201
|
Jin SM, Lee SN, Yoo YJ, Lim YT. Molecular and Macroscopic Therapeutic Systems for Cytokine‐Based Cancer Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Chemical Engineering Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
202
|
Liu J, Li Z, Zhao D, Feng X, Wang C, Li D, Ding J. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. MATERIALS & DESIGN 2021; 202:109465. [DOI: 10.1016/j.matdes.2021.109465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
|
203
|
Amere Subbarao S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting. Inflammopharmacology 2021; 29:343-366. [PMID: 33723711 PMCID: PMC7959277 DOI: 10.1007/s10787-021-00796-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is an intrinsic defence mechanism triggered by the immune system against infection or injury. Chronic inflammation allows the host to recover or adapt through cellular and humoral responses, whereas acute inflammation leads to cytokine storms resulting in tissue damage. In this review, we present the overlapping outcomes of cancer inflammation with virus-induced inflammation. The study emphasises how anti-inflammatory drugs that work against cancer inflammation may work against the inflammation caused by the viral infection. It is established that the cytokine storm induced in response to SARS-CoV-2 infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, we review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them. We also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2 induced cytokine storm. In this review, we emphasise on various possibilities to reduce SARS-CoV-2 induced cytokine storm.
Collapse
|
204
|
Karimdadi Sariani O, Eghbalpour S, Kazemi E, Rafiei Buzhani K, Zaker F. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia. Cytokine 2021; 142:155508. [PMID: 33810945 DOI: 10.1016/j.cyto.2021.155508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with high mortality that accounts for the most common acute leukemia in adults. Despite all progress in the therapeutic strategies and increased rate of complete remission, many patients will eventually relapse and die from the disease. Cytokines as molecular messengers play a pivotal role in the immune system. The imbalance release of cytokine has been shown to exert a significant influence on the progression of hematopoietic malignancies including acute myeloid leukemia. This article aimed to summarize current knowledge about cytokines and their critical roles in the pathogenesis, treatment, and survival of AML patients.
Collapse
Affiliation(s)
- Omid Karimdadi Sariani
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Sara Eghbalpour
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Elahe Kazemi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
205
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
206
|
Du F, Qiu Z, Ai W, Huang C, Ji J, Xiao X, Zhou J, Fang M, Jiang X, Gao C. Blood tests predict the therapeutic prognosis of anti-PD-1 in advanced biliary tract cancer. J Leukoc Biol 2021; 110:327-334. [PMID: 33724548 DOI: 10.1002/jlb.5ma1220-631r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Predictive prognostic markers for immunotherapy are crucial and desperately required for clinical precise medicine. This retrospective study aimed to assess the efficacy of anti-PD-1 (programmed cell death protein 1) treatment and find the therapeutic prognostic biomarkers in advanced biliary tract cancer (BTC). A total of 60 patients of advanced BTC who received at least one dose of anti-PD-1 therapy between June 2016 and October 2019 were recruited and followed up till April 2020. Systemic immune-inflammation index (SII) and neutrophils-to-lymphocytes ration (NLR) were obtained from the routine circulating hematologic analysis before treatment. Serum 45-Plex Panel cytokines were detected using multiplexed bead immunoassays. Logistic regression nomogram was used to construct the algorithm model for prognosis prediction. Of the 60 patients, the overall benefit rate (OBR) was 38.3%, the median progression free survival (PFS), and overall survival (OS) were 4.0 mo (95% confidence interval [CI]: 2.28-5.72) and 13.0 mo (95% CI: 8.05-17.95), respectively. High levels of SII (≥720), NLR (≥4.3) and cytokine IFN-inducible protein-10 (IP-10; ≥45 pg/ml) indicated worse OS. Those with high SII (≥720) and high IP-10 (≥45 pg/ml) also had shorter PFS. The nomogram algorithm combining above three independent factors (SII, IP-10, and macrophage inflammatory protein-1β) had better efficacy in predicting OBR. Our study offers a simple, affordable, and noninvasive method to help physicians predict therapeutic response in BTC patients receiving anti-PD-1 antibody treatment.
Collapse
Affiliation(s)
- Fei Du
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiquan Qiu
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenchao Ai
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Ji
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
207
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
208
|
Cai L, Liu H, Huang F, Fujimoto J, Girard L, Chen J, Li Y, Zhang YA, Deb D, Stastny V, Pozo K, Kuo CS, Jia G, Yang C, Zou W, Alomar A, Huffman K, Papari-Zareei M, Yang L, Drapkin B, Akbay EA, Shames DS, Wistuba II, Wang T, Johnson JE, Xiao G, DeBerardinis RJ, Minna JD, Xie Y, Gazdar AF. Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer. Commun Biol 2021; 4:314. [PMID: 33750914 PMCID: PMC7943563 DOI: 10.1038/s42003-021-01842-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC. Ling Cai et al. used transcriptomic profiling data of healthy lung, patient-derived small cell lung cancer cell lines, xenografts, and primary tumors to examine a link between neuroendocrine (NE) signatures and immune gene expression. Their findings suggest that cell-autonomous immune gene repression is a shared feature between healthy and tumor cells of NE lineage and may influence tumor-immune cell interaction and response to immunotherapy.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA. .,Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA. .,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hongyu Liu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Huang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Girard
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-An Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dhruba Deb
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karine Pozo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Christin S Kuo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Gaoxiang Jia
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chendong Yang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zou
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Adeeb Alomar
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mahboubeh Papari-Zareei
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lin Yang
- Department of Pathology, National Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Benjamin Drapkin
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Esra A Akbay
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. .,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA. .,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Adi F Gazdar
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
209
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
210
|
Li YP, Du XR, Zhang R, Yang Q. Interleukin-18 promotes the antitumor ability of natural killer cells in colorectal cancer via the miR-574-3p/TGF-β1 axis. Bioengineered 2021; 12:763-778. [PMID: 33660570 PMCID: PMC8806203 DOI: 10.1080/21655979.2021.1880717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-18 has a clear antitumor effect; however, its mechanisms of action are not understood in patients with colorectal cancer (CRC). Here, we investigated the potential mechanism of IL-18 in CRC. The results showed that IL-18 treatment alone had no effect on HCT116 cells apoptosis, whereas IL-18 in the presence of natural killer (NK) cells resulted in apoptosis and inhibition of cells proliferation in vitro. Profiling of miRNA expression following coculture with NK cells and treatment with IL-18 resulted in significant downregulation of miR-574-3p expression and upregulated expression of the target gene transforming growth factor beta 1 (TGF-β1). miR-574-3p binds to TGF-β1, and miR-574-3p overexpression increased the proliferation and decreased the apoptotic rate of HCT116 cells in NK cells coculture with IL-18 treatment; overexpression of TGF-β1 restored the effect of miR-574-3p overexpression. The miRNA profile of HCT116 undergoes significant alteration before and after coculturing with NK cells and treatment with IL-18. IL-18 alone did not affect HCT116 cells apoptosis but did promote the antitumor ability of NK cells in coculture with HCT116 cells via the miR-574-3p/TGF-β1 axis. Our study suggested that IL-18 can be a new potential target for cancer immunotherapy for CRC.
Collapse
Affiliation(s)
- Yin-Peng Li
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xian-Rong Du
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ru Zhang
- Department of Gastroenterology, Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qiu Yang
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
211
|
Zemskova OV, Kurinnyi DA, Rushkovsky SR, Demchenko OM, Romanenko MG, Glavatsky OY, Klymenko SV. Development of Tumor-Induced Bystander Effect and Radiosensitivity in the Peripheral Blood Lymphocytes of Glioblastoma Patients with Different MGMT Gene Methylation Statuses in Tumor Cells. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
212
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
213
|
Wan Z, Zheng R, Moharil P, Liu Y, Chen J, Sun R, Song X, Ao Q. Polymeric Micelles in Cancer Immunotherapy. Molecules 2021; 26:1220. [PMID: 33668746 PMCID: PMC7956602 DOI: 10.3390/molecules26051220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapies have generated some miracles in the clinic by orchestrating our immune system to combat cancer cells. However, the safety and efficacy concerns of the systemic delivery of these immunostimulatory agents has limited their application. Nanomedicine-based delivery strategies (e.g., liposomes, polymeric nanoparticles, silico, etc.) play an essential role in improving cancer immunotherapies, either by enhancing the anti-tumor immune response, or reducing their systemic adverse effects. The versatility of working with biocompatible polymers helps these polymeric nanoparticles stand out as a key carrier to improve bioavailability and achieve specific delivery at the site of action. This review provides a summary of the latest advancements in the use of polymeric micelles for cancer immunotherapy, including their application in delivering immunological checkpoint inhibitors, immunostimulatory molecules, engineered T cells, and cancer vaccines.
