; 37:800-817.e7. [PMID: 32516590 DOI: 10.1016/j.ccell.2020.05.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.
Collapse
Affiliation(s)
- Ying Shen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Xiaohong Wang
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Junyan Lu
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Salfenmoser
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Naita Maren Wirsik
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Nikolai Schleussner
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jie Liang
- Section of Molecular Immunology, Institute of Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Guoliang Wang
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Thomas Muley
- Thoracic Hospital, University Hospital Heidelberg, University Heidelberg, 69126 Heidelberg, Germany; Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
202
|
Hohmann T, Hohmann U, Kolbe MR, Dahlmann M, Kobelt D, Stein U, Dehghani F. MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Commun Signal 2020; 18:85. [PMID: 32503676 PMCID: PMC7275321 DOI: 10.1186/s12964-020-00566-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Metastasis-associated in colon cancer 1 (MACC1) is an established marker for metastasis and tumor cell migration in a multitude of tumor entities, including glioblastoma (GBM). Nevertheless, the mechanism underlying the increased migratory capacity in GBM is not comprehensively explored. Methods We performed live cell and atomic force microscopy measurements to assess cell migration and mechanical properties of MACC1 overexpressing GBM cells. We quantified MACC1 dependent dynamics of 3D aggregate formation. For mechanistic studies we measured the expression of key adhesion molecules using qRT-PCR, and MACC1 dependent changes in short term adhesion to fibronectin and laminin. We then determined changes in sub-cellular distribution of integrins and actin in dependence of MACC1, but also in microtubule and intermediate filament organization. Results MACC1 increased the migratory speed and elastic modulus of GBM cells, but decreased cell-cell adhesion and inhibited the formation of 3D aggregates. These effects were not associated with altered mRNA expression of several key adhesion molecules or altered short-term affinity to laminin and fibronectin. MACC1 did neither change the organization of the microtubule nor intermediate filament cytoskeleton, but resulted in increased amounts of protrusive actin on laminin. Conclusion MACC1 overexpression increases elastic modulus and migration and reduces adhesion of GBM cells thereby impeding 3D aggregate formation. The underlying molecular mechanism is independent on the organization of microtubules, intermediate filaments and several key adhesion molecules, but depends on adhesion to laminin. Thus, targeting re-organization of the cytoskeleton and cell motility via MACC1 may offer a treatment option to impede GBM spreading. Video Abstract
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Urszula Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Marc R Kolbe
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle, Saale, Germany.
| |
Collapse
|
203
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
204
|
D'Angelo A, Solon J. Application of Mechanical Forces on Drosophila Embryos by Manipulation of Microinjected Magnetic Particles. Bio Protoc 2020; 10:e3608. [PMID: 33659573 DOI: 10.21769/bioprotoc.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 11/02/2022] Open
Abstract
Cells generate mechanical forces to shape tissues during morphogenesis. These forces can activate several biochemical pathways and trigger diverse cellular responses by mechano-sensation, such as differentiation, division, migration and apoptosis. Assessing the mechano-responses of cells in living organisms requires tools to apply controlled local forces within biological tissues. For this, we have set up a method to generate controlled forces on a magnetic particle embedded within a chosen tissue of Drosophila embryos. We designed a protocol to inject an individual particle in early embryos and to position it, using a permanent magnet, within the tissue of our choice. Controlled forces in the range of pico to nanonewtons can be applied on the particle with the use of an electromagnet that has been previously calibrated. The bead displacement and the epithelial deformation upon force application can be followed with live imaging and further analyzed using simple analysis tools. This method has been successfully used to identify changes in mechanics in the blastoderm before gastrulation. This protocol provides the details, (i) for injecting a magnetic particle in Drosophila embryos, (ii) for calibrating an electromagnet and (iii) to apply controlled forces in living tissues.
Collapse
Affiliation(s)
- Arturo D'Angelo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country and Fundación Biofisica Bizkaia/Biofisika Fundazioa (FBB), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
205
|
Connolly S, Newport D, McGourty K. The mechanical responses of advecting cells in confined flow. BIOMICROFLUIDICS 2020; 14:031501. [PMID: 32454924 PMCID: PMC7200165 DOI: 10.1063/5.0005154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 05/03/2023]
Abstract
Fluid dynamics have long influenced cells in suspension. Red blood cells and white blood cells are advected through biological microchannels in both the cardiovascular and lymphatic systems and, as a result, are subject to a wide variety of complex fluidic forces as they pass through. In vivo, microfluidic forces influence different biological processes such as the spreading of infection, cancer metastasis, and cell viability, highlighting the importance of fluid dynamics in the blood and lymphatic vessels. This suggests that in vitro devices carrying cell suspensions may influence the viability and functionality of cells. Lab-on-a-chip, flow cytometry, and cell therapies involve cell suspensions flowing through microchannels of approximately 100-800 μ m. This review begins by examining the current fundamental theories and techniques behind the fluidic forces and inertial focusing acting on cells in suspension, before exploring studies that have investigated how these fluidic forces affect the reactions of suspended cells. In light of these studies' findings, both in vivo and in vitro fluidic cell microenvironments shall also be discussed before concluding with recommendations for the field.
Collapse
Affiliation(s)
- S Connolly
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - D Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | | |
Collapse
|
206
|
Kozminsky M, Sohn LL. The promise of single-cell mechanophenotyping for clinical applications. BIOMICROFLUIDICS 2020; 14:031301. [PMID: 32566069 PMCID: PMC7286698 DOI: 10.1063/5.0010800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 05/06/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the immense research focused in this area, one is still not able to predict disease trajectory. To overcome shortcomings in cancer disease study and monitoring, we describe an exciting research direction: cellular mechanophenotyping. Cancer cells must overcome many challenges involving external forces from neighboring cells, the extracellular matrix, and the vasculature to survive and thrive. Identifying and understanding their mechanical behavior in response to these forces would advance our understanding of cancer. Moreover, used alongside traditional methods of immunostaining and genetic analysis, mechanophenotyping could provide a comprehensive view of a heterogeneous tumor. In this perspective, we focus on new technologies that enable single-cell mechanophenotyping. Single-cell analysis is vitally important, as mechanical stimuli from the environment may obscure the inherent mechanical properties of a cell that can change over time. Moreover, bulk studies mask the heterogeneity in mechanical properties of single cells, especially those rare subpopulations that aggressively lead to cancer progression or therapeutic resistance. The technologies on which we focus include atomic force microscopy, suspended microchannel resonators, hydrodynamic and optical stretching, and mechano-node pore sensing. These technologies are poised to contribute to our understanding of disease progression as well as present clinical opportunities.
Collapse
Affiliation(s)
- Molly Kozminsky
- California Institute for Quantitative Biosciences, University of California, 174 Stanley Hall, Berkeley, California 94720, USA
| | | |
Collapse
|
207
|
Zhang H, Guo Y, Zhou Y, Zhu H, Wu P, Wang K, Ruan L, Wan M, Insana MF. Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin-Voigt fractional derivative modeling. Biomech Model Mechanobiol 2020; 19:2163-2177. [PMID: 32335785 DOI: 10.1007/s10237-020-01330-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Cancer progression involves biomechanical changes within transformed cells and the surrounding extracellular matrix (ECM). The viscoelastic features of fluidity and elasticity that are based on a novel Kelvin-Voigt fractional derivative (KVFD) model were found capable of discriminating normal, benign and malignant breast biopsy tissues on the cellular scale. The improved specificity of KVFD model parameters derives from greater accuracy of fitting the entire approaching force-indentation measurement curve ([Formula: see text] > 0.99) compared with traditional elastic models ([Formula: see text] < 0.86). Moreover, model parameters can be interpreted in terms of histopathological features. First, statistical comparisons reveal there are significant differences (p < 0.001) in elasticity E0, fluidity [Formula: see text], and viscosity [Formula: see text] among healthy, benign, and malignant groups. Malignant breast tissues show low-value, broad-distributions in E0 and with high fluidity [Formula: see text] as compared with healthy and benign tissues. Second, histograms of E0 and [Formula: see text] provide distinctive features by fitting to Gaussian mixture (GM) models. The histograms of E0 and [Formula: see text] are best fit by two kernels GM for malignant tissues, indicating that the cells are soft but with high fluidity and the ECM is stiff but with low fluidity. However, the data suggest one-kernel GM model for benign tissue and a patched uniform distribution for healthy tissue. Third, using fluidity [Formula: see text] as the test statistic, the area under the receiver operator characteristic curve (AUC) is 0.701 ± 0.012 (p < 0.0001) for control versus malignant and 0.706 ± 0.013 (p < 0.0001) for benign versus malignant group. Variations in tissue fluidity and elasticity offer a concise set of viscoelastic biomarkers that correlate well with histopathological features.
