201
|
Corbacho-Alonso N, Rodríguez-Sánchez E, Sastre-Oliva T, Mercado-García E, Perales-Sánchez I, Juarez-Alia C, López-Almodovar LF, Padial LR, Tejerina T, Mourino-Alvarez L, Ruiz-Hurtado G, Barderas MG. Global Oxidative Status Is Linked to Calcific Aortic Stenosis: The Differences Due to Diabetes Mellitus and the Effects of Metformin. Antioxidants (Basel) 2023; 12:1024. [PMID: 37237890 PMCID: PMC10215415 DOI: 10.3390/antiox12051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Calcific aortic stenosis (CAS) and type 2 diabetes mellitus (T2DM) are related and often concomitant pathologies, accompanied by common comorbidities such as hypertension or dyslipidemia. Oxidative stress is one of the mechanisms that trigger CAS, and it can drive the vascular complications in T2DM. Metformin can inhibit oxidative stress, yet its effects have not been studied in the context of CAS. Here, we assessed the global oxidative status in plasma from patients with CAS, both alone and with T2DM (and under treatment with metformin), using multimarker scores of systemic oxidative damage (OxyScore) and antioxidant defense (AntioxyScore). The OxyScore was determined by measuring carbonyls, oxidized LDL (oxLDL), 8-hydroxy-20-deoxyguanosine (8-OHdG), and xanthine oxidase (XOD) activity. In contrast, the AntioxyScore was determined through the catalase (CAT) and superoxide dismutase (SOD) activity, as well as the total antioxidant capacity (TAC). Patients with CAS displayed enhanced oxidative stress compared to control subjects, probably exceeding their antioxidant capacity. Interestingly, patients with CAS and T2DM displayed less oxidative stress, possibly due to the benefits of their pharmacological therapy (metformin). Thus, reducing oxidative stress or enhancing antioxidant capacity through specific therapies could be a good strategy to manage CAS, focusing on personalized medicine.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ines Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | | | - Luis R. Padial
- Department of Cardiology, Hospital General Universitario de Toledo, SESCAM, 45007 Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, CIBER-CV Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM (Servicio de Salud de Castilla-La Mancha), 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
202
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
203
|
Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Hidalgo-García L, Molina-Tijeras JA, Diez-Echave P, López-Escanez L, Rosati L, González-Lozano E, Cenis-Cifuentes L, García-García J, García F, Robles-Vera I, Romero M, Duarte J, Cenis JL, Lozano-Pérez AA, Gálvez J, Rodríguez-Cabezas ME, Rodríguez-Nogales A. The Prebiotic Effects of an Extract with Antioxidant Properties from Morus alba L. Contribute to Ameliorate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040978. [PMID: 37107352 PMCID: PMC10136151 DOI: 10.3390/antiox12040978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a global health issue, in which modifications in gut microbiota composition have a key role. Different therapeutic strategies are being developed in combination with diet and exercise, including the use of plant extracts, such as those obtained from Morus alba L. leaves. Recent studies have revealed their anti-inflammatory and antioxidant properties. The aim of the present work was to evaluate whether the beneficial effects of M. alba L. leaf extract in high-fat diet-induced obesity in mice is correlated with its impact on gut microbiota. The extract reduced body weight gain and attenuated lipid accumulation, as well as increased glucose sensitivity. These effects were associated with an amelioration of the obesity-associated inflammatory status, most probably due to the described antioxidant properties of the extract. Moreover, M. alba L. leaf extract mitigated gut dysbiosis, which was evidenced by the restoration of the Firmicutes/Bacteroidota ratio and the decrease in plasma lipopolysaccharide (LPS) levels. Specifically, the extract administration reduced Alistipes and increased Faecalibaculum abundance, these effects being correlated with the beneficial effects exerted by the extract on the obesity-associated inflammation. In conclusion, anti-obesogenic effects of M. alba L. leaf extract may be mediated through the amelioration of gut dysbiosis.
Collapse
Affiliation(s)
- María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura López-Escanez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Lucrezia Rosati
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Elena González-Lozano
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | | - Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER-INFECC), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - José Luis Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
| | - Antonio Abel Lozano-Pérez
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
204
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
205
|
Zhu Y, Pan Z, Jing D, Liang H, Cheng J, Li D, Zhou X, Lin F, Liu H, Pan P, Zhang Y. Association of air pollution, genetic risk, and lifestyle with incident adult-onset asthma: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114922. [PMID: 37080133 DOI: 10.1016/j.ecoenv.2023.114922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Numerous studies have explored the association of air pollution with asthma but have yielded conflicting results. The exact role of air pollution in the incidence of adult-onset asthma and whether this effect is modified by genetic risk, lifestyle, or their interaction remain uncertain. METHODS We conducted a prospective cohort study on 298,738 participants (aged 37-73 years) registered in the UK Biobank. Cox proportional hazard models were used to evaluate the association of air pollution, including particulate matter (PM2.5, PMcoarse, and PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), with asthma incidence. We constructed genetic risk and lifestyle scores, assessed whether the impact of air pollution on adult-onset asthma risk was modified by genetic susceptibility or lifestyle factors, and evaluated the identified interactions. RESULTS We found that each interquartile range increase in annual concentrations of PM2.5, NO2, and NOx was related to 1.04 (95% confidence interval [CI]: 1.01, 1.08), 1.04 (95% CI: 1.00, 1.08), and 1.03 (95% CI: 1.00, 1.06) times the risk of adult-onset asthma, respectively. The size of the effect of air pollution was greater among subpopulations with low genetic risk or unfavorable lifestyles. We also identified an additive interaction effect of air pollution with lifestyle factors, but not with genetic risk, on the risk of adult-onset asthma. CONCLUSION Our analyses show that air pollution increases the risk of adult-onset asthma, but that the size of the effect is modified by lifestyle and genetic risk. These findings emphasize the need for integrated interventions for environmental pollution by the government as well as adherence to healthy lifestyles to prevent adult-onset asthma.
Collapse
Affiliation(s)
- Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Zhaoyi Pan
- Central South University, Changsha 410008, Hunan, China
| | - Danrong Jing
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Xin Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China.
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China.
| |
Collapse
|
206
|
Venturi S, Marino M, Cioffi I, Martini D, Del Bo' C, Perna S, Riso P, Klimis-Zacas D, Porrini M. Berry Dietary Interventions in Metabolic Syndrome: New Insights. Nutrients 2023; 15:nu15081906. [PMID: 37111125 PMCID: PMC10142833 DOI: 10.3390/nu15081906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic Syndrome (MetS) is characterized by a group of dysmetabolic conditions, including abdominal obesity, dyslipidemia, glucose intolerance and/or insulin resistance, and hypertension. Generally, MetS is accompanied by an exacerbation of oxidative stress, inflammation, and vascular dysfunction. Increasing evidence suggests that berries and berry bioactives could play a potential role in the prevention and mitigation of the risk factors associated with MetS. The present systematic review summarizes the more recently available evidence deriving from human intervention studies investigating the effect of berries in subjects with at least three out of five MetS parameters. The PubMed, Scopus, and Embase databases were systematically searched from January 2010 until December 2022. A total of 17 human intervention trials met the inclusion criteria. Most of them were focused on blueberry (n = 6), cranberry (n = 3), and chokeberry (n = 3), while very few or none were available for the other berries. If considering MetS features, the main positive effects were related to lipid profile (low and high-density lipoproteins, cholesterol, and triglycerides) following blueberries and chokeberries, while conflicting results were documented for anthropometric parameters, blood pressure, and fasting blood glucose levels. Other markers analyzed within the studies included vascular function, oxidative stress, and inflammation. Here, the main positive effects were related to inflammation with a reduction in interleukin 6 and tumor necrosis factor-alpha following the intake of different berries. In conclusion, although limited, the evidence seems to support a potential role for berries in the modulation of lipid profile and inflammation in subjects with MetS. Furthermore, high-quality intervention trials are mandatory to demonstrate the role of berries in reducing risk factors for MetS and related conditions. In the future, such a demonstration could bring the adoption of berries as a potential dietary strategy to prevent/counteract MetS and related risk factors.
Collapse
Affiliation(s)
- Samuele Venturi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Iolanda Cioffi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Simone Perna
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
207
|
Oraphruek P, Chusak C, Ngamukote S, Sawaswong V, Chanchaem P, Payungporn S, Suantawee T, Adisakwattana S. Effect of a Multispecies Synbiotic Supplementation on Body Composition, Antioxidant Status, and Gut Microbiomes in Overweight and Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:nu15081863. [PMID: 37111082 PMCID: PMC10141052 DOI: 10.3390/nu15081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Studies investigating the effect of multispecies synbiotic supplementation in obesity management are limited. The current study was performed to evaluate the effects of multispecies probiotics mixed with fructooligosaccharides on body composition, antioxidant status, and gut microbiome composition in overweight and obese individuals. We employed a randomized, double-blind, placebo-controlled trial design, in which 63 individuals aged 18-45 years were assigned to receive either a synbiotic supplement or placebo for 12 weeks. The synbiotic group consumed a daily dose of 37 × 109 colony-forming units (CFU) of a unique blend of seven different probiotics, along with 2 g of fructooligosaccharides, while the placebo group consumed 2 g of maltodextrin daily. Assessments were performed at baseline, week 6, and the end of the study. The results of the study indicated that synbiotic supplementation resulted in a significant reduction in waist circumference and body fat percentage compared to the baseline measurements, as observed at 12 weeks. At the end of the study, there were no significant differences observed in body weight, BMI, waist circumference, or percentage of body fat between the synbiotic group and the placebo group. An analysis of plasma antioxidant capacity revealed that synbiotic supplementation caused a significant increase in Trolox equivalent antioxidant capacity (TEAC) and a concomitant decrease in malondialdehyde (MDA) in the test group when compared to the placebo. For the gut microbiota analysis, synbiotic supplementation significantly decreased Firmicutes abundance and the Firmicutes/Bacteroidetes (F/B) ratio at week 12 as compared to the placebo group. Nevertheless, the synbiotic group did not exhibit any substantial alterations in other biochemical blood parameters compared to the placebo group. These findings suggest that multispecies synbiotic supplementation could be a beneficial strategy to improve body composition, antioxidant status, and gut microbiome composition in overweight and obese subjects.
