201
|
Brücher D, Kirchhammer N, Smith SN, Schumacher J, Schumacher N, Kolibius J, Freitag PC, Schmid M, Weiss F, Keller C, Grove M, Greber UF, Zippelius A, Plückthun A. iMATCH: an integrated modular assembly system for therapeutic combination high-capacity adenovirus gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:572-586. [PMID: 33665227 PMCID: PMC7890373 DOI: 10.1016/j.omtm.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Adenovirus-mediated combination gene therapies have shown promising results in vaccination or treating malignant and genetic diseases. Nevertheless, an efficient system for the rapid assembly and incorporation of therapeutic genes into high-capacity adenoviral vectors (HCAdVs) is still missing. In this study, we developed the iMATCH (integrated modular assembly for therapeutic combination HCAdVs) platform, which enables the generation and production of HCAdVs encoding therapeutic combinations in high quantity and purity within 3 weeks. Our modular cloning system facilitates the efficient combination of up to four expression cassettes and the rapid integration into HCAdV genomes with defined sizes. Helper viruses (HVs) and purification protocols were optimized to produce HCAdVs with distinct capsid modifications and unprecedented purity (0.1 ppm HVs). The constitution of HCAdVs, with adapters for targeting and a shield of trimerized single-chain variable fragment (scFv) for reduced liver clearance, mediated cell- and organ-specific targeting of HCAdVs. As proof of concept, we show that a single HCAdV encoding an anti PD-1 antibody, interleukin (IL)-12, and IL-2 produced all proteins, and it led to tumor regression and prolonged survival in tumor models, comparable to a mixture of single payload HCAdVs in vitro and in vivo. Therefore, the iMATCH system provides a versatile platform for the generation of high-capacity gene therapy vectors with a high potential for clinical development.
Collapse
Affiliation(s)
- Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sheena N. Smith
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jatina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nina Schumacher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Schmid
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabian Weiss
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Corina Keller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Grove
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Corresponding author: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
202
|
White KA, Nelvagal HR, Poole TA, Lu B, Johnson TB, Davis S, Pratt MA, Brudvig J, Assis AB, Likhite S, Meyer K, Kaspar BK, Cooper JD, Wang S, Weimer JM. Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits in CLN6-Batten disease mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:497-507. [PMID: 33665223 PMCID: PMC7887332 DOI: 10.1016/j.omtm.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease (Cln6 nclf ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye. Here, we examine whether cerebrospinal fluid (CSF) delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual deficits in Cln6 nclf mice. We show that intracerebroventricular (i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hallmark Batten disease pathology in the visual processing centers of the brain, preserving neurons of the superior colliculus, thalamus, and cerebral cortex. Importantly, i.c.v.-delivered scAAV9.CB.CLN6 also expresses in many cells throughout the central retina, preserving many photoreceptors typically lost in Cln6 nclf mice. Lastly, scAAV9.CB.CLN6 treatment partially preserved visual acuity in Cln6 nclf mice as measured by optokinetic response. Taken together, we report the first instance of CSF-delivered viral gene reaching and rescuing pathology in both the brain parenchyma and retinal neurons, thereby partially slowing visual deterioration.
Collapse
Affiliation(s)
- Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hemanth R Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Timothy A Poole
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Lu
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA.,Amicus Therapeutics, Philadelphia, PA 19104, USA
| | - Samantha Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Melissa A Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jon Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ana B Assis
- Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Shibi Likhite
- Nationwide Children's Hospital. He was involved in AAV9 construct development
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Division of Genetics and Genomics, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center and David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Shaomei Wang
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA.,Amicus Therapeutics, Philadelphia, PA 19104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
203
|
Xu J, Wang B, Li S. Gene and cell therapy. REMINGTON 2021:463-488. [DOI: 10.1016/b978-0-12-820007-0.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
204
|
Myers CJ. Preparing pharmacists to manage gene therapies. J Am Pharm Assoc (2003) 2020; 61:e78-e82. [PMID: 33342748 DOI: 10.1016/j.japh.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/18/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
Abstract
This commentary provides a background on gene therapy and identifies a critical gap in pharmacy practice education. The history and handling of gene therapy is contextualized with current pharmacy practice. With the increasing numbers of gene and cell-based therapies approaching the market, the need for appropriate training is greater than ever. There are few gene therapy training resources for pharmacists, and gene therapies require complex handing and administration. Pharmacists play a vital role in bringing new therapies to health care institutions and training other health care providers. Pharmacy organizations and health systems should work to develop gene therapy training resources for health-system pharmacists.