Collapse
Affiliation(s)
- Hongmei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Ying Guo
- Department of Pathology, School of Medicine, Northwest University, Xi'an, 710069, PR China
| | - Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Pengying Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Kai Wang
- Department of Pathology, Xi'an JiaoTong University Medical College First Affiliated Hospital, Xi'an, 710004, PR China
| | - Litao Ruan
- Department of Medical Ultrasonics, Xi'an JiaoTong University Medical College First Affiliated Hospital, Xi'an, 710004, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China.
| | - Michael F Insana
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
208
|
Hannezo E, Heisenberg CP. Mechanochemical Feedback Loops in Development and Disease. Cell 2020; 178:12-25. [PMID: 31251912 DOI: 10.1016/j.cell.2019.05.052] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | | |
Collapse
|
209
|
Aldolase triggers metabolic reprogramming in colorectal cancer in hypoxia and stiff desmoplastic microenvironments. Colloids Surf B Biointerfaces 2020; 190:110969. [PMID: 32199265 DOI: 10.1016/j.colsurfb.2020.110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) progression is highly associated with desmoplasia. Aerobic glycolysis is another distinct feature that appears during the CRC phase of the adenoma-carcinoma sequence. However, the interconnections between the desmoplastic microenvironment and metabolic reprogramming remain largely unexplored. In our in vitro model, we investigated the compounding influences of hypoxia and substrate stiffness, two critical physical features of desmoplasia, on the CRC metabolic shift by using engineered polyacrylamide gels. Unexpectedly, we found that compared to cells on a soft gel (approximately 1.5 kPa, normal tissue), cells on a stiff gel (approximately 8.7 kPa, desmoplastic tissue) exhibited reduced glucose uptake and glycolysis under both normoxia and hypoxia. In addition, the increasing substrate stiffness activated focal adhesion kinase (FAK)/phosphoinositide 3-kinase signaling, but not the mitochondrial respiratory inhibitor HIF-1α. However, the presence of aldolase B (ALDOB) reversed the CRC metabolic response to mechanosignaling; enhanced glucose uptake (approximately 1.5-fold) and aerobic glycolysis (approximately 2- to 3--fold) with significantly decreased mitochondrial oxidative phosphorylation. ALDOB also changed the response of CRC traction force, which is related to tumor metastasis, under hypoxia/normoxia. In summary, our data suggest a counter influence of hypoxia and substrate stiffness on glucose uptake, and ALDOB upregulation can reverse this, which drives hypoxia and stiff substrate to enhance the CRC aerobic glycolysis synergistically. The results not only highlight the potential impacts on metabolic reprogramming led by physical alterations in the microenvironment, but also extend our understanding of the essential role of ALDOB in CRC progression from a biophysical perspective.
Collapse
|
210
|
Dalaka E, Kronenberg NM, Liehm P, Segall JE, Prystowsky MB, Gather MC. Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. SCIENCE ADVANCES 2020; 6:eaax6912. [PMID: 32195338 PMCID: PMC7065877 DOI: 10.1126/sciadv.aax6912] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/17/2019] [Indexed: 05/03/2023]
Abstract
Mechanobiology plays a prominent role in cancer invasion and metastasis. The ability of a cancer to degrade extracellular matrix (ECM) is likely connected to its invasiveness. Many cancer cells form invadopodia-micrometer-sized cellular protrusions that promote invasion through matrix degradation (proteolysis). Although it has been hypothesized that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remain elusive. Here, we use a recently developed interferometric force imaging technique that provides piconewton resolution to quantify invadopodial forces in cells of head and neck squamous carcinoma and to monitor their temporal dynamics. We compare the force exerted by individual protrusions to their ability to degrade ECM and investigate the mechanical effects of inhibiting invadopodia through overexpression of microRNA-375. By connecting the biophysical and biochemical characteristics of invadopodia, our study provides a new perspective on cancer invasion that, in the future, may help to identify biomechanical targets for cancer therapy.
Collapse
Affiliation(s)
- E. Dalaka
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - N. M. Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - P. Liehm
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - J. E. Segall
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - M. C. Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Corresponding author.
| |
Collapse
|
211
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
212
|
Le Maout V, Alessandri K, Gurchenkov B, Bertin H, Nassoy P, Sciumè G. Role of mechanical cues and hypoxia on the growth of tumor cells in strong and weak confinement: A dual in vitro-in silico approach. SCIENCE ADVANCES 2020; 6:eaaz7130. [PMID: 32232163 PMCID: PMC7096162 DOI: 10.1126/sciadv.aaz7130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Characterization of tumor growth dynamics is of major importance for cancer understanding. By contrast with phenomenological approaches, mechanistic modeling can facilitate disclosing underlying tumor mechanisms and lead to identification of physical factors affecting proliferation and invasive behavior. Current mathematical models are often formulated at the tissue or organ scale with the scope of a direct clinical usefulness. Consequently, these approaches remain empirical and do not allow gaining insight into the tumor properties at the scale of small cell aggregates. Here, experimental and numerical studies of the dynamics of tumor aggregates are performed to propose a physics-based mathematical model as a general framework to investigate tumor microenvironment. The quantitative data extracted from the cellular capsule technology microfluidic experiments allow a thorough quantitative comparison with in silico experiments. This dual approach demonstrates the relative impact of oxygen and external mechanical forces during the time course of tumor model progression.
Collapse
Affiliation(s)
- V. Le Maout
- I2M, Institute of Mechanics and Mechanical Engineering, Univ. Bordeaux, CNRS, ENSAM, Bordeaux INP, Talence, France
| | - K. Alessandri
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400 Talence, France
- Institut d’Optique Graduate School and CNRS UMR 5298, F-33400 Talence, France
| | - B. Gurchenkov
- Institut du Cerveau et de la Moëlle épinière (ICM), INSERM U 1127, CNRS UMR 7225, Sorbonne Université, F-75013 Paris, France
| | - H. Bertin
- I2M, Institute of Mechanics and Mechanical Engineering, Univ. Bordeaux, CNRS, ENSAM, Bordeaux INP, Talence, France
| | - P. Nassoy
- LP2N, Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, F-33400 Talence, France
- Institut d’Optique Graduate School and CNRS UMR 5298, F-33400 Talence, France
| | - G. Sciumè
- I2M, Institute of Mechanics and Mechanical Engineering, Univ. Bordeaux, CNRS, ENSAM, Bordeaux INP, Talence, France
| |
Collapse
|
213
|
Immunoactivating the tumor microenvironment enhances immunotherapy as predicted by integrative computational model. Proc Natl Acad Sci U S A 2020; 117:4447-4449. [PMID: 32102915 PMCID: PMC7060734 DOI: 10.1073/pnas.2001050117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
214
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
215
|
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 2020; 20:107-124. [PMID: 31780785 DOI: 10.1038/s41568-019-0221-x] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is a dynamic succession of events involving the dissemination of tumour cells to distant sites within the body, ultimately reducing the survival of patients with cancer. To colonize distant organs and, therefore, systemically disseminate within the organism, cancer cells and associated factors exploit several bodily fluid systems, which provide a natural transportation route. Indeed, the flow mechanics of the blood and lymphatic circulatory systems can be co-opted to improve the efficiency of cancer cell transit from the primary tumour, extravasation and metastatic seeding. Flow rates, vessel size and shear stress can all influence the survival of cancer cells in the circulation and control organotropic seeding patterns. Thus, in addition to using these fluids as a means to travel throughout the body, cancer cells exploit the underlying physical forces within these fluids to successfully seed distant metastases. In this Review, we describe how circulating tumour cells and tumour-associated factors leverage bodily fluids, their underlying forces and imposed stresses during metastasis. As the contribution of bodily fluids and their mechanics raises interesting questions about the biology of the metastatic cascade, an improved understanding of this process might provide a new avenue for targeting cancer cells in transit.
