201
|
Nguyen CT, Han JM, Tran VH, Jeong H, Kim ES. A Study on the Fabrication of an Effective Natural Substance Based on Schisandra chinensis Extracted Fermentation. Clin Cosmet Investig Dermatol 2021; 14:1603-1612. [PMID: 34764664 PMCID: PMC8576409 DOI: 10.2147/ccid.s336280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE In this study, a high-efficiency Schisandra chinensis extract (SCE) produced by the fermentation of effective microorganisms (EM) was used as an antioxidant material in preparing cosmetic products. SUBJECTS AND METHODS We conducted the study by extracting S. chinensis via EM fermentation to increase the efficiency. Tyrosinase inhibitory factor analysis, pH, and thermal stability were measured to verify the properties of the prepared products. RESULTS The efficacy and whitening effects of the prepared substances were verified using tyrosinase inhibitory factor analysis. As a result, it was found that both the SCE and SCE fermentation (SCEF) exhibited high, naturally originating, antioxidation ability. In addition, the pH and thermal stability of the substances were evaluated to optimize the cosmetic fabrication conditions. In this context, as the concentration of the added extract increased, the pH value decreased. The evaluation of safety and stability indicated that the substances contained effective chemical components having antioxidant activity, suppressing skin aging, and whitening effects in a weak acid range consistent with a pH of 6.25-2.98. Furthermore, there were no safety problems with the use of the obtained products even after they had been stored for 60 days. CONCLUSION The SCE substance is demonstrated as a possible material for cosmetic application.
Collapse
Affiliation(s)
- Chi Thanh Nguyen
- Department of Materials Technology, Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Jong-Man Han
- Department of Physical Therapy, Daegu Health College, Daegu, 41453, Republic of Korea
| | - Van Huong Tran
- School of Mechanical Engineering, Hanoi University of Science and Technology, Ha Noi, 100000, Viet Nam
| | - Hun Jeong
- Department of Nano Convergence Engineering, Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eun Sook Kim
- Department of Beauty-Therapy & Make Up, Seokyeong University, Seoul, 02713, Republic of Korea
| |
Collapse
|
202
|
Impact of Ferment Processing Parameters on the Quality of White Pan Bread. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A controlled fermentation process using straight-grade wheat flour, commercially milled from a grist of Canada Western Red Spring (CWRS) wheat and English wheat, and fresh yeast (Saccharomyces cerevisiae) was found to be effective for developing a naturally derived product (ferment) that could be used for processing bread with the minimum use of dough improvers. The effects of ferment storage, fermentation time, and fermentation temperature on the quality of ferment and bread were evaluated to establish optimal conditions to produce a mature ferment. Trials were conducted on a pilot scale for greater relevance to industrialized bakeries. Ferment was assessed for total titratable acidity (TTA), pH, and viscosity. Breads made with ferment were evaluated for processing parameters, dough properties, and bread quality and compared to a control prepared without ferment. During fermentation, maximum TTA levels in the ferment were achieved at 100 min, then decreased by the end of fermentation, and increased by 24 h of storage at 4 °C. Viscosity was stable during fermentation but decreased by 24 h of storage. Inclusion of ferment resulted in reduced mixing times and improved dough extensibility and crumb softness. Specific loaf volume was not impacted; a slight reduction in crumb brightness and crumb structure was detected. Fermentation for 240 min at 35 °C was determined as optimal with a storage time for 24 h.
Collapse
|
203
|
Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021; 10:foods10112639. [PMID: 34828920 PMCID: PMC8620815 DOI: 10.3390/foods10112639] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.
Collapse
|
204
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
205
|
Wang P, Feng Z, Sang X, Chen W, Zhang X, Xiao J, Chen Y, Chen Q, Yang M, Su J. Kombucha ameliorates LPS-induced sepsis in a mouse model. Food Funct 2021; 12:10263-10280. [PMID: 34549751 DOI: 10.1039/d1fo01839f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a popular traditional fermented beverage, kombucha has been extensively studied for its health benefits. However, the science behind the anti-inflammatory effect of kombucha has not been well studied, and there is an urgent need to uncover the secrets of the anti-inflammatory properties of kombucha. Here, we investigate kombucha's protective effects against lipopolysaccharide (LPS)-induced sepsis and on the intestinal microecology in mice. The contents of reducing sugars, polyphenols, catechins, and organic acids in the kombucha group were identified using various methods. The results showed that the concentrations of acetic acid, gluconic acid, polyphenol, and glucuronic acid in the kombucha group were 55.70 ± 2.57 g L-1, 50.20 ± 1.92 g L-1, 2.36 ± 0.31, and 1.39 ± 0.22 g L-1, respectively. The result also demonstrated that kombucha effectively improves the survival rate from 0% to 40%, and increases the thermoregulation in LPS-treated mice, which showed decreased mobility and had lost their appetite for food. Furthermore, kombucha reduced the levels of tumor necrosis factor-α and interleukins (IL)-1β and IL-6, restored the levels of T cells and macrophages in LPS-challenged mice, alleviated the histopathological damage, and inhibited NF-κB signaling in mice with LPS-induced sepsis. We demonstrated that kombucha effectively prevents cellular immune function disorder in mice at the initial stage of sepsis and exerts an immunomodulatory effect. In addition, the effect of kombucha on the gut microbiota was investigated during sepsis. Kombucha supplementation altered the diversity of the gut microbiota and promoted the growth of butyrate-producing bacteria, which exert anti-inflammatory effects. Our results illustrate the potential of kombucha as a novel anti-inflammatory agent against the development of systemic inflammatory responses associated with sepsis.
Collapse
Affiliation(s)
- Penghui Wang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiao Sang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiaoni Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianbin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Minhe Yang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
206
|
Desfita S, Sari W, Yusmarini Y, Pato U, Zakłos-Szyda M, Budryn G. Effect of Fermented Soymilk-Honey from Different Probiotics on Osteocalcin Level in Menopausal Women. Nutrients 2021; 13:3581. [PMID: 34684581 PMCID: PMC8541044 DOI: 10.3390/nu13103581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis has been discovered to be a risk factor for menopausal women. Although synbiotics (probiotics and prebiotics) are found in fermented soymilk-honey made using local probiotics, their effect on osteocalcin levels is still unknown. Therefore, this study's objective was to determine the influence of fermented soymilk-honey from different probiotics on osteocalcin levels. A 90-day pre-post quasi-experimental study with a control design was conducted on 54 postmenopausal women divided into three intervention groups namely, the soymilk (SM) group, the soymilk-honey fermented with Lactobacillus casei subsp. casei R-68 (SMH Lc) group, and the soymilk-honey fermented with Lactobacillus plantarum 1 R 1.3.2 (SMH Lp) group. Participants consumed 100 mL of soymilk (SM) or fermented soymilk with honey (SMH Lc or SMH Lp) for 90 days. At the beginning and end of the study, the blood serum osteocalcin level was measured and subjects' health status was assessed, such as cholesterol total, random blood glucose, and uric acid levels. Our results presented that in the SMH Lp group, 90 days supplementation of soy-honey milk fermented with Lactobacillus plantarum 1 R 1.3.2 significantly reduced the level of blood serum osteocalcin. Based on these results it is justified to perform more detailed studies on the effect of fermented soy-honey milk on bone health.
Collapse
Affiliation(s)
- Sri Desfita
- Public Health Program, STIKes Hang Tuah Pekanbaru, Pekanbaru 28282, Riau, Indonesia;
| | - Wulan Sari
- Public Health Program, STIKes Hang Tuah Pekanbaru, Pekanbaru 28282, Riau, Indonesia;
| | - Yusmarini Yusmarini
- Faculty of Agriculture, Universitas Riau, Pekanbaru 28293, Riau, Indonesia; (Y.Y.); (U.P.)
| | - Usman Pato
- Faculty of Agriculture, Universitas Riau, Pekanbaru 28293, Riau, Indonesia; (Y.Y.); (U.P.)