Collapse
|
205
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
206
|
PH-responsive strontium nanoparticles for targeted gene therapy against mammary carcinoma cells. Asian J Pharm Sci 2020; 16:236-252. [PMID: 33995617 PMCID: PMC8105532 DOI: 10.1016/j.ajps.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
Genetic intervention via the delivery of functional genes such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) offers a great way to treat many single or multiple genetic defects effectively, including mammary carcinoma. Delivery of naked therapeutic genes or siRNAs is, however, short-lived due to biological clearance by scavenging nucleases and circulating monocytes. Low cellular internalization of negatively-charged nucleic acids further causes low transfection or silencing activity. Development of safe and effectual gene vectors is therefore undeniably crucial to the success of nucleic acid delivery. Inorganic nanoparticles have attracted considerable attention in the recent years due to their high loading capacity and encapsulation activity. Here we introduce strontium salt-based nanoparticles, namely, strontium sulfate, strontium sulfite and strontium fluoride as new inorganic nanocarriers. Generated strontium salt particles were found to be nanosized with high affinity towards negatively-charged pDNA and siRNA. Degradation of the particles was seen with a drop in pH, suggesting their capacity to respond to pH change and undergo dissolution at endosomal pH to release the genetic materials. While the particles are relatively nontoxic towards the cells, siRNA-loaded SrF2 and SrSO3 particles exerted superior transgene expression and knockdown activity of MAPK and AKT, leading to inhibition of their phosphorylation to a distinctive extent in both MCF-7 and 4T1 cells. Strontium salt nanoparticles have thus emerged as a promising tool for applications in cancer gene therapy.
Collapse
|
207
|
Brown AM, Blind J, Campbell K, Ghosh S. Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings. APPLIED BIOSAFETY 2020; 25:184-193. [PMID: 36032394 PMCID: PMC9134636 DOI: 10.1177/1535676020934917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Introduction Health care workers who work daily with human body fluids and hazardous drugs are among those at the highest risk of occupational exposure to these agents. The Occupational Safety and Health Administration's (OSHA) Bloodborne Pathogens Standard (29 CFR 1910.1030) prescribes safeguards to protect workers against health hazards related to bloodborne pathogens. Similarly, the United States Pharmacopeia General Chapter 800 (USP <800>), a standard first published in February 2016 and implementation required by December 2019, addresses the occupational exposure risks of health care workers at organizations working with hazardous drugs. With emerging technologies in the field of gene therapy, these occupational exposure risks to health care workers now extend beyond those associated with bloodborne pathogens and hazardous drugs and now include recombinant DNA. The fifth edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) and the National Institutes of Health Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) mostly govern work with biohazardous agents and recombinant DNA in a laboratory research setting. When gene therapy products are utilized in a hospital environment, health care workers have very few resources to identify and reduce the risks associated with product use during and after the administration of treatments. Methods At the Abigail Wexner Research Institute at Nationwide Children's Hospital, a comprehensive gap analysis was executed between the research and health care environment to develop a program for risk mitigation. The BMBL, NIH Guidelines, World Health Organization Biosafety Manual, OSHA Bloodborne Pathogens Standard, and USP <800> were used to develop a framework for the gap analysis process. Results The standards and guidelines for working with viral vector systems in a research laboratory environment were adapted to develop a program that will mitigate the risks to health care workers involved in the preparation, transportation, and administration of gene therapies as well as subsequent patient care activities. The gap analysis identified significant differences in technical language used in daily operations, work environment, training and education, disinfection practices, and policy development between research and health care settings. These differences informed decisions and helped the organization develop a collaborative framework for risk mitigation when a gene therapy product enters the health care setting. Discussion With continuing advances in the field of gene therapy, the oversight structure needs to evolve for the health care setting. To deliver the best outcomes to the patients of these therapies, researchers, Institutional Biosafety Committees, and health care workers need to collaborate on training programs to safeguard the public trust in the use of this technology both in clinical trials and as FDA-approved therapeutics.