Collapse
Affiliation(s)
- Gautier Follain
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- CNRS SNC 505, Strasbourg, France
| | - Naël Osmani
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Sean C Warren
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
216
|
Saberianpour S, Rezaie Nezhad Zamani A, Karimi A, Ahmadi M, Khatami N, Pouyafar A, Rahbarghazi R, Nouri M. Hollow Alginate-Poly-L-Lysine-Alginate Microspheres Promoted an Epithelial-Mesenchymal Transition in Human Colon Adenocarcinoma Cells. Adv Pharm Bull 2020; 10:141-145. [PMID: 32002374 PMCID: PMC6983985 DOI: 10.15171/apb.2020.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Today, there is an urgent need to develop a three-dimentional culture systems mimicking native in vivo condition in order to screen potency of drugs and possibly any genetic alterations in tumor cells. Due to the existence of limitations in animal models, the development of three dimensional systems is highly recommended. To this end, we encapsulated human colon adenocarcinoma cell line HT29 with alginate-poly-L-lysine (Alg-PLL) microspheres and the rate of epithelial-mesenchymal transition was monitored. Methods: Cells were randomly divided into three groups; control, alginate and Alg-PLL. To encapsulate cells, we mixed HT-29 cells (1 × 106 ) with 1 mL of 0.05% PLL and 1% Alg mixture and electrosprayed into CaCl2 solution by using a high-voltage power. Cells from all groups were maintained at 37˚C in a humidified atmosphere containing 5% CO2 for 7 days. Cell viability was assessed by MTT assay. To monitor the stemness feature, we measured the transcription of genes such as Snail, Zeb, and Vimentin by using real-time PCR analysis. Results: Addition of PLL to Alg in a hallowed state increased the cell survival rate compared to the control and Alg groups (P<0.05). Cells inside Alg-PLL tended to form microcellular aggregates while in Alg microspheres an even distribution of HT-29 cells was found. Real-time PCR analysis showed the up-regulation of Snail, Zeb, and Vimentin in Alg-PLL microspheres compared to the other groups, showing the acquisition of stemness feature (P<0.05). Conclusion: This study showed that hallow Alg-PLL microspheres increased the epithelialmesenchymal transition rate after 7 days in in vitro condition. Such approaches could be touted as appropriate in vitro models for drug screening.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khatami
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Ayda Pouyafar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
217
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
218
|
Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics 2020; 10:1960-1980. [PMID: 32042347 PMCID: PMC6993244 DOI: 10.7150/thno.39995] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.
Collapse
Affiliation(s)
- Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
219
|
Law HCH, Lagundžin D, Clement EJ, Qiao F, Wagner ZS, Krieger KL, Costanzo-Garvey D, Caffrey TC, Grem JL, DiMaio DJ, Grandgenett PM, Cook LM, Fisher KW, Yu F, Hollingsworth MA, Woods NT. The Proteomic Landscape of Pancreatic Ductal Adenocarcinoma Liver Metastases Identifies Molecular Subtypes and Associations with Clinical Response. Clin Cancer Res 2019; 26:1065-1076. [PMID: 31848187 DOI: 10.1158/1078-0432.ccr-19-1496] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/19/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease that can be separated into distinct subtypes based on molecular signatures. Identifying PDAC subtype-specific therapeutic vulnerabilities is necessary to develop precision medicine approaches to treat PDAC. EXPERIMENTAL DESIGN A total of 56 PDAC liver metastases were obtained from the UNMC Rapid Autopsy Program and analyzed with quantitative proteomics. PDAC subtypes were identified by principal component analysis based on protein expression profiling. Proteomic subtypes were further characterized by the associated clinical information, including but not limited to survival analysis, drug treatment response, and smoking and drinking status. RESULTS Over 3,960 proteins were identified and used to delineate four distinct PDAC microenvironment subtypes: (i) metabolic; (ii) progenitor-like; (iii) proliferative; and (iv) inflammatory. PDAC risk factors of alcohol and tobacco consumption correlate with subtype classifications. Enhanced survival is observed in FOLFIRINOX treated metabolic and progenitor-like subtypes compared with the proliferative and inflammatory subtypes. In addition, TYMP, PDCD6IP, ERAP1, and STMN showed significant association with patient survival in a subtype-specific manner. Gemcitabine-induced alterations in the proteome identify proteins, such as serine hydroxymethyltransferase 1, associated with drug resistance. CONCLUSIONS These data demonstrate that proteomic analysis of clinical PDAC liver metastases can identify molecular signatures unique to disease subtypes and point to opportunities for therapeutic development to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Henry C-H Law
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dragana Lagundžin
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emalie J Clement
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Zachary S Wagner
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kimiko L Krieger
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Diane Costanzo-Garvey
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean L Grem
- Internal Medicine, Division of Hematology Oncology, University of Nebraska Medical Center, Omaha Nebraska
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Leah M Cook
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Kurt W Fisher
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha Nebraska
| | - Fang Yu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha Nebraska
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
220
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
221
|
Bartolozzi A, Viti F, De Stefano S, Sbrana F, Petecchia L, Gavazzo P, Vassalli M. Development of label-free biophysical markers in osteogenic maturation. J Mech Behav Biomed Mater 2019; 103:103581. [PMID: 32090910 DOI: 10.1016/j.jmbbm.2019.103581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal changes of morphological and mechanical properties of living cells reflect complex functionally-associated processes. Monitoring these modifications could provide a direct information on the cellular functional state. Here we present an integrated biophysical approach to the quantification of the morphological and mechanical phenotype of single cells along a maturation pathway. Specifically, quantitative phase microscopy and single cell biomechanical testing were applied to the characterization of the maturation of human foetal osteoblasts, demonstrating the ability to identify effective label-free biomarkers along this fundamental biological process.
Collapse
Affiliation(s)
- Alice Bartolozzi
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy.
| | - Silvia De Stefano
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Francesca Sbrana
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Schaefer South-East Europe Srl, Rovigo, Italy
| | - Loredana Petecchia
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| |
Collapse
|
222
|
Korgaonkar N, Yadav KS. Understanding the biology and advent of physics of cancer with perspicacity in current treatment therapy. Life Sci 2019; 239:117060. [DOI: 10.1016/j.lfs.2019.117060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
|
223
|
Evans JJ, Alkaisi MM, Sykes PH. Tumour Initiation: a Discussion on Evidence for a "Load-Trigger" Mechanism. Cell Biochem Biophys 2019; 77:293-308. [PMID: 31598831 PMCID: PMC6841748 DOI: 10.1007/s12013-019-00888-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Appropriate mechanical forces on cells are vital for normal cell behaviour and this review discusses the possibility that tumour initiation depends partly on the disruption of the normal physical architecture of the extracellular matrix (ECM) around a cell. The alterations that occur thence promote oncogene expression. Some questions, that are not answered with certainty by current consensus mechanisms of tumourigenesis, are elegantly explained by the triggering of tumours being a property of the physical characteristics of the ECM, which is operative following loading of the tumour initiation process with a relevant gene variant. Clinical observations are consistent with this alternative hypothesis which is derived from studies that have, together, accumulated an extensive variety of data incorporating biochemical, genetic and clinical findings. Thus, this review provides support for the view that the ECM may have an executive function in induction of a tumour. Overall, reported observations suggest that either restoring an ECM associated with homeostasis or targeting the related signal transduction mechanisms may possibly be utilised to modify or control the early progression of cancers. The review provides a coherent template for discussing the notion, in the context of contemporary knowledge, that tumourigenesis is an alliance of biochemistry, genetics and biophysics, in which the physical architecture of the ECM may be a fundamental component. For more definitive clarification of the concept there needs to be a phalanx of experiments conceived around direct questions that are raised by this paper.