Collapse
Affiliation(s)
- Piyarat Oraphruek
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sathaporn Ngamukote
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
208
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
209
|
Boyer TM, Bommarito PA, Welch BM, Meeker JD, James-Todd T, Cantonwine DE, McElrath TF, Ferguson KK. Maternal exposure to phthalates and total gestational weight gain in the LIFECODES birth cohort. Reprod Toxicol 2023; 117:108354. [PMID: 36841368 PMCID: PMC10073336 DOI: 10.1016/j.reprotox.2023.108354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Excessive gestational weight gain contributes to adverse maternal and neonatal outcomes. Environmental exposures such as phthalates may lead to metabolic dysregulation, and studies suggest possible associations between maternal phthalate exposure and altered gestational weight gain. We assessed the association between nine maternal phthalate metabolites and measures of total gestational weight gain (pre-pregnancy to median 35.1 weeks of gestation) in a case-control study nested within LIFECODES (N = 379), a prospective birth cohort from Boston, Massachusetts (2006-2008). Our primary outcome was total gestational weight gain z score, a measure independent of gestational age that can provide a less biased estimate of this association. Our secondary outcomes were total gestational weight gain, rate of gestational weight gain, and adequacy ratio. The results were stratified by pre-pregnancy body mass index category. We found that concentrations of mono-(3-carboxypropyl) phthalate (MCPP) and mono-n-butyl phthalate (MBP) were positively associated with total gestational weight gain z scores among participants with obesity: adjusted mean difference (95% Confidence Interval [CI]) = 0.242 (0.030 - 0.455) and 0.105 (-0.002 - 0.212) corresponding to an excess weight gain of 1.81 kg and 0.77 kg at 35 weeks of gestation per interquartile range-increase in MCPP and MBP, respectively. Also, among participants with obesity, MBP demonstrated a potential non-linear relationship with gestational weight gain in cubic spline models. These findings suggest that phthalates may be related to higher gestational weight gain, specifically, among individuals with pre-pregnancy obesity. Future research should investigate whether pregnant people with obesity represent a subpopulation with sensitivity to phthalate exposures.
Collapse
Affiliation(s)
- Theresa M Boyer
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA.
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Tamarra James-Todd
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, USA
| |
Collapse
|
210
|
The effects of Nigella sativa on anthropometric indices: A GRADE-assessed systematic review and dose–response meta-analysis of controlled trials. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
211
|
Kabeer SW, Pant R, Sharma S, Tikoo K. Laccaic acid restores epigenetic alterations responsible for high fat diet induced insulin resistance in C57BL/6J mice. Chem Biol Interact 2023; 374:110401. [PMID: 36828244 DOI: 10.1016/j.cbi.2023.110401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Laccaic acid, the major constituent of the food colouring agent-lac dye, possesses antioxidant and anti-inflammatory properties. Here we have evaluated the effects of laccaic acid on the high-fat diet induced insulin resistance in C57BL/6J mice. Insulin resistance was developed in mice by feeding high-fat diet for 12 weeks. 6 week treatment with laccaic acid showed significant improvement in the morphometric, biochemical parameters and liver function. Western blotting experiments showed, laccaic acid increased phosphorylation of IRS1/2/AKT/GSK3β which is suppressed under insulin-resistant conditions in liver. Furthermore, it also attenuated the inflammatory ERK/NFκB signalling, thereby reducing the expression of inflammatory cytokines- TNFα, IL-1β and IL-6. Concomitantly, laccaic acid increased AMPK/AKT-mediated phosphorylation of FOXO1, preventing its nuclear translocation and transcriptional activation of gluconeogenic genes (G6PC and PCK1). Interestingly, treatment with laccaic acid also prevented high-fat diet induced alterations of histone methylation (H3K27me3 and H3K36me2) at global level. Our chromatin-immunoprecipitation data shows high-fat diet induced loss of inactivation mark H3K27me3 at FOXO1 promoter was regained upon laccaic acid treatment. Additionally, the expression of the H3K27 methylating enzyme EZH2 was also upregulated by laccaic acid. Together it all results in the downregulation of FOXO1 gene expression. To the best of our knowledge, we provide first evidence that laccaic acid either directly or indirectly modulates the epigenetic landscape of genes responsible for high-fat diet induced insulin resistance.
Collapse
Affiliation(s)
- Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Rajat Pant
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
212
|
Kobi JBBS, Matias AM, Gasparini PVF, Torezani-Sales S, Madureira AR, da Silva DS, Correa CR, Garcia JL, Haese D, Nogueira BV, de Assis ALEM, Lima-Leopoldo AP, Leopoldo AS. High-fat, high-sucrose, and combined high-fat/high-sucrose diets effects in oxidative stress and inflammation in male rats under presence or absence of obesity. Physiol Rep 2023; 11:e15635. [PMID: 37032431 PMCID: PMC10083166 DOI: 10.14814/phy2.15635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
The study examines the influence of three types of hypercaloric diets on metabolic parameters, inflammatory markers, and oxidative stress in experimental model. Male Wistar rats (n = 40) were randomized in control (C), high-sucrose (HS), high-fat (HF), and high-fat with sucrose (HFHS) for 20 weeks. Nutritional, metabolic, hormonal, and biochemical profiles, as well as histological analysis of adipose and hepatic tissues were performed. Inflammation and oxidative stress were determined. HF model caused obesity and comorbidities as glucose intolerance and arterial hypertension. In relation to hormonal and biochemical parameters, there was no significant difference between the groups. All groups showed increased deposition of fat droplets in the hepatic tissue, even though adipocyte areas were similar. Biomarkers of oxidative stress in serum and adipose tissues were similar among the groups. HF model was effective in triggering associated obesity and comorbidities in male rats, but all hypercaloric diets were unable to promote oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Amanda Martins Matias
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Suellem Torezani-Sales
- Postgraduate Program in Physiological Science, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Amanda Rangel Madureira
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Daniel Sesana da Silva
- Postgraduate Program in Physical Education, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | | | - Douglas Haese
- University of Vila Velha, Vila Velha, Espírito Santo, Brazil
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Postgraduate Program in Physiological Science, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
213
|
Wu ZQ, Chen XM, Ma HQ, Li K, Wang YL, Li ZJ. Akkermansia muciniphila Cell-Free Supernatant Improves Glucose and Lipid Metabolisms in Caenorhabditis elegans. Nutrients 2023; 15:1725. [PMID: 37049564 PMCID: PMC10097305 DOI: 10.3390/nu15071725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
To explore the mechanism by which Akkermansia muciniphila cell-free supernatant improves glucose and lipid metabolisms in Caenorhabditis elegans, the present study used different dilution concentrations of Akkermansia muciniphila cell-free supernatant as an intervention for with Caenorhabditis elegans under a high-glucose diet. The changes in lifespan, exercise ability, level of free radicals, and characteristic indexes of glucose and lipid metabolisms were studied. Furthermore, the expression of key genes of glucose and lipid metabolisms was detected by qRT-PCR. The results showed that A. muciniphila cell-free supernatant significantly improved the movement ability, prolonged the lifespan, reduced the level of ROS, and alleviated oxidative damage in Caenorhabditis elegans. A. muciniphila cell-free supernatant supported resistance to increases in glucose and triglyceride induced by a high-glucose diet and downregulated the expression of key genes of glucose metabolism, such as gsy-1, pygl-1, pfk-1.1, and pyk-1, while upregulating the expression of key genes of lipid metabolism, such as acs-2, cpt-4, sbp-1, and tph-1, as well as down-regulating the expression of the fat-7 gene to inhibit fatty acid biosynthesis. These findings indicated that A. muciniphila cell-free supernatant, as a postbiotic, has the potential to prevent obesity and improve glucose metabolism disorders and other diseases.
Collapse
Affiliation(s)
- Zhong-Qin Wu
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Xin-Ming Chen
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
| | - Hui-Qin Ma
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Ke Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Yuan-Liang Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| | - Zong-Jun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.-Q.W.); (X.-M.C.); (H.-Q.M.); (K.L.); (Y.-L.W.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
| |
Collapse
|
214
|
Carr AC, Lykkesfeldt J. Factors Affecting the Vitamin C Dose-Concentration Relationship: Implications for Global Vitamin C Dietary Recommendations. Nutrients 2023; 15:nu15071657. [PMID: 37049497 PMCID: PMC10096887 DOI: 10.3390/nu15071657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Vitamin C status is known to be associated with several demographic and lifestyle factors. These include gender, age, ethnicity, pregnancy/lactation, body weight, smoking status and dietary habits. In the present study, our aim was to investigate the National Health and Nutrition Examination Survey (NHANES) 2017-2018 datasets to assess the impact of these factors on vitamin C dose-concentration relationships to establish if there are higher requirements for vitamin C in certain subpopulations, and the possible extent of these additional requirements. The final cohort comprised 2828 non-supplementing adult males and females (aged 18-80+ years) with both vitamin C serum concentrations and dietary intake data available. The data were subsequently stratified by gender, age tertiles (≤36, 37-58, ≥59 years), ethnicity (non-Hispanic white, non-Hispanic black, and total Hispanic), socioeconomic tertiles (poverty income ratios: ≤1.35, 1.36-3.0, >3.0), weight tertiles (<72, 72-91, >91 kg), BMI tertiles (<26, 26-32, >32 kg/m2) and smoking status. Sigmoidal (four parameter logistic) curves with asymmetrical 95% confidence intervals were fitted to the dose-concentration data. We found that males required vitamin C intakes ~1.2-fold higher than females to reach 'adequate' serum vitamin C concentrations of 50 µmol/L. Males had both higher body weight and a higher prevalence of smoking than females. Smokers required vitamin C intakes ~2.0-fold higher than non-smokers to reach adequate vitamin C concentrations. Relative to adults in the lighter weight tertile, adults in the heavier weight tertile required ~2.0-fold higher dietary intakes of vitamin C to reach adequate serum concentrations. We did not observe any impact of ethnicity or socioeconomic status on the vitamin C dose-concentration relationship, and although no significant difference between younger and older adults was observed at vitamin C intakes > 75 mg/day, at intakes < 75 mg/day, older adults had an attenuated serum response to vitamin C intake. In conclusion, certain demographic and lifestyle factors, specifically gender, smoking and body weight, have a significant impact on vitamin C requirements. Overall, the data indicate that the general population should consume ~110 mg/day of vitamin C to attain adequate serum concentrations, smokers require ~165 mg/day relative to non-smokers, and heavier people (100+ kg) require ~155 mg/day to reach comparable vitamin C concentrations. These findings have important implications for global vitamin C dietary recommendations.