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| |
Collapse
|
207
|
Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. Int J Mol Sci 2021; 22:ijms222010999. [PMID: 34681658 PMCID: PMC8537075 DOI: 10.3390/ijms222010999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The expansion of multiple drug resistant (MDR) strains of Klebsiella pneumoniae presents an immense threat for public health. Annually, this microorganism causes thousands of lethal nosocomial infections worldwide. Currently, it has been shown that certain strains of lactic acid bacteria (LAB) can efficiently inhibit growth of K. pneumoniae and the formation of its biofilms; however, the active principle of such action remains unknown. In the current article, the growth inhibition of MDR K. pneumoniae by two LAB—Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F—is demonstrated, and the nature of this inhibition studied at the level of exoproteome. This article shows that the exoproteomes of studied LAB contains both classically and non-classically secreted proteins. While for L. reuteri LR1 the substantial portion of classically secreted proteins was presented by cell-wall-degrading enzymes, for L. rhamnosus F only one out of four classically secreted proteins was presented by cell-wall hydrolase. Non-classically secreted proteins of both LAB were primarily metabolic enzymes, for some of which a possible moonlighting functioning was proposed. These results contribute to knowledge regarding antagonistic interaction between LAB and pathogenic and opportunistic microorganisms and set new perspectives for the use of LAB to control the spread of these microorganisms.
Collapse
|
208
|
Zhao D, Cao J, Jin H, Shan Y, Fang J, Liu F. Beneficial impacts of fermented celery ( Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct 2021; 12:9151-9164. [PMID: 34606532 DOI: 10.1039/d1fo00560j] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes and anti-inflammatory properties and blood glucose and serum lipid reduction. However, the effect of probiotic fermentation on celery juice and the association between fermented celery juice (FCJ) and obesity were unclear. This study aimed to evaluate the beneficial effects of FCJ on high-fat diet (HFD) induced obesity and related metabolic syndromes. C57BL/6 mice were randomly divided into six groups (n = 15 per group) fed either a normal diet (ND) or HFD with or without CJ/FCJ (10 g kg-1 day-1) by oral gavage for 12 weeks. Here we demonstrated that the probiotic fermentation of celery juice (CJ) could enhance the active ingredients in celery, such as total polyphenols, flavonoids, vitamin C and SOD. Compared to the slight improvement induced by CJ ingestion, FCJ intake significantly inhibited body weight gain, prevented dyslipidemia and hyperglycemia, and suppressed visceral fat accumulation. Furthermore, 16S rRNA sequencing analysis revealed that FCJ intake altered the composition of gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes and the relative abundance of beneficial bacteria (Lactobacillus, Ruminococcaceae_UCG-014, Faecalibaculum and Blautia), and decreasing the relative abundance of harmful bacteria (Alloprevotella and Helicobacter). These findings suggest that FCJ can prevent HFD-induced obesity and become a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Dong Zhao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinhu Cao
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiqin Jin
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian Fang
- Weifang Bowei Agricultural Development Co., Ltd, Weifang 261000, Shandong, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
209
|
Pistoia JC, Chandler L. Naturopathic Approach to Functional Dyspepsia: A Case Report. Integr Med (Encinitas) 2021; 20:32-36. [PMID: 34803538 PMCID: PMC8594970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional dyspepsia is a common presenting concern that includes symptoms such as gastrointestinal reflux, postprandial bloating, and abdominal pain. Aside from mainstay conventional therapies such as proton pump inhibitors and antacid tablets that seek to manage symptoms, naturopathic therapies can similarly offer symptom relief and simultaneously address factors underlying functional digestive disturbances. In this case, a 25-year-old female and first year graduate student presented with abdominal bloating, epigastric pain, flatulence, eructations, reflux, and straining with stool. Onset of symptoms occurred after her transition to graduate school, which resulted in a more stressful and rigorous workload, time-pressured eating habits, and a dearth of whole food consumption. Physical exam findings were unremarkable except for moderate epigastric pain, hyperactive bowel sounds, and a geographic tongue. While she met all the Rome IV criteria for functional dyspepsia, clinical findings did not warrant referral for endoscopy to rule out structural/organic causes of disease. As a result, therapeutic interventions consisted of an elimination diet and the use of apple cider vinegar and L-glutamine powder, in addition to a compounded homeopathic formula containing UNDA #4 and Nux vomica. Within 1 week, the patient reported significant improvement in presenting concerns, and within 1 month had denied the presence of every presenting symptom except for straining with stool. This case demonstrates that a naturopathic approach to functional dyspepsia can offer significant symptom relief as soon as 1 week after treatment, and that an effective treatment plan can be offered to patients in 1 visit lasting no longer than 60 minutes. Furthermore, compliant patients can experience a significant improvement in overall gastrointestinal function as early as 1 month after treatment initiation.
Collapse
|
210
|
Khoirun Nisa A, Afifah DN, Djamiatun K, Syauqy A. The effect of Sorghum Tempeh (Sorghum bicolor L. Moench) on low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in atherogenic diet-induced rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An atherogenic diet induces oxidative stress leading to hypercholesterolemia. This condition causes atherosclerosis followed by increased LDL and MDA. Sorghum tempeh contains fiber and antioxidants that can protectively improve LDL and MDA levels. Therefore, this research aims to determine the effect of sorghum tempeh on LDL and MDA levels in atherogenic diet-induced rats compared to sorghum flour. It used a randomized pre-post test with a control group design. The test subjects were 30 male Sprague Dawley rats, consisting of 6 normal conditioned rats (C1), and 24 that were induced by an atherogenic diet (C2, T1, T2, T3) for 2 weeks. Sorghum flour was administered at a dose of 4.095 g (T1) and the sorghum tempeh at 3.041 g (T2) and 6.081 g (T3) for 4 weeks. Furthermore, C2 was constantly induced through an atherogenic diet. Total cholesterol and LDL levels were then analyzed using the CHOD-PAP method, and MDA levels, using the ELISA method. Meanwhile, statistical analysis for these variables was carried out using IBM SPSS Statistics 21 software. The results showed that the administration of sorghum flour and tempeh significantly reduced total cholesterol, LDL, MDA levels in each group (p = 0.001). Furthermore, it showed that there was a significantly strong correlation between LDL and MDA levels before and after treatment (r = 0.610, r = 0.805, and p = 0.001). The administration of sorghum tempeh at a dose of 6.081 g caused the greatest reduction (∆) in LDL levels at -44.19 ±2.58 mg.dL-1, although, it was not the same as normal control. Meanwhile, sorghum flour at a dose of 4.095 g was the most influential in reducing MDA levels to the same as normal control with delta (∆) at -7.67 ±0.37 ng.mL-1. In conclusion, sorghum tempeh and flour were the most effective at reducing LDL and MDA levels, respectively.
Collapse
|
211
|
Alekseeva AY, Groenenboom AE, Smid EJ, Schoustra SE. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910093. [PMID: 34639397 PMCID: PMC8508538 DOI: 10.3390/ijerph181910093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
Eco-evolutionary forces are the key drivers of ecosystem biodiversity dynamics. This resulted in a large body of theory, which has partially been experimentally tested by mimicking evolutionary processes in the laboratory. In the first part of this perspective, we outline what model systems are used for experimental testing of eco-evolutionary processes, ranging from simple microbial combinations and, more recently, to complex natural communities. Microbial communities of spontaneous fermented foods are a promising model system to study eco-evolutionary dynamics. They combine the complexity of a natural community with extensive knowledge about community members and the ease of manipulating the system in a laboratory setup. Due to rapidly developing sequencing techniques and meta-omics approaches incorporating data in building ecosystem models, the diversity in these communities can be analysed with relative ease while hypotheses developed in simple systems can be tested. Here, we highlight several eco-evolutionary questions that are addressed using microbial communities from fermented foods. These questions relate to analysing species frequencies in space and time, the diversity-stability relationship, niche space and community coalescence. We provide several hypotheses of the influence of these factors on community evolution specifying the experimental setup of studies where microbial communities of spontaneous fermented food are used.
Collapse
Affiliation(s)
- Anna Y. Alekseeva
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Correspondence:
| | - Anneloes E. Groenenboom
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
212
|
Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021; 10:foods10092148. [PMID: 34574257 PMCID: PMC8465840 DOI: 10.3390/foods10092148] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.
Collapse
|
213
|
Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021; 10:foods10092092. [PMID: 34574202 PMCID: PMC8471122 DOI: 10.3390/foods10092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.
