201
|
Natalini A, Simonetti S, Favaretto G, Peruzzi G, Antonangeli F, Santoni A, Muñoz-Ruiz M, Hayday A, Di Rosa F. OMIP-079: Cell cycle of CD4 + and CD8 + naïve/memory T cell subsets, and of Treg cells from mouse spleen. Cytometry A 2021; 99:1171-1175. [PMID: 34668313 PMCID: PMC9543383 DOI: 10.1002/cyto.a.24509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023]
Abstract
A multicolor flow cytometry panel was designed and optimized to define the following nine mouse T cell subsets: Treg (CD3+ CD4+ CD8− FoxP3+), CD4+ T naïve (CD3+ CD4+ CD8−FoxP3− CD44int/low CD62L+), CD4+ T central memory (CD3+ CD4+ CD8− FoxP3− CD44high CD62L+), CD4+ T effector memory (CD3+ CD4+ CD8− FoxP3− CD44high CD62L−), CD4+ T EMRA (CD3+ CD4+ CD8− FoxP3− CD44int/low CD62L−), CD8+ T naïve (CD3+ CD8+ CD4− CD44int/low CD62L+), CD8+ T central memory (CD3+ CD8+ CD4− CD44high CD62L+), CD8+ T effector memory (CD3+ CD8+ CD4− CD44high CD62L−), and CD8+ T EMRA (CD3+ CD8+ CD4− CD44int/low CD62L−). In each T cell subset, a dual staining for Ki‐67 expression and DNA content was employed to distinguish the following cell cycle phases: G0 (Ki67−, with 2n DNA), G1 (Ki67+, with 2n DNA), and S‐G2/M (Ki67+, with 2n < DNA ≤ 4n). This panel was established for the analysis of mouse (C57BL/6J) spleen.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Gabriele Favaretto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Adrian Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.,Peter Gorer Department of Immunobiology, King's College London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
202
|
CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Sci Rep 2021; 11:20499. [PMID: 34654826 PMCID: PMC8520003 DOI: 10.1038/s41598-021-00007-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The presence of T cells that are dimly positive for the B cell marker CD20 is well-established in autoimmunity and correlates with disease severity in various diseases. Further, we previously identified that the level of CD20-positive T cells was three-fourfold elevated in ascites fluid of ovarian carcinoma patients, together suggesting a role in both autoimmunity and cancer. In this respect, treatment of autoimmune patients with the CD20-targeting antibody Rituximab has also been shown to target and deplete CD20-positive T cells, previously identified as IFN-gamma producing, low proliferative, CD8 cytotoxic T cells with an effector memory (EM) differentiation state. However, the exact phenotype and relevance of CD20-positive T cells remains unclear. Here, we set out to identify the transcriptomic profile of CD20-positive T cells using RNA sequencing. Further, to gain insight into potential functional properties of CD20 expression in T cells, CD20 was ectopically expressed on healthy human T cells and phenotypic, functional, migratory and adhesive properties were determined in vitro and in vivo. Together, these assays revealed a reduced transmigration and an enhanced adhesive profile combined with an enhanced activation status for CD20-positive T cells.
Collapse
|
203
|
Abstract
The surface of every eukaryotic cell is coated in a dense layer of structurally diverse glycans that together comprise the glycocalyx, a key interface between intracellular biochemistry and the external environment. Many of the glycans within the glycocalyx terminate in anionic monosaccharides belonging to the sialic acid family. Advances in our understanding of the biological processes mediated by sialic acids at the interfaces between cells have catalyzed interest in metabolic, enzymatic, and chemical strategies to edit the total complement of cellular sialic acids-the sialome. Here, we review strategies for altering the composition of the sialome with particular focus on glycan structures and state-of-the-art tools.
Collapse
Affiliation(s)
- Landon J. Edgar
- Department of Pharmacology and Toxicology, The University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
204
|
Ross SH, Rollings CM, Cantrell DA. Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. Front Immunol 2021; 12:712402. [PMID: 34603285 PMCID: PMC8484760 DOI: 10.3389/fimmu.2021.712402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic and nutrient-sensing pathways play an important role in controlling the efficacy of effector T cells. Oxygen is a critical regulator of cellular metabolism. However, during immune responses T cells must function in oxygen-deficient, or hypoxic, environments. Here, we used high resolution mass spectrometry to investigate how the proteome of primary murine CD8+ cytotoxic T lymphocytes (CTLs) is reconfigured in response to hypoxia in vitro. We identified and quantified over 7,600 proteins and discovered that hypoxia increased the abundance of a selected number of proteins in CTLs. This included glucose transporters, metabolic enzymes, transcription factors, cytolytic effector molecules, checkpoint receptors and adhesion molecules. While some of these proteins may augment the effector functions of CTLs, others may limit their cytotoxicity. Moreover, we determined that hypoxia could inhibit IL-2-induced proliferation cues and antigen-induced pro-inflammatory cytokine production in CTLs. These data provide a comprehensive resource for understanding the magnitude of the CTL response to hypoxia and emphasise the importance of oxygen-sensing pathways for controlling CD8+ T cells. Additionally, this study provides new understanding about how hypoxia may promote the effector function of CTLs, while contributing to their dysfunction in some contexts.
Collapse
Affiliation(s)
- Sarah H Ross
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
205
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
206
|
Zhao B, Li H, Cao S, Zhong W, Li B, Jia W, Ning Z. Negative Regulators of Inflammation Response to the Dynamic Expression of Cytokines in DF-1 and MDCK Cells Infected by Avian Influenza Viruses. Inflammation 2021; 45:573-589. [PMID: 34581936 DOI: 10.1007/s10753-021-01568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
The H5N1 and H9N2 avian influenza viruses (AIVs) seriously endanger the poultry industry and threaten human health. Characteristic inflammatory responses caused by H5N1 and H9N2 AIVs in birds and mammals result in unique clinical manifestations. The role of anti-inflammatory regulators, PTX3, Del-1, and GDF-15, in H5N1 and H9N2-AIV-mediated inflammation in birds and mammals has not yet been verified. Here, the expression of PTX3, Del-1, and GDF-15 in DF-1 and MDCK cells infected with H5N1 and H9N2 AIVs and their effect on inflammatory cytokines were analyzed. Infection with both AIVs increased PTX3, Del-1, and GDF-15 expression in DF-1 and MDCK cells. Infection with H9N2 or H5N1 AIV in DF-1 and MDCK cells with overexpression of all three factors, either alone or in combination, inhibited the expression of tested inflammatory cytokines. Furthermore, co-expression of PTX3, Del-1, and GDF-15 enhanced the inhibition, irrespective of the cell line. The findings from this study offer insight into the pathogenic differences between H5N1 and H9N2 AIVs in varied hosts. Moreover, our findings can be used to help screen for host-specific anti-inflammatory agents.
Collapse
Affiliation(s)
- Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Suilan Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
207
|
Middleton JD, Sivakumar S, Hai T. Chemotherapy-Induced Changes in the Lung Microenvironment: The Role of MMP-2 in Facilitating Intravascular Arrest of Breast Cancer Cells. Int J Mol Sci 2021; 22:10280. [PMID: 34638621 PMCID: PMC8508901 DOI: 10.3390/ijms221910280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Previously, we showed that mice treated with cyclophosphamide (CTX) 4 days before intravenous injection of breast cancer cells had more cancer cells in the lung at 3 h after cancer injection than control counterparts without CTX. At 4 days after its injection, CTX is already excreted from the mice, allowing this pre-treatment design to reveal how CTX may modify the lung environment to indirectly affect cancer cells. In this study, we tested the hypothesis that the increase in cancer cell abundance at 3 h by CTX is due to an increase in the adhesiveness of vascular wall for cancer cells. Our data from protein array analysis and inhibition approach combined with in vitro and in vivo assays support the following two-prong mechanism. (1) CTX increases vascular permeability, resulting in the exposure of the basement membrane (BM). (2) CTX increases the level of matrix metalloproteinase-2 (MMP-2) in mouse serum, which remodels the BM and is functionally important for CTX to increase cancer abundance at this early stage. The combined effect of these two processes is the increased accessibility of critical protein domains in the BM, resulting in higher vascular adhesiveness for cancer cells to adhere. The critical protein domains in the vascular microenvironment are RGD and YISGR domains, whose known binding partners on cancer cells are integrin dimers and laminin receptor, respectively.