Collapse
Affiliation(s)
- Alex M. Brown
- Department of Research Safety, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jill Blind
- Department of Pharmacy, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katie Campbell
- Department of Research Safety, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sumit Ghosh
- Department of Research Safety, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
208
|
Non-viral delivery systems of DNA into stem cells: Promising and multifarious actions for regenerative medicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
209
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
210
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
211
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
212
|
Erendor F, Eksi YE, Sahin EO, Balci MK, Griffith TS, Sanlioglu S. Lentivirus Mediated Pancreatic Beta-Cell-Specific Insulin Gene Therapy for STZ-Induced Diabetes. Mol Ther 2020; 29:149-161. [PMID: 33130311 DOI: 10.1016/j.ymthe.2020.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune destruction of pancreatic beta cells is the characteristic feature of type 1 diabetes mellitus. Consequently, both short- and intermediate-acting insulin analogs are under development to compensate for the lack of endogenous insulin gene expression. Basal insulin is continuously released at low levels in response to hepatic glucose output, while post-prandial insulin is secreted in response to hyperglycemia following a meal. As an alternative to multiple daily injections of insulin, glucose-regulated insulin gene expression by gene therapy is under development to better endure postprandial glucose excursions. Controlled transcription and translation of proinsulin, presence of glucose-sensing machinery, prohormone convertase expression, and a regulated secretory pathway are the key features unique to pancreatic beta cells. To take advantage of these hallmarks, we generated a new lentiviral vector (LentiINS) with an insulin promoter driving expression of the proinsulin encoding cDNA to sustain pancreatic beta-cell-specific insulin gene expression. Intraperitoneal delivery of HIV-based LentiINS resulted in the lowering of fasting plasma glucose, improved glucose tolerance and prevented weight loss in streptozoticin (STZ)-induced diabetic Wistar rats. However, the combinatorial use of LentiINS and anti-inflammatory lentiviral vector (LentiVIP) gene therapy was required to increase serum insulin to a level sufficient to suppress non-fasting plasma glucose and diabetes-related inflammation.
Collapse
Affiliation(s)
- Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Yunus Emre Eksi
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Elif Ozgecan Sahin
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Mustafa Kemal Balci
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Thomas S Griffith
- Department of Urology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
213
|
Abstract
Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron's morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.
Collapse
Affiliation(s)
- Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
214
|
Li H, Yang Z, Fu L, Yuan Z, Gao C, Sui X, Liu S, Peng J, Dai Y, Guo Q. Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:266-293. [PMID: 32988289 DOI: 10.1089/ten.teb.2020.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The meniscus plays a critical role in maintaining knee joint homeostasis. Injuries to the meniscus, especially considering the limited self-healing capacity of the avascular region, continue to be a challenge and are often treated by (partial) meniscectomy, which has been identified to cause osteoarthritis. Currently, meniscus tissue engineering focuses on providing extracellular matrix (ECM)-mimicking scaffolds to direct the inherent meniscal regeneration process, and it has been found that various stimuli are essential. Numerous bioactive factors present benefits in regulating cell fate, tissue development, and healing, but lack an optimal delivery system. More recently, bioengineers have developed various polymer-based drug delivery systems (PDDSs), which are beneficial in terms of the favorable properties of polymers as well as novel delivery strategies. Engineered PDDSs aim to provide not only an ECM-mimicking microenvironment but also the controlled release of bioactive factors with release profiles tailored according to the biological concerns and properties of the factors. In this review, both different polymers and bioactive factors involved in meniscal regeneration are discussed, as well as potential candidate systems, with examples of recent progress. This article aims to summarize drug delivery strategies in meniscal regeneration, with a focus on novel delivery strategies rather than on specific delivery carriers. The current challenges and future prospects for the structural and functional regeneration of the meniscus are also discussed. Impact statement Meniscal injury remains a clinical Gordian knot owing to the limited healing potential of the region, restricted surgical approaches, and risk of inducing osteoarthritis. Existing tissue engineering scaffolds that provide mechanical support and a favorable microenvironment also lack biological cues. Advanced polymer-based delivery strategies consisting of polymers incorporating bioactive factors have emerged as a promising direction. This article primarily reviews the types and applications of biopolymers and bioactive factors in meniscal regeneration. Importantly, various carrier systems and drug delivery strategies are discussed with the hope of inspiring further advancements in this field.
Collapse
Affiliation(s)
- Hao Li
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Yongjing Dai
- Department of Orthopedic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| |
Collapse
|
215
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
216
|
Corder BN, Bullard BL, Poland GA, Weaver EA. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020; 12:E1186. [PMID: 33092070 PMCID: PMC7589362 DOI: 10.3390/v12101186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.
Collapse
Affiliation(s)
- Brigette N. Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Brianna L. Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Gregory A. Poland
- Mayo Vaccine Research Group, General Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Eric A. Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| |
Collapse
|
217
|
Weninger S, Sperling B, Alexander R, Ivarsson M, Menzies FM, Powchik P, Weber CJ, Altar CA, Crystal RG, Haggarty SJ, Loring J, Bain LJ, Carrillo MC. Active immunotherapy and alternative therapeutic modalities for Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2020; 6:e12090. [PMID: 33083513 PMCID: PMC7550557 DOI: 10.1002/trc2.12090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
As knowledge of Alzheimer's disease (AD) progression improves, the field has recognized the need to diversify the pipeline, broaden strategies and approaches to therapies, as well as delivery mechanisms. A better understanding of the earliest biological processes of AD/dementia would help inform drug target selection. Currently there are a number of programs exploring these alternate avenues. This meeting will allow experts in the field (academia, industry, government) to provide perspectives and experiences that can help elucidate what the pipeline looks like today and what avenues hold promise in developing new therapies across the stages of AD. The focus here is on Active Immunotherapies and Alternative Therapeutic Modalities. This topic includes active vaccines, antisense oligomers, and cell-based therapy among others, and highlights new clinical developments that utilize these modalities.