Collapse
Affiliation(s)
- Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand
| | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
215
|
Khan S, Hasan N, Khan S, Akhtar M, Akhtar M, Najmi AK. Exploring effects of Simvastatin on coagulation mediators to alleviate the advancement of high cholesterol diet triggered neurodegeneration. J Biochem Mol Toxicol 2023:e23342. [PMID: 36992618 DOI: 10.1002/jbt.23342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
The objectives of our study were to investigate the possible effect of Simvastatin in ameliorating high cholesterol diet (HCD)-induced neurodegeneration and to also investigate its possible action on coagulation mediators. In silico and in vitro studies were performed to evaluate the impact of Simvastatin on prime coagulation mediators. HCD was used to induce neuropathology in wistar rats and histopathological and immunohistochemical studies were performed to evaluate the efficacy of Simvastatin in preventing the advancement of neurodegeneration in obese rats. Biochemical analyses were used to estimate changes in lipid profile, oxidative stress, inflammatory and coagulation markers. Simvastatin showed good theoretical affinity to coagulation proteins, significantly reversed changes in inflammatory and coagulation biomarkers which were induced by HCD. Enhanced fibrinolytic activity of Simvastatin was revealed through in vitro analysis. Immunohistoanalysis showed raised level of Nrf2. Histopathological studies also supported neuroprotective potential of Simvastatin in HCD fed rats. Simvastatin demonstrated reduced hypercoagulation, enhanced fibrinolysis and reversed neurodegeneration in HCD exposed rats suggesting its potential role in preventing the progression of neurodegeneration in obesity.
Collapse
Affiliation(s)
- Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Noorul Hasan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
216
|
Ruan S, Gao X, Li B, Tian J. The synergic effects and mechanism of KGM-DMY complex in the prevention of obesity and enhancement of fatigue resistance in mice. Food Funct 2023; 14:2607-2620. [PMID: 36810428 DOI: 10.1039/d2fo03677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Dietary fibers (DFs) are normally consumed together with polyphenols. Further, both of them are two kinds of popular functional ingredients. However, studies have shown that the soluble DFs and polyphenols are antagonistic to their bioactivity due to the potential loss of the physical properties that drive their benefits. In this study, konjac glucomannan (KGM), dihydromyricetin (DMY), and KGM-DMY complex were fed to mice on normal chow diet (NCD) and high fat diet (HFD). The body fat content, serum lipid metabolites and time to exhaustion in swimming were compared. It was found that KGM-DMY had synergistic effects on the reduction of serum triglyceride, total glycerol content in HFD-fed mice, and extension of time to exhaustion in swimming in NCD-fed mice. The underlying mechanism was explored by antioxidant enzyme activity measurement, energy production quantification, and gut microbiota 16S rDNA profiling. KGM-DMY synergistically reduced the lactate dehydrogenase activity, malondialdehyde production, and alanine aminotransferase activities after swimming. Moreover, superoxide dismutase activities, glutathione peroxidase activities, glycogen and adenosine triphosphate contents were synergistically enhanced by KGM-DMY complex. In addition, according to gut microbiota gene expression analyses, KGM-DMY enhanced the ratio of Bacteroidota/Firmicutes and the abundance of Oscillospiraceae and Romboutsia. The abundance of Desulfobacterota was also reduced. To our knowledge, this was the first experiment that indicated that the complex of polyphenols and DF have synergistic effects in obesity prevention and fatigue resistance. The study provided a perspective for the formulation of obese preventive nutritional supplement in the food industry.
Collapse
Affiliation(s)
- Shulan Ruan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Xuefeng Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Functional Food Engineering & Technology Research Center of Hubei Province, China
| |
Collapse
|
217
|
Li Y, Chen H, Zhang X. Cultivation, nutritional value, bioactive compounds of morels, and their health benefits: A systematic review. Front Nutr 2023; 10:1159029. [PMID: 37006947 PMCID: PMC10063854 DOI: 10.3389/fnut.2023.1159029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Morels are valuable mushrooms being used as foods and medical substances for a long history. The commonly cultivated morel species include M. eximia, M. importuna, and M. sextelata in China, M. conica and M. esculenta in the US. Morels' nutritional profile mainly consists of carbohydrates, proteins, fatty acids, vitamins, minerals, and organic acids, which are also responsible for its complex sensory attributes and health benefits. The bioactive compounds in morels including polysaccharides, phenolics, tocopherols, and ergosterols contribute to the anti-oxidative abilities, anti-inflammation, immunoprotection, gut health preservation, and anti-cancer abilities. This review depicted on the cultivation of morels, major bioactive compounds of different morel species both from fruit bodies and mycelia, and their health benefits to provide a comprehensive understanding of morels and support the future research and applications of morels as high-value functional food sources.
Collapse
Affiliation(s)
- Yitong Li
- Bannerbio Nutraceuticals Inc., Shenzhen, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xi Zhang
- Bannerbio Nutraceuticals Inc., Shenzhen, China
- *Correspondence: Xi Zhang
| |
Collapse
|
218
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
219
|
Ekperikpe US, Poudel B, Shields CA, Mandal S, Cornelius DC, Williams JM. Neutralizing MIP3 α Reduces Renal Immune Cell Infiltration and Progressive Renal Injury in Young Obese Dahl Salt-Sensitive Rats. J Pharmacol Exp Ther 2023; 384:445-454. [PMID: 36507846 PMCID: PMC9976792 DOI: 10.1124/jpet.122.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.
Collapse
Affiliation(s)
- Ubong S Ekperikpe
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sautan Mandal
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Departments of Pharmacology and Toxicology and Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
220
|
Andiana O, Welis W, Taufik MS, Widiastuti, Siregar AH, Raharjo S. Effects of weight-bearing vs. non-weight-bearing endurance exercise on reducing body fat and inflammatory markers in obese females. J Basic Clin Physiol Pharmacol 2023; 34:215-225. [PMID: 36123345 DOI: 10.1515/jbcpp-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Endurance exercise is an effective strategy for maintaining an anti-inflammatory environment and weight management. However, the effect of this type of exercise on decreasing body fat and TNF-α levels and increasing adiponectin levels is controversial. The aims of this study was to prove the effects of weight-bearing vs. non-weight-bearing endurance exercise on reducing body fat and inflammatory markers in obese females. METHODS 24 obese adolescents were recruited from female students from the State University of Malang. The interventions given in this study were weight-bearing endurance exercise (WBEE), and non-weight-bearing endurance exercise (NWBEE). Serum TNF-α levels and serum adiponectin levels were evaluated using enzyme-linked immunosorbent assay (ELISA). Statistical analysis techniques use paired sample T-test with a significant level of 5%. RESULTS Results of the statistical analysis show that the average body fat (PBF, FM, FFM) and TNF-α levels before endurance exercise vs. after endurance exercise in both types of exercise experienced a significant decrease (p≤0.05), while average adiponectin levels in both types of exercise experienced a significant increase before endurance exercise vs. after endurance exercise (p≤0.001). CONCLUSIONS In general, it can be concluded that weight-bearing and non-weight-bearing endurance exercise with moderate-intensity for 40 min/exercise session reduce body fat and TNF-α levels and increase adiponectin levels as a marker of inflammation in obese female.
Collapse
Affiliation(s)
- Olivia Andiana
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, East Java, Malang, Indonesia
| | - Wilda Welis
- Department of Sport Science, Faculty of Sport Science, State University of Padang, Padang, West Sumatra, Indonesia
| | - Muhamad Syamsul Taufik
- Department of Physical Education, Health and Recreation, Faculty of Teacher and Education, University of Suryakancana, Cianjur, West Java, Indonesia
| | - Widiastuti
- Department of Sport Science, Faculty of Sport Science, State University of Jakarta, East Jakarta, Special Capital Region of Jakarta, Indonesia
| | - Abdul Hakim Siregar
- Department of Physical Education, Health and Recreation, Faculty of Sports Sciences, State University of Medan, Medan, North Sumatra, Indonesia
| | - Slamet Raharjo
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, East Java, Malang, Indonesia
| |
Collapse
|
221
|
Inflammatory and Oxidative Stress Biomarkers in the Elderly, the Birjand Longitudinal Aging Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4683542. [PMID: 36865485 PMCID: PMC9974246 DOI: 10.1155/2023/4683542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Cigarette smoking is a significant risk factor for chronic and atherosclerotic vascular disease that causes preventable considerable morbidity and mortality worldwide. This study is aimed at comparing inflammation and the levels of oxidative stress biomarkers in elderly subjects. The authors recruited the participants (1281 older adults) from the Birjand Longitudinal of Aging study. They measured oxidative stress and inflammatory biomarkers serum levels in the 101 cigarettes and 1180 nonsmokers. The mean age of smokers was 69.3 ± 7.95 years, and most were male. The most percentage of male cigarette smokers have lower body mass index (BMI) (≤19 kg/m2). Females have higher BMI categories than males (P ≤ 0.001). The percentage of diseases and defects was different between cigarette and non-cigarette smoker adults (P ≤ 0.01 to P ≤ 0.001). The total white blood cells, neutrophils, and eosinophils were significantly higher in cigarettes compared to non-cigarette smokers (P ≤ 0.001). Besides, cigarette consumers' percentage of hemoglobin and hematocrit compared to other aged people was significantly different (P ≤ 0.001). However, biomarkers of oxidative stress and antioxidant levels were not significant differences between the two senior groups. Cigarette smoking in older adults was associated with increased inflammatory biomarkers and cells, but it did not find a significant difference in oxidative stress markers. Longitudinal prospective studies may help illuminate the mechanisms inducing oxidative stress and inflammation due to cigarette smoking in each gender.