Collapse
Affiliation(s)
- Justin D. Middleton
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Subhakeertana Sivakumar
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (S.S.)
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
208
|
de Porto AP, Liu Z, de Beer R, Florquin S, Roelofs JJTH, de Boer OJ, den Haan JMM, Hendriks RW, van 't Veer C, van der Poll T, de Vos AF. Bruton's Tyrosine Kinase-Mediated Signaling in Myeloid Cells Is Required for Protective Innate Immunity During Pneumococcal Pneumonia. Front Immunol 2021; 12:723967. [PMID: 34552589 PMCID: PMC8450579 DOI: 10.3389/fimmu.2021.723967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a cytoplasmic kinase expressed in B cells and myeloid cells. It is essential for B cell development and natural antibody-mediated host defense against bacteria in humans and mice, but little is known about the role of Btk in innate host defense in vivo. Previous studies have indicated that lack of (natural) antibodies is paramount for impaired host defense against Streptococcus (S.) pneumoniae in patients and mice with a deficiency in functional Btk. In the present study, we re-examined the role of Btk in B cells and myeloid cells during pneumococcal pneumonia and sepsis in mice. The antibacterial defense of Btk-/- mice was severely impaired during pneumococcal pneumosepsis and restoration of natural antibody production in Btk-/- mice by transgenic expression of Btk specifically in B cells did not suffice to protect against infection. Btk-/- mice with reinforced Btk expression in MhcII+ cells, including B cells, dendritic cells and macrophages, showed improved antibacterial defense as compared to Btk-/- mice. Bacterial outgrowth in Lysmcre-Btkfl/Y mice was unaltered despite a reduced capacity of Btk-deficient alveolar macrophages to respond to pneumococci. Mrp8cre-Btkfl/Y mice with a neutrophil specific paucity in Btk expression, however, demonstrated impaired antibacterial defense. Neutrophils of Mrp8cre-Btkfl/Y mice displayed reduced release of granule content after pulmonary installation of lipoteichoic acid, a gram-positive bacterial cell wall component relevant for pneumococci. Moreover, Btk deficient neutrophils showed impaired degranulation and phagocytosis upon incubation with pneumococci ex vivo. Taken together, the results of our study indicate that besides regulating B cell-mediated immunity, Btk is critical for regulation of myeloid cell-mediated, and particularly neutrophil-mediated, innate host defense against S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Alexander P de Porto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Regina de Beer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, University Medical Center, Rotterdam, Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| |
Collapse
|
209
|
Jarahian M, Marstaller K, Banna N, Ahani R, Etemadzadeh MH, Boller LK, Azadmanesh K, Cid-Arregui A, Khezri A, Berger MR, Momburg F, Watzl C. Activating Natural Killer Cell Receptors, Selectins, and Inhibitory Siglecs Recognize Ebolavirus Glycoprotein. J Innate Immun 2021; 14:135-147. [PMID: 34425576 DOI: 10.1159/000517628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022] Open
Abstract
Expression of the extensively glycosylated Ebolavirus glycoprotein (EBOV-GP) induces physical alterations of surface molecules and plays a crucial role in viral pathogenicity. Here we investigate the interactions of EBOV-GP with host surface molecules using purified EBOV-GP, EBOV-GP-transfected cell lines, and EBOV-GP-pseudotyped lentiviral particles. Subsequently, we wanted to examine which receptors are involved in this recognition by binding studies to cells transfected with the EBOV-GP as well as to recombinant soluble EBOV-GP. As the viral components can also bind to inhibitory receptors of immune cells (e.g., Siglecs, TIM-1), they can even suppress the activity of immune effector cells. Our data show that natural killer (NK) cell receptors NKp44 and NKp46, selectins (CD62E/P/L), the host factors DC-SIGNR/DC-SIGN, and inhibitory Siglecs function as receptors for EBOV-GP. Our results show also moderate to strong avidity of homing receptors (P-, L-, and E-selectin) and DC-SIGNR/DC-SIGN to purified EBOV-GP, to cells transfected with EBOV-GP, as well as to the envelope of a pseudotyped lentiviral vector carrying the EBOV-GP. The concomitant activation and inhibition of the immune system exemplifies the evolutionary antagonism between the immune system and pathogens. Altogether these interactions with activating and inhibitory receptors result in a reduced NK cell-mediated lysis of EBOV-GP-expressing cells. Modulation of these interactions may provide new strategies for treating infections caused by this virus.
Collapse
Affiliation(s)
- Mostafa Jarahian
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Marstaller
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Banna
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roshanak Ahani
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lea K Boller
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | | | - Angel Cid-Arregui
- Targeted Tumor Vaccines Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
210
|
Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, Reichl U, Rapp E, Taron CH. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021; 20:162. [PMID: 34419057 PMCID: PMC8379841 DOI: 10.1186/s12934-021-01652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.
Collapse
Affiliation(s)
- Léa Chuzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Samanta Cajic
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- glyXera GmbH, 39120, Magdeburg, Germany
| | | |
Collapse
|
211
|
Distinctive Properties of Endothelial Cells from Tumor and Normal Tissue in Human Breast Cancer. Int J Mol Sci 2021; 22:ijms22168862. [PMID: 34445568 PMCID: PMC8396343 DOI: 10.3390/ijms22168862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironments shape aggressiveness and are largely maintained by the conditions of angiogenesis formation. Thus, endothelial cells’ (ECs) biological reactions are crucial to understand and control the design of efficient therapies. In this work, we used models of ECs to represent a breast cancer tumor site as well as the same, healthy tissue. Cells characterization was performed at the transcriptome and protein expression levels, and the cells functional biological responses (angiogenesis and permeability) were assessed. We showed that the expression of proteins specific to ECs (ACE+, VWF+), their differentiation (CD31+, CD 133+, CD105+, CD34-), their adhesion properties (ICAM-1+, VCAM-1+, CD62-L+), and their barrier formation (ZO-1+) were all downregulated in tumor-derived ECs. NGS-based differential transcriptome analysis confirmed CD31-lowered expression and pointed to the increase of Ephrin-B2 and SNCAIP, indicative of dedifferentiation. Functional assays confirmed these differences; angiogenesis was impaired while permeability increased in tumor-derived ECs, as further validated by the distinctly enhanced VEGF production in response to hypoxia, reflecting the tumor conditions. This work showed that endothelial cells differed highly significantly, both phenotypically and functionally, in the tumor site as compared to the normal corresponding tissue, thus influencing the tumor microenvironment.
Collapse
|
212
|
Bergmann CB, Hammock BD, Wan D, Gogolla F, Goetzman H, Caldwell CC, Supp DM. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function. Sci Rep 2021; 11:16555. [PMID: 34400718 PMCID: PMC8368302 DOI: 10.1038/s41598-021-96014-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, CA, USA
| | - Debin Wan
- Department of Entomology, University of California, Davis, CA, USA
| | - Falk Gogolla
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Division of Plastic, Reconstructive and Hand Surgery/Burn Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA.
| |
Collapse
|
213
|
Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ahmed YA, Seo W, Ma J, Wang X, Park SH, Guan Y, Fu Y, Vanhaecke T, Feng D, Gao B. E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue Exacerbate Steatosis-to-NASH Progression via S100A8/9. Cell Mol Gastroenterol Hepatol 2021; 13:151-171. [PMID: 34390865 PMCID: PMC8593619 DOI: 10.1016/j.jcmgh.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.
Collapse
Affiliation(s)
- Robim M. Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: Bin Gao, MD, PhD, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892. fax: (301) 480-0257.
| |
Collapse
|
214
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
215
|
Mishra HK, Dixon KJ, Pore N, Felices M, Miller JS, Walcheck B. Activation of ADAM17 by IL-15 Limits Human NK Cell Proliferation. Front Immunol 2021; 12:711621. [PMID: 34367174 PMCID: PMC8339566 DOI: 10.3389/fimmu.2021.711621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.