Collapse
|
214
|
Spaccarotella K, Breen E. Dishing up Science: Integrated Content Links History, Microbiology, and Nutrition. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2021; 22:jmbe00135-21. [PMID: 34594445 PMCID: PMC8442012 DOI: 10.1128/jmbe.00135-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Although public health recommendations encourage educators to include nutrition into the school day to prevent obesity, teachers cite lack of time as a common barrier. Thus, they are often told to integrate nutrition across the curriculum. The purpose of this project was to create an educational program integrating easy-to-demonstrate experiments with lessons illustrating key concepts in microbiology, nutrition, and food history for elementary school groups visiting a museum. Programs were created by researching and developing short lessons with visual aids, hands-on science experiments, handouts, and teacher's guides that could be used by museum staff. These lessons were aligned with New Jersey elementary school curricula and learning standards. This project illustrated a creative approach to integrating microbiology, nutrition, and history content into the curriculum so that teachers could more easily fit nutrition into the school day.
Collapse
Affiliation(s)
- Kim Spaccarotella
- Department of Biological Sciences, Kean University, Union, New Jersey, USA
| | - Emily Breen
- Department of Biological Sciences, Kean University, Union, New Jersey, USA
| |
Collapse
|
215
|
Chan LP, Tseng YP, Liu C, Liang CH. Fermented pomegranate extracts protect against oxidative stress and aging of skin. J Cosmet Dermatol 2021; 21:2236-2245. [PMID: 34416060 DOI: 10.1111/jocd.14379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Punica granatum (pomegranate) potentially ameliorates skin inflammation and pain, including herpetic stromal keratitis. Fermentation is a biotechnological technique that may naturally induce health benefits by producing antioxidants. However, the anti-aging effect of fermented pomegranate extracts (FPE) on the skin is still unclear. AIM This investigation evaluates the effects of fermented pomegranate as a functional supplement (FPE drink, FPE-D) and a cosmetic ingredient (FPE serum, FPE-S) in vitro and in vivo. PATIENTS/METHODS The effects of FPE products for anti-oxidation, anti-tyrosinase, anti-inflammation, and anti-aging were examined. Forty subjects were randomly allocated to FPE-D or placebo drink groups (50 ml of a FPE-D /placebo drink daily for 8 weeks for each subject), and another 40 subjects were recruited to FPE-S or placebo serum groups (about 3 ml of a FPE-S /placebo serum daily and nightly/daily for 4 weeks for each subject) in a double-blind study. RESULTS The effects of FPE products on the DPPH, ABTS+ , and NO· free radical scavenging activities, their inhibiting of tyrosinase activity and their enhancement of the skin health of healthy subjects, were investigated. FPE-D improved the moisture, brightness, elasticity, and collagen density of the skin of most subjects at 8 weeks relative to the baseline without treatment (p < 0.05). After 4 weeks of FPE-S serum consumption, the moisture, brightness, elasticity, spots, UV spots, and collagen density of skin were slightly better than those at week 0 (p < 0.05). CONCLUSIONS The daily consumption of fermented pomegranate extracts can protect the skin against oxidative stress and slow skin aging.
Collapse
Affiliation(s)
- Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cheng Liu
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
216
|
Vijayasarathy S, Gayathri P, Suneetha V. Fermented Foods and Their Abating Role in Gastric Ulcers. J Am Coll Nutr 2021; 41:826-830. [PMID: 34402418 DOI: 10.1080/07315724.2021.1962768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Helicobacter pylori plays a consequential role in gastric inflammations and ulceration. The cure for the same was researched and identified to be the triple therapy regime. Intensive research in the field also proved that altering the food habits during ulcers will be a major factor in the time period that is required for cure. Fermented foods usage dates back to ancient civilizations, but their role in maintaining gastric health are slowly being uncovered. One such major role reported will be the bacterial check that the probiotics in fermented food do in human gastrointestinal tract. Various species of bacteria present in the fermented products will lead to reduction of the H. Pylori infection in the GI tract.Key teaching pointsMicrobes that are active in fermented foods reduce inflammation and improve histological conditions of ulcers caused due to H. pylori.Microbes such as Lactobacillus that were in fermented products when tested showed inhibitory effects, decreasing infection density and reducing mucus depletion.Lactic fermented products showed a decrease in urease activity and reduces H. pylori adhesion through various organic acid secretions.Organisms in fermented products involve various mechanisms like lowering gut pH, improving immunological responses, scavenging free radicals and so on.Fermented foods have many modulatory effects that help fighting and curing gastric ulcers.
Collapse
Affiliation(s)
- S Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - P Gayathri
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - V Suneetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| |
Collapse
|
217
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
218
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|
219
|
Lin X, Tang Y, Hu Y, Lu Y, Sun Q, Lv Y, Zhang Q, Wu C, Zhu M, He Q, Chi Y. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8065-8080. [PMID: 34269568 DOI: 10.1021/acs.jafc.1c01687] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sodium salt is a pivotal ingredient in traditional fermented foods, but its excessive consumption adversely affects human health, product quality, and production efficiency. Therefore, reducing sodium salt content in traditional fermented foods and developing low-sodium fermented foods have attracted increasing attention. Given the essential role of sodium salt in the safety and quality of fermented foods, appropriate approaches should be applied in the production of low-sodium fermented foods. In this review, the challenges of sodium reduction in traditional fermented foods are presented, including the possible growth of pathogenic bacteria, the formation of hazardous chemicals, flavor deficiency, and texture deterioration. Physical, chemical, and biological strategies are also discussed. This review provides references for improving the quality and safety of low-sodium fermented foods.
Collapse
Affiliation(s)
- Xin Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yao Tang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, China
| | - Yun Hu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qi Sun
- School of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Yuanping Lv
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620020, China
| | - Chongde Wu
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Meijun Zhu
- School of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| |
Collapse
|
220
|
Ferro M, Charneca S, Dourado E, Guerreiro CS, Fonseca JE. Probiotic Supplementation for Rheumatoid Arthritis: A Promising Adjuvant Therapy in the Gut Microbiome Era. Front Pharmacol 2021; 12:711788. [PMID: 34366867 PMCID: PMC8346200 DOI: 10.3389/fphar.2021.711788] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease that ultimately leads to joint destruction and functional disability. Although the exact etiology of RA is not fully understood, it is well established that gut microbiota (GM) plays a vital role in the pathogenesis of RA, with accumulating evidence suggesting that gut dysbiosis induces a chronic inflammatory response that may be linked to disease development. Of interest, patients with RA have significant changes in the intestinal microbiota compared to healthy controls, and several studies have suggested the use of probiotics as a possible adjuvant therapy for RA. Benefits of probiotic supplementation were reported in animal models of arthritis and human studies, but the current evidence regarding the effect of probiotic supplementation in the management of RA remains insufficient to make definite recommendations. Several different strains of Lactobacillus and Bifidobacteria, as single species or in mixed culture, have been investigated, and some have demonstrated beneficial effects on disease activity in RA human subjects. As of now, L.casei probiotic bacteria seems to be the strongest candidate for application as adjuvant therapy for RA patients. In this review, we highlight the role of GM in the development and progression of RA and summarize the current knowledge on the use of probiotics as a potential adjuvant therapy for RA. We also review the proposed mechanisms whereby probiotics regulate inflammation. Finally, the role of fermented foods is discussed as a possible alternative to probiotic supplements since they have also been reported to have health benefits.