Collapse
Affiliation(s)
- John J Evans
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand.
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand.
| | - Maan M Alkaisi
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
224
|
Srivastava P, Kilian KA. Micro-Engineered Models of Development Using Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2019; 7:357. [PMID: 31850326 PMCID: PMC6895561 DOI: 10.3389/fbioe.2019.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
During fetal development, embryonic cells are coaxed through a series of lineage choices which lead to the formation of the three germ layers and subsequently to all the cell types that are required to form an adult human body. Landmark cell fate decisions leading to symmetry breaking, establishment of the primitive streak and first tri-lineage differentiation happen after implantation, and therefore have been attributed to be a function of the embryo's spatiotemporal 3D environment. These mechanical and geometric cues induce a cascade of signaling pathways leading to cell differentiation and orientation. Due to the physiological, ethical, and legal limitations of accessing an intact human embryo for functional studies, multiple in-vitro models have been developed to try and recapitulate the key milestones of mammalian embryogenesis using mouse embryos, or mouse and human embryonic stem cells. More recently, the development of induced pluripotent stem cells represents a cell source which is being explored to prepare a developmental model, owing to their genetic and functional similarities to embryonic stem cells. Here we review the use of micro-engineered cell culture materials as platforms to define the physical and geometric contributions during the cell fate defining process and to study the underlying pathways. This information has applications in various biomedical contexts including tissue engineering, stem cell therapy, and organoid cultures for disease modeling.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Centre for Nanomedicine, School of Chemistry, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A. Kilian
- Australian Centre for Nanomedicine, School of Chemistry, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
225
|
Li J, Zormpas-Petridis K, Boult JKR, Reeves EL, Heindl A, Vinci M, Lopes F, Cummings C, Springer CJ, Chesler L, Jones C, Bamber JC, Yuan Y, Sinkus R, Jamin Y, Robinson SP. Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Res 2019; 79:5874-5883. [PMID: 31604713 DOI: 10.1158/0008-5472.can-19-1595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus has clear clinical applications. Herein, we used MR elastography, coupled with computational histopathology, to interrogate the contribution of collagen to the tumor biomechanical phenotype and to evaluate its sensitivity to collagenase-induced stromal modulation. Elasticity (G d) and viscosity (G l) were significantly greater for orthotopic BT-474 (G d = 5.9 ± 0.2 kPa, G l = 4.7 ± 0.2 kPa, n = 7) and luc-MDA-MB-231-LM2-4 (G d = 7.9 ± 0.4 kPa, G l = 6.0 ± 0.2 kPa, n = 6) breast cancer xenografts, and luc-PANC1 (G d = 6.9 ± 0.3 kPa, G l = 6.2 ± 0.2 kPa, n = 7) pancreatic cancer xenografts, compared with tumors associated with the nervous system, including GTML/Trp53KI/KI medulloblastoma (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), orthotopic luc-D-212-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 7), luc-RG2 (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5), and luc-U-87-MG (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 8) glioblastoma xenografts, intracranially propagated luc-MDA-MB-231-LM2-4 (G d = 3.7 ± 0.2 kPa, G l = 2.2 ± 0.1 kPa, n = 7) breast cancer xenografts, and Th-MYCN neuroblastomas (G d = 3.5 ± 0.2 kPa, G l = 2.3 ± 0.2 kPa, n = 5). Positive correlations between both elasticity (r = 0.72, P < 0.0001) and viscosity (r = 0.78, P < 0.0001) were determined with collagen fraction, but not with cellular or vascular density. Treatment with collagenase significantly reduced G d (P = 0.002) and G l (P = 0.0006) in orthotopic breast tumors. Texture analysis of extracted images of picrosirius red staining revealed significant negative correlations of entropy with G d (r = -0.69, P < 0.0001) and G l (r = -0.76, P < 0.0001), and positive correlations of fractal dimension with G d (r = 0.75, P < 0.0001) and G l (r = 0.78, P < 0.0001). MR elastography can thus provide sensitive imaging biomarkers of tumor collagen deposition and its therapeutic modulation. SIGNIFICANCE: MR elastography enables noninvasive detection of tumor stiffness and will aid in the development of ECM-targeting therapies.
Collapse
Affiliation(s)
- Jin Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | | | - Jessica K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Emma L Reeves
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Andreas Heindl
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Maria Vinci
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Filipa Lopes
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Craig Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Caroline J Springer
- Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ralph Sinkus
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
226
|
Mierke CT. The Role of the Optical Stretcher Is Crucial in the Investigation of Cell Mechanics Regulating Cell Adhesion and Motility. Front Cell Dev Biol 2019; 7:184. [PMID: 31552247 PMCID: PMC6736998 DOI: 10.3389/fcell.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanical properties of cells, tissues, and the surrounding extracellular matrix environment play important roles in the process of cell adhesion and migration. In physiological and pathological processes of the cells, such as wound healing and cancer, the capacity to migrate through the extracellular matrix is crucial. Hence biophysical techniques were used to determine the mechanical properties of cells that facilitate the various migratory capacities. Since the field of mechanobiology is rapidly growing, the reliable and reproducible characterization of cell mechanics is required that facilitates the adhesion and migration of cells. One of these cell mechanical techniques is the optical stretching device, which was originally developed to investigate the mechanical properties of cells, such as the deformation of single cells in suspension. After discussing the strengths and weaknesses of the technology, the latest findings in optical stretching-based cell mechanics are presented in this review. Finally, the mechanical properties of cells are correlated with their migratory potential and it is pointed out how the inhibition of biomolecules that contribute to the to the maintenance of cytoskeletal structures in cells affect their mechanical deformability.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
227
|
Tossas-Milligan K, Shalabi S, Jones V, Keely PJ, Conklin MW, Elicerie KW, Winn R, Sistrunk C, Geradts J, Miranda-Carboni G, Dietze EC, Yee LD, Seewaldt VL. Mammographic density: intersection of advocacy, science, and clinical practice. CURRENT BREAST CANCER REPORTS 2019; 11:100-110. [PMID: 33312342 PMCID: PMC7728377 DOI: 10.1007/s12609-019-00316-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose Here we aim to review the association between mammographic density, collagen structure and breast cancer risk. Findings While mammographic density is a strong predictor of breast cancer risk in populations, studies by Boyd show that mammographic density does not predict breast cancer risk in individuals. Mammographic density is affected by age, parity, menopausal status, race/ethnicity, and body mass index (BMI).New studies normalize mammographic density to BMI may provide a more accurate way to compare mammographic density in women of diverse race and ethnicity. Preclinical and tissue-based studies have investigated the role collagen composition and structure in predicting breast cancer risk. There is emerging evidence that collagen structure may activate signaling pathways associated with aggressive breast cancer biology. Summary Measurement of film mammographic density does not adequately capture the complex signaling that occurs in women with at-risk collagen. New ways to measure at-risk collagen potentially can provide a more accurate view of risk.