Collapse
Affiliation(s)
- Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Nabendu Pore
- Early Oncology Clinical Science, AstraZeneca, Gaithersburg, MD, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
216
|
Vegting Y, Vogt L, Anders HJ, de Winther MPJ, Bemelman FJ, Hilhorst ML. Monocytes and macrophages in ANCA-associated vasculitis. Autoimmun Rev 2021; 20:102911. [PMID: 34298153 DOI: 10.1016/j.autrev.2021.102911] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) are characterized by inflammation of small-to-medium-sized blood vessels and the presence of autoantibodies against cytoplasmic proteases sited in neutrophils and monocytes. Increasing evidence indicates a substantial role of monocytes and macrophages in the pathogenesis of AAV. Activated monocytes and macrophages contribute to necroinflammation in peripheral vasculitic lesions as well as to central and peripheral mechanisms of autoimmunity. The intermediate monocyte subset (CD14++CD16+) is increased and monocytes show elevated expression of CD14, Toll-like receptor 2/4, MHCII and integrins, likely reflecting activation and increased monocyte extravasation. Monocytes differentiate locally predominantly into alternatively activated (M2) macrophages, which are known for cell-clearance and phagocytosis, but may ultimately lead to fibrosis. Phagocytotic function of macrophages can be impaired by surface expression of cytoplasmic proteases on apoptotic neutrophils and causes release of inflammatory cytokines and immunogenic contents, presumably resulting in a vicious circle of increased neutrophil, T and B cell activation and consequent ANCA production. Considering their crucial role in initiating necroinflammation as well as fibrogenesis, monocytes and macrophages may represent a logic first-line target for new treatment options in AAV.
Collapse
Affiliation(s)
- Yosta Vegting
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans-Joachim Anders
- Department of Internal Medicine IV, Division of Nephrology, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J Bemelman
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc L Hilhorst
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
217
|
Xu Z, Deng Y, Zhang Z, Ma W, Li W, Wen L, Li T. Diversity-Oriented Chemoenzymatic Synthesis of Sulfated and Nonsulfated Core 2 O-GalNAc Glycans. J Org Chem 2021; 86:10819-10828. [PMID: 34254798 DOI: 10.1021/acs.joc.1c01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A diversity-oriented chemoenzymatic approach for the collective preparation of sulfated core 2 O-GalNAc glycans and their nonsulfated counterparts was described. A sulfated trisaccharide and a nonsulfated trisaccharide were chemically synthesized by combining flexible protected group manipulations and sequential one-pot glycosylations. The divergent enzymatic extension of these two trisaccharides, using a panel of robust glycosyltransferases that can recognize sulfated substrates and differentiating the branches with specifically designed glycosylation sequences to achieve regioselective sialylation, provided 36 structurally well-defined O-GalNAc glycans.
Collapse
Affiliation(s)
- Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
218
|
Platelet and Erythrocyte Extravasation across Inflamed Corneal Venules Depend on CD18, Neutrophils, and Mast Cell Degranulation. Int J Mol Sci 2021; 22:ijms22147360. [PMID: 34298979 PMCID: PMC8329926 DOI: 10.3390/ijms22147360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/26/2023] Open
Abstract
Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.
Collapse
|
219
|
Eswaran S, Babbar A, Drescher HK, Hitch TCA, Clavel T, Muschaweck M, Ritz T, Kroy DC, Trautwein C, Wagner N, Schippers A. Upregulation of Anti-Oxidative Stress Response Improves Metabolic Changes in L-Selectin-Deficient Mice but Does Not Prevent NAFLD Progression or Fecal Microbiota Shifts. Int J Mol Sci 2021; 22:ijms22147314. [PMID: 34298930 PMCID: PMC8306675 DOI: 10.3390/ijms22147314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a growing global health problem. NAFLD progression involves a complex interplay of imbalanced inflammatory cell populations and inflammatory signals such as reactive oxygen species and cytokines. These signals can derive from the liver itself but also from adipose tissue or be mediated via changes in the gut microbiome. We analyzed the effects of a simultaneous migration blockade caused by L-selectin-deficiency and an enhancement of the anti-oxidative stress response triggered by hepatocytic Kelch-like ECH-associated protein 1 (Keap1) deletion on NAFLD progression. (2) Methods: L-selectin-deficient mice (Lsel−/−Keap1flx/flx) and littermates with selective hepatic Keap1 deletion (Lsel−/−Keap1Δhepa) were compared in a 24-week Western-style diet (WD) model. (3) Results: Lsel−/−Keap1Δhepa mice exhibited increased expression of erythroid 2-related factor 2 (Nrf2) target genes in the liver, decreased body weight, reduced epidydimal white adipose tissue with decreased immune cell frequencies, and improved glucose response when compared to their Lsel−/−Keap1flx/flx littermates. Although WD feeding caused drastic changes in fecal microbiota profiles with decreased microbial diversity, no genotype-dependent shifts were observed. (4) Conclusions: Upregulation of the anti-oxidative stress response improves metabolic changes in L-selectin-deficient mice but does not prevent NAFLD progression and shifts in the gut microbiota.
Collapse
Affiliation(s)
- Sreepradha Eswaran
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
| | - Anshu Babbar
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hannah K. Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (T.C.A.H.); (T.C.)
| | - Thomas Clavel
- Functional Microbiome Research Group, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (T.C.A.H.); (T.C.)
| | - Moritz Muschaweck
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
| | - Thomas Ritz
- Institute of Pathology, Ruprecht-Karls-University Heidelberg, D-69117 Heidelberg, Germany;
| | - Daniela C. Kroy
- Department of Internal Medicine III, University Hospital, RWTH Aachen, D-52074 Aachen, Germany; (D.C.K.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, D-52074 Aachen, Germany; (D.C.K.); (C.T.)
| | - Norbert Wagner
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Correspondence: (N.W.); (A.S.)
| | - Angela Schippers
- Department of Pediatrics, Faculty of Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.E.); (A.B.); (M.M.)
- Correspondence: (N.W.); (A.S.)
| |
Collapse
|
220
|
Dhall S, Park MS, Li C, Sathyamoorthy M. Regenerative Effects of Hypoxia Primed Flowable Placental Formulation in Muscle and Dermal Injury. Int J Mol Sci 2021; 22:7151. [PMID: 34281205 PMCID: PMC8267721 DOI: 10.3390/ijms22137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The placental tissue, due to its angiogenic, anti-inflammatory, antioxidative, antimicrobial, and anti-fibrotic properties, has become a compelling source towards a solution for several indications in regenerative medicine. However, methods to enhance and capture the therapeutic properties with formulations that can further the applications of viable placental tissue have not been explored. In this study, we investigated the regenerative effects of a hypoxia primed flowable placental formulation (FPF), composed of amnion/chorion and umbilical tissue, in two in vivo injury models. Laser Doppler data from rodent ischemia hindlimbs treated with FPF revealed significant tissue perfusion improvements compared to control ischemic hindlimbs. To further corroborate FPF's effects, we used a rodent ischemic bipedicle skin flap wound model. FPF treatment significantly increased the rate of wound closure and the quality of wound healing. FPF-treated wounds displayed reduced inflammation and an increase in angiogenesis. Furthermore, quantitative PCR and next-generation sequencing analysis confirmed these changes in the FPF-treated group at both the gene and transcriptional level. The observed modulation in miRNAs was associated with angiogenesis, regulation of inflammatory microenvironment, cell migration and apoptosis, reactive oxygen species generation, and restoring epithelial barrier function, all processes involved in impaired tissue healing. Taken together, these data validate the tissue regenerative properties of the flowable placental formulation configuration tested.