Collapse
|
222
|
Kim H, Luan Y, Zoh RS, Wu G, Tekwe CD. Parametric and Semiparametric Approaches to Analyzing Device-Based Measures of Energy Expenditure in Zucker Diabetic Fatty Rats. FRONT BIOSCI-LANDMRK 2023; 28:30. [PMID: 36866554 PMCID: PMC10829431 DOI: 10.31083/j.fbl2802030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Obesity results from a chronic imbalance between energy intake and energy expenditure. Total energy expenditure for all physiological functions combined can be measured approximately by calorimeters. These devices assess energy expenditure frequently (e.g., in 60-second epochs), resulting in massive complex data that are nonlinear functions of time. To reduce the prevalence of obesity, researchers often design targeted therapeutic interventions to increase daily energy expenditure. METHODS We analyzed previously collected data on the effects of oral interferon tau supplementation on energy expenditure, as assessed with indirect calorimeters, in an animal model for obesity and type 2 diabetes (Zucker diabetic fatty rats). In our statistical analyses, we compared parametric polynomial mixed effects models and more flexible semiparametric models involving spline regression. RESULTS We found no effect of interferon tau dose (0 vs. 4 μg/kg body weight/day) on energy expenditure. The B-spline semiparametric model of untransformed energy expenditure with a quadratic term for time performed best in terms of the Akaike information criterion value. CONCLUSIONS To analyze the effects of interventions on energy expenditure assessed with devices that collect data at frequent intervals, we recommend first summarizing the high dimensional data into epochs of 30 to 60 minutes to reduce noise. We also recommend flexible modeling approaches to account for the nonlinear patterns in such high dimensional functional data. We provide freely available R codes in GitHub.
Collapse
Affiliation(s)
- Hyunkyoung Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, 05505 Seoul, Republic of Korea
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Roger S. Zoh
- Department of Epidemiology and Biostatistics, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Carmen D. Tekwe
- Department of Epidemiology and Biostatistics, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
223
|
Liu F, Song T, Hu Q, Zhu X, Zhao H, Tan Z, Yu P, Ma J, Luo J, Liu X. Body mass index and atrial fibrillation recurrence post ablation: A systematic review and dose-response meta-analysis. Front Cardiovasc Med 2023; 9:999845. [PMID: 36818915 PMCID: PMC9932032 DOI: 10.3389/fcvm.2022.999845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives The aim of this study was to evaluate the shape of the dose-response relationship between body mass index (BMI) and atrial fibrillation (AF) recurrence in patients who have undergone radiofrequency ablation. Methods Studies investigating BMI and AF recurrence in patients with AF after ablation were identified through electronic searches in the PubMed, EMBASE, and Cochrane Library databases. The potential non-linear relationship was fitted using robust error meta-regression. Our study was registered with PROSPERO (CRD42019121373). Results Twenty-six cohort studies with 7,878 cases/26,450 individuals were included, and a linear dose-response relationship between BMI and AF recurrence (P non-linearity = 0.12) was found. The risk of AF recurrence in patients with a BMI over 28 was significantly increased. Specifically, for each 5 kg/m2 increase in BMI, the risk of AF recurrence increased by 15% (95% CI: 1.08-1.22) with moderate heterogeneity (I 2 = 53%). Subgroup analyses showed that the pooled risk ratio was not significantly changed in subgroup analysis adjustment for the following important potential intermediate factors: left atrial diameter and obstructive sleep apnea. Conclusion This study showed that there is a borderline positive linear association between BMI and AF recurrence post ablation. Overweight and obesity are significantly associated with AF recurrence. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42019128770.
Collapse
Affiliation(s)
- Fuwei Liu
- Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Tiangang Song
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Hu
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Zhu
- Department of Cardiology, The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Huilei Zhao
- Department of Anesthesia, The Third People’s Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Ziqi Tan
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jun Luo
- Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China,*Correspondence: Jun Luo,
| | - Xiao Liu
- Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
224
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Most nanozymes in development for medical applications only exhibit single-enzyme-like activity, and are thus limited by insufficient catalytic activity and dysfunctionality in complex pathological microenvironments. To overcome the impediments of limited substrate availabilities and concentrations, some metal-based nanozymes may mimic two or more activities of natural enzymes to catalyze cascade reactions or to catalyze multiple substrates simultaneously, thereby amplifying catalysis. Metal-based nanozymes with multienzyme-like activities (MNMs) may adapt to dissimilar catalytic conditions to exert different enzyme-like effects. These multienzyme-like activities can synergize to realize "self-provision of the substrate," in which upstream catalysts produce substrates for downstream catalytic reactions to overcome the limitation of insufficient substrates in the microenvironment. Consequently, MNMs exert more potent antitumor, antibacterial, and anti-inflammatory effects in preclinical models. This review summarizes the cellular effects and underlying mechanisms of MNMs. Their potential medical utility and optimization strategy from the perspective of clinical requirements are also discussed, with the aim to provide a theoretical reference for the design, development, and therapeutic application of their catalytic effects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
225
|
Aminnejad B, Roumi Z, Hasanpour Ardekanizadeh N, Vahid F, Gholamalizadeh M, Kalantari N, Ataei A, Doaei S. Association of dietary antioxidant index with body mass index in adolescents. Obes Sci Pract 2023; 9:15-22. [PMID: 36789029 PMCID: PMC9913194 DOI: 10.1002/osp4.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Dietary antioxidants may decrease body fat through reduction of oxidative stress. This study aimed to examine the association between dietary antioxidant index (DAI) and body mass index (BMI) in adolescent boys. Methods In this cross-sectional study, 593 adolescent boys aged 12-16 years were randomly selected and were divided into two groups of overweight and non-overweight individuals. Data on physical activity and anthropometric measurements were collected. Dietary intake was assessed using 168-item semi quantitative food frequency questionnaire and the DAI score was calculated to measure the antioxidant capacity of the diet. Results The overweight adolescents had higher intake of energy (2490.55 ± 632.49 vs. 2354.33 ± 632.64 kcal/d, p = 0.01), carbohydrate (290.21 ± 71.41 vs. 272.93 ± 79.22 g/d, p = 0.01), fat (111.51 ± 40.76 vs. 104.51 ± 35.56 g/d, p = 0.04), calcium (811.70 ± 283.70 vs. 741.06 ± 251.17 g/d, p = 0.003), and vitamin D (1.41 ± 1.17 vs. 1.18 ± 1.19 μg/d, p = 0.031) in comparison with normal weight adolescents. The DAI had an inverse association with BMI after adjustment for age and caloric intake (OR: 0.85, 95% CI: 0.76-0.96, p = 0.009). Additional adjustment for dietary intake of vitamin A, vitamin E, vitamin C, zinc, manganese, and selenium did not change the results. Conclusion The results of the study showed that following a diet rich in antioxidants may be effective in preventing obesity in adolescent boys. Further longitudinal studies are needed to confirm these finding and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Bahareh Aminnejad
- Department of Nutrition, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Zahra Roumi
- Master of Science Student of Department of Nutrition, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Farhad Vahid
- Population Health DepartmentPublic Health ResearchLuxembourg Institute of HealthStrassenLuxembourg
| | | | - Naser Kalantari
- Department of Community NutritionFaculty of Nutrition and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Asal Ataei
- Department of Nutrition, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Saeid Doaei
- Department of Community NutritionFaculty of Nutrition and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
226
|
Pakravan S, Hemmati-Dinarvand M, Moghaddasi M, Fathi J, Nowrouzi-Sohrabi P, Hormozi M. Hydroxytyrosol's effect on the expression of apoptosis and oxidative stress related genes in BE (2)-C neuroblastoma cell line. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
227
|
Sudirman S, Chen CY, Chen CK, Felim J, Kuo HP, Kong ZL. Fermented jellyfish ( Rhopilema esculentum) collagen enhances antioxidant activity and cartilage protection on surgically induced osteoarthritis in obese rats. Front Pharmacol 2023; 14:1117893. [PMID: 36794279 PMCID: PMC9922849 DOI: 10.3389/fphar.2023.1117893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Collagen has been considered a key treatment option in preventing damage to the articular cartilage over time and supporting the healing process, following the onset of osteoarthritis (OA). This study aimed to investigate the effect of collagen fermented from jellyfish (FJC) by Bacillus subtilis natto on anterior cruciate ligament transection with medial meniscectomy (ACLT + MMx)-induced knee OA in high-fat diet (HFD)-induced obesity in rats. The male Sprague-Dawley rats were fed an HFD for 6 weeks before ACLT + MMx surgery, after which they were administered a daily oral gavage of saline (control, OA, and OBOA), either with FJC (20 mg/kg, 40 mg/kg, and 100 mg/kg body weight) or glucosamine sulfate as a positive control (GS; 200 mg/kg body weight) for 6 weeks. Treatment with FJC decreased the fat weight, triglyceride, and total cholesterol levels in obese rats. Additionally, FJC downregulated the expression of some proinflammatory cytokines, including tumor necrosis factor-α, cyclooxygenase-2, and nitric oxide; suppressed leptin and adiponectin expression; and attenuated cartilage degradation. It also decreased the activities of matrix metalloproteinase (MMP)-1 and MMP-3. These results demonstrated that FJC showed a protective effect on articular cartilage and also suppressed the degradation of cartilage in an animal OA model, suggesting its potential efficacy as a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya, Indonesia
| | - Chun-Yu Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Jerrell Felim
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
228
|
Mekki S, Belhocine M, Bouzouina M, Chaouad B, Mostari A. Therapeutic effects of Salvia balansae on metabolic disorders and testicular dysfunction mediated by a high-fat diet in Wistar rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2023. [DOI: 10.3233/mnm-220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Medicinal plants offer an important therapeutic resource in treatment of male infertility. We aim to evaluate the possible therapeutic effects of Salvia balansae on metabolic disorders and testicular dysfunction resulting from a high-fat diet (HFD). Antioxidant activity of aqueous extract of S. balansae leaves was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay and total antioxidant capacity (TAC) assay. Antidiabetic activity was determined by α-amylase inhibition. In vivo, HFD was administered in Wistar rats for 18 weeks and aqueous extract of S. balansae for the last 6 weeks (200 mg/Kg of body weight/day). At the term of experimentation, testosterone and some plasma parameters were analyzed and removed testes were subjected to a histomorphometric study. Our results show high levels of phenolic components in aqueous extract of S. balansae and significant antioxidant and antidiabetic activity. HFD increases body weight, causes type 2 diabetes, dyslipidemia, liver failure and inflammation. Also, HFD decreases testosterone and alters testis histological structure (seminiferous tubular degeneration, impaired spermatogenesis and interstitial fibrosis). Treatment of HFD rats with extract of S. balansae normalizes body weight and plasma parameters, increases testosterone and regenerates testicular structure and function. In summary, S. balansae could reduce metabolic complications induced by HFD and serve the basis for developing a new therapy for testicular dysfunction.