Collapse
Affiliation(s)
- Zhuoya Wan
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Ruohui Zheng
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pearl Moharil
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Yuzhe Liu
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47906, USA;
| | - Jing Chen
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Xu Song
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| |
Collapse
|
214
|
Identification of immune checkpoint and cytokine signatures associated with the response to immune checkpoint blockade in gastrointestinal cancers. Cancer Immunol Immunother 2021; 70:2669-2679. [PMID: 33624146 DOI: 10.1007/s00262-021-02878-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Immune checkpoint blockade (ICB) of the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoint pathway has led to unprecedented advances in cancer therapy. However, the overall response rate of anti-PD-1/PD-L1 monotherapy is still unpromising, underscoring the need for predictive biomarkers. In this retrospective study, we collected pretreatment plasma samples from two independent cohorts of patients receiving ICB. To determine whether a signature of plasma cytokines could be associated with therapeutic efficacy, we systemically profiled cytokine clusters and functional groups in the discovery and validation datasets by using 59 multiplexed bead immunoassays and bioinformatics analysis. We first attempted to functionally classify the 59 immunological factors according to their biological classification or functional roles in the cancer-immunity cycle. Surprisingly, we observed that two signatures, the "checkpoint signature" and "trafficking of T-cell signature", were higher in the response subgroup than in the nonresponse subgroup in both the discovery and validation cohorts. Moreover, enrichment of the "checkpoint signature" was correlated with improved overall survival and progression-free survival in both datasets. In addition, we demonstrated that increased baseline levels of three checkpoint molecules (PD-L1, T-cell immunoglobulin mucin receptor 3 and T-cell-specific surface glycoprotein CD28) were common peripheral responsive correlates in both cohorts, thus rendering this "refined checkpoint signature" an ideal candidate for future verification. In the peripheral blood system, the "refined checkpoint signature" may function as a potential biomarker for anti-PD-1/PD-L1 monotherapy in gastrointestinal (GI) cancers.
Collapse
|
215
|
Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:72. [PMID: 33608497 PMCID: PMC7896069 DOI: 10.1038/s41392-020-00449-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite great success in cancer immunotherapy, immune checkpoint-targeting drugs are not the most popular weapon in the armory of cancer therapy. Accumulating evidence suggests that the tumor immune microenvironment plays a critical role in anti-cancer immunity, which may result in immune checkpoint blockade therapy being ineffective, in addition to other novel immunotherapies in cancer patients. In the present review, we discuss the deficiencies of current cancer immunotherapies. More importantly, we highlight the critical role of tumor immune microenvironment regulators in tumor immune surveillance, immunological evasion, and the potential for their further translation into clinical practice. Based on their general targetability in clinical therapy, we believe that tumor immune microenvironment regulators are promising cancer immunotherapeutic targets. Targeting the tumor immune microenvironment, alone or in combination with immune checkpoint-targeting drugs, might benefit cancer patients in the future.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Zhengtao Hong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
216
|
Wang T, Xu X, Zhang K. Nanotechnology-Enabled Chemodynamic & Immunotherapy. Curr Cancer Drug Targets 2021; 21:545-557. [PMID: 33618647 DOI: 10.2174/1568009621666210219101552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/07/2022]
Abstract
High-level reactive oxygen species (ROS) have been reported to exert a robust anti-tumor effect by inducing cell apoptosis or necroptosis. Based on the Fenton reaction or Fenton-like reaction, a therapeutic strategy (i.e., chemodynamic therapy (CDT)) is proposed, where hydroxyl radicals (•OH) that are one typical ROS via the spontaneous activation by endogenous stimulus can be produced to kill tumors. Moreover, high-level ROS can also facilitate tumor-associated antigen exposure, which benefits phagocytosis of corpses and debris by antigen-presenting cells (e.g., dendritic cells (DCs)) and further activates systematic immune responses. Great efforts wherein nanotechnology is underlined have been made in interdisciplinary communities to witness the development of this field. To provide a comprehensive understanding of CDT, the state of art of strategies on nanotechnology-enabled CDT is discussed in detail. In particular, the combination of CDT and its augmented immunotherapy against tumor for overcoming the poor outcome that mono-CDT suffers from is highlighted. Moreover, the potential challenges will also be discussed.
Collapse
Affiliation(s)
- Taixia Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| | - Xiaohong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai, 200072. China
| |
Collapse
|
217
|
Ramesh P, Shivde R, Jaishankar D, Saleiro D, Le Poole IC. A Palette of Cytokines to Measure Anti-Tumor Efficacy of T Cell-Based Therapeutics. Cancers (Basel) 2021; 13:821. [PMID: 33669271 PMCID: PMC7920025 DOI: 10.3390/cancers13040821] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key molecules within the tumor microenvironment (TME) that can be used as biomarkers to predict the magnitude of anti-tumor immune responses. During immune monitoring, it has been customary to predict outcomes based on the abundance of a single cytokine, in particular IFN-γ or TGF-β, as a readout of ongoing anti-cancer immunity. However, individual cytokines within the TME can exhibit dual opposing roles. For example, both IFN-γ and TGF-β have been associated with pro- and anti-tumor functions. Moreover, cytokines originating from different cellular sources influence the crosstalk between CD4+ and CD8+ T cells, while the array of cytokines expressed by T cells is also instrumental in defining the mechanisms of action and efficacy of treatments. Thus, it becomes increasingly clear that a reliable readout of ongoing immunity within the TME will have to include more than the measurement of a single cytokine. This review focuses on defining a panel of cytokines that could help to reliably predict and analyze the outcomes of T cell-based anti-tumor therapies.
Collapse
Affiliation(s)
- Prathyaya Ramesh
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Rohan Shivde
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Dinesh Jaishankar
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - I. Caroline Le Poole
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology and Immunology, Northwestern University at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
218
|
Association of a variant in the tumor necrosis factor alpha gene with risk of cervical cancer. Mol Biol Rep 2021; 48:1433-1437. [PMID: 33555528 DOI: 10.1007/s11033-021-06185-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the regulation of the immune system and potentially the progression of cervical neoplastic lesions. In this study, we aimed to explore the possible relationship between polymorphisms of the TNF-α gene and susceptibility to cervical cancer. The relationship between a single nucleotide polymorphism (SNP) in the TNF-α gene (rs1800629) and the risk of cervical cancer was evaluated in a total of 445 subjects with (n = 153), or without (n = 292) cancer. Genotyping was performed using a Taq-Man based real time PCR method. Logistic regression analysis showed that individuals with AG/AA genotypes had an increased risk of cervical cancer compared to those with a GG genotype (OR 3.79, 95% CI 2.4-5.7, < 0.001). Our findings demonstrated that a genetic variant in the TNF-α gene (rs1800629) was associated with increased level and risk of developing cervical cancer, suggesting its potential use as a genetic risk factor for cervical neoplasia.
Collapse
|
219
|
Bindiganavile SH, Bhat N, Lee AG, Gombos DS, Al-Zubidi N. Targeted Cancer Therapy and Its Ophthalmic Side Effects: A Review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:6-15. [PMID: 35664825 PMCID: PMC9161666 DOI: 10.36401/jipo-20-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 06/15/2023]
Abstract
Targeted cancer therapy agents are the latest development in cancer therapeutics. Although the spectrum of their use continues to expand, ocular side effects are frequently encountered with the use of cancer therapeutics. This review describes the ocular side effects of targeted cancer therapy agents.