Collapse
Affiliation(s)
| | | | - Robert Alexander
- Takeda Pharmaceuticals International Co. Cambridge Massachusetts USA
| | - Magnus Ivarsson
- Rodin Therapeutics 300 Technology Square Cambridge Massachusetts USA
| | | | - Peter Powchik
- United Neuroscience 9 Exchange Place, I. F. S. C Dublin Ireland
| | | | | | - Ronald G Crystal
- Department of Genetic Medicine Weill Cornell Medicine New York New York USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory Center for Genomic Medicine Department of Neurology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | | | - Lisa J Bain
- Independent Science Writer Elverson Pennsylvania USA
| | | |
Collapse
|
218
|
Thuille N, Sajinovic T, Siegmund K, Baier G. Chemically modified mRNA nucleofection of primary human T cells. J Immunol Methods 2020; 487:112878. [PMID: 33031795 DOI: 10.1016/j.jim.2020.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Here we show that an approach of in-vitro transcribed mRNA nucleofection expands the range of transfection of primary human T cells. It represents a reproducible and time-efficient technology, and is thus an ideal tool in basic research involving highly controlled in-vitro experiments with a gene of interest aiming at identifying its biological human T cell function.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria.
| | - Tajana Sajinovic
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| | - Kerstin Siegmund
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| | - Gottfried Baier
- Department of Pharmacology and Genetics, Medical University of Innsbruck, Austria
| |
Collapse
|
219
|
Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020; 29:3-12. [PMID: 33037407 DOI: 10.1038/s41434-020-00197-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use. Gene correction using CRISPR-Cas9 is an extension of gene therapy that has received considerable attention in recent years and boasts many possible uses beyond classical gene therapy approaches. While there is significant therapeutic potential using gene therapy and gene correction strategies, a number of hurdles remain to be overcome before they become more common in clinical use, particularly with regards to safety and efficacy. As research progresses in this exciting field, it is likely that these therapies will become first-line treatments and will have tremendous positive impacts on the lives of patients with genetic disorders.
Collapse
Affiliation(s)
- Matthew R Cring
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA. .,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
220
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
221
|
Deepak P, Siddalingam R, Kumar P, Anand S, Thakur S, Jagdish B, Jaiswal S. Gene based nanocarrier delivery for the treatment of hepatocellular carcinoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
222
|
Martier R, Konstantinova P. Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Front Neurosci 2020; 14:580179. [PMID: 33071748 PMCID: PMC7530328 DOI: 10.3389/fnins.2020.580179] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is an emerging and powerful therapeutic tool to deliver functional genetic material to cells in order to correct a defective gene. During the past decades, several studies have demonstrated the potential of AAV-based gene therapies for the treatment of neurodegenerative diseases. While some clinical studies have failed to demonstrate therapeutic efficacy, the use of AAV as a delivery tool has demonstrated to be safe. Here, we discuss the past, current and future perspectives of gene therapies for neurodegenerative diseases. We also discuss the current advances on the newly emerging RNAi-based gene therapies which has been widely studied in preclinical model and recently also made it to the clinic.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| |
Collapse
|
223
|
Wang N, Liu C, Lu Z, Yang W, Li L, Gong S, He T, Ou C, Song L, Shen M, Wu Q, Gong C. Multistage Sensitive NanoCRISPR Enable Efficient Intracellular Disruption of Immune Checkpoints for Robust Innate and Adaptive Immune Coactivation. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202004940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zhenghao Lu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Lu Li
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Linjiang Song
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
224
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
225
|
Sharpe M, Barry J, Kefalas P. Clinical Adoption of Advanced Therapies: Challenges and Opportunities. J Pharm Sci 2020; 110:1877-1884. [PMID: 32918916 DOI: 10.1016/j.xphs.2020.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
As the cell and gene therapy field matures the powerful therapeutic potential of these innovative therapies is starting to be shown, particularly in the fields of oncology and childhood immune deficiency diseases. However, as more therapies enter late stage clinical trials, advances and innovation are required in manufacturing, logistics, regulation, reimbursement and the healthcare setting to ensure that systems are in place to support wider clinical adoption of these promising treatments. A window of opportunity exists to implement new methodologies for best practice in both the ability to manufacture products reproducibly at scale, as well as ensuring healthcare systems are not overwhelmed by the variety and complexity of these new therapies and the additional burden they will place on already stretched facilities. If all interested parties work together it will be possible for the sector to develop the necessary processes, skilled staff and infrastructure needed as more treatments move from clinical trial to marketed products.