Collapse
Affiliation(s)
| | - Sundus Shalabi
- City of Hope Comprehensive Cancer Center, Duarte, CA
- Al Quds University, Jerusalem, West Bank
| | | | | | | | | | - Robert Winn
- University of Illinois, Chicago Cancer Center, Chicago, IL
| | | | | | | | | | - Lisa D. Yee
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | |
Collapse
|
228
|
Vafaizadeh V, Peuhu E, Mikkola ML, Khaled WT, Bentires-Alj M, Koledova Z. The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis. J Mammary Gland Biol Neoplasia 2019; 24:201-206. [PMID: 31494779 DOI: 10.1007/s10911-019-09436-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 02/02/2023] Open
Abstract
The eleventh annual workshop of the European Network for Breast Development and Cancer, Methods in mammary gland biology and breast cancer, took place on the 16th to 18th of May 2019 in Weggis, Switzerland. The main topics of the meeting were high resolution genomics and proteomics for the study of mammary gland development and cancer, breast cancer signaling, tumor microenvironment, preclinical models of breast cancer, and tissue morphogenesis. Exciting novel findings in, or highly relevant to, mammary gland biology and breast cancer field were presented, with insights into the methods used to obtain them. Among others, the discussed methods included single-cell RNA sequencing, genetic barcoding, lineage tracing, spatial transcriptomics, optogenetics, genetic mouse models and organoids.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Cancer Research Laboratory FICAN West, University of Turku and Turku University Hospital, Turku, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Mohamed Bentires-Alj
- Department of Biomedicine, Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
229
|
Pranda MA, Gray KM, DeCastro AJL, Dawson GM, Jung JW, Stroka KM. Tumor Cell Mechanosensing During Incorporation into the Brain Microvascular Endothelium. Cell Mol Bioeng 2019; 12:455-480. [PMID: 31719927 DOI: 10.1007/s12195-019-00591-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Tumor metastasis to the brain occurs in approximately 20% of all cancer cases and often occurs due to tumor cells crossing the blood-brain barrier (BBB). The brain microenvironment is comprised of a soft hyaluronic acid (HA)-rich extracellular matrix with an elastic modulus of 0.1-1 kPa, whose crosslinking is often altered in disease states. Methods To explore the effects of HA crosslinking on breast tumor cell migration, we developed a biomimetic model of the human brain endothelium, consisting of brain microvascular endothelial cell (HBMEC) monolayers on HA and gelatin (HA/gelatin) films with different degrees of crosslinking, as established by varying the concentration of the crosslinker Extralink. Results and Discussion Metastatic breast tumor cell migration speed, diffusion coefficient, spreading area, and aspect ratio increased with decreasing HA crosslinking, a mechanosensing trend that correlated with tumor cell actin organization but not CD44 expression. Meanwhile, breast tumor cell incorporation into endothelial monolayers was independent of HA crosslinking density, suggesting that alterations in HA crosslinking density affect tumor cells only after they exit the vasculature. Tumor cells appeared to exploit both the paracellular and transcellular routes of trans-endothelial migration. Quantitative phenotyping of HBMEC junctions via a novel Python software revealed a VEGF-dependent decrease in punctate VE-cadherin junctions and an increase in continuous and perpendicular junctions when HBMECs were treated with tumor cell-secreted factors. Conclusions Overall, our quantitative results suggest that a combination of biochemical and physical factors promote tumor cell migration through the BBB.
Collapse
Affiliation(s)
- Marina A Pranda
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Ariana Joy L DeCastro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Gregory M Dawson
- Department of Biology, University of Maryland, College Park, College Park, MD 20742 USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA.,Biophysics Program, University of Maryland, College Park, College Park, MD 20742 USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Fischell Department of Bioengineering, University of Maryland, College Park, 3110 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742 USA
| |
Collapse
|
230
|
Zuela-Sopilniak N, Lammerding J. Engineering approaches to studying cancer cell migration in three-dimensional environments. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180219. [PMID: 31431175 PMCID: PMC6627017 DOI: 10.1098/rstb.2018.0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most devastating diseases of our time, with 17 million new cancer cases and 9.5 million cancer deaths in 2018 worldwide. The mortality associated with cancer results primarily from metastasis, i.e. the spreading of cancer cells from the primary tumour to other organs. The invasion and migration of cells through basement membranes, tight interstitial spaces and endothelial cell layers are key steps in the metastatic cascade. Recent studies demonstrated that cell migration through three-dimensional environments that mimic the in vivo conditions significantly differs from their migration on two-dimensional surfaces. Here, we review recent technological advances made in the field of cancer research that provide more 'true to the source' experimental platforms and measurements for the study of cancer cell invasion and migration in three-dimensional environments. These include microfabrication, three-dimensional bioprinting and intravital imaging tools, along with force and stiffness measurements of cells and their environments. These techniques will enable new studies that better reflect the physiological environment found in vivo, thereby producing more robust results. The knowledge achieved through these studies will aid in the development of new treatment options with the potential to ultimately lighten the devastating cost cancer inflicts on patients and their families. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
231
|
Azadi S, Aboulkheyr Es H, Razavi Bazaz S, Thiery JP, Asadnia M, Ebrahimi Warkiani M. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118526. [PMID: 31398408 DOI: 10.1016/j.bbamcr.2019.118526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/20/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
Expression of programmed death-ligand 1 (PD-L1) in cancer cells plays an important role in cancer-immune cell interaction. The emerging evidence suggests regulation of PD-L1 expression by several tumor microenvironmental cues. However, the association of PD-L1 expression with chemical and mechanical features of the tumor microenvironment, specifically epidermal growth factor receptor (EGFR) signaling and matrix stiffness, remains elusive. Herein, we determine whether EGFR targeting and substrate stiffness affect the regulation of PD-L1 expression. Breast carcinoma cell lines, MCF7 and MDA-MB-231, were cultured under different conditions targeting EGFR and exposing cells to distinct substrate stiffness to evaluate PD-L1 expression. Furthermore, the ability to form aggregates in short-term culture of breast carcinoma cells and its effect on expression level of PD-L1 was probed. Our results indicated that PD-L1 expression was altered in response to both EGFR inhibition and substrate stiffness. Additionally, a positive association between the formation of multicellular aggregates and PD-L1 expression was observed. MDA-MB-231 cells expressed the highest PD-L1 level on a stiff substrate, while inhibition of EGFR reduced expression of PD-L1. The results suggested that both physical and chemical features of tumor microenvironment regulate PD-L1 expression through alteration of tumor aggregate formation potential. In line with these results, the in-silico study highlighted a positive correlation between PD-L1 expression, EGFR signaling, epithelial to mesenchymal transition related transcription factors (EMT-TFs) and stemness markers in metastatic breast cancer. These findings improve our understanding of regulation of PD-L1 expression by tumor microenvironment leading to evasion of tumor cells from the immune system.