Collapse
Affiliation(s)
| | - Nita Bhat
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- Texas A and M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Section of Ophthalmology, Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan S. Gombos
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- Section of Ophthalmology, Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nagham Al-Zubidi
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Section of Ophthalmology, Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
220
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
221
|
Shahgolzari M, Pazhouhandeh M, Milani M, Fiering S, Khosroushahi AY. Alfalfa mosaic virus nanoparticles-based in situ vaccination induces antitumor immune responses in breast cancer model. Nanomedicine (Lond) 2021; 16:97-107. [PMID: 33442986 DOI: 10.2217/nnm-2020-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Preclinical and clinical studies show that local and systemic antitumor efficacy is achievable by in situ vaccination (ISV) using plant virus nanoparticles in which immunostimulatory reagents are directly administered into the tumor rather than systemically. Aim: To investigate a minimally studied plant virus nanoparticle, alfalfa mosaic virus (AMV), for ISV treatment of 4T1, the very aggressive and metastatic murine triple-negative breast cancer model. Materials & methods: AMV nanoparticles were propagated and characterized. Their treatment impact on in vivo tumors were analyzed using determination of inherent immunogenicity, cytokine analysis, western blotting analysis and immunohistochemistry methodologies. Results: AMV used as an ISV significantly slowed down tumor progression and prolonged survival through immune mechanisms (p < 0.001). Conclusion: Mechanistic studies show that ISV with AMV increases costimulatory molecules, inflammatory cytokines and immune effector cell infiltration and downregulates immune-suppressive molecules.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Dept. Agriculture Fac. Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
222
|
Decreased levels of circulating cytokines VEGF, TNF-β and IL-15 indicate PD-L1 overexpression in tumours of primary breast cancer patients. Sci Rep 2021; 11:1294. [PMID: 33446741 PMCID: PMC7809365 DOI: 10.1038/s41598-020-80351-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) overexpression has been associated with poor clinical outcomes in several human cancers whose increased malignant behaviour might be related to PD-L1 mediated systemic immunological tolerance. This study aims to verify if circulating cytokines may serve as a proxy for non-invasive identification of sensitive prognostic biomarkers reflecting tumour and its microenvironment. Immunohistochemistry was used to measure PD-L1 expression in tumour tissue sections of 148 chemonaïve breast cancer (BC) patients. The panel of 51 cytokines was analysed using multiplex bead arrays. High PD-L1 expression in tumours was associated with shorter progression-free survival (HR 3.25; 95% CI 1.39–7.61; P = 0.006) and low circulating levels of three multifunctional molecules; VEGF, TNF-β and IL-15 (P = 0.001). In multivariate analysis, patients with low VEGF had 4.6-fold increased risk of PD-L1 overexpression (P = 0.008), present in 76.5% of patients with all these three cytokines below the median (vs. 35.6% among the others; P = 0.002). The area under the curve value of 0.722 (95% CI 0.59–0.85; P = 0.004) shows that this combination of cytokines has a moderate ability to discriminate between PD-L1 high vs. PD-L1 low patients. Plasma cytokines, therefore, could serve as potential non-invasive biomarkers for the identification of high-risk BC cases.
Collapse
|
223
|
Azadian S, Zahiri J, Shahriar Arab S, Hassan Sajedi R. Reconstruction of Intercellular Signaling Network by Cytokine-Receptor Interactions. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2560. [PMID: 34179188 PMCID: PMC8217541 DOI: 10.30498/ijb.2021.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: The immune system function depends on the coordination activity of the components of system and communications between them
which leads to the formation of a complex communication network between immune cells.
In this network, cytokines have an important role in the communication between immune cells through the interaction to their specific receptors.
These molecules cause to cellular communications and normal function of a tissue. Reconstruction of such a complex network
can be a way to provide a better understanding of cytokines’ function. Objective: Our main goal from reconstructing such a network was investigation of expressed cytokines and cytokines receptors in various
lineage and tissues of immune cells and identifying the lineage and tissue with the highest expression of cytokines and their receptors. Materials and Methods: In this study, gene expression data related to part of the Immunological Genome Project (ImmGen) and receptor-ligand interactions
dataset were used to reconstruct the immune network in mouse. In next step, the topological properties of reconstructed network,
expression specificity of cytokines and their receptors and interactions specificity were analyzed. Results: The results of the network analysis were indicated that non- hematopoietic stromal cells have the highest expression of cytokines and cytokine receptors and interactions specificity is very high. Our results show that chemokine receptor of Ccr1 receives the largest number of signals between receptors and only expressed in three hematopoietic lineages. Conclusions: The most of the network communications belonged to non-hematopoietic stromal and macrophage cells. The relationships between stromal
cells and macrophages are necessary to create an appropriate environment for differentiation of immune cells.
Studying the cellular expression specificity of receptor and ligand genes reveal the high degree of specificity of these genes that
indicate non-random transfer of information between cells in multicellular organisms.
Collapse
Affiliation(s)
- Somayeh Azadian
- Department of Biophysics, Bioinformatics and Computational Omics Lab (BioCOOL), Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Department of Biophysics, Bioinformatics and Computational Omics Lab (BioCOOL), Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Hassan Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
224
|
Meng Q, He J, Zhong L, Zhao Y. Advances in the Study of Antitumour Immunotherapy for Newcastle Disease Virus. Int J Med Sci 2021; 18:2294-2302. [PMID: 33967605 PMCID: PMC8100649 DOI: 10.7150/ijms.59185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023] Open
Abstract
This article reviews the preclinical research, clinical application and development of Newcastle disease virus (NDV) in the field of cancer therapy. Based on the distinctive antitumour properties of NDV and its positive interaction with the patient's immune system, this biologic could be considered a major breakthrough in cancer treatment. On one hand, NDV infection creates an inflammatory environment in the tumour microenvironment, which can directly activate NK cells, monocytes, macrophages and dendritic cells and promote the recruitment of immune cells. On the other hand, NDV can induce the upregulation of immune checkpoint molecules, which may break immune tolerance and immune checkpoint blockade resistance. In fact, clinical data have shown that NDV combined with immune checkpoint blockade can effectively enhance the antitumour response, leading to the regression of local tumours and distant tumours when injected, and this effect is further enhanced by targeted manipulation and modification of the NDV genome. At present, recombinant NDV and recombinant NDV combined with immune checkpoint blockers have entered different stages of clinical trials. Based on these studies, further research on NDV is warranted.
Collapse
Affiliation(s)
- Qiuxing Meng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
225
|
Han S, Oh JS, Kim JS. Immune microenvironment of the gene signature reflecting the standardised uptake value on 18F-fluorodeoxyglucose positron emission tomography/computed tomography in head and neck squamous cell carcinoma. Ann Nucl Med 2021; 35:65-75. [PMID: 33044632 DOI: 10.1007/s12149-020-01537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE A comprehensive understanding of the link between 18F-FDG PET/CT and the tumor immune microenvironment (TIM) is lacking. We, therefore, investigated the TIM in regard to the gene signature of 18F-FDG PET/CT in head and neck squamous cell carcinoma (HNSC). METHODS The mRNA sequence data of 480 HNSC patients on The Cancer Genome Atlas portal were used to explore genes showing high associations with maximum standardised uptake value (SUVmax) on 18F-FDG PET/CT based on Pearson correlation test. Hierarchical clustering of the selected gene signature was performed and divided patients into high and low SUV clusters. Principal component analysis was performed to derive the summarised expression profile of the gene signature and defined the first principal component scores as the SUV signature scores (SUVSSs). The SUV clusters and SUVSS based on the gene signature were characterised by overall survival, clinical variables, and the immune microenvironment in terms of overall immune score, immune cell type enrichment score, expression of immunomodulator genes as well as somatic copy number alterations (SCNA) possibly contributing to immune cell recognition. RESULTS The high SUV cluster classified by the gene signature (191 genes) was an independent predictor of overall survival (adjusted hazard ratio 1.40, p = 0.022). The SUVSS values differed across the molecular subtypes of HNSC (p < 0.001), and HPV status (p = 0.024). Tumors in the low SUV cluster exhibited significantly higher overall immune score and lower SCNA scores (p < 0.05 for all) compared with tumors in the high SUV cluster. The low SUV cluster showed an immune cell composition consisting of high levels of T cells, B cells, mast cells, neutrophils, monocytes, and eosinophils, but lower basophils and similar macrophage levels to the high SUV cluster. Differential gene expression analysis demonstrated SUV cluster-distinct expression of several immunomodulators including PD-1, CD40LG, IL2RA, TLR4, BTLA, and TIGIT. CONCLUSION HNSC exhibited the distinct TIM according to the gene signature reflecting SUVmax on 18F-FDG PET/CT. Our results support an understanding of the close relationship between FDG uptake and tumor immune response, and suggest that 18F-FDG PET/CT could be clinically usable as a biomarker for assisting immunotherapy.