Collapse
Affiliation(s)
- Margarida Ferro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Dourado
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Eurico Fonseca
- Serviço de Reumatologia e Doenças Ósseas Metabólicas, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa (CAML), Lisboa, Portugal.,Unidade de Investigação em Reumatologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, CAML, Lisboa, Portugal
| |
Collapse
|
221
|
Kang M, Choi HJ, Yun B, Lee J, Yoo J, Yang HJ, Jeong DY, Kim Y, Oh S. Bacillus amyloliquefaciens SCGB1 Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Immune Regulation. J Med Food 2021; 24:709-719. [PMID: 34280033 DOI: 10.1089/jmf.2021.k.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Probiotics, as living microorganisms, exert health benefits to the host by alleviating excess inflammation through modulating the immune system and establishing intestinal homeostasis. In this study, we evaluated the probiotic characteristics and inflammation alleviatory effects of Bacillus amyloliquefaciens isolated from traditional Korean fermented foods. The strains withstood the acidic environment of the digestive process, extended the lifespan of Caenorhabditis elegans, and enhanced pmk-1 expression. However, only B. amyloliquefaciens SCGB1 could attach to C. elegans in the intestines, which enhanced their survival upon exposure to Escherichia coli O157:H7. We also investigated the anti-inflammatory effect of SCGB1 using the RAW264.7 macrophage stimulated with lipopolysaccharide. The strain treatment enhanced anti-inflammatory cytokine interleukin (IL)-10 secretion and downregulated proinflammatory cytokine IL-6 expression in vitro. Next, we used a dextran sulfate sodium (DSS)-induced colitis mouse model to investigate whether SCGB1 can ameliorate gut inflammation in vivo. Compared to those in the DSS-induced mice, histological damage and IL-6 cytokine levels were significantly reduced in SCGB1-fed mice. These results suggest that B. amyloliquefaciens SCGB1 as potential probiotics may have health-promoting effects by reduction of inflammatory responses.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Juyeon Lee
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Jiseon Yoo
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| |
Collapse
|
222
|
Gopikrishna T, Suresh Kumar HK, Perumal K, Elangovan E. Impact of Bacillus in fermented soybean foods on human health. ANN MICROBIOL 2021; 71:30. [PMID: 34305497 PMCID: PMC8285709 DOI: 10.1186/s13213-021-01641-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. METHODS This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. RESULTS The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. CONCLUSION Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.
Collapse
Affiliation(s)
- Trishala Gopikrishna
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Harini Keerthana Suresh Kumar
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Kumar Perumal
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Elavarashi Elangovan
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| |
Collapse
|
223
|
Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL. Gut-microbiota-targeted diets modulate human immune status. Cell 2021; 184:4137-4153.e14. [PMID: 34256014 DOI: 10.1016/j.cell.2021.06.019] [Citation(s) in RCA: 487] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/13/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.
Collapse
Affiliation(s)
- Hannah C Wastyk
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dylan Dahan
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bryan D Merrill
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Madeline Topf
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Carlos G Gonzalez
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William Van Treuren
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Shuo Han
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jennifer L Robinson
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Erica D Sonnenburg
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Human Microbiome Studies, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA.
| | - Justin L Sonnenburg
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA; Center for Human Microbiome Studies, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
224
|
The Role of the Intestinal Microbiota in Atopic Dermatitis. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021. [DOI: 10.1097/jd9.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
225
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Microbiota changes with fermented kimchi contributed to either the amelioration or rejuvenation of Helicobacter pylori-associated chronic atrophic gastritis. J Clin Biochem Nutr 2021; 69:98-110. [PMID: 34376919 PMCID: PMC8325762 DOI: 10.3164/jcbn.20-123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or β-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1β. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | | | | | - Seong Jin Kim
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-ro, Bundang-gu, Seongnam 13497, Korea
| |
Collapse
|
226
|
Zhu C, Guan Q, Song C, Zhong L, Ding X, Zeng H, Nie P, Song L. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats. Food Res Int 2021; 147:110467. [PMID: 34399465 DOI: 10.1016/j.foodres.2021.110467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis and oxidative stress may play important roles in the progression of nonalcoholic fatty liver disease (NAFLD). Fermented foods contain probiotics and other bioactive components that may improve gastrointestinal health and provide other health benefits. Here, we investigated the effect of Lactobacillus-fermented black barley on NAFLD rats. Adult Sprague Dawley rats were randomized into four groups: normal chow diet (NC), high-fat diet (HF), HF + fermented black barley treatment (HB) and HF + Lactobacillus treatment (HL). The rats in the HB and HL groups were continuously administered fermented black barley or Lactobacillus, respectively, for 12 weeks (1 mL/100 g·BW, containing 1 × 108 CFU/mL Lactobacillus). Compared with the HF treatment, HB treatment effectively inhibited the increase in body weight, liver and abdominal fat indexes and hepatic lipids (p < 0.01), increased hepatic SOD activity (p < 0.05), decreased thiobarbituric acid reactive substances (TBARSs) (p < 0.01) and improved liver function. Moreover, Lactobacillus-fermented black barley exhibited regulatory effect on high-fat diet-induced intestinal microbiota dysbiosis by increasing the relative microbiota abundance and diversity, increasing the relative abundance of Bacteroidetes, decreasing the Firmicutes/Bacteroidetes ratio, increasing the abundances of some intestinal probiotics (such as Akkermansia and Lactococcus), and influencing some of the fecal metabolites related to hormones and lipid metabolism. The supplementation of fermented cereal food might be a new effective and safe preventive dietary strategy against NAFLD.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Guan
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenwei Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwen Ding
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zeng
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Nie
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
227
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
228
|
Gao J, Mao K, Wang X, Mi S, Fu M, Li X, Xiao J, Simal-Gandara J, Sang Y. Tibet Kefir Milk Regulated Metabolic Changes Induced by High-Fat Diet via Amino Acids, Bile Acids, and Equol Metabolism in Human-Microbiota-Associated Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6720-6732. [PMID: 34081859 DOI: 10.1021/acs.jafc.1c02430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to confirm the effects of Tibet kefir milk (TKM) on gut microbiota and metabolism. An obesity model was established by feeding a high-fat diet (HFD) to human-microbiota-associated rats. Next-generation sequencing and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for gut microbiota and untargeted metabolomics, respectively. After 8 weeks of feeding, the enterotype in the HFD group was switched from ET1 (Prevotella/Akkermansia-dominant) to ET2 (Bacteroides/Akkermansia-dominant). Branched-chain amino-acids- and aromatic amino-acids-metabolism increased, and taurine-conjugated bile acids decreased in the HFD group. Compared with the HFD group, taurocholic acid increased in the TKM1 group, while l-threonine decreased, and equol, taurochenodeoxycholate, and taurodeoxycholic acid increased in the TKM2 group. The metabolite alteration suggested restorative bile acid metabolism, modified metabolic pattern of amino acids, and elevation of anti-obesity factors in the TKM-intervened animals. It can be deduced that changes by TKM intervention in the host gut metabolites are the major contributors to reducing fat deposition.
Collapse
Affiliation(s)
- Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing CN 100048, China
| | - Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Xianghong Wang
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Si Mi
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Mengqi Fu
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, E-32004, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, ES 36310, Spain
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, Hebei CN 071000, China
| |
Collapse
|
229
|
Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men. Nutrients 2021; 13:nu13061905. [PMID: 34205926 PMCID: PMC8228243 DOI: 10.3390/nu13061905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota adapts to age-related changes in host physiology but is also affected by environmental stimuli, like diet. As a source of both pre- and probiotics, dairy and fermented foods modulate the gut microbiota composition, which makes them interesting food groups to use for the investigation of interactions between diet and ageing. Here we present the effects of excluding dairy products and limiting fermented food consumption for 19 days on gut microbiota composition and circulating metabolites of 28 healthy, young (YA) and older (OA) adult men. The intervention affected gut microbial composition in both groups, with significant increases in Akkermansia muciniphila and decreases in bacteria of the Clostridiales order. Lower fasting levels of glucose and insulin, as well as dairy-associated metabolites like lactose and pentadecanoic acid, were observed after the intervention, with no effect of age. The intervention also decreased HDL and LDL cholesterol levels. Dairy fat intake was positively associated with the HDL cholesterol changes but not with the LDL/HDL ratio. In conclusion, restricting the intake of dairy and fermented foods in men modified their gut microbiota and blood metabolites, while the impact of the dietary restrictions on these outcomes was more marked than the effect of age.