Collapse
Affiliation(s)
- Sandeep Dhall
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | - Min Sung Park
- Smith & Nephew Plc., Columbia, MD 21046, USA; (C.L.); (M.S.)
| | | | | |
Collapse
|
221
|
Alhussien MN, Panda BSK, Dang AK. A Comparative Study on Changes in Total and Differential Milk Cell Counts, Activity, and Expression of Milk Phagocytes of Healthy and Mastitic Indigenous Sahiwal Cows. Front Vet Sci 2021; 8:670811. [PMID: 34235202 PMCID: PMC8255372 DOI: 10.3389/fvets.2021.670811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Milk somatic cell counts (SCCs) have been used as a gold standard to monitor mammary health as well as an indicator of raw milk quality. The present work was undertaken to compare the changes in the milk SCC, milk differential leukocyte counts (DLCs), phagocytic activity (PA) of milk neutrophils and macrophages (by nitroblue tetrazolium assay), extracellular trap formation (PicoGreen assay) and mRNA expression of various genes in milk neutrophils and macrophages (reverse transcription–polymerase chain reaction), and milk plasma cortisol concentration (enzyme-linked immunosorbent assay) in healthy, subclinical mastitis (SCM), and clinical mastitis (CM) cows. Milk was collected from healthy, SCM, and CM cows grouped based on their SCCs and California mastitis test with eight cows in each group. Milk SCC was estimated by SCC counter, and DLC was done after staining the milk slide under a microscope at 100×. Total SCCs in healthy, SCM, and CM cows were on an average of 128.30, 300.3, and 694.40 × 103 cells/mL, respectively. Milk DLCs indicated a lower percentage of macrophage and lymphocytes and a higher (p < 0.05) percentage of neutrophils in SCM and CM compared to healthy milk. The percentage of mature segmented neutrophils was lower, whereas immature band neutrophils were higher (p < 0.05) in the SCM and CM groups as compared to healthy cows. The viability, in vitro PA, and extracellular trap formation of neutrophils were lower (p < 0.05) in SCM and CM milk samples as compared to healthy samples. However, the PA of macrophage remained unchanged in all the studied groups. The relative mRNA expression of Toll-like receptors (TLR2, TLR4), myeloperoxidase, and interleukin 2α (IL-2α) receptor (CD25) were minimum in healthy samples and increased (p < 0.05) with the progress of mammary inflammation. However, CD44 decreased (p < 0.05), and CD62L remained unchanged in mastitis as compared to healthy cows. Plasma cortisol concentrations were higher (p < 0.05) in mastitis as compared to healthy cows and were negatively correlated with the number of milk macrophages and the functions of milk phagocytes. Estimation of total SCC, milk DLC, and activity of milk phagocytes is essential for effective control and prevention of incidence of mastitis in dairy cows.
Collapse
Affiliation(s)
- Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| | - Bibhudatta S K Panda
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
222
|
Lin Y, Yao X, Yan M, Zhou L, Huang W, Xiao Y, Wu D, Chen J. Integrated analysis of transcriptomics to identify hub genes in primary Sjögren's syndrome. Oral Dis 2021; 28:1831-1845. [PMID: 34145926 DOI: 10.1111/odi.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The treatment of patients with primary Sjögren's syndrome is a clinical challenge. Gene expression profile analysis and comprehensive network methods for complex diseases can provide insight into molecular characteristics in the clinical context. MATERIALS AND METHODS We downloaded gene expression datasets from the Gene Expression Omnibus (GEO) database. We screened differentially expressed genes (DEG) between the pSS patients and the controls by the robust rank aggregation (RRA) method. We explored DEGs' potential function using gene function annotation and PPI network analysis. RESULTS GSE23117 GSE40611 GSE80805 and GSE127952were included, including 38 patients and 30 controls. The RRA integrated analysis determined 294 significant DEGs (241 upregulated and 53 downregulated), and the most significant gene aberrantly expressed in SS was CXCL9 (p = 6.39E-15), followed by CXCL13 (p = 1.53E-13). Immune response (GO:0006955; p = 4.29E-32) was the most significantly enriched biological process in GO (gene ontology) analysis. KEGG pathway enrichment analysis showed that cytokine-cytokine receptor interaction (hsa04060; p = 6.46E-10) and chemokine signaling pathway (hsa04062; p = 9.54E-09) were significantly enriched. We defined PTPRC, CD86, and LCP2 as the hub genes based on the PPI results. CONCLUSION Our integrated analysis identified gene signatures and helped understand molecular changes in pSS.
Collapse
Affiliation(s)
- Yanjun Lin
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, China.,Stomatological Key Lab of Fujian College and University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingdong Yan
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, China.,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Laboratory of Oral Tissue Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiu Huang
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanjun Xiao
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiang Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
223
|
Kupke LS, Arndt S, Lenzer S, Metz S, Unger P, Zimmermann JL, Bosserhoff AK, Gruber M, Karrer S. Cold Atmospheric Plasma Promotes the Immunoreactivity of Granulocytes In Vitro. Biomolecules 2021; 11:902. [PMID: 34204360 PMCID: PMC8235417 DOI: 10.3390/biom11060902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Cold atmospheric plasma (CAP) reduces bacteria and interacts with tissues and cells, thus improving wound healing. The CAP-related induction of neutrophils was recently described in stained sections of wound tissue in mice. Consequently, this study aimed to examine the functionality of human polymorphonuclear cells (PMN)/granulocytes through either a plasma-treated solution (PTS) or the direct CAP treatment with different plasma modes and treatment durations. PTS analysis yielded mode-dependent differences in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) after CAP treatment. Live-cell imaging did not show any chemo-attractive or NETosis-inducing effect on PMNs treated with PTS. The time to maximum ROS production (TmaxROS) in PMNs was reduced by PTS and direct CAP treatment. PMNs directly treated with CAP showed an altered cell migration dependent on the treatment duration as well as decreased TmaxROS without inducing apoptosis. Additionally, flow cytometry showed enhanced integrin and selectin expression, as a marker of activation, on PMN surfaces. In conclusion, the modification of PMN immunoreactivity may be a main supporting mechanism for CAP-induced improvement in wound healing.
Collapse
Affiliation(s)
- Laura S. Kupke
- Department of Anesthesiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.S.K.); (S.L.); (S.M.); (M.G.)
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany; (P.U.); (S.K.)
| | - Stephanie Arndt
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany; (P.U.); (S.K.)
| | - Simon Lenzer
- Department of Anesthesiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.S.K.); (S.L.); (S.M.); (M.G.)
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany; (P.U.); (S.K.)
| | - Sophia Metz
- Department of Anesthesiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.S.K.); (S.L.); (S.M.); (M.G.)
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany; (P.U.); (S.K.)
| | | | - Anja-Katrin Bosserhoff
- Emil-Fischer-Center, Institute of Biochemistry, University of Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany;
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.S.K.); (S.L.); (S.M.); (M.G.)
| | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany; (P.U.); (S.K.)
| |
Collapse
|
224
|
Chan Y, Fong S, Poh C, Carissimo G, Yeo NK, Amrun SN, Goh YS, Lim J, Xu W, Chee RS, Torres‐Ruesta A, Lee CY, Tay MZ, Chang ZW, Lee W, Wang B, Tan S, Kalimuddin S, Young BE, Leo Y, Wang C, Lee B, Rötzschke O, Lye DC, Renia L, Ng LFP. Asymptomatic COVID-19: disease tolerance with efficient anti-viral immunity against SARS-CoV-2. EMBO Mol Med 2021; 13:e14045. [PMID: 33961735 PMCID: PMC8185544 DOI: 10.15252/emmm.202114045] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
The immune responses and mechanisms limiting symptom progression in asymptomatic cases of SARS-CoV-2 infection remain unclear. We comprehensively characterized transcriptomic profiles, cytokine responses, neutralization capacity of antibodies, and cellular immune phenotypes of asymptomatic patients with acute SARS-CoV-2 infection to identify potential protective mechanisms. Compared to symptomatic patients, asymptomatic patients had higher counts of mature neutrophils and lower proportion of CD169+ expressing monocytes in the peripheral blood. Systemic levels of pro-inflammatory cytokines were also lower in asymptomatic patients, accompanied by milder pro-inflammatory gene signatures. Mechanistically, a more robust systemic Th2 cell signature with a higher level of virus-specific Th17 cells and a weaker yet sufficient neutralizing antibody profile against SARS-CoV-2 was observed in asymptomatic patients. In addition, asymptomatic COVID-19 patients had higher systemic levels of growth factors that are associated with cellular repair. Together, the data suggest that asymptomatic patients mount less pro-inflammatory and more protective immune responses against SARS-CoV-2 indicative of disease tolerance. Insights from this study highlight key immune pathways that could serve as therapeutic targets to prevent disease progression in COVID-19.