Collapse
Affiliation(s)
- Sangwon Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
226
|
Wang B, Zhang Y. An immune-relevant signature of nine genes as a prognostic biomarker in patients with gastric carcinoma. Open Med (Wars) 2020; 15:850-859. [PMID: 33336043 PMCID: PMC7718618 DOI: 10.1515/med-2020-0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background As one of the most common malignant tumors worldwide, the morbidity and mortality of gastric carcinoma (GC) are gradually increasing. The aim of this study was to construct a signature according to immune-relevant genes to predict the survival outcome of GC patients using The Cancer Genome Altas (TCGA). Methods Univariate Cox regression analysis was used to assess the relationship between immune-relevant genes regarding the prognosis of patients with GC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to select prognostic immune-relevant genes and to establish the signature for the prognostic evaluation of patients with GC. Multivariate Cox regression analysis and Kaplan–Meier survival analysis were used to assess the independent prognostic ability of the immune-relevant gene signature. Results A total of 113 prognostic immune-relevant genes were identified using univariate Cox proportional hazards regression analysis. A signature of nine immune-relevant genes was constructed using the LASSO Cox regression. The GC samples were assigned to two groups (low- and high risk) according to the optimal cutoff value of the signature score. Compared with the patients in the high-risk group, patients in the low-risk group had a significantly better prognosis in the TCGA and GSE84437 cohorts (log-rank test P < 0.001). Multivariate Cox regression analysis demonstrated that the signature of nine immune-relevant genes might serve as an independent predictor of GC. Conclusions Our results showed that the signature of nine immune-relevant genes may potentially serve as a prognostic prediction for patients with GC, which may contribute to the decision-making of personalized treatment for the patients.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Yang Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| |
Collapse
|
227
|
Simon LS, Taylor PC, Choy EH, Sebba A, Quebe A, Knopp KL, Porreca F. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum 2020; 51:278-284. [PMID: 33412435 DOI: 10.1016/j.semarthrit.2020.10.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Pain is a manifestation of rheumatoid arthritis (RA) that is mediated by inflammatory and non-inflammatory mechanisms and negatively affects quality of life. Recent findings from a Phase 3 clinical trial showed that patients with RA who were treated with a Janus kinase 1 (Jak1) and Janus kinase 2 (Jak2) inhibitor achieved significantly greater improvements in pain than those treated with a tumor necrosis factor blocker; both treatments resulted in similar changes in standard clinical measures and markers of inflammation. These findings suggest that Jak1 and Jak2 inhibition may relieve pain in RA caused by inflammatory and non-inflammatory mechanisms and are consistent with the overarching involvement of the Jak-signal transducer and activator of transcription (Jak/STAT) pathway in mediating the action, expression, and regulation of a multitude of pro- and anti-inflammatory cytokines. In this review, we provide an overview of pain in RA, the underlying importance of cytokines regulated directly or indirectly by the Jak/STAT pathway, and therapeutic targeting of the Jak/STAT pathway in RA. As highlighted herein, multiple cytokines directly or indirectly regulated by the Jak/STAT pathway play important roles in mediating various mechanisms underlying pain in RA. Having a better understanding of these mechanisms may help clinicians make treatment decisions that optimize the control of inflammation and pain.
Collapse
Affiliation(s)
| | - Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Ernest H Choy
- CREATE Centre, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85718, USA.
| |
Collapse
|
228
|
Motta JM, Rumjanek VM. Modulation of cytokine production by monocytes and developing-dendritic cells under the influence of leukemia and lymphoma cell products. Cell Biol Int 2020; 45:890-897. [PMID: 33289218 DOI: 10.1002/cbin.11514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.
Collapse
Affiliation(s)
- Juliana Maria Motta
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
229
|
Mock J, Stringhini M, Villa A, Weller M, Weiss T, Neri D. An engineered 4-1BBL fusion protein with "activity on demand". Proc Natl Acad Sci U S A 2020; 117:31780-31788. [PMID: 33239441 PMCID: PMC7749310 DOI: 10.1073/pnas.2013615117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineered cytokines are gaining importance in cancer therapy, but these products are often limited by toxicity, especially at early time points after intravenous administration. 4-1BB is a member of the tumor necrosis factor receptor superfamily, which has been considered as a target for therapeutic strategies with agonistic antibodies or using its cognate cytokine ligand, 4-1BBL. Here we describe the engineering of an antibody fusion protein, termed F8-4-1BBL, that does not exhibit cytokine activity in solution but regains biological activity on antigen binding. F8-4-1BBL bound specifically to its cognate antigen, the alternatively spliced EDA domain of fibronectin, and selectively localized to tumors in vivo, as evidenced by quantitative biodistribution experiments. The product promoted a potent antitumor activity in various mouse models of cancer without apparent toxicity at the doses used. F8-4-1BBL represents a prototype for antibody-cytokine fusion proteins, which conditionally display "activity on demand" properties at the site of disease on antigen binding and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Alessandra Villa
- Antibody Research, Philochem AG, CH-8112 Otelfingen, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland;
| |
Collapse
|
230
|
Mechanically stimulated osteocytes promote the proliferation and migration of breast cancer cells via a potential CXCL1/2 mechanism. Biochem Biophys Res Commun 2020; 534:14-20. [PMID: 33310182 DOI: 10.1016/j.bbrc.2020.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022]
Abstract
Bone represents the most common site for breast cancer metastasis. Bone is a highly dynamic organ that is constantly adapting to its biophysical environment, orchestrated largely by the resident osteocyte network. Osteocytes subjected to physiologically relevant biophysical conditions may therefore represent a source of key factors mediating breast cancer cell metastasis to bone. Therefore, we investigated the potential proliferative and migratory capacity of soluble factors released by mechanically stimulated osteocytes on breast cancer cell behaviour. Interestingly the secretome of mechanically stimulated osteocytes enhanced both the proliferation and migration of cancer cells when compared to the secretome of statically cultured osteocytes, demonstrating that mechanical stimuli is an important physiological stimulus that should be considered when identifying potential targets. Using a cytokine array, we further identified a group of mechanically activated cytokines in the osteocyte secretome, which potentially drive breast cancer metastasis. In particular, CXCL1 and CXCL2 cytokines are highly expressed, mechanically regulated, and are known to interact with one another. Lastly, we demonstrate that these specific factors enhance breast cancer cell migration independently and in a synergistic manner, identifying potential osteocyte derived factors mediating breast cancer metastasis to bone.
Collapse
|
231
|
Martomo SA, Lu D, Polonskaya Z, Luna X, Zhang Z, Feldstein S, Lumban-Tobing R, Almstead DK, Miyara F, Patel J. Single-Dose Anti-PD-L1/IL-15 Fusion Protein KD033 Generates Synergistic Antitumor Immunity with Robust Tumor-Immune Gene Signatures and Memory Responses. Mol Cancer Ther 2020; 20:347-356. [PMID: 33293344 DOI: 10.1158/1535-7163.mct-20-0457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Immunocytokines hold great potential as anticancer agents, as they use a specific antitumor antibody to deliver an immune-activating cytokine directly to the immunosuppressive tumor microenvironment (TME). We have developed a novel immunocytokine (KD033) composed of a fully human, high-affinity antiprogrammed death-ligand 1 (PD-L1) linked to the sushi-domain of the human IL-15/IL-15 receptor alpha (IL-15/IL-15Rα) complex. A murine PD-L1 cross-reactive KD033 surrogate (srKD033) and a nontargeting antibody (ntKD033) were also developed to investigate mechanism of action in murine tumor models. Efficacy analyses showed a robust antitumor effect of single-dose srKD033 in several diverse syngeneic murine tumor models. In a CT26 murine colon tumor model, single-dose srKD033 produced durable antitumor immunity as evidenced by resistance to subsequent tumor rechallenges. Mice responding to srKD033 treatment showed increased retention of PD-L1/IL-15 in the TME which likely facilitated prolonged IL-15-induced expansion of cytotoxic cells. Importantly, target-based PD-L1/IL-15 delivery via srKD033 was well-tolerated and induced significant antitumor activity in murine carcinoma models that are non- or minimally responsive to IL-15 or anti-PD-L1/PD-1 monotherapy.