Collapse
Affiliation(s)
- Michaela Sharpe
- Moare Solutions Ltd, 99 Canterbury Road, Whitstable, Kent CT5 4HG, UK.
| | - Jacqueline Barry
- Cell and Gene Therapy Catapult, Guys Hospital, 12th Floor Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Panos Kefalas
- Cell and Gene Therapy Catapult, Guys Hospital, 12th Floor Tower Wing, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
226
|
Lee J, Kwon YE, Kim Y, Choi JS. Enhanced transfection efficiency of low generation PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from herpesviridae. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:22-41. [PMID: 32897813 DOI: 10.1080/09205063.2020.1815496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyamidoamine (PAMAM) dendrimer is an extensively studied polymer in the biomedical research because of its low polydispersity, distinct molecular structure, and surface functionalities. Generally, a high-generational PAMAM dendrimer is used for gene delivery because transfection efficiency is dependent on charge density; however, an increase in charge density induces disruption of the cellular membrane, and damage to the membrane results in cytotoxicity. In this study, we selected PAMAM generation 2 to reduce the cytotoxic effect and conjugated RRILH and RRLHL sequences, nuclear localization signals (NLS) derived from herpesviridae to PAMAM generation 2. The transfection efficiency of RRILH-PAMAM G2 and RRLHL-PAMAM G2 was similar to that of polyethylenimine (PEI) in Neuro2A, HT22, and HaCaT cells, whereas their transfection efficiency was much higher than that of PEI in NIH3T3 cells. RRILH-PAMAM G2 showed relatively lower cytotoxicity than did RRLHL-PAMAM G2 in all cell lines, but the transfection capacity of the two polymers was similar. Our study shows that low-generational PAMAM dendrimer conjugated with NLS sequences has potential as an alternative to PEI in gene delivery.
Collapse
Affiliation(s)
- Jeil Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
227
|
Investigation of Plasmid DNA Delivery and Cell Viability Dynamics for Optimal Cell Electrotransfection In Vitro. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electroporation is an effective method for delivering plasmid DNA molecules into cells. The efficiency of gene electrotransfer depends on several factors. To achieve high transfection efficiency while maintaining cell viability is a tedious task in electroporation. Here, we present a combined study in which the dynamics of both evaluation types of transfection efficiency and the cell viability were evaluated in dependence of plasmid concentration as well as at the different number of high voltage (HV) electric pulses. The results of this study reveal a quantitative sigmoidal (R2 > 0.95) dependence of the transfection efficiency and cell viability on the distance between the cell membrane and the nearest plasmid. We propose this distance value as a new, more accurate output parameter that could be used in further optimization studies as a predictor and a measure of electrotransfection efficiency.
Collapse
|
228
|
Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 2020; 394:107947. [PMID: 32247629 PMCID: PMC7939749 DOI: 10.1016/j.heares.2020.107947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Approximately 3 in 1000 children in the US under 4 years of age are affected by hearing loss. Currently, cochlear implants represent the only line of treatment for patients with severe to profound hearing loss, and there are no targeted drug or biological based therapies available. Gene replacement is a promising therapeutic approach for hereditary hearing loss, where viral vectors are used to deliver functional cDNA to "replace" defective genes in dysfunctional cells in the inner ear. Proof-of-concept studies have successfully used this approach to improve auditory function in mouse models of hereditary hearing loss, and human clinical trials are on the immediate horizon. The success of this method is ultimately determined by the underlying biology of the defective gene and design of the treatment strategy, relying on intervention before degeneration of the sensory structures occurs. A challenge will be the delivery of a corrective gene to the proper target within the therapeutic window of opportunity, which may be unique for each specific defective gene. Although rescue of pre-lingual forms of recessive deafness have been explored in animal models thus far, future identification of genes with post-lingual onset that are amenable to gene replacement holds even greater promise for treatment, since the therapeutic window is likely open for a much longer period of time. This review summarizes the current state of adeno-associated virus (AAV) gene replacement therapy for recessive hereditary hearing loss and discusses potential challenges and opportunities for translating inner ear gene replacement therapy for patients with hereditary hearing loss.
Collapse
Affiliation(s)
- Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
229
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
230
|
Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21:E6240. [PMID: 32872311 PMCID: PMC7503568 DOI: 10.3390/ijms21176240] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
231
|
Abstract
Despite various clinical modalities available for patients, heart disease remains among the leading causes of mortality and morbidity worldwide. Genetic medicine, particularly mRNA, has broad potential as a therapeutic. More specifically, mRNA-based protein delivery has been used in the fields of cancer and vaccination, but recent changes to the structural composition of mRNA have led the scientific community to swiftly embrace it as a new drug to deliver missing genes to injured myocardium and many other organs. Modified mRNA (modRNA)-based gene delivery features transient but potent protein translation and low immunogenicity, with minimal risk of insertional mutagenesis. In this review, we compared and listed the advantages of modRNA over traditional vectors for cardiac therapy, with particular focus on using modRNA therapy in cardiac repair. We present a comprehensive overview of modRNA's role in cardiomyocyte (CM) proliferation, cardiac vascularization, and prevention of cardiac apoptosis. We also emphasize recent advances in modRNA delivery strategies and discuss the challenges for its clinical translation.