Collapse
Affiliation(s)
- Yi‐Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Siew‐Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Chek‐Meng Poh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Nicholas Kim‐Wah Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Jackwee Lim
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Weili Xu
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Rhonda Sin‐Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Anthony Torres‐Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Cheryl Yi‐Pin Lee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Wen‐Hsin Lee
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Seow‐Yen Tan
- Department of Infectious DiseasesChangi General HospitalSingapore CitySingapore
| | - Shirin Kalimuddin
- Department of Infectious DiseasesSingapore General HospitalSingapore CitySingapore
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Barnaby Edward Young
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
| | - Yee‐Sin Leo
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Saw Swee Hock School of Public HealthNational University of Singapore and National University Health SystemSingapore CitySingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Cheng‐I Wang
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - David Chien Lye
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs)Agency for Science, Technology and ResearchSingapore CitySingapore
- Singapore Immunology Network, Agency for Science, Technology and ResearchSingapore CitySingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpool, LiverpoolUK
| |
Collapse
|
225
|
Chilunda V, Martinez-Aguado P, Xia LC, Cheney L, Murphy A, Veksler V, Ruiz V, Calderon TM, Berman JW. Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Front Immunol 2021; 12:665773. [PMID: 34108966 PMCID: PMC8181441 DOI: 10.3389/fimmu.2021.665773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has caused more than three million deaths globally. The severity of the disease is characterized, in part, by a dysregulated immune response. CD16+ monocytes are innate immune cells involved in inflammatory responses to viral infections, and tissue repair, among other functions. We characterized the transcriptional changes in CD16+ monocytes from PBMC of people with COVID-19, and from healthy individuals using publicly available single cell RNA sequencing data. CD16+ monocytes from people with COVID-19 compared to those from healthy individuals expressed transcriptional changes indicative of increased cell activation, and induction of a migratory phenotype. We also analyzed COVID-19 cases based on severity of the disease and found that mild cases were characterized by upregulation of interferon response and MHC class II related genes, whereas the severe cases had dysregulated expression of mitochondrial and antigen presentation genes, and upregulated inflammatory, cell movement, and apoptotic gene signatures. These results suggest that CD16+ monocytes in people with COVID-19 contribute to a dysregulated host response characterized by decreased antigen presentation, and an elevated inflammatory response with increased monocytic infiltration into tissues. Our results show that there are transcriptomic changes in CD16+ monocytes that may impact the functions of these cells, contributing to the pathogenesis and severity of COVID-19.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Li C. Xia
- Department of Epidemiology and Public Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aniella Murphy
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Ruiz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina M. Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
226
|
McAlpine SM, Roberts SE, Heath JJ, Käsermann F, Issekutz AC, Issekutz TB, Derfalvi B. High Dose Intravenous IgG Therapy Modulates Multiple NK Cell and T Cell Functions in Patients With Immune Dysregulation. Front Immunol 2021; 12:660506. [PMID: 34093549 PMCID: PMC8170153 DOI: 10.3389/fimmu.2021.660506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is an effective immunomodulatory treatment for immune dysregulation diseases. However, the mechanisms by which it reduces systemic inflammation are not well understood. NK cell cytotoxicity is decreased by IVIG in women with reduced fertility, but IVIG effects on NK cells in immune dysregulation are less clear. We hypothesized that IVIG modulation of lymphocyte function, especially in NK cells, is important for resolution of inflammation. Our aim was to identify IVIG-induced changes in a cohort of patients with Kawasaki disease (KD) and those that occur broadly in pediatric patients with various immune dysregulatory diseases. Peripheral blood mononuclear cells (PBMCs) of patients with KD or autoimmune/inflammatory diseases were phenotyped pre and post high dose IVIG treatment by flow cytometry. In KD patients, after IVIG infusion Treg cell frequency and the proportion of activated CD25+ immunoregulatory CD56bright NK cells was increased, and multiple lymphocyte subsets showed increased expression of the lymphoid tissue homing receptor CD62L. Importantly, IVIG treatment decreased the frequency of cells expressing the degranulation marker CD107a among cytotoxic CD56dim NK cells, which was reflected in a significant reduction in target cell killing and in decreased production of multiple pro-inflammatory mediators. Interestingly, the activating receptor CD336 was expressed on a higher proportion of CD56bright NK cells after IVIG in both KD and autoimmune/inflammatory patients while other NK receptors were increased differentially in each cohort. In autoimmune/inflammatory patients IVIG induced the proliferation marker CD71 on a higher percentage of CD56dim NK cells, and in contrast to KD patients, CD107a+ cells were increased in this subset. Furthermore, when PBMCs were stimulated ex vivo with IL-2 or Candida antigen in autologous plasma, more of the CD4+ T cells of KD patients expressed CD25 after IVIG therapy but fewer cytotoxic T cells were degranulated based on CD107a expression. In summary, IVIG treatment in patients with immune dysregulation has multiple effects, especially on NK cell subsets and CD4+ T cells, which are compatible with promoting resolution of inflammation. These novel findings provide insight into the immunomodulatory actions of IVIG in autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Sarah M McAlpine
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Sarah E Roberts
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - John J Heath
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Fabian Käsermann
- CSL Behring Research, CSL Biologics Research Center, Bern, Switzerland
| | | | | | - Beata Derfalvi
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
227
|
van de Wouw M, Sichetti M, Long-Smith CM, Ritz NL, Moloney GM, Cusack AM, Berding K, Dinan TG, Cryan JF. Acute stress increases monocyte levels and modulates receptor expression in healthy females. Brain Behav Immun 2021; 94:463-468. [PMID: 33705869 DOI: 10.1016/j.bbi.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a growing recognition of the involvement of the immune system in stress-related disorders. Acute stress leads to the activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of innate immune cells, such as monocytes. Even though acute stress/monocyte interactions have been well-characterized in mice, this is not the case for humans. As such, this study aimed to investigate whether acute stress modulates blood monocyte levels in a subtype-dependent manner and whether the receptor expression of stress-related receptors is affected in humans. Blood was collected from healthy female volunteers at baseline and 1 h after the socially evaluated cold pressor test, after which blood monocyte levels and receptor expression were assessed by flow cytometry. Our results reveal a stress-induced increase in blood monocyte levels, which was independent of monocyte subtypes. Furthermore, colony stimulating factor 1 receptor (CSF-1R) and CD29 receptor expression was increased, while CD62L showed a trend towards increased expression. These results provide novel insights into how acute stress affects the innate immune system.
Collapse
Affiliation(s)
| | - Marzia Sichetti
- Unit of Biochemical Sciences and Health, Department of Pharmaceutical Sciences, University of Perugia, Italy
| | | | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
228
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
229
|
Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget 2021; 12:878-890. [PMID: 33953842 PMCID: PMC8092344 DOI: 10.18632/oncotarget.27949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7–9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNβ. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNβ would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNβ treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.
Collapse
|
230
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
231
|
Li L, Stumpf BH, Smith AS. Molecular Biomechanics Controls Protein Mixing and Segregation in Adherent Membranes. Int J Mol Sci 2021; 22:3699. [PMID: 33918167 PMCID: PMC8037219 DOI: 10.3390/ijms22073699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023] Open
Abstract
Cells interact with their environment by forming complex structures involving a multitude of proteins within assemblies in the plasma membrane. Despite the omnipresence of these assemblies, a number of questions about the correlations between the organisation of domains and the biomechanical properties of the involved proteins, namely their length, flexibility and affinity, as well as about the coupling to the elastic, fluctuating membrane, remain open. Here we address these issues by developing an effective Kinetic Monte Carlo simulation to model membrane adhesion. We apply this model to a typical experiment in which a cell binds to a functionalized solid supported bilayer and use two ligand-receptor pairs to study these couplings. We find that differences in affinity and length of proteins forming adhesive contacts result in several characteristic features in the calculated phase diagrams. One such feature is mixed states occurring even with proteins with length differences of 10 nm. Another feature are stable nanodomains with segregated proteins appearing on time scales of cell experiments, and for biologically relevant parameters. Furthermore, we show that macroscopic ring-like patterns can spontaneously form as a consequence of emergent protein fluxes. The capacity to form domains is captured by an order parameter that is founded on the virial coefficients for the membrane mediated interactions between bonds, which allow us to collapse all the data. These findings show that taking into account the role of the membrane allows us to recover a number of experimentally observed patterns. This is an important perspective in the context of explicit biological systems, which can now be studied in significant detail.