Collapse
Affiliation(s)
| | - Dan Lu
- Kadmon Corporation, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Syed Najmuddin SUF, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Veerakumarasivam A, Chan SC, Chia SL, Yusoff K, Alitheen NB. Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 2020; 8:e9761. [PMID: 33354412 PMCID: PMC7731658 DOI: 10.7717/peerj.9761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Colon cancer remains one of the main cancers causing death in men and women worldwide as certain colon cancer subtypes are resistant to conventional treatments and the development of new cancer therapies remains elusive. Alternative modalities such as the use of viral-based therapeutic cancer vaccine is still limited, with only the herpes simplex virus (HSV) expressing granulocyte-macrophage colony- stimulating factor (GM-CSF) or talimogene laherparepvec (T-Vec) being approved in the USA and Europe so far. Therefore, it is imperative to continue the search for a new treatment modality. This current study evaluates a combinatorial therapy between the oncolytic Newcastle disease virus (NDV) and interleukin-12 (IL-12) cytokine as a potential therapeutic vaccine to the current anti-cancer drugs. Several in vitro analyses such as MTT assay, Annexin V/FITC flow cytometry, and cell cycle assay were performed to evaluate the cytotoxicity effect of recombinant NDV, rAF-IL12. Meanwhile, serum cytokine, serum biochemical, histopathology of organs and TUNEL assay were carried out to assess the anti-tumoral effects of rAF-IL12 in HT29 tumor-challenged nude mice. The apoptosis mechanism underlying the effect of rAF-IL12 treatment was also investigated using NanoString Gene expression analysis. The recombinant NDV, rAF-IL12 replicated in HT29 colon cancer cells as did its parental virus, AF2240-i. The rAF-IL12 treatment had slightly better cytotoxicity effects towards HT29 cancer cells when compared to the AF2240-i as revealed by the MTT, Annexin V FITC and cell cycle assay. Meanwhile, the 28-day treatment with rAF-IL12 had significantly (p < 0.05) perturbed the growth and progression of HT29 tumor in NCr-Foxn1nu nude mice when compared to the untreated and parental wild-type NDV strain AF2240-i. The rAF-IL12 also modulated the immune system in nude mice by significantly (p < 0.05) increased the level of IL-2, IL-12, and IFN-γ cytokines. Treatment with rAF-IL12 had also significantly (p < 0.05) increased the expression level of apoptosis-related genes such as Fas, caspase-8, BID, BAX, Smad3 and granzyme B in vitro and in vivo. Besides, rAF-IL12 intra-tumoral delivery was considered safe and was not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Therefore, this study proves that rAF-IL12 had better cytotoxicity effects than its parental AF2240-i and could potentially be an ideal treatment for colon cancer in the near future.
Collapse
Affiliation(s)
| | - Zahiah Mohamed Amin
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sheau Wei Tan
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | | | | - Suet Lin Chia
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khatijah Yusoff
- Universiti Putra Malaysia, Serdang, Malaysia.,Malaysian Genome Institute, National Institute of Biotechnology Malaysia, Kajang, Malaysia
| | - Noorjahan Banu Alitheen
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
233
|
Bonfá G, Blazquez-Roman J, Tarnai R, Siciliano V. Precision Tools in Immuno-Oncology: Synthetic Gene Circuits for Cancer Immunotherapy. Vaccines (Basel) 2020; 8:E732. [PMID: 33287392 PMCID: PMC7761833 DOI: 10.3390/vaccines8040732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Engineered mammalian cells for medical purposes are becoming a clinically relevant reality thanks to advances in synthetic biology that allow enhanced reliability and safety of cell-based therapies. However, their application is still hampered by challenges including time-consuming design-and-test cycle iterations and costs. For example, in the field of cancer immunotherapy, CAR-T cells targeting CD19 have already been clinically approved to treat several types of leukemia, but their use in the context of solid tumors is still quite inefficient, with additional issues related to the adequate quality control for clinical use. These limitations can be overtaken by innovative bioengineering approaches currently in development. Here we present an overview of recent synthetic biology strategies for mammalian cell therapies, with a special focus on the genetic engineering improvements on CAR-T cells, discussing scenarios for the next generation of genetic circuits for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Velia Siciliano
- Synthetic and Systems Biology Lab for Biomedicine, Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, 80125 Naples, Italy; (G.B.); (J.B.-R.); (R.T.)
| |
Collapse
|
234
|
Lin Y, Lu R, Hou J, Zhou GG, Fu W. IFNgamma-inducible CXCL10/CXCR3 axis alters the sensitivity of HEp-2 cells to ionizing radiation. Exp Cell Res 2020; 398:112382. [PMID: 33253709 DOI: 10.1016/j.yexcr.2020.112382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Radiotherapy is a conventional approach for anti-cancer treatment, killing tumor cells through damaging cellular DNA. While increasing studies have demonstrated that tumors generated the tolerance to radiation and tumor immune system was found to be correlated to radiotherapy resistance. Therefore, it is critical to identify potential immune factors associated with the efficacy of radiotherapy. Here in this study, we evaluated the sensitivities of different tumor cells to radiation and determined HEp-2 cells as the radio-resistant tumor cells for further investigation. IFNgamma as a key regulator of host immune response showed the potential to sensitize tumors to ionizing radiation (IR). Besides, IFNgamma-induced CXC chemokine ligand 10 (CXCL10) was found to be necessary for effective IR-induced killing of cultured HEp-2 cells. Increased clonogenic survival was observed in CXCL10-depleted HEp-2 cells and CXCL10-KO cells. Additionally, the loss of CXCL10 in HEp-2 cells showed less progression of the G0/G1 phase to G2/M when exposed to IR (8 Gy). Local IR (20 Gy) to nude mice bearing HEp-2 tumors significantly reduced tumor burden, while fewer effects on tumor burden in mice carrying CXCL10-KO tumors were observed. We furtherly evaluated the possible roles the chemokine receptor CXCR3 plays in mediating the sensitivity of cultured HEp-2 cells to IR. Altered expression of CXCR3 in HEp-2 cells affected IR-induced killing of HEp-2 cells. Our data suggest the IFNgamma-activated CXCL10/CXCR3 axis may contribute to the effective radiation-induced killing of HEp-2 cells in vitro.