Collapse
|
230
|
López-Moreno A, Acuña I, Torres-Sánchez A, Ruiz-Moreno Á, Cerk K, Rivas A, Suárez A, Monteoliva-Sánchez M, Aguilera M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients 2021; 13:1617. [PMID: 34065873 PMCID: PMC8151043 DOI: 10.3390/nu13051617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
The combination of diet, lifestyle, and the exposure to food obesogens categorized into "microbiota disrupting chemicals" (MDC) could determine obesogenic-related dysbiosis and modify the microbiota diversity that impacts on individual health-disease balances, inducing altered pathogenesis phenotypes. Specific, complementary, and combined treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation beneficial microbes or next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, this review presents a perspective through compiling information and key strategies for directed searching and culturing of NGP that could be administered for obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analyzing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to obesogens' neutralization effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps, and proposals of solutions are also considered in this review.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Inmaculada Acuña
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ana Rivas
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonio Suárez
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
| |
Collapse
|
231
|
Milk Kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed Pharmacother 2021; 139:111677. [PMID: 33965727 DOI: 10.1016/j.biopha.2021.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues. This study evaluated the anti-inflammatory and antiresorptive effects of milk kefir (MK) on periodontitis in rats. Micro-Raman spectroscopy was performed on MK at different fermentation times to verify the presence of Lactobacillus kefiri. From these results, Wistar rats were divided into the following groups: C (Control); EP (experimental periodontitis); K1 (animals that received MK with one day of fermentation); K1+EP; K4 (animals without EP using MK with four days of fermentation) and K4+EP. MK was administered 28 days before EP induction and during the disease development period (11 days). On day 28, in the EP groups, periodontitis was induced. The animals were euthanized on day 39. The hemimaxillae were removed and the following parameters were evaluated: micro-Raman analysis of the presence of inflammation; histomorphometric analysis to quantify alveolar bone loss and immunohistochemistry for IL-6, TNF-α, IL-Iβ and IL-10 in the periodontal ligament. Micro-Raman analysis showed that four days fermentation MK has a higher intensity spectrum of L. kefiri. Furthermore, the administration of this probiotic reduced the intensity of the inflammation spectrum when compared to one day fermentation MK. It was observed that the animals from the K4+EP group showed significant reduction of alveolar bone loss, as well as a lower IL-6, TNF-α and IL-Iβ immunoexpression and a higher IL-10 immunoexpression, when compared to EP groups. We conclude that MK has anti-inflammatory and antiresorptive effects on periodontitis in rats and that these effects are fermentation time dependent.
Collapse
|
232
|
Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students. Nutrients 2021; 13:nu13051551. [PMID: 34062976 PMCID: PMC8147924 DOI: 10.3390/nu13051551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Dysbiosis of the gut microbiota has been associated with different illnesses and emotional disorders such as stress. Traditional fermented foods that are rich in probiotics suggest modulation of dysbiosis, which protects against stress-induced disorders. The academic stress was evaluated in medical students using the SISCO Inventory of Academic Stress before and after ingestion of an aguamiel-based beverage fermented with Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus brevis (n = 27) and a control group (n = 18). In addition, microbial phyla in feces were quantified by qPCR. The results showed that the consumption of 100 mL of a beverage fermented with lactic acid bacteria (3 × 108 cfu/mL) for 8 weeks significantly reduced academic stress (p = 0.001), while the control group (placebo intervention) had no significant changes in the perception of academic stress (p = 0.607). Significant change (p = 0.001) was shown in the scores for environmental demands, and physical and psychological factors. Consumption of the fermented beverage significantly increased the phyla Firmicutes and Bacteroidetes but not Gammaproteobacteria. No significant changes were found in the control group, except for a slight increase in the phylum Firmicutes. The intake of this fermented beverage suggest a modulation of gut microbiota and possible reduction in stress-related symptoms in university students, without changing their lifestyle or diet.
Collapse
|
233
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Benahmed AG, Bjørklund G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol 2021; 226:108725. [PMID: 33845194 PMCID: PMC8032598 DOI: 10.1016/j.clim.2021.108725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, scientists are looking for specific treatment for COVID-19. Apart from the antiviral approach, the interventions to support healthy immune responses to the virus are feasible through diet, nutrition, and lifestyle approaches. This narrative review explores the recent studies on dietary, nutritional, and lifestyle interventions that influence the microbiota-mediated immunomodulatory effects against viral infections. Cumulative studies reported that the airway microbiota and SARS-CoV-2 leverage each other and determine the pathogen-microbiota-host responses. Cigarette smoking can disrupt microbiota abundance. The composition and diversification of intestinal microbiota influence the airway microbiota and the innate and adaptive immunity, which require supports from the balance of macro- and micronutrients from the diet. Colorful vegetables supplied fermentable prebiotics and anti-inflammatory, antioxidant phytonutrients. Fermented foods and beverages support intestinal microbiota. In sensitive individuals, the avoidance of the high immunoreactive food antigens contributes to antiviral immunity. This review suggests associations between airway and intestinal microbiota, antiviral host immunity, and the influences of dietary, nutritional, and lifestyle interventions to prevent the clinical course toward severe COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Thailand Institute for Functional Medicine, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
234
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
235
|
Low DY, Hejndorf S, Tharmabalan RT, Poppema S, Pettersson S. Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Front Microbiol 2021; 12:659465. [PMID: 33995322 PMCID: PMC8116520 DOI: 10.3389/fmicb.2021.659465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.
Collapse
Affiliation(s)
- Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sophia Hejndorf
- Department of Odontology, Karolinska Institutet, Solna, Sweden
| | | | - Sibrandes Poppema
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Odontology, Karolinska Institutet, Solna, Sweden
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
236
|
Whelan K, Jones N. Fermented foods: Availability, cost, ingredients, nutritional content and on-pack claims. J Hum Nutr Diet 2021; 35:396-405. [PMID: 33891768 DOI: 10.1111/jhn.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Fermented foods have been consumed for millennia and commercially-produced variants are now available in the food supply. The present study aimed to investigate the availability, cost, ingredients, nutritional content and on-pack claims of commercially-available fermented foods in the UK. METHODS All products from seven categories of commercially-available fermented foods were systematically identified at eight national supermarket chains in the UK. Data were extracted from manufacturer and retailer websites and were compared between categories using a Kruskal-Wallis test and Fisher's exact test. RESULTS In total, 143 fermented foods were identified, with kombucha (41, 28.7%), kefir drinks (32, 22.4%), sauerkraut (22, 15.4%) and kefir yoghurts (21, 14.7%) being most common. The number of products sold at each retailer differed between categories (p = 0.016), and was greatest for kefir drink (median = 7.0, interquartile range [IQR] = 9.0), kombucha (median = 5.5, IQR = 11.5) and kefir yoghurts (median = 5.0, IQR = 8.5). Kombucha (£1.99 per serving) and kefir drinks (£1.26 per serving) were the most expensive fermented foods and sauerkraut (£0.66 per serving) and miso (£0.20 per serving) were the least expensive. Energy, fat, saturated fat, sugar, protein and salt content varied between fermented foods (p < 0.001). Nutrition claims were made on 72 (50.3%) products, the total number of cultures was labelled on 29 (20.3%), specific strains were named on 53 (37.1%) and bacteria-related benefits were promoted on 39 (27.3%) products. CONCLUSIONS Commercially-produced fermented foods are widely available in the UK but are diverse in their cost, nutritional content, ingredients and use of on-pack claims. Consumers should be aware of these variations given the limited evidence of functional benefits from controlled human trials.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| | - Nicola Jones
- Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
237
|
Rocks T, West M, Hockey M, Aslam H, Lane M, Loughman A, Jacka FN, Ruusunen A. Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110201. [PMID: 33307114 DOI: 10.1016/j.pnpbp.2020.110201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Anorexia nervosa is a serious psychiatric disorder with high morbidity and mortality rate. Evidence for the optimal psychopharmacological approach to managing the disorder remains limited, with nutritional treatment, focused on weight restoration through the consumption of high energy diet, regarded as one of the fundamental steps in treatment. The human gut microbiome is increasingly recognised for its proposed role in gastrointestinal, metabolic, immune and mental health, all of which may be compromised in individuals with anorexia nervosa. Dietary intake plays an important role in shaping gut microbiota composition, whilst the use of fermented foods, foods with potential psychobiotic properties that deliver live bacteria, bacterial metabolites, prebiotics and energy, have been discussed to a lesser extent. However, fermented foods are of increasing interest due to their potential capacity to affect gut microbiota composition, provide beneficial bacterial metabolites, and confer beneficial outcomes to host health. This review provides an overview of the role of the gut microbiota in relation to the disease pathology in anorexia nervosa and especially focuses on the therapeutic potential of fermented foods, proposed here as a recommended addition to the current nutritional treatment protocols warranting further investigation.