Collapse
Affiliation(s)
- Siham Mekki
- Laboratory of Sciences and Technics of Animal Production (LSTPA), University of Mostaganem, Mostaganem, Algeria
| | - Mansouria Belhocine
- Laboratory of Sciences and Technics of Animal Production (LSTPA), University of Mostaganem, Mostaganem, Algeria
| | - Mohamed Bouzouina
- Laboratory of Plant Protection, University of Mostaganem, Mostaganem, Algeria
| | - Billel Chaouad
- Laboratory of Cellular and Molecular Biology, Extracellular Matrix, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Khemis Miliana University, Faculty of Natural and Life Sciences and Earth Sciences, Algeria
| | - Abassia Mostari
- Laboratory of Geo-Environment and spaces development, University Mustpha Stamboli of Mascara, BP 305 SidiSaid, Mascara, Algeria
| |
Collapse
|
229
|
Nehmi-Filho V, Santamarina AB, de Freitas JA, Trarbach EB, de Oliveira DR, Palace-Berl F, de Souza E, de Miranda DA, Escamilla-Garcia A, Otoch JP, Pessoa AFM. Novel nutraceutical supplements with yeast β-glucan, prebiotics, minerals, and Silybum marianum (silymarin) ameliorate obesity-related metabolic and clinical parameters: A double-blind randomized trial. Front Endocrinol (Lausanne) 2023; 13:1089938. [PMID: 36778595 PMCID: PMC9912840 DOI: 10.3389/fendo.2022.1089938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/28/2023] Open
Abstract
Purpose It is known that obesity has a multifactorial etiology that involves genetic and environmental factors. The WHO estimates the worldwide prevalence of 1.9 billion overweight adults and more than 650 million people with obesity. These alarming data highlight the high and growing prevalence of obesity and represent a risk factor for the development and aggravation of other chronic diseases, such as nonalcoholic fatty liver disease (NAFLD) that is frequently considered the hepatic outcome of type 2 diabetes. The use of non-pharmacological therapies such as food supplements, nutraceuticals, and natural integrative therapies has grown as an alternative tool for obesity-related diseases compared to conventional medications. However, it is a still little explored research field and lacks scientific evidence of therapeutic effectiveness. Considering this, the aim is to evaluate whether a new nutraceutical supplement composition can improve and supply essential mineral nutrients, providing an improvement of obesity-related metabolic and endocrine parameters. Methods Sedentary volunteers (women and men) with body mass index (BMI) ≤34.9 kg/m2 were divided into two groups: Novel Nutraceutical Supplement_(S) (n = 30) and Novel Nutraceutical Supplement (n = 29), differing in the absence (S) or presence of silymarin, respectively. Volunteers were instructed to take two capsules in the morning and two capsules in the evening. No nutritional intervention was performed during the study period. The data (anthropometrics and anamneses) and harvest blood (biochemistry and hormonal exams) were collected at three different time points: baseline time [day 0 (T0)], day 90 (T90), and day 180 (T180) post-supplementation. Results In the anthropometric analysis, the waist circumference in middle abdomen (WC-mid) and waist circumference in iliac crest (WC-IC) were reduced. Also, the waist-to-height ratio (WHt R) and waist-to-hip ratio (WHR) seem to slightly decrease alongside the supplementation period with both nutraceutical supplements tested as well as transaminase enzyme ratio [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio (AAR)], a known as a biomarker of NAFLD, and endocrine hormones cortisol and thyroid-stimulating hormone (TSH) at 90 and 180 days post-supplementation. Conclusions In a condition associated with sedentary and no nutritional intervention, the new nutraceutical supplement composition demonstrated the ability to be a strong and newfangled tool to improve important biomarkers associated with obesity and its comorbidities.
Collapse
Affiliation(s)
- Victor Nehmi-Filho
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
| | | | - Jéssica Alves de Freitas
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
| | - Ericka Barbosa Trarbach
- Laboratory of Cellular and Molecular Endocrinology (LIM25), Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Daniela Rodrigues de Oliveira
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fanny Palace-Berl
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Danielle Araujo de Miranda
- Departament of Physiology, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio Escamilla-Garcia
- University Hospital of the University of São Paulo, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - José Pinhata Otoch
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
- University Hospital of the University of São Paulo, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ana Flávia Marçal Pessoa
- Natural Products and Derivatives Laboratory (LIM-26), Department of Surgery, University of São Paulo Medical School, São Paulo, SP, Brazil
- Research and Development Efeom Nutrition S/A, São Paulo, SP, Brazil
- Natural Products Committee, Brazilian Academic Consortium for Integrative Health (CABSIN), São Paulo, Brazil
| |
Collapse
|
230
|
Dietary Mg Supplementation Decreases Oxidative Stress, Inflammation, and Vascular Dysfunction in an Experimental Model of Metabolic Syndrome with Renal Failure. Antioxidants (Basel) 2023; 12:antiox12020283. [PMID: 36829843 PMCID: PMC9952257 DOI: 10.3390/antiox12020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) and chronic kidney disease (CKD) are commonly associated with cardiovascular disease (CVD) and in these patients Mg concentration is usually decreased. This study evaluated whether a dietary Mg supplementation might attenuate vascular dysfunction through the modulation of oxidative stress and inflammation in concurrent MetS and CKD. METHODS A rat model of MetS (Zucker strain) with CKD (5/6 nephrectomy, Nx) was used. Nephrectomized animals were fed a normal 0.1%Mg (MetS+Nx+Mg0.1%) or a supplemented 0.6%Mg (MetS+Nx+Mg0.6%) diet; Sham-operated rats with MetS receiving 0.1%Mg were used as controls. RESULTS As compared to controls, the MetS+Nx-Mg0.1% group showed a significant increase in oxidative stress and inflammation biomarkers (lipid peroxidation and aortic interleukin-1b and -6 expression) and Endothelin-1 levels, a decrease in nitric oxide and a worsening in uremia and MetS associated pathology as hypertension, and abnormal glucose and lipid profile. Moreover, proteomic evaluation revealed changes mainly related to lipid metabolism and CVD markers. By contrast, in the MetS+Nx+Mg0.6% group, these parameters remained largely similar to controls. CONCLUSION In concurrent MetS and CKD, dietary Mg supplementation reduced inflammation and oxidative stress and improved vascular function.
Collapse
|
231
|
Oxidative Stress Modulation by ncRNAs and Their Emerging Role as Therapeutic Targets in Atherosclerosis and Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12020262. [PMID: 36829822 PMCID: PMC9952114 DOI: 10.3390/antiox12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are pathologies related to ectopic fat accumulation, both of which are continuously increasing in prevalence. These threats are prompting researchers to develop effective therapies for their clinical management. One of the common pathophysiological alterations that underlies both diseases is oxidative stress (OxS), which appears as a result of lipid deposition in affected tissues. However, the molecular mechanisms that lead to OxS generation are different in each disease. Non-coding RNAs (ncRNAs) are RNA transcripts that do not encode proteins and function by regulating gene expression. In recent years, the involvement of ncRNAs in OxS modulation has become more recognized. This review summarizes the most recent advances regarding ncRNA-mediated regulation of OxS in atherosclerosis and NAFLD. In both diseases, ncRNAs can exert pro-oxidant or antioxidant functions by regulating gene targets and even other ncRNAs, positioning them as potential therapeutic targets. Interestingly, both diseases have common altered ncRNAs, suggesting that the same molecule can be targeted simultaneously when both diseases coexist. Finally, since some ncRNAs have already been used as therapeutic agents, their roles as potential drugs for the clinical management of atherosclerosis and NAFLD are analyzed.
Collapse
|
232
|
Topete MV, Andrade S, Bernardino RL, Guimarães M, Pereira AM, Oliveira SB, Costa MM, Nora M, Monteiro MP, Pereira SS. Visceral Adipose Tissue Bioenergetics Varies According to Individuals' Obesity Class. Int J Mol Sci 2023; 24:ijms24021679. [PMID: 36675195 PMCID: PMC9863201 DOI: 10.3390/ijms24021679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study’s purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.
Collapse
Affiliation(s)
- Marcelo V. Topete
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Sara Andrade
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Raquel L. Bernardino
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Marta Guimarães
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
| | - Ana M. Pereira
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia B. Oliveira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Madalena M. Costa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mário Nora
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Mariana P. Monteiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia S. Pereira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Correspondence:
| |
Collapse
|
233
|
Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12010165. [PMID: 36671026 PMCID: PMC9854635 DOI: 10.3390/antiox12010165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2′-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoassay methods. Obese subjects showed lower ATP hydrolysis activity than normal weight and overweight subjects (p < 0.01). No differences between those groups were found in ATP synthase and catalase activities, lipid hydroperoxides, carbonyl groups in proteins, 8-isoprostanes, and NO metabolites. In the obesity group, SOD activity (p < 0.01) was decreased while 8-OHG (p < 0.01) was increased. Subjects with hypertension showed increased 8-OHG (p < 0.01) and less reparative enzyme (hOGG1 p = 0.04) than subjects with normal weight. Moreover, we found a decrease of SOD (p < 0.01), catalase activities (p = 0.04), NO metabolites (p < 0.01), and increases of carbonyl groups in proteins (p = 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01 in hypertensive subjects. Obese subjects show a decrease in ATP hydrolysis. The decrease in ATP hydrolysis rate and ATP synthesis and an increase in OS and inflammation markers were associated with the hypertensive state.