Collapse
Affiliation(s)
- Yunting Lin
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Jingmei Hou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-tech Park Longhua District, Shenzhen, Guangdong, 518116, China.
| | - Wenmin Fu
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-tech Park Longhua District, Shenzhen, Guangdong, 518116, China.
| |
Collapse
|
235
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
236
|
Safi S, Yamauchi Y, Hoffmann H, Weichert W, Jost PJ, Winter H, Muley T, Beckhove P. Circulating Interleukin-4 Is Associated with a Systemic T Cell Response against Tumor-Associated Antigens in Treatment-Naïve Patients with Resectable Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12123496. [PMID: 33255425 PMCID: PMC7761081 DOI: 10.3390/cancers12123496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Cytokines can increase the activity of T cells specific for tumor-associated antigens and thereby promote tumor-specific immune responses. In this study, cytokine profiles and T cell responses against 14 tumor-associated antigens were investigated in 36 treatment-naïve patients with resectable non-small cell lung cancer. Based on these results, preoperative serum interleukin-4 levels can play a role in predicting T cell responses specific for tumor-associated antigens and recurrence-free survival regardless of tumor stage. This is clinically relevant as patients with high preoperative serum interleukin-4 levels could be at high risk of postoperative tumor recurrence and, therefore, should be considered for adjuvant or neoadjuvant treatment. From this perspective, preoperative serum interleukin-4 levels may become a useful option to assess the risk of postoperative tumor recurrence in non-small-cell lung cancer. Abstract Spontaneous T cell responses to tumor-associated antigens (TAs) in the peripheral blood of patients with non-small-cell lung cancer (NSCLC) may be relevant for postoperative survival. However, the conditions underlying these T cell responses remain unclear. We quantified the levels of 27 cytokines in the peripheral blood and tumor tissues from treatment-naïve patients with NSCLC (n = 36) and analyzed associations between local and systemic cytokine profiles and both TA-specific T cell responses and clinical parameters. We defined T cell responders as patients with circulating T cells that were reactive to TAs and T cell nonresponders as patients without detectable TA-specific T cells. TA-specific T cell responses were correlated with serum cytokine levels, particularly the levels of interleukin(IL)-4 and granulocyte colony-stimulating factor (G-CSF), but poorly correlated with the cytokine levels in tumor tissues. Nonresponders showed significantly higher serum IL-4 levels than responders (p = 0.03); the predicted probability of being a responder was higher for individuals with low serum IL-4 levels. In multivariable Cox regression analyses, in addition to IL-4 (hazard ratio (HR) 2.8 (95% confidence interval (CI): 0.78–9.9); p = 0.116), the age-adjusted IL-8 level (HR 3.9 (95% CI: 1.05–14.5); p = 0.042) predicted tumor recurrence. However, this study included data for many cytokines without adjustment for multiple testing; thus, the observed differences in IL-4 or IL-8 levels might be incidental findings. Therefore, additional studies are necessary to confirm these results.
Collapse
Affiliation(s)
- Seyer Safi
- Division of Thoracic Surgery, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Yoshikane Yamauchi
- Department of Surgery, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Hans Hoffmann
- Division of Thoracic Surgery, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Trogerstrasse 18, 81675 Munich, Germany
| | - Philipp J Jost
- Medical Department III for Hematology and Oncology, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
- German Consortium for Translational Cancer Research (DKTK) of the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center (TLRC), Member of German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Roentgenstrasse 1, 69126 Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology and Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
237
|
Haddoub C, Rima M, Heurtebise S, Lawand M, Jundi D, Sadek R, Amigorena S, Fajloun Z, Karam MC. Cytotoxic effect of Montivipera bornmuelleri's venom on cancer cell lines: in vitro and in vivo studies. PeerJ 2020; 8:e9909. [PMID: 33194364 PMCID: PMC7597635 DOI: 10.7717/peerj.9909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Background Montivipera bornmuelleri’s venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri’s venom and its effect on tumor growth in vivo. Methods The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. Results The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri’s venom in vitro which, however, does not translate to an anticancer action in vivo.
Collapse
Affiliation(s)
- Carol Haddoub
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, Lebanon
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, University of Strasbourg, Strasbourg, France
| | | | - Myriam Lawand
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Dania Jundi
- LAB3B, Doctoral School for Sciences and Technology, Azm Centre for Research in Biotechnology, Lebanese University, Tripoli, Lebanon.,Department of Neuroscience, Institute of Biology Paris-Seine (IBPS), INSERM, CNRS, Université Sorbonne-Nouvelle (Paris III), Paris, France
| | - Riyad Sadek
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | - Ziad Fajloun
- LAB3B, Doctoral School for Sciences and Technology, Azm Centre for Research in Biotechnology, Lebanese University, Tripoli, Lebanon.,Faculty of Sciences 3, Michel Slayman Tripoli Campus, Lebanese University, Tripoli, Lebanon
| | - Marc C Karam
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, Lebanon
| |
Collapse
|
238
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
239
|
Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 2020; 133:110959. [PMID: 33197758 DOI: 10.1016/j.biopha.2020.110959] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
A well-functioning immune system of the host body plays pivotal role in the maintenance of ordinary physiological and immunological functions as well as internal environment. Balanced immunity enhances defense mechanism against infection, diseases and unwanted pathogens to avoid hypersensitivity reactions and immune related diseases. The ideal immune responses are the results of corrective interaction between the innate immune cells and acquired components of the immune system. Recently, the interest towards the immune system increased as significant target of toxicity due to exposure of chemicals, drugs and environmental pollutants. Numerous factors are involved in altering the immune responses of the host such as sex, age, stress, malnutrition, alcohol, genetic variability, life styles, environmental-pollutants and chemotherapy exposure. Immunomodulation is any modification of immune responses, often involved induction, amplification, attenuation or inhibition of immune responses. Several synthetic or traditional medicines are available in the market which promptly have many serious adverse effects and create pathogenic resistance. Phytochemicals are naturally occurring molecules, which significantly play an imperative role in modulating favorable immune responses. The present review emphasizes on the risk factors associated with alterations in immune responses, and immunomodulatory activity of phytochemicals specifically, glycosides, alkaloids, phenolic acids, flavonoids, saponins, tannins and sterols and sterolins.
Collapse
|
240
|
Bakhrebah MA, Nasrullah M, Abdulaal WH, Hassan MA, Siddiqui H, Al Doghaither H, Omar UM, Helmi N, Fallatah MM, Al-Ghafari AB, Khan MI, Choudhry H. High Expression of Pd-1 in Circulating Cells of Patients With Advanced Colorectal Cancer Receiving Adjuvant Therapy. Technol Cancer Res Treat 2020; 19:1533033820969446. [PMID: 33153413 PMCID: PMC7658510 DOI: 10.1177/1533033820969446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among all cancer types, colorectal cancer is the third most common in men and the second most common in women globally. Generally, the risk of colorectal cancer increases with age, and colorectal cancer is modulated by various genetic alterations. Alterations in the immune response serve a significant role in the development of colorectal cancer. In primary cancer types, immune cells express a variety of inhibitory molecules that dampen the immune response against tumor cells. Additionally, few reports have demonstrated that classical chemotherapy promotes the immunosuppressive microenvironment in both tissues and immune cells. This study assessed the expression levels of genes using RT-qPCR associated with the immune system, including interferon-γ, programmed death-1, β2-microglobulin, human leukocyte antigen-A, CD3e, CD28 and intracellular adhesion molecule 1, in patients with colorectal cancer, as these genes are known to serve important roles in immune regulation during cancer incidence. Gene expression analysis was performed with the whole blood cells of patients with colorectal cancer and healthy volunteers. Compared with the normal controls, programmed death-1was highly expressed in patients with advanced-stage colorectal cancer. Furthermore, the expression of programmed death-1 was higher in patients receiving adjuvant therapy, which suggests the therapy dampened the immune response against tumor cells. The results of the present study indicate that classical adjuvant therapies, which are currently used for patients with colorectal cancer, should be modulated, and a combination of classical therapy with anti-programmed death-1 antibody should be conducted for improved management of patients with colorectal cancer.