Collapse
Affiliation(s)
- Long Li
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| | - Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta, 10000 Zagreb, Croatia
| |
Collapse
|
232
|
Li S, Yao JC, Li JT, Schmidt AP, Link DC. TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Exp Hematol 2021; 96:35-43.e7. [PMID: 33556431 PMCID: PMC9900459 DOI: 10.1016/j.exphem.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
There is accumulating evidence suggesting that toll-like receptor (TLR) signals play an important role in the regulation of hematopoietic stem/progenitor cells (HSPCs). TLR7/8 stimulation induces the myeloid differentiation of normal HSPCs and acute myeloid leukemia cells. However, the in vivo effect of TLR7/8 agonists on hematopoiesis is largely unknown. Here, we show that, similar to TLR4 and TLR2, treatment with the TLR7/8 agonist R848 induces an expansion of phenotypic hematopoietic stem cells (HSCs) with reduced repopulating potential and HSPC mobilization. In contrast to chronic TLR4 stimulation, treatment with R848 for 5 days did not induce a significant increase in myeloid-biased HSCs. Treatment with R848 results in a significant increase in classic dendritic cells (DCs) in the bone marrow, but a decrease in common dendritic cell progenitors and pre-DCs. Phenotypic analysis of DCs revealed that R848 treatment is associated with altered expression of certain chemokines, activation markers, and migratory receptors. Together, these data indicate that systemic administration of a TLR7/8 agonist has unique effects on hematopoiesis, including the expansion of DCs in the bone marrow, that might have clinical relevance to augment responses to certain immunotherapies, such as cancer vaccines and immune checkpoint blockade.
Collapse
Affiliation(s)
- Sidan Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.,Hematology Oncology Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medial University, Beijing, China
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Justin T. Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy P. Schmidt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
233
|
Liu L, Zhao J, Li A, Yang X, Sprangers B, Li S. Prolongation of allograft survival by artemisinin treatment is associated with blockade of OX40-OX40L. Immunopharmacol Immunotoxicol 2021; 43:291-298. [PMID: 33757384 DOI: 10.1080/08923973.2021.1902347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES It has been demonstrated that artemisinin (ART) possesses multiple immune modulatory effects. However, its role as immunosuppressant in allogeneic transplantation is undetermined. Here, we investigated the effect of ART on co-stimulatory signaling in OX40+ T cells and evaluated ART as a potential immunosuppressant in transplantation. MATERIALS AND METHODS Allogeneic skin transplantation was performed in C57BL/6 to BALB/c mice. Recipient mice were administrated with vehicle, ART or cyclosporine A daily from day 0 to day 19 post transplantation. Proportions of splenic CD4+OX40+ and CD4+CD44hiCD62Lhi cells, and serum IgG was measured by using flow cytometry. An in vitro lymphocyte stimulation with Con A or LPS under various concentrations of ART was performed, expression of CD4+OX40+ and CD4+CD44hiCD62Lhi cells was evaluated, and interleukin(IL)-6 production was measured by ELISA. RESULTS In in vivo allogeneic skin transplant model, ART significantly prolongs allogeneic skin survival. Furthermore, our in vitro studies demonstrate that the immune suppression of ART on T cells is associated with a reduction in OX40+ T cells and inhibition of IL-6 secretion. CONCLUSION Our data indicate that the OX40-OX40L pathway and IL-6 are possibly involved in ART-induced immunosuppression, and ART is a potential novel immunosuppressant.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Ultrasonic, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Juanzhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - An Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Xuan Yang
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Ben Sprangers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium
| | - Shengqiao Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, University of Sun Yat-Sen, Zhuhai, P.R. China
| |
Collapse
|
234
|
Liao HQ, Han MT, Cheng W, Zhang C, Li H, Li MQ, Zhu R. Decidual-derived RANKL facilitates macrophages accumulation and residence at the maternal-fetal interface in human early pregnancy. Am J Reprod Immunol 2021; 86:e13406. [PMID: 33629434 DOI: 10.1111/aji.13406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
PROBLEM During the first trimester, the accumulation of macrophages, which is the second largest decidual leukocyte population (~20%) at the maternal-fetal interface, is quite vital for a successful pregnancy, including embryo implantation, trophoblast invasion, and vascular remodeling. The mechanism of the enrichment and redistribution of macrophages in the uterine decidua of early pregnancy is largely unclear. METHOD OF STUDY A total of 37 women with normal early pregnancies were included. Primary decidual macrophages (dMφs) (n = 37) and primary decidual stromal cells (DSCs) (n = 37) were isolated, and the adhesion molecules were analyzed by flow cytometry (FCM). Adhesive experiment was carried out to evaluate the adhesion capacity by counting cell numbers of dMφs adhered to DSCs in a co-culture system. RESULTS We found that RANK+ dMφs was the dominating subtype at the maternal-fetal interface. The expression of adhesion molecules (eg, CD29, CD31, CD54, and CD62L) on the surface of RANK+ dMφs was higher than that of RANK- dMφs. After co-culture with DSCs, the expression of adhesion molecules on dMφs was up-regulated in a RANKL-dependent manner. Meanwhile, dMφs promoted the releasing of RANKL on DSCs after co-culture. Consistently, dMφs exhibited the lessoned capacity of adhesion to DSCs when blocking the crosstalk of RANKL-RANK between the DSCs and dMφs in vitro. CONCLUSION These results suggest that the interaction of RANKL-RANK up-regulates the expression of adhesion molecules on the surface of dMφs, contributing to the accumulation and residence of dMφs in human early pregnancy.
Collapse
Affiliation(s)
- Hai-Qiong Liao
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mu-Tian Han
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
235
|
Progression of Metastasis through Lymphatic System. Cells 2021; 10:cells10030627. [PMID: 33808959 PMCID: PMC7999434 DOI: 10.3390/cells10030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.
Collapse
|
236
|
Gasperi C, Chun S, Sunyaev SR, Cotsapas C. Shared associations identify causal relationships between gene expression and immune cell phenotypes. Commun Biol 2021; 4:279. [PMID: 33664438 PMCID: PMC7933159 DOI: 10.1038/s42003-021-01823-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Genetic mapping studies have identified thousands of associations between common variants and hundreds of human traits. Translating these associations into mechanisms is complicated by two factors: they fall into gene regulatory regions; and they are rarely mapped to one causal variant. One way around these limitations is to find groups of traits that share associations, using this genetic link to infer a biological connection. Here, we assess how many trait associations in the same locus are due to the same genetic variant, and thus shared; and if these shared associations are due to causal relationships between traits. We find that only a subset of traits share associations, with many due to causal relationships rather than pleiotropy. We therefore suggest that simply observing overlapping associations at a genetic locus is insufficient to infer causality; direct evidence of shared associations is required to support mechanistic hypotheses in genetic studies of complex traits.
Collapse
Affiliation(s)
- Christiane Gasperi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich, Germany
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
237
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
238
|
Burnap SA, Mayr U, Shankar-Hari M, Cuello F, Thomas MR, Shah AM, Sabroe I, Storey RF, Mayr M. A Proteomics-Based Assessment of Inflammation Signatures in Endotoxemia. Mol Cell Proteomics 2021; 20:100021. [PMID: 33288685 PMCID: PMC7950208 DOI: 10.1074/mcp.ra120.002305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n = 10; three time points) injected with low-dose endotoxin (lipopolysaccharide [LPS]) and analyzed using data-independent acquisition MS. The human plasma proteome response was compared with an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerization of PTX3 were explored in two genetic mouse models: MPO global knock-out (KO) mice and LysM Cre Nox2 KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM Cre Nox2 KO mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and aortas. MPO and myeloid Nox2 are not required for the multimerization of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta.