Collapse
Affiliation(s)
- Shohreh Azadi
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia; School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jean Paul Thiery
- Inserm Unit 1186, Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney 2109, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute of Molecular Medicine, Sechenov University, Moscow 119991, Russia.
| |
Collapse
|
232
|
Shigeishi H, Yokoyama S, Murodumi H, Sakuma M, Kato H, Higashikawa K, Takechi M, Ohta K, Sugiyama M. Effect of hydrogel stiffness on morphology and gene expression pattern of CD44 high oral squamous cell carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2826-2836. [PMID: 31934119 PMCID: PMC6949719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
The stiffness of extracellular matrix (ECM) has been associated with tumor growth, phenotypic plasticity, and invasion through modulation of the intracellular signaling pathway. However, the effect of ECM stiffness on oral cancer stem cells (CSCs) has not been fully elucidated. Therefore, we preliminarily investigated changes in phenotype and gene expression in CD44 positive-oral squamous cell carcinoma (OSCC) cells (i.e., CD44high OM-1 cells) that were cultured on laminin-coated hydrogel with various degrees of stiffness. Mesenchymal-like morphology was observed when cells were cultured on 4.0 kPa laminin-coated hydrogel; amoeboid-like morphology was observed when cells were cultured on 1.0 kPa and 0.5 kPa laminin-coated hydrogel. These results indicated that CD44high OM-1 cells underwent mesenchymal to amoeboid transition (MAT) when cultured on laminin-coated softer hydrogel. E-cadherin and ESA mRNA expression levels were significantly reduced in CD44high OM-1 cells cultured on 0.5 and 1.0 kPa laminin-coated hydrogel, compared with their levels in control cells cultured in laminin-coated dishes. Significant changes in CD44 mRNA expression were not found in CD44high OM-1 cells that were cultured on different stiff hydrogels, compared with expression in control cells. Microarray analysis revealed that expression of cofilin, an intracellular actin-modulating protein, was increased by 8.19-fold in amoeboid-like CD44high OM-1 cells, compared with mesenchymal-like CD44high OM-1 cells; this suggested that cofilin was associated with MAT in CD44high OSCC cells. Further studies are needed to clarify the relationship between cofilin and invasion ability in CD44high amoeboid-like OSCC cells.
Collapse
Affiliation(s)
- Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sho Yokoyama
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroshi Murodumi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroki Kato
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koichiro Higashikawa
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Masaru Sugiyama
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
233
|
Abstract
Could reprogramming the pretumor microenvironment transform cancer care?
Collapse
Affiliation(s)
- Thea D Tlsty
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
234
|
Leiphart RJ, Chen D, Peredo AP, Loneker AE, Janmey PA. Mechanosensing at Cellular Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7509-7519. [PMID: 30346180 DOI: 10.1021/acs.langmuir.8b02841] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the plasma membrane interface, cells use various adhesions to sense their extracellular environment. These adhesions facilitate the transmission of mechanical signals that dictate cell behavior. This review discusses the mechanisms by which these mechanical signals are transduced through cell-matrix and cell-cell adhesions and how this mechanotransduction influences cell processes. Cell-matrix adhesions require the activation of and communication between various transmembrane protein complexes such as integrins. These links at the plasma membrane affect how a cell senses and responds to its matrix environment. Cells also communicate with each other through cell-cell adhesions, which further regulate cell behavior on a single- and multicellular scale. Coordination and competition between cell-cell and cell-matrix adhesions in multicellular aggregates can, to a significant extent, be modeled by differential adhesion analyses between the different interfaces even without knowing the details of cellular signaling. In addition, cell-matrix and cell-cell adhesions are connected by an intracellular cytoskeletal network that allows for direct communication between these distinct adhesions and activation of specific signaling pathways. Other membrane-embedded protein complexes, such as growth factor receptors and ion channels, play additional roles in mechanotransduction. Overall, these mechanoactive elements show the dynamic interplay between the cell, its matrix, and neighboring cells and how these relationships affect cellular function.
Collapse
Affiliation(s)
- Ryan J Leiphart
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Dongning Chen
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Ana P Peredo
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Abigail E Loneker
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Paul A Janmey
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Institute for Medicine and Engineering, Department of Physiology , University of Pennsylvania , 3340 Smith Walk , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| |
Collapse
|
235
|
Das J, Chakraborty S, Maiti TK. Mechanical stress-induced autophagic response: A cancer-enabling characteristic? Semin Cancer Biol 2019; 66:101-109. [PMID: 31150765 DOI: 10.1016/j.semcancer.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Metastasis is the leading cause of cancer mortality. Throughout the cascade of metastasis, cancer cells are exposed to both chemical and mechanical cues which influence their migratory behavior and survival. Mechanical forces in the milieu of cancer may arise due to excessive growth of cells in a confinement as in case of solid tumors, interstitial flows within tumors and due to blood flow in the vasculature as in case of circulating tumor cells. The focus of this review is to highlight the mechanical forces prevalent in the cancer microenvironment and discuss the impact of mechanical stresses on cancer progression, with special focus on mechanically induced autophagic response in cancer cells. Autophagy is a cellular homeostatic mechanism that a cell employs not only for recycling of damaged organelles and turnover of proteins involved in cellular migration but also as an adaptive response to survive through unfavourable stresses. Elucidation of the role of mechanically triggered autophagic response may lead to a better understanding of the mechanobiological aspects of metastatic cancer and unravelling the associated signaling mechanochemical pathways may hint at potential therapeutic targets.
Collapse
Affiliation(s)
- Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
236
|
Krüger M, Melnik D, Kopp S, Buken C, Sahana J, Bauer J, Wehland M, Hemmersbach R, Corydon TJ, Infanger M, Grimm D. Fighting Thyroid Cancer with Microgravity Research. Int J Mol Sci 2019; 20:ijms20102553. [PMID: 31137658 PMCID: PMC6566201 DOI: 10.3390/ijms20102553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Microgravity in space or simulated by special ground-based devices provides an unusual but unique environment to study and influence tumour cell processes. By investigating thyroid cancer cells in microgravity for nearly 20 years, researchers got insights into tumour biology that had not been possible under normal laboratory conditions: adherently growing cancer cells detach from their surface and form three-dimensional structures. The cells included in these multicellular spheroids (MCS) were not only altered but behave also differently to those grown in flat sheets in normal gravity, more closely mimicking the conditions in the human body. Therefore, MCS became an invaluable model for studying metastasis and developing new cancer treatment strategies via drug targeting. Microgravity intervenes deeply in processes such as apoptosis and in structural changes involving the cytoskeleton and the extracellular matrix, which influence cell growth. Most interestingly, follicular thyroid cancer cells grown under microgravity conditions were shifted towards a less-malignant phenotype. Results from microgravity research can be used to rethink conventional cancer research and may help to pinpoint the cellular changes that cause cancer. This in turn could lead to novel therapies that will enhance the quality of life for patients or potentially develop new preventive countermeasures.
Collapse
Affiliation(s)
- Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Melnik
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Christoph Buken
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Gravitational Biology, German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39120 Magdeburg, Germany.
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
237
|
Mascheroni P, López Alfonso JC, Kalli M, Stylianopoulos T, Meyer-Hermann M, Hatzikirou H. On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas. Cancers (Basel) 2019; 11:cancers11050716. [PMID: 31137643 PMCID: PMC6562768 DOI: 10.3390/cancers11050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Tumor microenvironment is a critical player in glioma progression, and novel therapies for its targeting have been recently proposed. In particular, stress-alleviation strategies act on the tumor by reducing its stiffness, decreasing solid stresses and improving blood perfusion. However, these microenvironmental changes trigger chemo-mechanically induced cellular phenotypic transitions whose impact on therapy outcomes is not completely understood. In this work we analyze the effects of mechanical compression on migration and proliferation of glioma cells. We derive a mathematical model of glioma progression focusing on cellular phenotypic plasticity. Our results reveal a trade-off between tumor infiltration and cellular content as a consequence of stress-alleviation approaches. We discuss how these novel findings increase the current understanding of glioma/microenvironment interactions and can contribute to new strategies for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Pietro Mascheroni
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, 38106 Braunschweig, Germany.
| | - Juan Carlos López Alfonso
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, 38106 Braunschweig, Germany.
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany.
| | - Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Michael Meyer-Hermann
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, 38106 Braunschweig, Germany.
- Centre for Individualized Infection Medicine, 30625 Hannover, Germany.