Collapse
|
232
|
Yoo S, Kang B, Oh S, Kim Y, Jang JH. A Versatile Adeno-Associated Viral Vector Cross-Linking Platform Capable of Tuning Cellular Tropisms and Simultaneously Inducing Solid-Phase Gene Delivery. ACS APPLIED BIO MATERIALS 2020; 3:4847-4857. [PMID: 35021729 DOI: 10.1021/acsabm.0c00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing gene carriers with improved affinities for target cells and the simultaneous diversification of their delivery modes will be pivotal for upgrading gene therapy technologies. In this study, a simple and versatile adeno-associated virus (AAV) conjugation platform using the cross-linker 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) is proposed. Depending on the quantity of the DTSSP molecules, the AAV-DTSSP complexes could either be linked with the relevant biomolecules for altering cellular tropisms or further form a self-assembled AAV-DTSSP pellet capable of mimicking a polymeric gene delivery system. At lower quantities of DTSSP, the AAV-DTSSP complexes were conjugated with aminated l-fucose molecules, whose levels are typically upregulated in pancreatic cancer cells, resulting in enhanced gene delivery efficiencies in pancreatic cancer cells. At higher concentrations of DTSSP, visible solid forms of the AAV-DTSSP pellets were formed, and the AAV pellets demonstrated the capability to induce a localized, sustained gene expression pattern comparable to that of conventional biomaterial-based approaches. Thus, a multipurpose AAV cross-linking platform, which can enable AAV vector systems that are capable of altering cellular tropisms and simultaneously inducing solid-phase delivery, will provide crucial insights into vector design for further upgrading of gene delivery technologies.
Collapse
Affiliation(s)
- Seungju Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Byunguk Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Seokmin Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yunha Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
233
|
Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J Clin Med 2020; 9:E2577. [PMID: 32784514 PMCID: PMC7463867 DOI: 10.3390/jcm9082577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions-cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)-alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.
Collapse
Affiliation(s)
- Lucía Bañuls
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Daniel Pellicer
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Silvia Castillo
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Paediatrics Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - María Mercedes Navarro-García
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - María Magallón
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Cruz González
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Pneumology Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Francisco Dasí
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| |
Collapse
|
234
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
235
|
Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study. Molecules 2020; 25:molecules25153557. [PMID: 32759785 PMCID: PMC7436255 DOI: 10.3390/molecules25153557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na2, ADP Na3, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl2, while MgCl2 facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA and nucleotide species was further confirmed by measurements of ζ-potentials. DNA-Mg-modified nanotubes were characterized using transmission electron (TEM), atomic force (AFM) and hyperspectral microscopies. Thermogravimetric analysis corroborated the sorption of DNA by the nanotubes, and the presence of DNA on the nanotube surface was indicated by changes in the surface adhesion force measured by AFM. DNA bound by halloysite in the presence of MgCl2 could be partially released after addition of phosphate buffered saline. DNA binding and release from halloysite nanotubes was tested in the range of MgCl2 concentrations (10–100 mM). Even low MgCl2 concentrations significantly increased DNA sorption to halloysite, and the binding was leveled off at about 60 mM. DNA-Mg-modified halloysite nanotubes were used for obtaining a regular pattern on a glass surface by evaporation induced self-assembly process. The obtained spiral-like pattern was highly stable and resisted dissolution after water addition. Our results encompassing modification of non-toxic clay nanotubes with a natural polyanion DNA will find applications for construction of gene delivery vehicles and for halloysite self-assembly on various surfaces (such as skin or hair).