Collapse
Affiliation(s)
- Tetyana Rocks
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia.
| | - Madeline West
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Meghan Hockey
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Hajara Aslam
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, VIC, Australia; Black Dog Institute, NSW, Australia; James Cook University, QLD; Australia
| | - Anu Ruusunen
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
238
|
Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the main targets of sustainable development is the reduction of environmental, social, and economic negative externalities associated with the production of foods and beverages. Those externalities occur at different stages of food chains, from the farm to the fork, with deleterious impacts to different extents. Increasing evidence testifies to the potential of microbial-based solutions and fermentative processes as mitigating strategies to reduce negative externalities in food systems. In several cases, innovative solutions might find in situ applications from the farm to the fork, including advances in food matrices by means of tailored fermentative processes. This viewpoint recalls the attention on microbial biotechnologies as a field of bioeconomy and of ‘green’ innovations to improve sustainability and resilience of agri-food systems alleviating environmental, economic, and social undesired externalities. We argue that food scientists could systematically consider the potential of microbes as ‘mitigating agents’ in all research and development activities dealing with fermentation and microbial-based biotechnologies in the agri-food sector. This aims to conciliate process and product innovations with a development respectful of future generations’ needs and with the aptitude of the systems to overcome global challenges.
Collapse
|
239
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
240
|
Muandze-Nzambe JU, Onanga R, Yala JF, Somda NS, Cissé H, Zongo C, Mavoungou JF, Savadogo A. Technological and microbiological characteristics of indigenous food produced in Gabon. Journal of Food Science and Technology 2021; 58:1027-1041. [PMID: 33678886 DOI: 10.1007/s13197-020-04617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to provide contextual information on indigenous food's technologies and safety from Gabon. The strategic focus being to promote local food with enhanced nutritional value and improved safety. An investigation and monitoring were carried out to elucidate their process flow diagrams and to identify safety failures. Samples were taken for microbiological analysis using conventional culture-based techniques. Detection and identification of Salmonella in samples were confirmed using PCR based method by targeting invasion plasmid antigen B (IpaB) gene. The investigation shows that women play a protagonist role in the technical know-how of Gabonese indigenous foods in a context that is evolving towards the disappearance of this knowledge. The food production process remains archaic, which makes the environment impact on food safety. Indeed, the proximity of food manufacturing environment to animals, waste, or latrines coupled with the lack of hygiene and manufacturing practices affect the quality of these foods. This is reflected in our study's microbiological results, namely, Aerobic Mesophilic Bacteria ranged from 3.53 to 11.96 log CFU/g and indicators of fecal contaminations of up to 8.21 log CFU/g. Salmonella is detected in 18.69% of samples. The presence of these bacteria is a risk for consumer health. Although some of these foods can be considered as a fermented food, the producers should be further educated and encouraged to take preventive measures to ensure the quality of these food products. A much more subtle approach based on microbial ecology of these foods should be explored for better exploitation.
Collapse
Affiliation(s)
- Jean Ulrich Muandze-Nzambe
- Laboratory of Applied Biochemistry and Immunology, Center for Research in Biological Sciences of Food and Nutrition, Department of Biochemistry and Microbiology, Joseph KI-ZERBO University, 03 BP 7021 Ouagadougou 03, Burkina Faso.,Institute of Technological Research, National Center of Scientific and Technological Research, BP 14070 Libreville, Gabon.,Research Unit in Medical Analysis /Bacteriology, International Centre for Medical Research in Franceville, BP 769 Franceville, Gabon
| | - Richard Onanga
- Research Unit in Medical Analysis /Bacteriology, International Centre for Medical Research in Franceville, BP 769 Franceville, Gabon
| | - Jean Fabrice Yala
- Research Unit in Medical Analysis /Bacteriology, International Centre for Medical Research in Franceville, BP 769 Franceville, Gabon.,Laboratory of Molecular and Cell Biology, Agrobiology Research Unit, Masuku University of Science and Technology, BP 067 Franceville, Gabon
| | - Namwin Siourimè Somda
- Laboratory of Applied Biochemistry and Immunology, Center for Research in Biological Sciences of Food and Nutrition, Department of Biochemistry and Microbiology, Joseph KI-ZERBO University, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Hama Cissé
- Laboratory of Applied Biochemistry and Immunology, Center for Research in Biological Sciences of Food and Nutrition, Department of Biochemistry and Microbiology, Joseph KI-ZERBO University, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Cheikna Zongo
- Laboratory of Applied Biochemistry and Immunology, Center for Research in Biological Sciences of Food and Nutrition, Department of Biochemistry and Microbiology, Joseph KI-ZERBO University, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Jacques Francois Mavoungou
- Institute of Technological Research, National Center of Scientific and Technological Research, BP 14070 Libreville, Gabon
| | - Aly Savadogo
- Laboratory of Applied Biochemistry and Immunology, Center for Research in Biological Sciences of Food and Nutrition, Department of Biochemistry and Microbiology, Joseph KI-ZERBO University, 03 BP 7021 Ouagadougou 03, Burkina Faso
| |
Collapse
|
241
|
Cui Y, Han C, Li S, Geng Y, Wei Y, Shi W, Bao Y. High-throughput sequencing-based analysis of the intestinal microbiota of broiler chickens fed with compound small peptides of Chinese medicine. Poult Sci 2021; 100:100897. [PMID: 33518313 PMCID: PMC7936118 DOI: 10.1016/j.psj.2020.11.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The objective of this study was to determine the effects of compound small peptides of Chinese medicine (CSPCM) on the intestinal microbiota of broilers. A total of thirty-six 1-day-old Arbor Acres broilers were assigned to 6 dietary treatments that include 250, 500, and 750 g/T of CSPCM in feed, 100 g/T of Bacillus subtilis and Clostridium butyricum in feed, and 100 g/T of 50,000 IU xylanase in feed. Each treatment had 2 replicates with 2 cages (3 birds per cage). The jejunal digesta samples were collected from chickens at 42 d. Operational taxonomic unit analysis showed that adding CSPCM at a concentration of 750 g/T of feed can increase the number of operational taxonomic unit samples than other groups. Compared with the control group, adding 250 g/T of CSPCM of feed can improve content of Lactobacillus, Cupriavidus, Ochrobactrum, Candidatus_Arthromitus, Acinetobacter, and Sphingomonas. Adding 500 g/T of CSPCM in feed resulted in varying degrees of improvement in Candidatus_Arthromitus, Acinetobacter, and Sphingomonas. Adding 750 g/T of CSPCM in feed can increase the content of Lactobacillus and Candidatus_Arthromitus. In PICRUSt function prediction analysis, CSPCM acts on the body by creating an environment suitable for the growth of beneficial bacteria. Adding 250 g/T of CSPCM in feed can improve amino acid metabolism, endocrine system function, membrane transport, and cell mobility function. Adding 500 g/T of CSPCM in feed can improve replication and repair and membrane transport function. Adding 750 g/T of CSPCM in feed can increase carbohydrate metabolism, replication and repair, and membrane transport function. Adding B. subtilis and C. butyricum in feed increased replication and repair and membrane transport function. Adding xylanase in feed increased membrane transport function. In conclusion, this study demonstrated that dietary supplementation of CSPCM to broiler diets increased beneficial flora content, metabolism of carbohydrates, amino acid metabolism, the deposition of proteins, renewal of bacteria, and maintenance of vigorous vitality. Among the 3 additive quantities of 250 g/t, 500 g/t, and 750 g/t of CSPCM in feed, 250 g/t of CSPCM improved parameters that are necessary for improved growth and production.