Collapse
Affiliation(s)
- Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Ursula Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Ian Sabroe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom.
| |
Collapse
|
239
|
Bravo F, Macpherson JA, Slack E, Patuto N, Cahenzli J, McCoy KD, Macpherson AJ, Juillerat P. Prospective Validation of CD-62L (L-Selectin) as Marker of Durable Response to Infliximab Treatment in Patients With Inflammatory Bowel Disease: A 5-Year Clinical Follow-up. Clin Transl Gastroenterol 2021; 12:e00298. [PMID: 33735154 PMCID: PMC7886452 DOI: 10.14309/ctg.0000000000000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The development of biomarkers to guide management of anti-tumor necrosis factor (TNF) agents in patients with inflammatory bowel disease (IBD) is an unmet need. We developed an in vitro blood assay to predict patient long-term outcome with the anti-TNFα agent infliximab (IFX). METHODS Patients with IBD were classified according to the shedding of an L-selectin (CD62L) from the surface of their granulocytes in whole blood. CD62L shedding was quantified by flow cytometry before and after drug administration. A clinical data collection from June 2012 to August 2017 with blinded IFX management was aimed at validating the long-term predictive value of this test. RESULTS Among 33 patients with IBD (17 Crohn's disease and 5 ulcerative colitis), 22 were predicted functional responders (PFR) and 11 were predicted as nonresponders (NR) according to the in vitro test. Five years after study initiation, 72% of PFR were still treated with IFX (vs 27% in the NR group; P < 0.05), with a median time spent under IFX of 45 vs 12 months (P = 0.019), respectively. Thirty-five medicosurgical events occurred with a median time to first event of 3 vs 30 months (P = 0.023), respectively. Our assay was the best independent predictor of staying long term on IFX (P = 0.056). DISCUSSION An assay-based in vitro test for functional blockade of TNFα (CD62L shedding) provides an excellent long-term (at 3-5 years) independent predictor of durable use of IFX in patients with IBD. Testing patients could personalize decision making to significantly reduce costs and risk of adverse events and complications.
Collapse
Affiliation(s)
- Francisco Bravo
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
- Gastroenterology, Clinic for Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Jamie A. Macpherson
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Emma Slack
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Nicolas Patuto
- Gastroenterology, Clinic for Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Julia Cahenzli
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Kathy D. McCoy
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Andrew J. Macpherson
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
- Gastroenterology, Clinic for Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Pascal Juillerat
- Maurice E Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
- Gastroenterology, Clinic for Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
240
|
Rahman I, Collado Sánchez A, Davies J, Rzeniewicz K, Abukscem S, Joachim J, Hoskins Green HL, Killock D, Sanz MJ, Charras G, Parsons M, Ivetic A. L-selectin regulates human neutrophil transendothelial migration. J Cell Sci 2021; 134:jcs.250340. [PMID: 33408247 PMCID: PMC7888707 DOI: 10.1242/jcs.250340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The migration of circulating neutrophils towards damaged or infected tissue is absolutely critical to the inflammatory response. L-selectin is a cell adhesion molecule abundantly expressed on circulating neutrophils. For over two decades, neutrophil L-selectin has been assigned the exclusive role of supporting tethering and rolling – the initial stages of the multi-step adhesion cascade. Here, we provide direct evidence for L-selectin contributing to neutrophil transendothelial migration (TEM). We show that L-selectin co-clusters with PECAM-1 – a well-characterised cell adhesion molecule involved in regulating neutrophil TEM. This co-clustering behaviour occurs specifically during TEM, which serves to augment ectodomain shedding of L-selectin and expedite the time taken for TEM (TTT) to complete. Blocking PECAM-1 signalling (through mutation of its cytoplasmic tail), PECAM-1-dependent adhesion or L-selectin shedding, leads to a significant delay in the TTT. Finally, we show that co-clustering of L-selectin with PECAM-1 occurs specifically across TNF- but not IL-1β-activated endothelial monolayers – implying unique adhesion interactomes forming in a cytokine-specific manner. To our knowledge, this is the first report to implicate a non-canonical role for L-selectin in regulating neutrophil TEM. Highlighted Article: Neutrophil L-selectin co-clusters with PECAM-1 in cis during transendothelial migration (TEM). Clustering neutrophil PECAM-1 activates p38 MAPK and JNK to regulate L-selectin shedding, which in turn expedites TEM.
Collapse
Affiliation(s)
- Izajur Rahman
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Aida Collado Sánchez
- Department of Pharmacology and Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Av. Menéndez Pelayo 4, 46010, Valencia, Spain
| | - Jessica Davies
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Karolina Rzeniewicz
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sarah Abukscem
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Justin Joachim
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hannah L Hoskins Green
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - David Killock
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Maria Jesus Sanz
- Department of Pharmacology and Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Av. Menéndez Pelayo 4, 46010, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
241
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
242
|
L-Selectin expression is associated with inflammatory microenvironment and favourable prognosis in breast cancer. 3 Biotech 2021; 11:38. [PMID: 33479593 DOI: 10.1007/s13205-020-02549-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
L-selectin is a cell adhesion molecule that plays an important role in modulating immune cell trafficking. The expression of L-selectin has been found to be upregulated in several human cancers. However, the association of L-selectin expression with the immune profile and its prognostic value in breast cancer has not been explored in detail. We utilized TCGA and Oncomine datasets to compare SELL (L-selectin gene) expression between tumor and normal breast tissues. The association of SELL expression with its promoter DNA methylation and infiltrating immune cells was evaluated by using Wanderer, TIMER, and CIBERSORT tools. Single cell RNA sequencing data was utilised to determine the cell specific expression of L-selectin in breast cancer. Furthermore, the relationship between SELL expression and patient survival was evaluated using the Kaplan-Meier plotter. Gene set enrichment analysis was performed to determine functional associations of SELL expression. We found that SELL expression was significantly higher in breast tumors and regulated by DNA methylation. L-selectin exhibited a strong positive correlation with markers of the inflammatory microenvironment, including M1 macrophages. Interestingly, single cell sequencing data analysis revealed that B-cells and T-cells exhibited comparable expression levels of SELL, suggesting both B-cells and T cells contribute to SELL expression in breast cancer. Higher expression of SELL was associated with better survival outcome in basal, Her2 + and luminal B subtypes of breast cancer. GSEA revealed association of SELL expression with several immunological features in breast cancer. SELL expression increases in breast tumor tissues with reduced DNA methylation and associated inflammatory microenvironment. Also, high SELL expression is associated with favorable survival outcomes in breast cancer.
Collapse
|
243
|
Raposo CD, Canelas AB, Barros MT. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021; 11:188. [PMID: 33572889 PMCID: PMC7911577 DOI: 10.3390/biom11020188] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Lectins are a class of proteins responsible for several biological roles such as cell-cell interactions, signaling pathways, and several innate immune responses against pathogens. Since lectins are able to bind to carbohydrates, they can be a viable target for targeted drug delivery systems. In fact, several lectins were approved by Food and Drug Administration for that purpose. Information about specific carbohydrate recognition by lectin receptors was gathered herein, plus the specific organs where those lectins can be found within the human body.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - André B. Canelas
- Glanbia-AgriChemWhey, Lisheen Mine, Killoran, Moyne, E41 R622 Tipperary, Ireland;
| | - M. Teresa Barros
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
244
|
Monitoring of Peripheral Blood Leukocytes and Plasma Samples: A Pilot Study to Examine Treatment Response to Leflunomide in Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14020106. [PMID: 33573015 PMCID: PMC7910893 DOI: 10.3390/ph14020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a painful inflammatory disease of the joints which affects a considerable proportion of the world population, mostly women. If not adequately treated, RA patients can become permanently disabled. Importantly, not all the patients respond to the available anti-rheumatic therapies, which also present diverse side effects. In this context, monitoring of treatment response is pivotal to avoid unnecessary side effects and costs towards an ineffective therapy. Herein, we performed a pilot study to investigate the potential use of flow cytometry and attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy as measures to identify responders and non-responders to leflunomide, a disease-modifying drug used in the treatment of RA patients. The evaluation of peripheral blood CD62L+ polymorphonuclear cell numbers and ATR-FTIR vibrational modes in plasma were able to discriminate responders to leflunomide (LFN) three-months after therapy has started. Overall, the results indicate that both flow cytometry and ATR-FTIR can potentially be employed as additional measures to monitor early treatment response to LFN in RA patients.