Collapse
|
236
|
Salvioni L, Zuppone S, Andreata F, Monieri M, Mazzucchelli S, Di Carlo C, Morelli L, Cordiglieri C, Donnici L, De Francesco R, Corsi F, Prosperi D, Vago R, Colombo M. Nanoparticle‐Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucia Salvioni
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Stefania Zuppone
- Urologic Research InstituteDivision of Experimental OncologyIRCCS San Raffaele Scientific Institute via Olgettina 60 Milan 20132 Italy
| | - Francesco Andreata
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Matteo Monieri
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Serena Mazzucchelli
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
| | - Caterina Di Carlo
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Lucia Morelli
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| | - Chiara Cordiglieri
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
| | - Lorena Donnici
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
| | - Raffaele De Francesco
- INGM – Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi,” Via Francesco Sforza 35 Milan 20122 Italy
- Department of Pharmacological and Biomolecular Sciences via Balzaretti 9 Milano 20133 Italy
| | - Fabio Corsi
- Nanomedicine LaboratoryDepartment of Biomedical and Clinical Sciences “L. Sacco”Università degli Studi di Milano via G. B. Grassi, 74 Milan 20157 Italy
- Breast UnitSurgery DepartmentICS Maugeri IRCCS via S. Maugeri 10 Pavia 27100 Italy
| | - Davide Prosperi
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
- Breast UnitSurgery DepartmentICS Maugeri IRCCS via S. Maugeri 10 Pavia 27100 Italy
| | - Riccardo Vago
- Urologic Research InstituteDivision of Experimental OncologyIRCCS San Raffaele Scientific Institute via Olgettina 60 Milan 20132 Italy
- Università Vita‐Salute San Raffaele via Olgettina, 58 Milan 20132 Italy
| | - Miriam Colombo
- NanoBioLabDepartment of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 Milan 20126 Italy
| |
Collapse
|
237
|
Kang RH, Jang JE, Huh E, Kang SJ, Ahn DR, Kang JS, Sailor MJ, Yeo SG, Oh MS, Kim D, Kim HY. A brain tumor-homing tetra-peptide delivers a nano-therapeutic for more effective treatment of a mouse model of glioblastoma. NANOSCALE HORIZONS 2020; 5:1213-1225. [PMID: 32510090 DOI: 10.1039/d0nh00077a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organ-specific cell-penetrating peptides (CPPs) are a class of molecules that can be highly effective at delivering therapeutic cargoes, and they are currently of great interest in cancer treatment strategies. Herein, we describe a new CPP (amino acid sequence serine-isoleucine-tyrosine-valine, or SIWV) that homes to glioblastoma multiforme (GBM) brain tumor tissues with remarkable specificity in vitro and in vivo. The SIWV sequence was identified from an isoform of annexin-A3 (AA3H), a membrane-interacting human protein. The mechanism of intracellular permeation is proposed to follow a caveolin-mediated endocytotic pathway, based on in vitro and in vivo receptor inhibition and genetic knockdown studies. Feasibility as a targeting agent for therapeutics is demonstrated in a GBM xenograft mouse model, where porous silicon nanoparticles (pSiNPs) containing the clinically relevant anticancer drug SN-38 are grafted with SIWV via a poly-(ethylene glycol) (PEG) linker. The formulation shows enhanced in vivo targeting ability relative to a formulation employing a scrambled control peptide, and significant (P < 0.05) therapeutic efficacy relative to free SN-38 in the GBM xenograft animal model.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
239
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
240
|
Poorebrahim M, Abazari MF, Sadeghi S, Mahmoudi R, Kheirollahi A, Askari H, Wickström SL, Poortahmasebi V, Lundqvist A, Kiessling R, Cid-Arregui A. Genetically modified immune cells targeting tumor antigens. Pharmacol Ther 2020; 214:107603. [PMID: 32553789 DOI: 10.1016/j.pharmthera.2020.107603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy approaches consisting of genetically modified immune cells have become a promising platform for cancer treatment. Such 'living' therapies targeting tumor antigens have shown success in many cancer patients in the form of durable responses in a growing number of clinical studies. Besides, a large number of ongoing studies have been designed to introduce reliable methods for identification of tumor antigens. In addition, technical and biotechnological developments are being applied to the generation and expansion of genetically modified immune cells. In this review, we summarize and discuss the latest progress and current challenges in the tumor antigen landscape and in the generation of genetically modified immune cells in view of their clinical efficacy, either as monotherapy or combinational therapy.
Collapse
Affiliation(s)
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahmoudi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Askari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vahdat Poortahmasebi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Department of Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
241
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
242
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
243
|
Cooper RC, Yang H. Duplex of Polyamidoamine Dendrimer/Custom-Designed Nuclear-Localization Sequence Peptide for Enhanced Gene Delivery. Bioelectricity 2020; 2:150-157. [PMID: 32856017 DOI: 10.1089/bioe.2020.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Dendrimers are an attractive alternative to viral vectors due to the low cost of production, larger genetic insert-carrying capacity, and added control over immune- and genotoxic complications through versatile functionalization. However, their transfection rates pale in comparison to their viral counterparts, resulting in widespread research efforts in the attempt to improve transfection efficiency. Materials and Methods: In this work, we designed a synthetic diblock nuclear-localization sequence peptide (NLS) (DDDDDDVKRKKKP) and complexed it with polyamidoamine (PAMAM) dendrimer G4 to form a duplex for gene delivery. We conducted transmission electron microscopy, gel mobility shift assay, and intracellular trafficking studies. We also assessed its transfection efficiency for the delivery of a green fluorescent protein-encoding plasmid (pGFP) to NIH3T3 cells. Results: PAMAM dendrimer G4, NLS, and plasmid DNA can form a stable three-part polyplex and gain enhanced entry into the nucleus. We found transfection efficiency, in large part, depends on the ratio of G4:NLS:plasmid. The triplex prepared at the ratio of 1:60:1 for G4:NLS:pGFP has been shown to be more significantly efficient in transfecting cells than the control group (G4/pGFP, 0.5:1). Conclusions: This new diblock NLS peptide can facilely complex with dendrimers to improve dendrimer-based gene transfection. It can also complex with other polycationic polymers to produce more potent nonviral duplex gene delivery vehicles.