Collapse
|
234
|
Toy VE, Ataoglu T, Eltas A, Otlu HG, Karabulut AB. Obesity as a modifying factor of periodontal therapy outcomes: local and systemic adipocytokines and oxidative stress markers. Clin Oral Investig 2023:10.1007/s00784-022-04854-7. [PMID: 36604342 DOI: 10.1007/s00784-022-04854-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Adipocytokines and oxidative stress (OS) are involved in the pathogenesis of both obesity and periodontitis. The aim of this study was to evaluate periodontal therapy outcomes in terms of serum and gingival crevicular fluid (GCF) levels of adipocytokines and OS markers in obese patients with periodontitis, in order to have an insight into the association between obesity and periodontitis. MATERIALS AND METHODS A total of 39 patients (20 obese, 19 non-obese) with periodontitis were included in this study. Clinical periodontal parameters were assessed; serum and GCF levels of adipocytokines and OS markers were evaluated by ELISA at baseline and 3 months after non-surgical periodontal therapy. RESULTS Significant improvements in clinical periodontal parameters were observed in both groups at 3 months (p < 0.01). While serum levels of TNF-α, leptin, and total oxidant status (TOS) in the obese group were higher at baseline (p < 0.01), leptin levels remained higher at 3 months despite a significant decrease (p < 0.01). Although NSPT improved GCF levels of total antioxidant status (TAS) and TOS in both groups, they were significantly different between the groups after therapy (p < 0.05). CONCLUSIONS It seems that leptin, TNF-α, and TOS contribute to systemic inflammatory and oxidative state in patients with obesity. Despite improvements in clinical periodontal parameters, obesity might be a modulating factor in the development and progression of periodontal disease in terms of some adipocytokines and OS markers. CLINICAL RELEVANCE Since the global burden of both obesity and periodontitis is continuously increasing, the management of these inflammatory diseases has become more important. The current study contributes to our understanding of the role of OS and adipocytokines on the relationship between obesity and periodontitis by response to periodontal treatment.
Collapse
Affiliation(s)
- Vesile Elif Toy
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey.
| | - Tamer Ataoglu
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Abubekir Eltas
- Department of Periodontology, Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey
| | - Husniye Gul Otlu
- Medical Laboratory Techniques Program, Vocational School of Health Services, Turgut Ozal University, Malatya, Turkey
| | - Aysun Bay Karabulut
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
235
|
Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants (Basel) 2023; 12:antiox12010129. [PMID: 36670991 PMCID: PMC9854577 DOI: 10.3390/antiox12010129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with numerous health issues such as sleep disorders, asthma, hepatic dysfunction, cancer, renal dysfunction, diabetes, cardiovascular complications, and infertility. Previous research has shown that the distribution of excess body fat, rather than excess body weight, determines obesity-related risk factors. It is widely accepted that abdominal fat is a serious risk factor for illnesses associated with obesity and the accumulation of visceral fat promotes the release of pro-oxidants, pro-inflammatory, and reactive oxygen species (ROS). The metabolic process in the human body produces several volatile organic compounds (VOCs) via urine, saliva, breath, blood, skin secretions, milk, and feces. Several studies have shown that VOCs are released by the interaction of ROS with underlying cellular components leading to increased protein oxidation, lipid peroxidation, or DNA damage. These VOCs released via oxidative stress in obese individuals may serves as a biomarker for obesity-related metabolic alterations and disease. In this review, we focus on the relationship between oxidative stress and VOCs in obesity.
Collapse
|
236
|
Song EJ, Shin NR, Jeon S, Nam YD, Kim H. Lorcaserin and phentermine exert anti-obesity effects with modulation of the gut microbiota. Front Microbiol 2023; 13:1109651. [PMID: 36687627 PMCID: PMC9849812 DOI: 10.3389/fmicb.2022.1109651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Although drugs have been reported to modulate the gut microbiota, the effects of anti-obesity drugs on the gut microbiota remain unclear. Lorcaserin (LS) and phentermine (PT) are commonly used anti-obesity drugs. However, to our best knowledge, no studies have simultaneously assessed the effects of LS and PT on obesity and gut microbiota. This study aimed to explore the relationship between the anti-obesity effects of LS and PT and re-modulation of host gut microbiota. To test hypothesis, we fed C57BL/6J mice with a high-fat diet supplemented with LS and PT via oral gavage for 8 weeks. After sacrifice, body weight, fat accumulation, and serum biomarkers were measured, and the gut microbial composition was analyzed using 16 s rRNA amplicon sequencing. LS and PT were observed to modulate the gut microbial composition and restore gut microbial dysbiosis, as indicated by an increased Firmicutes/Bacteroidetes ratio. Significantly modulated genera by LS and PT treatment were strongly correlated with obesity-related markers. Additionally, LS and PT increased the mRNA level of G protein-coupled receptor 120 (GPR120) in the colon tissue. ASV3566, which corresponds to Eubacterium coprostanoligenes, was correlated with GPR120 and obesity-related markers such as glutamic pyruvic transaminase (GPT) and serum triglyceride (TG). In conclusion, LS and PT can modulate the gut microbiota dysbiosis and the gut microbiota plays a role in mediating the anti-obesity effect of drugs.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Iseo-myeon, South Korea
| | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Global Future Biomedical Scientists at Chonnam National University, Gwangju, South Korea,Songhee Jeon,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Iseo-myeon, South Korea,Young-Do Nam,
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, South Korea,*Correspondence: Hojun Kim,
| |
Collapse
|
237
|
Higa Y, Hiasa M, Tenshin H, Nakaue E, Tanaka M, Kim S, Nakagawa M, Shimizu S, Tanimoto K, Teramachi J, Harada T, Oda A, Oura M, Sogabe K, Hara T, Sumitani R, Maruhashi T, Yamagami H, Endo I, Matsumoto T, Tanaka E, Abe M. The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2. Antioxidants (Basel) 2023; 12:antiox12010133. [PMID: 36670994 PMCID: PMC9854541 DOI: 10.3390/antiox12010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3−L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating.
Collapse
Affiliation(s)
- Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Correspondence: (M.H.); (M.A.); Tel.: +81-88-633-7357 (M.H.); +81-88-633-7120 (M.A.); Fax: +81-88-633-9139 (M.H.); +81-88-633-7121 (M.A.)
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Mariko Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Sooha Kim
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Motosumi Nakagawa
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8530, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Graduate School of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Correspondence: (M.H.); (M.A.); Tel.: +81-88-633-7357 (M.H.); +81-88-633-7120 (M.A.); Fax: +81-88-633-9139 (M.H.); +81-88-633-7121 (M.A.)
| |
Collapse
|
238
|
Eid AM, Issa L, Kamal K, Hosheya O, Sara H, Alkader SA. Comparing and contrasting different herbal products intended for the management of obesity approved in the Palestinian markets. BMC Complement Med Ther 2023; 23:3. [PMID: 36604684 PMCID: PMC9813894 DOI: 10.1186/s12906-022-03830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The use of conventional medical therapies has proven to have many setbacks and safety concerns that need further improvement. However, herbal medicine has been used for over 2000 years, and many studies have proven the use of herbs to be effective and safe. This article discussed the efficacy of different herbal products used in the management of obesity. To evaluate the efficacy of seven herbal-based weight loss products currently available on the Palestinian market, using in vitro assays to screen for antioxidants, anti-amylase, and anti-lipase effects for each product. METHOD Pancreatic lipase and salivary amylase inhibitory activities, as well as antioxidant analysis, were tested in vitro on a variety of herbal products. Then the IC50 was measured for each test. RESULTS The anti-lipase assay results, IC50 values in (μg/mL) of each of the seven products (Product A, product B, product C, product D, product E, product F, and product G) were 114.78, 532.1, 60.18, 53.33, 244.9, 38.9, and 48.97, respectively. The IC50 value for orlistat (Reference) was 12.3 μg/ml. On the other hand, the IC50 value for alpha amylase inhibition of the seven products (Product A, product B, product C, product D, product E, product F, and product F) were 345.93, 13,803.84 (Inactive), 73.79, 130.91, 165.95, 28.18, and 33.11 μg/ml respectively, while acarbose (Reference) was 23.38 μg/ml. The antioxidant activity (IC50 values) for the seven products (Product A, product B, product C, product D, product E, product F, and product F) were 1258.92, 707.94, 79.43, 186.20, 164.81, 17.53, and 10.47 μg/ml respectively. While the IC50 value for Trolox was 2.70 μg/ml. CONCLUSION It can be concluded that the seven products showed varied anti-lipase, anti-amylase, and antioxidant effects. However, products F and G showed superiority in all categories.
Collapse
Affiliation(s)
- Ahmad M. Eid
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Linda Issa
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Karmah Kamal
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Omran Hosheya
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Hla Sara
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Sally Abed Alkader
- grid.11942.3f0000 0004 0631 5695Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
239
|
Domaszewska K, Zawada A, Palutka R, Podgórski T, Juchacz A. Assessment of Oxidative Stress Indices and Total Phenolics Concentrations in Obese Adult Women-The Effect of Training with Supplemental Oxygen: A Randomized Controlled Trial. Nutrients 2023; 15:241. [PMID: 36615898 PMCID: PMC9823563 DOI: 10.3390/nu15010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The aim of this study was to determine the effect of using an oxygen-enriched breathing mixture during controlled physical training on blood oxidative stress parameters and total phenolics (TP) concentrations in obese adult women. Methods: A prospective randomized controlled trial study included 60 women aged 19−68 with BMIs greater than 30 kg/m2. Patients were randomly assigned to the study group (n = 30), which received additional intervention in supplementing the breathing mixture with oxygen at the flow of 6 L/min during training sessions, and the control group (n = 30). At the beginning and at the end of the study, anthropometric assessments (height and weight and BMI) and blood tests (CRP, FRAP, TBARS, TP, BAC, and La) were performed. For each patient, an individual endurance training plan was established on a cycloergometer, including 12 training units, based on a cardiopulmonary exercise test (CPET). Results: A decrease in blood TBARS concentration was observed in each study group. For the control group, the change was more remarkable, and the difference between the groups was significant at (p < 0.05; ES: 0.583). Training with the oxygen breathing mixture increased blood concentrations of TP, while a decrease in TP in blood was observed in the group without oxygen supplementation during physical training. The difference in the responses between the groups was significant at (p < 0.05; ES: 0.657) Conclusions: Increasing the concentration of oxygen in the respiratory mixture under conditions of increased exercise was shown to be safe because it did not exacerbate oxidative stress in the obese group.