Collapse
|
245
|
T cell-depleted cultured pediatric thymus tissue as a model for some aspects of human age-related thymus involution. GeroScience 2021; 43:1369-1382. [PMID: 33420705 DOI: 10.1007/s11357-020-00301-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022] Open
Abstract
Human age-related thymus involution is characterized by loss of developing thymocytes and the thymic epithelial network that supports them, with replacement by adipose tissue. The mechanisms that drive these changes are difficult to study in vivo due to constant trafficking to and from the thymus. We hypothesized that the loss of thymocytes that occurs during human thymic organ cultures could model some aspects of thymus involution and begin to identify mechanisms that drive age-related changes in the thymic microenvironment. Potential mechanistically important candidate molecules were initially identified by screening conditioned media from human thymus organ cultures using antibody microarrays. These candidates were further validated using cultured tissue extracts and conditioned media. Results were compared with gene expression studies from a panel of well-characterized (non-cultured) human thymus tissues from human donors aged 5 days to 78 years. L-selectin released into conditioned media was identified as a biomarker for the content of viable thymocytes within the cultured thymus. Levels of the chemokines CCL21 and CXCL12, likely produced by surviving thymic epithelial cells, increased markedly in conditioned media as thymocytes were lost during culture. Native non-cultured thymus from adults older than 18 years also showed a strong trend toward increased CCL21 expression, in conjunction with significant decreases in thymocyte-related mRNAs compared with thymus from subjects younger than 18 years. Together, these findings demonstrate that use of postnatal human thymus organ cultures can model some aspects of human age-related thymic involution.
Collapse
|
246
|
Khalaf NB, Al-Μehatab D, Fathallah DM. Vascular endothelial ERp72 is involved in the inflammatory response in a rat model of skeletal muscle injury. Mol Med Rep 2021; 23:186. [PMID: 33398381 PMCID: PMC7809907 DOI: 10.3892/mmr.2021.11825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/25/2020] [Indexed: 11/05/2022] Open
Abstract
The vascular inflammatory response involves the coordinated action of a large network of molecular mediators and culminates in the transmigration of leukocytes into the site of inflammation. Inflammatory mediators include a variety of protein families, including adhesion molecules such as integrins and members of the immunoglobulin superfamily, as well as other cytokines and chemokines. In this study, a rat model of traumatic skeletal muscle injury was used to demonstrate endoplasmic reticulum resident protein 72 (ERp72) overexpression in the early phase of the inflammatory response that follows skeletal muscle injury. Reverse transcription‑quantitative PCR, western blotting, dual‑labeling immunohistochemistry and immunofluorescence experiments confirmed that ERp72 was expressed on the endothelial cells of blood vessels present at the injured area. In addition, a cell‑based neutrophil adhesion assay indicated that a polyclonal antibody specific for ERp72 significantly reduced adhesion of neutrophils to activated human umbilical vein endothelial cells (35% reduction). These data suggested that ERp72 expression on vascular endothelial cells may play a role in skeletal muscle inflammation and could be considered as a target for the modulation of leukocyte‑endothelial cell interactions in an inflammatory setting.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| | - Dalal Al-Μehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| | - Dahmani M Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduate Studies, King Fahd Chair for Health Biotechnology, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
247
|
Kowalska AA, Nowicka AB, Szymborski T, Piecyk P, Kamińska A. SERS-based sensor for direct L-selectin level determination in plasma samples as alternative method of tumor detection. JOURNAL OF BIOPHOTONICS 2021; 14:e202000318. [PMID: 33048457 DOI: 10.1002/jbio.202000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Selectin ligands are present on the surface of tumor cells, for this reason lowering the L-selectin level in the blood and lymph can indicate presence of the tumor. Therefore the selectin level in the plasma are potential targets for anticancer therapy. We demonstrate the surface enhanced Raman spectroscopy (SERS)-based sensor for the determination of L-selectin level in biological samples that can be used in medical diagnosis. The combination of SERS with the method of multivariate analysis as principle component analysis (PCA) allows to strengthen the presented data analysis. The loadings of PCA permit to indicate those vibration modes, that are the most important for the assumed identification (bands at 1574, 1450, 1292 cm-1 ). Two bands at 1286 and 1580 cm-1 were selected for the determination of the calibration curve (bands intensities I1286 /I1580 ratio). The L-selectin level of biological samples can be read, directly from the calibration curve. The presented sensor is as a sensitive tool with good specificity and selectivity of L-selectin, even in the case of coexistence of P- and E-selectin.
Collapse
Affiliation(s)
| | - Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Piecyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
248
|
Halfon M, Bachelet D, Hanouna G, Dema B, Pellefigues C, Manchon P, Laouenan C, Charles N, Daugas E. CD62L on blood basophils: a first pre-treatment predictor of remission in severe lupus nephritis. Nephrol Dial Transplant 2020; 36:2256-2262. [PMID: 33316058 DOI: 10.1093/ndt/gfaa263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Basophils were recently shown to contribute to lupus nephritis (LN). This study assessed blood basophil activation markers (BAMs) for the diagnosis of LN severity and as pre-treatment prognostic markers of the response to treatment in patients with severe LN. METHOD The diagnostic study included all the patients of a monocentric prospective observational cohort built with consecutive patients diagnosed with LN on the basis of a renal biopsy. The prognostic study selected patients of this cohort according to the following inclusion criteria: ≥18 years old, Class III or IV A ± C ± Class V or pure Class V LN at the time of inclusion and treated with an induction treatment for LN. Clinical data and BAMs were obtained at the time of the kidney biopsy. LN remission status was recorded 12 months after induction therapy initiation. Associations between baseline data and histological severity of LN or LN remission were assessed using logistic regression. RESULTS No significant association was found between BAMs and the histological severity of LN in 101 patients. Among the 83 patients included in the prognostic study, 64 reached renal remission. CD62L expression on blood basophils at baseline was independently negatively associated with remission at 12 months [odds ratio = 0.26, 95% confidence interval 0.08-0.82, P = 0.02 for quantitative CD62L expression >105 (geometric fluorescent intensity) gMFI]. CD62L <105 gMFI was associated with a probability of 0.87 of LN remission in the next 12 months after the start of induction therapy. CONCLUSION Pre-treatment CD62L expression on blood basophils could be a first predictive biomarker of renal response to induction therapy at 12 months in patients with severe LN.
Collapse
Affiliation(s)
- Matthieu Halfon
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Delphine Bachelet
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Guillaume Hanouna
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Barbara Dema
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Christophe Pellefigues
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Manchon
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France
| | - Cedric Laouenan
- Department of Biostatistical Epidemiology and Clinical Research, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, INSERM CIC-EC 1425, Paris, France.,INSERM, IAME, UMR 1137, Université de Paris, Paris, France
| | - Nicolas Charles
- Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Eric Daugas
- Department of Nephrology, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EL8252, Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
249
|
Chakraborty A, Staudinger C, King SL, Erickson FC, Lau LS, Bernasconi A, Luscinskas FW, Perlyn C, Dimitroff CJ. Galectin-9 bridges human B cells to vascular endothelium while programming regulatory pathways. J Autoimmun 2020; 117:102575. [PMID: 33285511 DOI: 10.1016/j.jaut.2020.102575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Humoral immunity is reliant on efficient recruitment of circulating naïve B cells from blood into peripheral lymph nodes (LN) and timely transition of naive B cells to high affinity antibody (Ab)-producing cells. Current understanding of factor(s) coordinating B cell adhesion, activation and differentiation within LN, however, is incomplete. Prior studies on naïve B cells reveal remarkably strong binding to putative immunoregulator, galectin (Gal)-9, that attenuates BCR activation and signaling, implicating Gal-9 as a negative regulator in B cell biology. Here, we investigated Gal-9 localization in human tonsils and LNs and unearthed conspicuously high expression of Gal-9 on high endothelial and post-capillary venules. Adhesion analyses showed that Gal-9 can bridge human circulating and naïve B cells to vascular endothelial cells (EC), while decelerating transendothelial migration. Moreover, Gal-9 interactions with naïve B cells induced global transcription of gene families related to regulation of cell signaling and membrane/cytoskeletal dynamics. Signaling lymphocytic activation molecule F7 (SLAMF7) was among key immunoregulators elevated by Gal-9-binding, while SLAMF7's cytosolic adapter EAT-2, which is required for cell activation, was eliminated. Gal-9 also activated phosphorylation of pro-survival factor, ERK. Together, these data suggest that Gal-9 promotes B cell - EC interactions while delivering anergic signals to control B cell reactivity.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Caleb Staudinger
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Sandra L King
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Frances Clemente Erickson
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lee Seng Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Angela Bernasconi
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Francis W Luscinskas
- Department of Pathology, Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chad Perlyn
- Department of Surgery, Nicholas Children's Hospital, Division of Plastic Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
250
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|