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Haralampos Hatzikirou
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, 38106 Braunschweig, Germany.
| |
Collapse
|
238
|
Ansaryan S, Khayamian MA, Saghafi M, Shalileh S, Nikshoar MS, Abbasvandi F, Mahmoudi M, Bahrami F, Abdolahad M. Stretch Induces Invasive Phenotypes in Breast Cells Due to Activation of Aerobic-Glycolysis-Related Pathways. ACTA ACUST UNITED AC 2019; 3:e1800294. [PMID: 32648669 DOI: 10.1002/adbi.201800294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/22/2019] [Indexed: 12/19/2022]
Abstract
It is increasingly being accepted that cells' physiological functions are substantially dependent on the mechanical characteristics of their surrounding tissue. This is mainly due to the key role of biomechanical forces on cells and their nucleus' shapes, which have the capacity to regulate chromatin conformation and thus gene regulations. Therefore, it is reasonable to postulate that altering the biomechanical properties of tissue may have the capacity to change cell functions. Here, the role of cell stretching (as a model of biomechanical variations) is probed in cell migration and invasion capacity using human normal and cancerous breast cells. By several analyses (i.e., scratch assay, invasion to endothelial barrier, real-time RNA sequencing, confocal imaging, patch clamp, etc.), it is revealed that the cell-stretching process could increase the migration and invasion capabilities of normal and cancerous cells, respectively. More specifically, it is found that poststretched breast cancer cells are found in low grades of invasion; they substantially upregulate the expression of manganese-dependent superoxide dismutase (MnSOD) through activation of H-Ras proteins, which subsequently induce aerobic glycolysis followed by an overproduction of matrix metalloproteinases (MMP)-reinforced filopodias. Presence of such invadopodias facilitates targeting of the endothelial layer, and increased invasive behaviors in breast cells are observed.
Collapse
Affiliation(s)
- Saeid Ansaryan
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Ali Khayamian
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,School of Mechanical Engineering, College of Engineering, University of Tehran, 11155-4563, Tehran, Iran
| | - Mohammad Saghafi
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Shahriar Shalileh
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Saied Nikshoar
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 13169-43551, Tehran, Iran
| | - Farideh Bahrami
- Neuroscience Research Center and Dept. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19839-63113, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.,Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| |
Collapse
|
239
|
Khan ZS, Santos JM, Vaz NG, Hussain F. Enhanced blebbing as a marker for metastatic prostate cancer. BIOMICROFLUIDICS 2019; 13:034110. [PMID: 31431812 PMCID: PMC6697032 DOI: 10.1063/1.5085346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 05/17/2023]
Abstract
Highly metastatic prostate cancer cells flowing through a microfluidic channel form plasma membrane blebs: they form 27% more than normal cells and have a lower stiffness (about 50%). Hypo-osmotic stress assays (with ∼ 50 % osmolarity) show 22% more blebbing of highly metastatic than moderately metastatic and 30% more than normal cells. Plasma membrane blebbing is known to provide important metastatic capabilities to cancer cells by aiding cell detachment from the primary tumor site and increasing cell deformability to promote cell migration through the extracellular matrix. Increased blebbing was attributed by others to decreased phosphorylated ezrin, radixin, and moesin (ERM) (p-ERM) protein expression-p-ERMs bind the plasma membrane to the actin cortex and reduced p-ERM expression can weaken membrane-cortex attachment. Myosin II also influences blebbing as myosin's natural contraction generates tension in the actin cortex. This increases cellular hydrostatic pressure, causes cortex rupture, cytoplasm flow out of the cortex, and hence blebbing. Highly metastatic cells are surprisingly found to express similar ezrin and myosin II levels but higher moesin levels in comparison with lowly metastatic or normal cells-suggesting that their levels, contrary to the literature [G. Charras and E. Paluch, Nat. Rev. Mol. Cell Biol. 9(9), 730-736 (2008); J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. 106(44), 18581-18586 (2009); M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. 109(36), 14434-14439 (2012); E. K. Paluch and E. Raz: Curr. Opin. Cell Biol. 25(5), 582-590 (2013)], are not important in metastatic prostate cell blebbing. Our results show that reduced F-actin is primarily responsible for increased blebbing in these metastatic cells. Blebbing can thus serve as a simple prognostic marker for the highly incident and lethal metastatic prostate cancer.
Collapse
Affiliation(s)
- Zeina S Khan
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Neil G Vaz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
240
|
Diaz Bessone MI, Gattas MJ, Laporte T, Tanaka M, Simian M. The Tumor Microenvironment as a Regulator of Endocrine Resistance in Breast Cancer. Front Endocrinol (Lausanne) 2019; 10:547. [PMID: 31440208 PMCID: PMC6694443 DOI: 10.3389/fendo.2019.00547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor positive breast neoplasias represent over 70% of diagnosed breast cancers. Depending on the stage at which the tumor is detected, HER2 status and genomic risk, endocrine therapy is combined with either radio, chemo and/or targeted therapy. A growing amount of evidence supports the notion that components of the tumor microenvironment play specific roles in response to treatment and that strategies targeting these key interactions with tumor cells could pave the way to a new generation of therapies. In this review, we analyze the evidence suggesting different components of the tumor microenvironment play a role in hormone receptor positive breast cancer progression. In particular we focus on the immune system, carcinoma associated fibroblasts and the extracellular matrix. Further insight into the cross talk between these constituents of the microenvironment and the tumor cells may lead to therapies that eliminate disseminated metastatic cells early on, and thus reduce distant disease relapse which is the leading cause of death for patients who are diagnosed with this illness.
Collapse
Affiliation(s)
- María Inés Diaz Bessone
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María José Gattas
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Tomás Laporte
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Max Tanaka
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Amsterdam UMC, VUmc School of Medical Sciences, University of Vrije, Amsterdam, Netherlands
| | - Marina Simian
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- *Correspondence: Marina Simian
| |
Collapse
|
241
|
Guo L, Ma L, Liu C, Lei Y, Tang N, Huang Y, Huang G, Li D, Wang Q, Liu G, Tang M, Jing Z, Deng Y. ERp29 counteracts the suppression of malignancy mediated by endoplasmic reticulum stress and promotes the metastasis of colorectal cancer. Oncol Rep 2018; 41:1603-1615. [PMID: 30569094 PMCID: PMC6365697 DOI: 10.3892/or.2018.6943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29), an endoplasmic reticulum (ER) protein, participates in ER stress (ERS), but little is known about the association of ERp29 with ERS in the metastasis and prognosis of cancerous diseases. The present study revealed that ERp29 was important to ERS and interfered with the malignant behaviors of colorectal cancer (CRC). Experiments in in vitro and in animal models revealed that ERS inhibited the cell growth and suppressed the metastatic capacity of CRC cells, but ERp29 counteracted these effects. Furthermore, it was demonstrated that ERp29 recovered the migration and metastatic behaviors of CRC cells suppressed by ERS, mediated only when it combined with cullin5 (CUL5). ERp29 also relied on CUL5 to promote epithelial-mesenchymal transition. From the immunohistochemical examination of CRC tissues, the high expression of ERp29 was revealed to predict the poor prognosis of 457 CRC cases. The retrospective analysis of the clinicopathological data of patients with CRC was consistent with the results of the in vitro and in vivo experiments. Thus, ERp29 protected CRC cells from ERS-mediated reduction of malignancy to promote metastasis and may be a potential target of medical intervention for CRC therapy.