Collapse
Affiliation(s)
- Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871 Poznań, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Radosław Palutka
- Eugenia and Janusz Zeyland Greater Poland Pulmonology and Thoracic Surgery Centre, 60-569 Poznań, Poland
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871 Poznań, Poland
| | - Aldona Juchacz
- Eugenia and Janusz Zeyland Greater Poland Pulmonology and Thoracic Surgery Centre, 60-569 Poznań, Poland
| |
Collapse
|
240
|
Arderiu G, Mendieta G, Gallinat A, Lambert C, Díez-Caballero A, Ballesta C, Badimon L. Type 2 Diabetes in Obesity: A Systems Biology Study on Serum and Adipose Tissue Proteomic Profiles. Int J Mol Sci 2023; 24:ijms24010827. [PMID: 36614270 PMCID: PMC9821208 DOI: 10.3390/ijms24010827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity is associated with metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM), further increasing an already heightened cardiovascular risk. Here, amongst obese class III bariatric surgery patients, we have investigated the effect of T2DM in serum and in two, same patient, adipose tissue (AT) depots through proteomic profile expression analyses. Serum and AT samples from subcutaneous (SAT) and visceral (VAT) fat were collected during bariatric surgery. Bead-based targeted multiplex assay systems were used to simultaneously detect and quantify multiple targets in serum samples (targeted proteomics) and analyze changes in adipokine serum composition. AT samples were assessed through an untargeted proteomics approach. Through a systems biology analysis of the proteomic data, information on the affected biological pathways was acquired. In obese class III individuals, the presence of T2DM induced a significantly higher systemic release of ghrelin, GLP-1, glucagon, MMP3, BAFF, chitinase 3-like 1, TNF-R1 and TNF-R2, and a lower systemic release of IL-8. SAT and VAT proteomes belonging to the same patient showed significant differences in local protein content. While the proteins upregulated in VAT were indicative of metabolic dysregulation, SAT protein upregulation suggested adequate endocrine regulation. The presence of T2DM significantly affected VAT protein composition through the upregulation of dysregulating metabolic pathways, but SAT protein composition was not significantly modified. Our results show that T2DM induces metabolic dysregulation in obese individuals with changes in systemic marker levels and impairment of proteostasis in VAT but not in SAT.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), 28029 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alex Gallinat
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Carmen Lambert
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- IPSA-Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | | | - Carlos Ballesta
- Centro Médico Teknon, Grupo Quiron Salut, 08022 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), 28029 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| |
Collapse
|
241
|
Grant WB, Blake SM. Diet's Role in Modifying Risk of Alzheimer's Disease: History and Present Understanding. J Alzheimers Dis 2023; 96:1353-1382. [PMID: 37955087 PMCID: PMC10741367 DOI: 10.3233/jad-230418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Diet is an important nonpharmacological risk-modifying factor for Alzheimer's disease (AD). The approaches used here to assess diet's role in the risk of AD include multi-country ecological studies, prospective and cross-sectional observational studies, and laboratory studies. Ecological studies have identified fat, meat, and obesity from high-energy diets as important risk factors for AD and reported that AD rates peak about 15-20 years after national dietary changes. Observational studies have compared the Western dietary pattern with those of the Dietary Approaches to Stop Hypertension (DASH), Mediterranean (MedDi), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. Those studies identified AD risk factors including higher consumption of saturated and total fats, meat, and ultraprocessed foods and a lower risk of AD with higher consumption of fruits, legumes, nuts, omega-3 fatty acids, vegetables, and whole grains. Diet-induced factors associated with a significant risk of AD include inflammation, insulin resistance, oxidative stress, elevated homocysteine, dietary advanced glycation end products, and trimethylamine N-oxide. The molecular mechanisms by which dietary bioactive components and specific foods affect risk of AD are discussed. Given most countries' entrenched food supply systems, the upward trends of AD rates would be hard to reverse. However, for people willing and able, a low-animal product diet with plenty of anti-inflammatory, low-glycemic load foods may be helpful.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| | - Steven M. Blake
- Nutritional Neuroscience, Maui Memory Clinic, Wailuku, HI, USA
| |
Collapse
|
242
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
243
|
Mohseni R, Teimouri M, Safaei M, Arab Sadeghabadi Z. AMP-activated protein kinase is a key regulator of obesity-associated factors. Cell Biochem Funct 2023; 41:20-32. [PMID: 36468539 DOI: 10.1002/cbf.3767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
An imbalance between caloric intake and energy expenditure leads to obesity. Obesity is an important risk factor for the development of several metabolic diseases including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. So, controlling obesity could be effective in the improvement of obesity-related diseases. Various factors are involved in obesity, such as AMP-activated protein kinases (AMPK), silent information regulators, inflammatory mediators, oxidative stress parameters, gastrointestinal hormones, adipokines, angiopoietin-like proteins, and microRNAs. These factors play an important role in obesity by controlling fat metabolism, energy homeostasis, food intake, and insulin sensitivity. AMPK is a heterotrimeric serine/threonine protein kinase known as a fuel-sensing enzyme. The central role of AMPK in obesity makes it an attractive molecule to target obesity and related metabolic diseases. In this review, the critical role of AMPK in obesity and the interplay between AMPK and obesity-associated factors were elaborated.
Collapse
Affiliation(s)
- Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Arab Sadeghabadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Clinical Biochemistry & Nutrition, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
244
|
Shams M, Esmaeili F, Sadeghi S, Shanaki-Bavarsad M, Seyyed Ebrahimi SS, Hashemnia SMR, Tajabadi-Ebrahimi M, Emamgholipour S, Shanaki M. Bacillus coagulans T4 and Lactobacillus paracasei TD3 Ameliorate Skeletal Muscle Oxidative Stress and Inflammation in High-Fat Diet-Fed C57BL/6J Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e135249. [PMID: 38116571 PMCID: PMC10728858 DOI: 10.5812/ijpr-135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/03/2023] [Accepted: 07/03/2023] [Indexed: 12/21/2023]
Abstract
Background This study aims to investigate the effects of Bacillus coagulans T4 and Lactobacillus paracasei TD3 probiotics on skeletal muscle inflammation and oxidative stress in C57BL/6J mice fed a high-fat diet (HFD). Methods Probiotics B. coagulans T4, and L. paracasei TD3 were administered to male C57BL/6J mice fed with HFD. The gene expression of macrophage infiltration markers, inflammatory cytokines, and oxidative stress indicators in the muscle tissue was investigated. Results Treatment with B. coagulans T4 and L. paracasei TD3 reduced macrophage infiltration, accompanied by a decrease in the expression of monocyte chemoattractant protein-1 (MCP-1) and an increase in the expression of interleukin (IL)-10. On the other hand, L. paracasei TD3 decreased malondialdehyde (MDA) while B. coagulans T4 decreased carbonyl and increased catalase activity. Conclusions Treatment with probiotics B. coagulans T4 and L. paracasei TD3 partially ameliorated obesity-induced skeletal muscle inflammation in HFD-fed mice.
Collapse
Affiliation(s)
- Masoumeh Shams
- Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Samira Sadeghi
- Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Shadi Sadat Seyyed Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | | | | | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
245
|
Murakami S, Hirazawa C, Mizutani T, Yoshikawa R, Ohya T, Ma N, Owaki Y, Owaki T, Ito T, Matsuzaki C. The anti-obesity and anti-diabetic effects of the edible seaweed Gloiopeltis furcata (Postels et Ruprecht) J. Agardh in mice fed a high-fat diet. Food Sci Nutr 2023; 11:599-610. [PMID: 36655073 PMCID: PMC9834850 DOI: 10.1002/fsn3.3100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Obesity and diabetes are serious, chronic medical conditions associated with a wide range of life-threatening conditions. The aim of this study was to investigate the effects of the edible red seaweed Gloiopeltis furcata (Postels et Ruprecht) J. Agardh (G. furcata) on the development of obesity, diabetes and related metabolic diseases in mice. Male C57BL/6J mice were fed a high-fat (HF) diet (60% energy as fat), or an HF diet containing 2% (w/w) or 6% powdered G. furcata for 13 weeks. Polysaccharides of G. furcata were isolated and their anti-inflammatory effects were evaluated in lipopolysaccharide-stimulated RAW264.7 cells. The HF diet group showed greater weight gain, lipid accumulation in the body and liver, and increased serum levels of glucose and cholesterol in comparison to the normal group fed a normal diet (10% energy as fat). The treatment of HF diet mice with G. furcata reduced these changes and stimulated the fecal excretion of fat. In addition, G. furcata suppressed the HF diet-induced elevation of inflammation and oxidative stress markers in the serum and liver. The isolated sulfated polysaccharide from G. furcata inhibited pancreatic lipase activity and decreased the production of nitric oxide and TNF-α in the murine macrophage cell line RAW264.7. These results show that G. furcata treatment can attenuate obesity, diabetes, hepatic steatosis, and dyslipidemia in mice fed an HF diet, which is associated with inhibited intestinal fat absorption and reduced inflammation and oxidative stress by a sulfated polysaccharide.
Collapse
Affiliation(s)
- Shigeru Murakami
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
- Fukui Bioincubation Center (FBIC)Fukui Prefectural UniversityFukuiJapan
| | - Chihiro Hirazawa
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Toshiki Mizutani
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Rina Yoshikawa
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Takuma Ohya
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
| | - Ning Ma
- Division of Health Science, Graduate School of Health ScienceSuzuka UniversitySuzukaJapan
| | | | | | - Takashi Ito
- Department of Bioscience and BiotechnologyFukui Prefectural UniversityFukuiJapan
- Fukui Bioincubation Center (FBIC)Fukui Prefectural UniversityFukuiJapan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and BiotechnologyIshikawa Prefectural UniversityNonoichiJapan
| |
Collapse
|
246
|
Garcia LF, Singh V, Mireles B, Dwivedi AK, Walker WE. Common Variables That Influence Sepsis Mortality in Mice. J Inflamm Res 2023; 16:1121-1134. [PMID: 36941984 PMCID: PMC10024505 DOI: 10.2147/jir.s400115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Sepsis is characterized by a dysregulated host immune response to infection, leading to organ dysfunction and a high risk of death. The cecal ligation and puncture (CLP) mouse model is commonly used to study sepsis, but animal mortality rates vary between different studies. Technical factors and animal characteristics may affect this model in unanticipated ways, and if unaccounted for, may lead to serious biases in study findings. We sought to evaluate whether mouse sex, age, weight, surgeon, season of experiments, and timing of antibiotic administration influenced mortality in the CLP model. Methods We created a comprehensive dataset of C57BL/6J mice that had undergone CLP surgery within our lab during years 2015-2020 from published and unpublished studies. The primary outcome was defined as the time from sepsis induction to death or termination of study (14 days). The Log rank test and Cox regression models were used to analyze the dataset. The study included 119 mice, of which 43% were female, with an average age of 12.6 weeks, an average weight of 25.3 g. 38 (32%) of the animals died. Results In the unadjusted analyses, experiments performed in the summer and higher weight predicted a higher risk of mortality. In the stratified Cox model by sex, summer season (adjusted hazard ratio [aHR]=5.61, p=0.004) and delayed antibiotic administration (aHR=1.46, p=0.029) were associated with mortality in males, whereas higher weight (aHR=1.52, p=0.005) significantly affected mortality in females. In addition, delayed antibiotic administration (HR=1.42, p=0.025) was associated with mortality in the non-summer seasons, but not in the summer season. Discussion In conclusion, some factors specific to sex and season have a significant influence on sepsis mortality in the CLP model. Consideration of these factors along with appropriate group matching or adjusted analysis is critical to minimize variability beyond the experimental conditions within a study.