Collapse
Affiliation(s)
- Muhammed A Bakhrebah
- Life Science and Environment Research Institute, 83527King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Nasrullah
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Oncology, Faculty of Medicine and Dentistry, 3158University of Alberta, Edmonton AB, Canada
| | - Wesam H Abdulaal
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A Hassan
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Yemen
| | - Halima Siddiqui
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Al Doghaither
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M Omar
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Helmi
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Applied Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohannad M Fallatah
- Life Science and Environment Research Institute, 83527King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ayat B Al-Ghafari
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Cancer Metabolism and Epigenetic Unit, Department of Biochemistry, Faculty of Science, 2495King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
241
|
Kim KJ, Moon D, Kong SJ, Lee YS, Yoo Y, Kim S, Kim C, Chon HJ, Kim JH, Choi KJ. Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther 2020; 28:186-198. [PMID: 33149278 DOI: 10.1038/s41434-020-00205-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses selectively replicate and destroy cancer cells while sparing normal cells, prompting their recognition as promising antitumor agents. Herpes simplex virus (HSV) is suitable as an anticancer agent, given its considerable therapeutic gene capacity and excellent safety profile in clinical trials. Interleukin (IL)-12 induces a Th1-type immune response that mediates interferon (IFN)-γ release from natural killer (NK), CD4+ and CD8+ T cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the generation of antigen-presenting cells and promotes dendritic cell differentiation. We established a novel oncolytic HSV-1 (∆6/GM/IL12) co-expressing IL-12 and GM-CSF and tested its effects against a B16-F10 murine melanoma model. ∆6/GM/IL12 administration diminished tumor growth and prolonged survival compared to treatment with ∆6/GM or ∆6/IL12 expressing each individual cytokine. Flow cytometry and histological analysis showed increased activation of CD4+ and CD8+ T cells in ∆6/GM/IL12-treated mice. Enzyme-linked immunosorbent spot assay showed an increase in the phenotypically characterized IFN-γ-producing cell population in ∆6/GM/IL12-treated mice. Moreover, ∆6/GM/IL12 induced a B16-F10-specific cytotoxic immune response that enhanced IFN-γ production by CD3+CD8+ T cells. Therefore, IL-12 and GM-CSF from an engineered oncolytic HSV have a synergistic effect, boosting the immune response to increase their antitumor effects.
Collapse
Affiliation(s)
- Kyoung-Ju Kim
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dahye Moon
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - So Jung Kong
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yu Seong Lee
- Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea.,Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea
| | - Youngeun Yoo
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea.,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Soyoung Kim
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, CHA University, Seongnam, Korea.,Medical Oncology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Joo-Hang Kim
- Laboratory of Gene Therapy, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| | - Kyung-Ju Choi
- Laboratory of Gene Therapy, Department of Microbiology, CHA Bundang Medical Center, CHA University, Seongnam, Korea. .,Graduate School of the Department of Biomedical Science, CHA University, Seongnam, Korea.
| |
Collapse
|
242
|
Baker JE, Seitz AP, Boudreau RM, Skinner MJ, Beydoun A, Kaval N, Caldwell CC, Gulbins E, Edwards MJ, Gobble RM. Doxycycline-Coated Silicone Breast Implants Reduce Acute Surgical-Site Infection and Inflammation. Plast Reconstr Surg 2020; 146:1029-1041. [PMID: 33141530 DOI: 10.1097/prs.0000000000007277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Surgical-site infection after implant-based breast reconstruction remains a leading cause of morbidity. Doxycycline is an antibiotic used to treat soft-tissue infections. The authors hypothesize that doxycycline-coated breast implants will significantly reduce biofilm formation, surgical-site infection, and inflammation after bacterial infection. METHODS Pieces of silicone breast implants were coated in doxycycline. In vitro studies to characterize the coating include Fourier transmission infrared spectroscopy, elution data, and toxicity assays (n = 4). To evaluate antimicrobial properties, coated implants were studied after methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa inoculation in vitro and in a mouse model at 3 and 7 days (n = 8). Studies included bacterial quantification, cytokine profiles, and histology. RESULTS Coated silicone breast implants demonstrated a color change, increased mass, and Fourier transmission infrared spectroscopy consistent with a doxycycline coating. Coated implants were nontoxic to fibroblasts and inhibited biofilm formation and bacterial adherence after MRSA and P. aeruginosa incubation in vitro, and measurable doxycycline concentrations at 24 hours were seen. In a mouse model, a significant reduction of MRSA and P. aeruginosa bacterial colonization after 3 and 7 days in the doxycycline-coated implant mice was demonstrated when compared to the control mice, control mice treated with intraperitoneal doxycycline, and control mice treated with a gentamicin/cefazolin/bacitracin wash. Decreased inflammatory cytokines and inflammatory cell infiltration were demonstrated in the doxycycline-coated mice. CONCLUSIONS A method to coat silicone implants with doxycycline was developed. The authors' doxycycline-coated silicone implants significantly reduced biofilm formation, surgical-site infections, and inflammation. Further studies are needed to evaluate the long-term implications.
Collapse
Affiliation(s)
- Jennifer E Baker
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Aaron P Seitz
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Ryan M Boudreau
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Mitchell J Skinner
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Ahmed Beydoun
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Necati Kaval
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Charles C Caldwell
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Erich Gulbins
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Michael J Edwards
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| | - Ryan M Gobble
- From the Sections of Surgical Research and Plastic, Reconstructive, and Hand Surgery, Department of Surgery, and the Department of Chemistry, College of Arts and Science, University of Cincinnati; the Division of Surgery, Shriners Hospital for Children; and the Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen
| |
Collapse
|
243
|
Seelig A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front Oncol 2020; 10:576559. [PMID: 33194688 PMCID: PMC7649427 DOI: 10.3389/fonc.2020.576559] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP) binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a large number of structurally and functionally diverse compounds, including most cancer therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR, and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the molecular level is required. With this goal in mind, we propose rules that predict whether a compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set of rules is derived from a quantitative analysis of the drug binding and transport properties of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated with a set of FDA approved drugs which have been repurposed for cancer therapy.
Collapse
Affiliation(s)
- Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
244
|
Hama N, Kobayashi T, Han N, Kitagawa F, Kajihara N, Otsuka R, Wada H, Lee HK, Rhee H, Hasegawa Y, Yagita H, Baghdadi M, Seino KI. Interleukin-34 Limits the Therapeutic Effects of Immune Checkpoint Blockade. iScience 2020; 23:101584. [PMID: 33205010 PMCID: PMC7648133 DOI: 10.1016/j.isci.2020.101584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interleukin-34 (IL-34) is an alternative ligand to colony-stimulating factor-1 (CSF-1) for the CSF-1 receptor that acts as a key regulator of monocyte/macrophage lineage. In this study, we show that tumor-derived IL-34 mediates resistance to immune checkpoint blockade regardless of CSF-1 existence in various murine cancer models. Consistent with its immunosuppressive characteristics, the expression of IL-34 in tumors correlates with decreased frequencies of cellular (such as CD8+ and CD4+ T cells and M1-biased macrophages) and molecular (including various cytokines and chemokines) effectors at the tumor microenvironment. Then, a neutralizing antibody against IL-34 improved the therapeutic effects of the immune checkpoint blockade in combinatorial therapeutic models, including a patient-derived xenograft model. Collectively, we revealed that tumor-derived IL-34 inhibits the efficacy of immune checkpoint blockade and proposed the utility of IL-34 blockade as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Fumihito Kitagawa
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Nabeel Kajihara
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Hee-kyung Lee
- DNA Link, Inc., Biomedical Science Building 117, Seoul National University College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, South Korea
| | - Hwanseok Rhee
- DNA Link, Inc., Biomedical Science Building 117, Seoul National University College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, South Korea
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Depertment of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Ken-ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| |
Collapse
|
245
|
Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020; 8:5516-5537. [PMID: 33049007 PMCID: PMC7837217 DOI: 10.1039/d0bm01183e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-β, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.
Collapse
|
246
|
Baseline IFN-γ and IL-10 expression in PBMCs could predict response to PD-1 checkpoint inhibitors in advanced melanoma patients. Sci Rep 2020; 10:17626. [PMID: 33077770 PMCID: PMC7573589 DOI: 10.1038/s41598-020-72711-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Anti-PD-1 antibodies revolutionized the treatment of advanced melanoma patients. However, one out of three do not respond to this therapy, with an overall poor prognosis. Identification of predictive biomarkers in patients receiving immune-based therapies is necessary for minimizing risk of toxicity and optimizing patient benefit and is still an important unmet clinical need. Recently, many studies have evaluated peripheral blood markers as potential biomarkers, but none so far have been validated. We collected at baseline peripheral blood samples from 18 consecutive advanced melanoma patients treated with anti-PD-1 therapy. Main pro- and anti-inflammatory cytokines were studied in PBMCs from baseline blood samples both evaluating mRNA expression by qRT-PCR and identifying PBMCs subpopulations by FACS analysis. We found that IFN-γ mRNA expression levels were significantly higher in responder patients compared to non-responder ones. Moreover, to better validate its role, we evaluated the IFN-γ/IL-10 ratio. This value was higher in responder patients. FACS analysis confirmed that CD4 + IFN-γ + PBMCs percentage was higher in responders. Our data suggest an interesting correlation between IFN-γ/IL-10 ratio and response to anti-PD-1 therapy in advanced melanoma patients, suggesting a new biomarker that could be easily incorporated in clinical practice.