Collapse
Affiliation(s)
- Lili Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lili Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yingxin Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guan Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dazhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiliang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
242
|
Chen M, Xie S. Therapeutic targeting of cellular stress responses in cancer. Thorac Cancer 2018; 9:1575-1582. [PMID: 30312004 PMCID: PMC6275842 DOI: 10.1111/1759-7714.12890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Similar to bacteria, yeast, and other organisms that have evolved pathways to respond to environmental stresses, cancer cells develop mechanisms that increase genetic diversity to facilitate adaptation to a variety of stressful conditions, including hypoxia, nutrient deprivation, exposure to DNA-damaging agents, and immune responses. To survive, cancer cells trigger mechanisms that drive genomic instability and mutation, alter gene expression programs, and reprogram the metabolic pathways to evade growth inhibition signaling and immune surveillance. A deeper understanding of the molecular mechanisms that underlie the pathways used by cancer cells to overcome stresses will allow us to develop more efficacious strategies for cancer therapy. Herein, we overview several key stresses imposed on cancer cells, including oxidative, metabolic, mechanical, and genotoxic, and discuss the mechanisms that drive cancer cell responses. The therapeutic implications of these responses are also considered, as these factors pave the way for the targeting of stress adaption pathways in order to slow cancer progression and block resistance to therapy.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
243
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
244
|
Laplane L, Duluc D, Larmonier N, Pradeu T, Bikfalvi A. The Multiple Layers of the Tumor Environment. Trends Cancer 2018; 4:802-809. [PMID: 30470302 DOI: 10.1016/j.trecan.2018.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
The notion of tumor microenvironment (TME) has been brought to the forefront of recent scientific literature on cancer. However, there is no consensus on how to define and spatially delineate the TME. We propose that the time is ripe to go beyond an all-encompassing list of the components of the TME, and to construct a multilayered view of cancer. We distinguish six layers of environmental interactions with the tumor and show that they are associated with distinct mechanisms, and ultimately with distinct therapeutic approaches.
Collapse
Affiliation(s)
- Lucie Laplane
- IHPST, CNRS UMR 8590, Paris, France; Institut Gustave Roussy, UMR 8590, France
| | - Dorothée Duluc
- ImmunoConcept, CNRS UMR 5164, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Nicolas Larmonier
- ImmunoConcept, CNRS UMR 5164, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, CNRS UMR 5164, Bordeaux, France; University of Bordeaux, Bordeaux, France; Co-last authors.
| | - Andreas Bikfalvi
- IHPST, CNRS UMR 8590, Paris, France; University of Bordeaux, Bordeaux, France; LAMC-INSERM U1029, Bordeaux, France; Co-last authors.
| |
Collapse
|
245
|
Role of Extracellular Matrix in Development and Cancer Progression. Int J Mol Sci 2018; 19:ijms19103028. [PMID: 30287763 PMCID: PMC6213383 DOI: 10.3390/ijms19103028] [Citation(s) in RCA: 672] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
The immense diversity of extracellular matrix (ECM) proteins confers distinct biochemical and biophysical properties that influence cell phenotype. The ECM is highly dynamic as it is constantly deposited, remodelled, and degraded during development until maturity to maintain tissue homeostasis. The ECM’s composition and organization are spatiotemporally regulated to control cell behaviour and differentiation, but dysregulation of ECM dynamics leads to the development of diseases such as cancer. The chemical cues presented by the ECM have been appreciated as key drivers for both development and cancer progression. However, the mechanical forces present due to the ECM have been largely ignored but recently recognized to play critical roles in disease progression and malignant cell behaviour. Here, we review the ways in which biophysical forces of the microenvironment influence biochemical regulation and cell phenotype during key stages of human development and cancer progression.
Collapse
|
246
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 DOI: 10.12688/f1000research.15064.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
247
|
Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. F1000Res 2018; 7. [PMID: 30135716 PMCID: PMC6073095 DOI: 10.12688/f1000research.15064.2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumour metastasis is a dynamic and systemic process. It is no longer seen as a tumour cell-autonomous program but as a multifaceted and complex series of events, which is influenced by the intrinsic cellular mutational burden of cancer cells and the numerous bidirectional interactions between malignant and non-malignant cells and fine-tuned by the various extrinsic cues of the extracellular matrix. In cancer biology, metastasis as a process is one of the most technically challenging aspects of cancer biology to study. As a result, new platforms and technologies are continually being developed to better understand this process. In this review, we discuss some of the recent advances in metastasis and how the information gleaned is re-shaping our understanding of metastatic dissemination.
Collapse
Affiliation(s)
- Jessica L Chitty
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - Morghan C Lucas
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research & the Kinghorn Cancer Centre, Cancer Division, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW , 2010, Australia
| |
Collapse
|
248
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
249
|
Socovich AM, Naba A. The cancer matrisome: From comprehensive characterization to biomarker discovery. Semin Cell Dev Biol 2018; 89:157-166. [PMID: 29964200 DOI: 10.1016/j.semcdb.2018.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
Tumor progression and dissemination critically depend on support from the tumor microenvironment, the ensemble of cellular and acellular components surrounding and interacting with tumor cells. The extracellular matrix (ECM), the complex scaffolding of hundreds of proteins organizing cells in tissues, is a major component of the tumor microenvironment. It orchestrates cellular processes including proliferation, migration, and invasion, that are highly dysregulated during cancer progression. Alterations in ECM abundance, integrity, and mechanical properties have been correlated with poorer prognosis for cancer patients. Yet the ECM proteome, or "matrisome," of tumors remained until recently largely unexplored. This review will present the recent developments in computational and proteomic technologies that have allowed the comprehensive characterization of the ECM of different tumor types and microenvironmental niches. These approaches have resulted in the definition of protein signatures distinguishing tumors from normal tissues, tumors of different stages, primary from secondary tumors, and tumors from other diseased states such as fibrosis. Moreover, recent studies have demonstrated that the levels of expression of certain genes encoding ECM and ECM-associated proteins is prognostic of cancer patient survival and can thus serve as biomarkers. Last, proteomic studies have permitted the identification of novel ECM proteins playing functional roles in cancer progression. Such proteins have the potential to be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Alexandra M Socovich
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
250
|
Meng C, He Y, Wei Z, Lu Y, Du F, Ou G, Wang N, Luo XG, Ma W, Zhang TC, He H. MRTF-A mediates the activation of COL1A1 expression stimulated by multiple signaling pathways in human breast cancer cells. Biomed Pharmacother 2018; 104:718-728. [PMID: 29807221 DOI: 10.1016/j.biopha.2018.05.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/29/2022] Open
Abstract
Deposition of type I collage in ECM is an important property of various fibrotic diseases including breast cancer. The excessive expression of type I collagen contributes to the rigidity of cancer tissue and increases the mechanical stresses which facilitate metastasis and proliferation of cancer cells via the activation of TGF-β signaling pathway. The increased mechanical stresses also cause the compression of blood vessels and result in hypoperfusion and impaired drug delivery in cancer tissue. Additionally, type I collage functions as the ligand of α2β1-integrin and DDR1/2 receptors on the membrane of cancer cells to initiate signal transduction leading to metastasis. The expression of type I collage in cancer cells is previously shown to be inducible by TGF-β however the detailed mechanism by which the synthesis of type I collagen is regulated in breast cancer cells remains unclear. Herein, we report that MRTF-A, a co-activator of SRF, is important for the regulation of type I collagen gene COL1A1 in breast cancer cells. MRTF-A physically interacted with the promoter of COL1A1 to facilitate histone acetylation and RNA polymerase II recruitment. The RhoC-ROCK signaling pathway which controls the nuclear localization of MRTF-A regulated the transcription of COL1A1 in human breast cancer cells. TGF-β and Wnt signaling increased the expression of both MRTF-A and COL1A1. Furthermore, depletion of MRTF-A abolished the upregulation of COL1A1 in response to the TGF-β or Wnt signaling, indicating the importance of MRTF-A in the synthesis of type I collagen in breast cancer. Given the crucial roles of type I collagen in the formation of metastasis-prone and hypoperfusion microenvironment, MRTF-A would be a potential target for the development of anti-breast cancer activities.
Collapse
Affiliation(s)
- Chao Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yongping He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhaoqiang Wei
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yulin Lu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Fu Du
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guofang Ou
- Chongqing Business Vocational College, Chongqing, 401331, PR China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Wenjian Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China; College of Life Sciences, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|