Collapse
Affiliation(s)
- Luiz F Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Vishwajeet Singh
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Blake Mireles
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alok Kumar Dwivedi
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Wendy E Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Correspondence: Wendy E Walker, 5001 El Paso Drive, El Paso, TX, 79905, USA, Tel +1 915 215-4268, Fax +1 915 783-1271, Email
| |
Collapse
|
247
|
Zhang Y, Mahmood T, Wu Y, Tang Z, Wang Y, Wu W, Zhou H, Guo Y, Yuan J. Oxidized corn oil changes the liver lipid metabolism of broilers by upregulating peroxisome proliferators activate receptor-α. Poult Sci 2022; 102:102437. [PMID: 36621096 PMCID: PMC9841278 DOI: 10.1016/j.psj.2022.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of the following study was to investigate the effects of naturally oxidized corn oil on the antioxidant capacity and lipid metabolism of broilers. A total of 450, 1-day-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicate cages and 15 birds/cage. The dietary treatment array consisted of ratios of naturally oxidized corn oil to non-oxidized corn oil from 0:100, 25:75, 50:50, 75:25, and 100:0, respectively. Serum, liver, and abdominal fat samples were taken at 42 d. The results showed that the liver organ index, liver catalase (CAT) activity, malondialdehyde (MDA) content, and the serum aspartate aminotransferase (AST) content had significant quadratic relationships with the ratio of naturally oxidized corn oil (P < 0.05). Inflammatory infiltrating cells appeared in the liver of the 50% and 75% oxidized corn oil group. The percentage of abdominal fat, and serum free fatty acids (FFA) content increased linearly with the increased proportion of oxidized corn oil (P < 0.05). The mRNA expression of NADH quinone oxidoreductase 1 (NQO-1), nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR-4), peroxisome proliferators activate receptor-α (PPARα), carnitine acyltransferase (CPT1), and acyl-coenzyme oxidase (ACO) of the liver increased linearly while oxidized corn oil increased in the diet (P < 0.05). Diets containing 100% oxidized corn oil significantly changed the mRNA expression of liver Caveolin compared with other treatment groups (P < 0.05). Taken together, this study demonstrated that naturally oxidized corn oil could change liver lipid metabolism and accelerate lipid deposition of broilers by upregulating PPARα.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, Dubai 00000, United Arab Emirates
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huajin Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
248
|
Adebayo-Gege G, Alicha V, Omayone TO, Nzekwe SC, Irozuoke CA, Ojo OA, Ajayi AF. Anti-atherogenic and cardio-protective properties of sweet melon (Cucumis melo. L. Inodorus) seed extract on high fat diet induced obesity in male wistar rats. BMC Complement Med Ther 2022; 22:334. [PMID: 36539762 PMCID: PMC9764567 DOI: 10.1186/s12906-022-03793-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cucumis melon is a medicinal plant with multiple pharmacological properties such as anti-inflammatory, antioxidant, and diuretic effects. An increasing body of scientific evidence established the anti-diabetic/anti-obesity effects of Cucumis melo in humans, mice, and hamster models. However, there are no tangible reports on its ability to prevent cardiovascular complications following diet-induced obesity. The anti-atherogenic and cardioprotective effects of the Methanolic extract of Cucumis melo. L. Inodorus seeds on a high-fat diet (HFD)-induced obese rats was assessed in this study. METHODS: Forty male Wistar rats were randomly divided into five groups, (n = 8/group); i.e., Normal (N), HFD, HFD + 50 mg/kg b.w. of MCMs (Methanolic extract of Cucumis melon seeds), HFD + 100 mg/Kg b.w. of MCMs and HFD + 200 mg/kg b.w. of MCMs. The experimental animals were anaesthetized and sacrificed after 10 weeks, and blood samples and heart tissue were collected for further analysis. Using the Graph Pad Prism version 5.0, the results expressed as Mean ± SD was tested using the one-way ANOVA to show intergroup differences, followed by Bonferonni 's post hoc test. The level of significance was determined at P ≤ 0.05. RESULTS MCMs significantly (P < 0.05) reduced body weight, adiposity index, total fat mass, low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) compared with the HFD obese groups MCMs caused a significant reduction in the body weight, total fat mass, adiposity index, low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) when compared to the animals in HFD obese groups. Also, the Atherogenic index of plasma (AIP), Castelli index and, malondialdehyde (MDA) significantly (P < 0.05) decreased in MCMs treated groups compared to the HFD obese group. The catalase, protein, and HDL levels were significantly increased in MCMs treated groups compared to HFD-obese animals. Expression of nitric oxide in the form of nitrite in the heart tissue significantly increased in the MCMs treated compared to the HFD-obese rats, with the majority of the positive results recorded at 100 mg/Kg b.w. of MCMs. CONCLUSIONS MCMs have anti-atherogenic and Cardio-protective properties on High Fat Diet-Induced Obesity in Male rats via an antioxidant and nitric oxide-dependent mechanism. Further study is recommended to evaluate the molecular mechanisms to which these anti-atherogenic and cardio-protective actions can be attributed and exploit the GCMS result in the development of drug candidates.
Collapse
Affiliation(s)
- G Adebayo-Gege
- Department of Human Physiology, Faculty of Basic Medical Sciences, Baze University, Jabi, Nigeria
| | - V Alicha
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine Bingham University, Jos, Nigeria
| | - T O Omayone
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, FUTA, Akure, Nigeria
| | - S C Nzekwe
- Department of Biochemistry, Faculty of Science, Adeleke University, Ede, Osun State, Nigeria
| | - C A Irozuoke
- Department of Anatomy, Faculty of Basic Medical Sciences, Baze University, Jabi, Nigeria
| | - O A Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - A F Ajayi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
- Anchor BioMed Researh Institute, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
249
|
Peng M, Gao Z, Liao Y, Guo J, Shan Y. Development of Citrus-Based Functional Jelly and an Investigation of Its Anti-Obesity and Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11122418. [PMID: 36552627 PMCID: PMC9774387 DOI: 10.3390/antiox11122418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Intervention with natural products is becoming a promising obesity control strategy as healthy eating becomes increasingly popular. The present study aimed to prepare a citrus-based functional jelly (CFJ) from citrus by-products and investigate its bioactive effects in mice. The results of the CFJ preparation showed that the optimal formula of CFJ was 29.12%, 20%, and 3.61% for chenpi, orange juice, and pectin, respectively. The optimized CFJ can be personalized and designed with jelly shapes using 3D food printing technology. The evaluation of the biological activity of the CFJ showed that it was low in calories, with a total phenolic content of 12.44 ± 0.26 mg GAE/g. Moreover, the CFJ has a good free radical scavenging ability for ABTS. The results of the mouse experiments showed that the CFJ significantly suppressed the body weight gain and fat deposits with a dose-dependent effect, compared with the control group (p < 0.05). In addition, the activities of the antioxidant-related enzymes (CAT and SOD) of the mice were also enhanced after a supplementation with the CFJ. In short, the CFJ is a functional snack enriched in phenolic substances with low-calorie, antioxidant and anti-obesity properties. This work promotes the utilization of citrus by-products and the healthy development of its processing industry.
Collapse
Affiliation(s)
- Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.)
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.)
| |
Collapse
|
250
|
da Silva BR, Orsso CE, Gonzalez MC, Sicchieri JMF, Mialich MS, Jordao AA, Prado CM. Phase angle and cellular health: inflammation and oxidative damage. Rev Endocr Metab Disord 2022; 24:543-562. [PMID: 36474107 PMCID: PMC9735064 DOI: 10.1007/s11154-022-09775-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Phase angle is a composite measure that combines two raw bioelectrical impedance analysis measures: resistance and reactance. Phase angle has been considered an indicator of cellular health, integrity, and hydration. As inflammation and oxidative stress can damage cellular structures, phase angle has potential utility in early detecting inflammatory and oxidative status. Herein, we aimed to critically review the current understanding on the determinants of phase angle and its relationship with markers of inflammation and oxidative stress. We also discussed the potential role of phase angle in detecting chronic inflammation and related adverse outcomes. Several factors have been identified as predictors of phase angle, including age, sex, extracellular to intracellular water ratio, and fat-free mass. In addition to these factors, body mass index (BMI) also seems to influence phase angle. Available data also show that lower phase angle values are correlated (negligible to high correlation coefficients) with higher c-reactive protein, tumour necrosis factor-α, interleukin-6, and interleukin-10 in studies involving the general and aging populations, as well as patients with chronic conditions. Although fewer studies have evaluated the relationship between phase angle and markers of oxidative stress, available data also suggest that phase angle has potential to be used as an indicator (for screening) of oxidative damage. Future studies including diverse populations and bioelectrical impedance devices are required to confirm the validity and accuracy of phase angle as a marker of inflammation and oxidative stress for clinical use.
Collapse
Affiliation(s)
- Bruna Ramos da Silva
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Camila E Orsso
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Maria Cristina Gonzalez
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Juliana Maria Faccioli Sicchieri
- Department of Health Sciences, Division of Nutrition and Metabolism, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mirele Savegnago Mialich
- Department of Health Sciences, Division of Nutrition and Metabolism, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alceu A Jordao
- Department of Health Sciences, Division of Nutrition and Metabolism, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carla M Prado
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|