Collapse
|
247
|
Paulovičová E, Paulovičová L, Poláková M, Pánik M, Jantová S. In vitro evaluation of immunobiological activity of simple mannolipids. Toxicol In Vitro 2020; 70:105014. [PMID: 33049314 DOI: 10.1016/j.tiv.2020.105014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Immunomodulation, cytotoxicity and anti-cancer activity of selected amphiphilic non-ionic (thio)alkyl α-D-mannosides (with aglycone of C6-C12) were investigated in vitro in human cervix epitheloid carcinoma cell line HeLa, murine melanoma cancer cells B16, murine lymphocytic leukemia cell line L1210, murine fibroblast cell line NIH 3 T3 and murine macrophage cell line RAW 264.7. Toxicological studies revealed structure-dependent immunobiological effectivity based on a tight interaction with relevant cells. The results demonstrated diverse immunomodulation of macrophage cell-line RAW264.7 proliferation and production of Th1 and Th2 cytokines, and induction of pro-inflammatory interleukins IL-1α, TNFα, IL-6, IL-12 and IL-17 and anti-inflammatory IL-10 following (thio)alkyl α-D-mannosides 24 and 48 h exposure. Direct application of alkyl mannosides MOC10 and MOC12 and their thio analogues MSC10 and MSC12 in reconstructed human EpiDerm™ and MOC12 and MSC12 in EpiOcular™ model assays for dermal and ocular irritation together with quantification of human proinflammatory cytokines IL-1α, TNFα, IL-6 and IL-8 culture media release was used to ascertain toxicological safety.
Collapse
Affiliation(s)
- Ema Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lucia Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Dept.Glycochemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Pánik
- Institute of Management, of the Slovak University of Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Soňa Jantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
248
|
Sun Y, Liu L, Zhou L, Yu S, Lan Y, Liang Q, Liu J, Cao A, Liu Y. Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45873-45890. [PMID: 32924511 DOI: 10.1021/acsami.0c14405] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer metastasis is the leading cause of high mortality and disease recurrence in breast cancer. In this study, a novel tumor microenvironment charge reversal polymetformin (PMet)-based nanosystem co-delivering doxorubicin (DOX) and plasmid encoding IL-12 gene (pIL-12) was developed for chemo-gene combination therapy on metastatic breast cancer. Cationic PMet was readily self-assembled into micelles for DOX physical encapsulation and pIL-12 complexation, and a hyaluronidase-sensitive thiolated hyaluronic acid (HA-SH) was then collaboratively assembled to the pIL-12/DOX-PMet micelleplexes, abbreviated as HA/pIL-12/DOX-PMet. DOX/pIL-12 loaded in HA/pIL-12/DOX-PMet micelleplexes presented prolonged circulation in blood, efficient accumulation in tumors, and internalization in tumor cells via CD44 receptor-mediated tumor specific-targeting, and DOX/pIL-12 was co-released in endo/lysosomes tumor microenvironment followed by HAase-triggered HA-SH deshielding from HA/pIL-12/DOX-PMet micelleplexes. Moreover, HA/PMet micelleplexes displayed excellent pIL-12 transfection and IL-12 expression in tumors of 4T1 tumor-bearing mice. Importantly, HA/pIL-12/DOX-PMet micelleplexes synergistically enhanced the NK cells and tumor infiltrated cytotoxic T lymphocytes and modulated the polarization from protumor M2 macrophages to activated antitumor M1 macrophages, with concomitant decreasing of the immunosuppressive regulatory T (Treg) cells, accompanied by an increase in the cytokines expression of IL-12, IFN-γ and TNF-α, consequently showing an improved antitumor and antimetastasis activity in 4T1 breast cancer lung metastasis mice model. In conclusion, the tumor microenvironment charge reversal HA/PMet nanosystem holds great promise for DOX/pIL-12 co-delivery and exploitation in chemo-gene combination therapy on metastatic breast cancer.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Lu Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Shuangyu Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yang Lan
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Aichen Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
249
|
Maser IP, Hoves S, Bayer C, Heidkamp G, Nimmerjahn F, Eckmann J, Ries CH. The Tumor Milieu Promotes Functional Human Tumor-Resident Plasmacytoid Dendritic Cells in Humanized Mouse Models. Front Immunol 2020; 11:2082. [PMID: 33013879 PMCID: PMC7507800 DOI: 10.3389/fimmu.2020.02082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Particular interest to harness the innate immune system for cancer immunotherapy is fueled by limitations of immune checkpoint blockade. Plasmacytoid dendritic cells (pDC) are detected in a variety of solid tumors and correlate with poor clinical outcome. Release of type I interferons in response to toll-like-receptor (TLR)7 and TLR9 activation is the pDC hallmark. Mouse and human pDC differ substantially in their biology concerning surface marker expression and cytokine production. Here, we employed humanized mouse models (HIS) to study pDC function. We performed a comprehensive characterization of transgenic, myeloid-enhanced mouse strains (NOG-EXL and NSG-SGM3) expressing human interleukin-3 (hIL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) using identical humanization protocols. Only in HIS-NOG-EXL mice sufficient pDC infiltration was detectable. Therefore, we selected this strain for subsequent tumor studies. We analyzed pDC frequency in peripheral blood and tumors by comparing HIS-NOG-EXL with HIS-NOG mice bearing three different ovarian and breast tumors. Despite the substantially increased pDC numbers in peripheral blood of HIS-NOG-EXL mice, we detected TLR7/8 agonist responsive and thus functional pDCs only in certain tumor models independent of the mouse strain employed. However, HIS-NOG-EXL mice showed in general a superior humanization phenotype characterized by reconstitution of different myeloid subsets, NK cells and B cells producing physiologic IgG levels. Hence, we provide first evidence that the tumor milieu but not genetically introduced cytokines defines intratumoral (i.t.) frequencies of the rare pDC subset. This study provides model systems to investigate in vivo pro- and anti-tumoral human pDC functions.
Collapse
Affiliation(s)
- Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Christa Bayer
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Gordon Heidkamp
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Falk Nimmerjahn
- FAU Erlangen, Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Eckmann
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany.,Dr. Carola Ries Consulting, Penzberg, Germany
| |
Collapse
|
250
|
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001447. [PMID: 33042756 PMCID: PMC7539186 DOI: 10.1002/advs.202001447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy is a class of promising anticancer treatments that has recently gained attention due to surging numbers of FDA approvals and extensive preclinical studies demonstrating efficacy. Nevertheless, further clinical implementation has been limited by high variability in patient response to different immunotherapeutic agents. These treatments currently do not have reliable predictors of efficacy and may lead to side effects. The future development of additional immunotherapy options and the prediction of patient-specific response to treatment require advanced screening platforms associated with accurate and rapid data interpretation. Advanced engineering approaches ranging from sequencing and gene editing, to tumor organoids engineering, bioprinted tissues, and organs-on-a-chip systems facilitate the screening of cancer immunotherapies by recreating the intrinsic and extrinsic features of a tumor and its microenvironment. High-throughput platform development and progress in artificial intelligence can also improve the efficiency and accuracy of screening methods. Here, these engineering approaches in screening cancer immunotherapies are highlighted, and a discussion of the future perspectives and challenges associated with these emerging fields to further advance the clinical use of state-of-the-art cancer immunotherapies are provided.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Moyuan Qu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peyton Tebon
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xing Jiang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- School of NursingNanjing University of Chinese MedicineNanjing210023China
| | - Canran Wang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yumeng Xue
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Jixiang Zhu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shiming Zhang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Rahmi Oklu
- Minimally Invasive Therapeutics LaboratoryDivision of Vascular and Interventional RadiologyMayo ClinicPhoenixAZ85054USA
| | - Shiladitya Sengupta
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and TechnologyHarvard Medical SchoolBostonMA02115USA
| | - Wujin Sun
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of RadiologyDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|