Collapse
Affiliation(s)
- YuQing Cui
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chao Han
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - ShuYing Li
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - YuMeng Geng
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - YuanYuan Wei
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - WanYu Shi
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China.
| | - YongZhan Bao
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
| |
Collapse
|
242
|
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021; 18:196-208. [PMID: 33398112 PMCID: PMC7925329 DOI: 10.1038/s41575-020-00390-5] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science and Technology, University of California-Davis, Davis, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Marie Claire Arrieta
- Department of Physiology and Pharmacology, International Microbiome Center, University of Calgary, Calgary, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Wilhelm Holzapfel
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang, Gyeongbuk, South Korea
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Dan Merenstein
- Department of Family Medicine, Georgetown University, Washington, DC, USA
| | - Gregor Reid
- Lawson Health Research Institute, and Departments of Microbiology & Immunology and Surgery, University of Western Ontario, London, Ontario, Canada
| | | | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska - Lincoln, Lincoln, NE, USA.
| |
Collapse
|
243
|
Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, Calderon MA, Calvo M, Camargos P, Camuzat T, Canevari F, Cano A, Canonica GW, Capriles‐Hulett A, Caraballo L, Cardona V, Carlsen K, Carmon Pirez J, Caro J, Carr W, Carreiro‐Martins P, Carreon‐Asuncion F, Carriazo A, Casale T, Castor M, Castro E, Caviglia A, Cecchi L, Cepeda Sarabia A, Chandrasekharan R, Chang Y, Chato‐Andeza V, Chatzi L, Chatzidaki C, Chavannes NH, Chaves Loureiro C, Chelninska M, Chen Y, Cheng L, Chinthrajah S, Chivato T, Chkhartishvili E, Christoff G, Chrystyn H, Chu DK, Chua A, Chuchalin A, Chung KF, Cicerán A, Cingi C, Ciprandi G, Cirule I, Coelho AC, Compalati E, Constantinidis J, Correia de Sousa J, Costa EM, Costa D, Costa Domínguez MDC, Coste A, Cottini M, Cox L, Crisci C, Crivellaro MA, Cruz AA, Cullen J, Custovic A, Cvetkovski B, Czarlewski W, D'Amato G, Silva J, Dahl R, Dahlen S, Daniilidis V, DarjaziniNahhas L, Darsow U, Davies J, Blay F, De Feo G, De Guia E, los Santos C, De Manuel Keenoy E, De Vries G, Deleanu D, Demoly P, Denburg J, Devillier P, Didier A, Dimic Janjic S, Dimou M, Dinh‐Xuan AT, Djukanovic R, Do Ceu Texeira M, Dokic D, Dominguez Silva MG, Douagui H, Douladiris N, Doulaptsi M, Dray G, Dubakiene R, Dupas E, Durham S, Duse M, Dykewicz M, Ebo D, Edelbaher N, Eiwegger T, Eklund P, El‐Gamal Y, El‐Sayed ZA, El‐Sayed SS, El‐Seify M, Emuzyte R, Enecilla L, Erhola M, Espinoza H, Espinoza Contreras JG, Farrell J, Fernandez L, Fink Wagner A, Fiocchi A, Fokkens WJ, Lenia F, Fonseca JA, Fontaine J, Forastiere F, Fuentes Pèrez JM, Gaerlan–Resureccion E, Gaga M, Gálvez Romero JL, Gamkrelidze A, Garcia A, García Cobas CY, García Cruz MDLLH, Gayraud J, Gelardi M, Gemicioglu B, Gennimata D, Genova S, Gereda J, Gerth van Wijk R, Giuliano A, Gomez M, González Diaz S, Gotua M, Grigoreas C, Grisle I, Gualteiro L, Guidacci M, Guldemond N, Gutter Z, Guzmán A, Halloum R, Halpin D, Hamelmann E, Hammadi S, Harvey R, Heffler E, Heinrich J, Hejjaoui A, Hellquist‐Dahl B, Hernández Velázquez L, Hew M, Hossny E, Howarth P, Hrubiško M, Huerta Villalobos YR, Humbert M, Salina H, Hyland M, Ibrahim M, Ilina N, Illario M, Incorvaia C, Infantino A, Irani C, Ispayeva Z, Ivancevich J, E.J. Jares E, Jarvis D, Jassem E, Jenko K, Jiméneracruz Uscanga RD, Johnston SL, Joos G, Jošt M, Julge K, Jung K, Just J, Jutel M, Kaidashev I, Kalayci O, Kalyoncu F, Kapsali J, Kardas P, Karjalainen J, Kasala CA, Katotomichelakis M, Kavaliukaite L, Kazi BS, Keil T, Keith P, Khaitov M, Khaltaev N, Kim Y, Kirenga B, Kleine‐Tebbe J, Klimek L, Koffi N’Goran B, Kompoti E, Kopač P, Koppelman G, KorenJeverica A, Koskinen S, Košnik M, Kostov KV, Kowalski ML, Kralimarkova T, Kramer Vrščaj K, Kraxner H, Kreft S, Kritikos V, Kudlay D, Kuitunen M, Kull I, Kuna P, Kupczyk M, Kvedariene V, Kyriakakou M, Lalek N, Landi M, Lane S, Larenas‐Linnemann D, Lau S, Laune D, Lavrut J, Le L, Lenzenhuber M, Lessa M, Levin M, Li J, Lieberman P, Liotta G, Lipworth B, Liu X, Lobo R, Lodrup Carlsen KC, Lombardi C, Louis R, Loukidis S, Lourenço O, Luna Pech JA, Madjar B, Maggi E, Magnan A, Mahboub B, Mair A, Mais Y, Maitland van der Zee A, Makela M, Makris M, Malling H, Mandajieva M, Manning P, Manousakis M, Maragoudakis P, Marseglia G, Marshall G, Reza Masjedi M, Máspero JF, Matta Campos JJ, Maurer M, Mavale‐Manuel S, Meço C, Melén E, Melioli G, Melo‐Gomes E, Meltzer EO, Menditto E, Menzies‐Gow A, Merk H, Michel J, Micheli Y, Miculinic N, Midão L, Mihaltan F, Mikos N, Milanese M, Milenkovic B, Mitsias D, Moalla B, Moda G, Mogica Martínez MD, Mohammad Y, Moin M, Molimard M, Momas I, Mommers M, Monaco A, Montefort S, Mora D, Morais‐Almeida M, Mösges R, Mostafa B, Mullol J, Münter L, Muraro A, Murray R, Musarra A, Mustakov T, Naclerio R, Nadeau KC, Nadif R, Nakonechna A, Namazova‐Baranova L, Navarro‐Locsin G, Neffen H, Nekam K, Neou A, Nettis E, Neuberger D, Nicod L, Nicola S, Niederberger‐Leppin V, Niedoszytko M, Nieto A, Novellino E, Nunes E, Nyembue D, O’Hehir R, Odjakova C, Ohta K, Okamoto Y, Okubo K, Oliver B, Onorato GL, Pia Orru M, Ouédraogo S, Ouoba K, Paggiaro PL, Pagkalos A, Pajno G, Pala G, Palaniappan S, Pali‐Schöll I, Palkonen S, Palmer S, Panaitescu Bunu C, Panzner P, Papadopoulos NG, Papanikolaou V, Papi A, Paralchev B, Paraskevopoulos G, Park H, Passalacqua G, Patella V, Pavord I, Pawankar R, Pedersen S, Peleve S, Pellegino S, Pereira A, Pérez T, Perna A, Peroni D, Pfaar O, Pham‐Thi N, Pigearias B, Pin I, Piskou K, Pitsios C, Plavec D, Poethig D, Pohl W, Poplas Susic A, Popov TA, Portejoie F, Potter P, Poulsen L, Prados‐Torres A, Prarros F, Price D, Prokopakis E, Puggioni F, Puig‐Domenech E, Puy R, Rabe K, Raciborski F, Ramos J, Recto MT, Reda SM, Regateiro FS, Reider N, Reitsma S, Repka‐Ramirez S, Ridolo E, Rimmer J, Rivero Yeverino D, Angelo Rizzo J, Robalo‐Cordeiro C, Roberts G, Roche N, Rodríguez González M, Rodríguez Zagal E, Rolla G, Rolland C, Roller‐Wirnsberger R, Roman Rodriguez M, Romano A, Romantowski J, Rombaux P, Romualdez J, Rosado‐Pinto J, Rosario N, Rosenwasser L, Rossi O, Rottem M, Rouadi P, Rovina N, Rozman Sinur I, Ruiz M, Ruiz Segura LT, Ryan D, Sagara H, Sakai D, Sakurai D, Saleh W, Salimaki J, Samitas K, Samolinski B, Sánchez Coronel MG, Sanchez‐Borges M, Sanchez‐Lopez J, Sarafoleanu C, Sarquis Serpa F, Sastre‐Dominguez J, Savi E, Sawaf B, Scadding GK, Scheire S, Schmid‐Grendelmeier P, Schuhl JF, Schunemann H, Schvalbová M, Schwarze J, Scichilone N, Senna G, Sepúlveda C, Serrano E, Shields M, Shishkov V, Siafakas N, Simeonov A, FER Simons E, Carlos Sisul J, Sitkauskiene B, Skrindo I, SokličKošak T, Solé D, Sooronbaev T, Soto‐Martinez M, Soto‐Quiros M, Sousa Pinto B, Sova M, Soyka M, Specjalski K, Spranger O, Stamataki S, Stefanaki L, Stellato C, Stelmach R, Strandberg T, Stute P, Subramaniam A, Suppli Ulrik C, Sutherland M, Sylvestre S, Syrigou A, Taborda Barata L, Takovska N, Tan R, Tan F, Tan V, Ping Tang I, Taniguchi M, Tannert L, Tantilipikorn P, Tattersall J, Tesi F, Thijs C, Thomas M, To T, Todo‐Bom A, Togias A, Tomazic P, Tomic‐Spiric V, Toppila‐Salmi S, Toskala E, Triggiani M, Triller N, Triller K, Tsiligianni I, Uberti M, Ulmeanu R, Urbancic J, Urrutia Pereira M, Vachova M, Valdés F, Valenta R, Valentin Rostan M, Valero A, Valiulis A, Vallianatou M, Valovirta E, Van Eerd M, Van Ganse E, Hage M, Vandenplas O, Vasankari T, Vassileva D, Velasco Munoz C, Ventura MT, Vera‐Munoz C, Vicheva D, Vichyanond P, Vidgren P, Viegi G, Vogelmeier C, Von Hertzen L, Vontetsianos T, Vourdas D, Tran Thien Quan V, Wagenmann M, Walker S, Wallace D, Wang DY, Waserman S, Wickman M, Williams S, Williams D, Wilson N, Wong G, Woo K, Wright J, Wroczynski P, Xepapadaki P, Yakovliev P, Yamaguchi M, Yan K, Yeow Yap Y, Yawn B, Yiallouros P, Yorgancioglu A, Yoshihara S, Young I, Yusuf OB, Zaidi A, Zaitoun F, Zar H, Zedda M, Zernotti ME, Zhang L, Zhong N, Zidarn M, Zubrinich C. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021; 76:735-750. [PMID: 32762135 PMCID: PMC7436771 DOI: 10.1111/all.14549] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Large differences in COVID‐19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS‐CoV‐2 binds to its receptor, the angiotensin‐converting enzyme 2 (ACE2). As a result of SARS‐CoV‐2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID‐19. The nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof‐of‐concept of dietary manipulations that may enhance Nrf2‐associated antioxidant effects, helpful in mitigating COVID‐19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