Collapse
Affiliation(s)
- Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
244
|
Sánchez-Trasviña C, Fuks P, Mushagasha C, Kimerer L, Mayolo-Deloisa K, Rito-Palomares M, Carta G. Structure and functional properties of Capto™ Core 700 core-shell particles. J Chromatogr A 2020; 1621:461079. [DOI: 10.1016/j.chroma.2020.461079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023]
|
245
|
Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov 2020; 15:987-992. [PMID: 32421364 DOI: 10.1080/17460441.2020.1765770] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Meirav Segal
- HMS Initiative for RNA Medicine, Department of Pathology, Beth, Israel Deaconess Medical Center/Harvard Medical School , Boston, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth, Israel Deaconess Medical Center/Harvard Medical School , Boston, MA, USA
| |
Collapse
|
246
|
The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40:107502. [PMID: 31887345 DOI: 10.1016/j.biotechadv.2019.107502] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
|
247
|
Development of a laboratory scalable process for enhancing lentivirus production by transient transfection of HEK293 adherent cultures. Gene Ther 2020; 27:482-494. [DOI: 10.1038/s41434-020-0152-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
|
248
|
Xu X, Hulshoff MS, Tan X, Zeisberg M, Zeisberg EM. CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. Int J Mol Sci 2020; 21:E3038. [PMID: 32344896 PMCID: PMC7246536 DOI: 10.3390/ijms21093038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The field of genome editing started with the discovery of meganucleases (e.g., the LAGLIDADG family of homing endonucleases) in yeast. After the discovery of transcription activator-like effector nucleases and zinc finger nucleases, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) system has opened a new window of applications in the field of gene editing. Here, we review different Cas proteins and their corresponding features including advantages and disadvantages, and we provide an overview of the different endonuclease-deficient Cas protein (dCas) derivatives. These dCas derivatives consist of an endonuclease-deficient Cas9 which can be fused to different effector domains to perform distinct in vitro applications such as tracking, transcriptional activation and repression, as well as base editing. Finally, we review the in vivo applications of these dCas derivatives and discuss their potential to perform gene activation and repression in vivo, as well as their potential future use in human therapy.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| | - Melanie S. Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Xiaoying Tan
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Michael Zeisberg
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| |
Collapse
|
249
|
Richter F, Martin L, Leer K, Moek E, Hausig F, Brendel JC, Traeger A. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure-activity relationship study. J Mater Chem B 2020; 8:5026-5041. [PMID: 32319993 DOI: 10.1039/d0tb00340a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of genetic material by non-viral transfer systems is still in its initial stages, but there are high expectations for the development of targeted therapies. However, nucleic acids cannot enter cells without help, they must be well protected to prevent degradation and overcome a variety of biological barriers, the endosomal barrier being one of the greatest cellular challenges. Herein, the structure-property-relationship was investigated in detail, using well-defined polymers. Polyacrylamides were synthesized via RAFT polymerization resulting in a polymer library of (i) different cationic groups as aminoethyl acrylamide (AEAm), dimethylaminoethyl acrylamide (DMAEAm), dimethylaminopropyl acrylamide (DMAPAm) and guanidinopropyl acrylamide (GPAm); (ii) different degree of polymerization; and investigated (iii) in different cell culture settings. The influence of molar mass and cationic moiety on complex formation with pDNA, cytotoxicity and transfection efficiency of the polymers were investigated. The systematic approach identified a pH-independent guanidinium-containing homopolymer (PGPAm89) as the polymer with the highest transfection efficiency and superior endosomal release under optimal conditions. Since PGPAm89 is not further protonated inside endosomes, common escape theories appear unsuitable. Therefore, the interaction with bis(monoacryloylglycerol)phosphate, a lipid specific for endosomal vesicles, was investigated. Our research suggests that the interactions between amines and lipids may be more relevant than anticipated.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
250
|
Chen M, Ren YX, Xie Y, Lu WL. Gene regulations and delivery vectors for
treatment of cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|