- MACVIA‐France and CHU Montpellier France
| | - Josep M. Anto
- Centre for Research in Environmental Epidemiology (CREAL) ISGlobAL Barcelona Spain
- IMIM (Hospital del Mar Research Institute) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | | | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital University of Helsinki Finland
| | - Susana C. Fonseca
- Faculty of Sciences GreenUPorto ‐ Sustainable Agrifood Production Research Centre DGAOTUniversity of Porto Porto Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences Federico II University Napoli Italy
| | - Hubert Blain
- Department of Geriatrics Montpellier University hospital and MUSE Montpellier France
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Geneva Switzerland
- AgroParisTech ‐ Paris Institute of Technology for Life, Food and Environmental Sciences Paris France
| | - Aziz Sheikh
- Usher Institute University of Edinburgh Scotland, UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Torsten Zuberbier
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
ZHOU X, GUAN Q, QIN Y, QIN Z, DU B, LIN D. Dynamic changes in physic-chemical properties and bacterial community during natural fermentation of tomatoes. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.63520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoli ZHOU
- Guiyang University, China; Guiyang University, China
| | | | | | | | - Bin DU
- Guiyang University, China; Guiyang University, China
| | - Dong LIN
- Guiyang University, China; Guiyang University, China
| |
Collapse
|
245
|
Manzanarez-Quín CG, Beltrán-Barrientos LM, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B. Invited review: Potential antiobesity effect of fermented dairy products. J Dairy Sci 2021; 104:3766-3778. [PMID: 33551162 DOI: 10.3168/jds.2020-19256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
The growing prevalence of obesity affects millions of people around the world and has gained increased attention over the years because it is associated with the development of other chronic degenerative diseases. Different organizations recommend lifestyle changes to treat obesity; nevertheless, other strategies in addition to lifestyle changes have recently been suggested. One of these strategies is the use of probiotics in fermented dairy products; however, a need exists to review the different studies available related to the potential antiobesity effect of these products. Because probiotic fermented dairy products that support weight management are not available in the market, there is a great opportunity for the development of functional dairy products with new lactic acid bacteria that may present this added health benefit. Thus, the purpose of this overview is to highlight the importance of probiotic fermented dairy products as potential antiobesogenic functional foods and present in vitro and in vivo studies required before this kind of product may be introduced to the market. Overall, most studies attributed the antiobesity effect of fermented dairy foods to the probiotic strains present; however, bioactive peptides released during milk fermentation may also be responsible for this effect.
Collapse
Affiliation(s)
- Carmen G Manzanarez-Quín
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.) Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora, Mexico 833041
| | - Lilia M Beltrán-Barrientos
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.) Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora, Mexico 833041
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.) Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora, Mexico 833041
| | - Aarón F González-Córdova
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.) Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora, Mexico 833041
| | - Belinda Vallejo-Cordoba
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.) Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora, Mexico 833041.
| |
Collapse
|
246
|
Abstract
Quinoa (Chenopodium quinoa Willd.) is increasingly singled out as a healthy food with an excellent nutritional profile. Besides being suitable for gluten-free diets, it is rich in proteins of excellent quality and is a good source of minerals and vitamins, as well as of natural antioxidants, such as phenolic compounds. The aim of this work is to present how fermentation can affect phenolic compound content and antioxidant capacity of quinoa. It emerged that fermentation can be used to increase phenolic compound content and antioxidant capacity in both quinoa seeds and flours. The use of fermented quinoa flours allowed obtaining bread and pasta richer in phenolic compounds and with a greater antioxidant capacity. Fungi are the main starters used in quinoa seed fermentation, while Lactobacillus strains have been applied to produce sourdoughs. Quinoa has been also fermented to obtain yogurt-like beverages with a higher content in phenolic compounds and a greater antioxidant activity. Strains of Lactobacillus sp. and Bifidobacterium sp. have been used as starters.
Collapse
|
247
|
Muhialdin BJ, Kadum H, Meor Hussin AS. Metabolomics profiling of fermented cantaloupe juice and the potential application to extend the shelf life of fresh cantaloupe juice for six months at 8 °C. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
248
|
Protection of Fatty Liver by the Intake of Fermented Soybean Paste, Miso, and Its Pre-Fermented Mixture. Foods 2021; 10:foods10020291. [PMID: 33535476 PMCID: PMC7912758 DOI: 10.3390/foods10020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soybeans and fermented soy-derived foodstuffs contain many functional components and demonstrate various beneficial effects. In this report, we demonstrate the anti-fatty liver effect of miso, a traditional fermented product made from soybeans and rice molded in Aspergillus oryzae and forming a common part of the Japanese diet. After acclimation for 2 weeks, male and female C57BL/6J mice were fed with a normal diet (ND), a high-fat diet (HFD), a HFD containing 5% miso (HFD+M), or a HFD containing 5% pre-fermented miso (HFD+PFM) for 20 weeks. Although mice in the HFD group developed typical fatty liver, the consumption of miso or PFM significantly ameliorated the progression of fatty liver in female mice. The liver weight and the average nonalcoholic fatty liver disease activity score (NAS) were significantly reduced in the HFD+M and HFD+PFM groups. In addition, leptin and resistin levels in the serum were decreased in the HFD+M and HFD+PFM groups. The progression of fatty liver was also prevented by the consumption of miso or PFM in male mice, although there were no decreases in NAS. Therefore, miso appears to be a potential food to prevent lifestyle-related diseases such as metabolic syndrome.
Collapse
|
249
|
|
250
|
Zhang N, Zhao L, Cai S, Zeng X, Wu W, Ji B, Zhou F. Ethyl acetate subfractions from ethanol extracts of fermented oats ( Avena sativa L.) exert anti-cancer properties in vitro and in vivo through G2/M and S Phase arrest and apoptosis. J Cancer 2021; 12:1853-1866. [PMID: 33753984 PMCID: PMC7974531 DOI: 10.7150/jca.48993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Cancer is a major public problem and poses a long-term impact on patients' life, work, and study. Oats are widely recognized as healthy food and fermented oats were rich in the higher contents of polyphenols. However, the role of fermented oats in cancer remains elusive. Methods: The effect of ethyl acetate subfractions (EASs) from ethanol extracts of oats fermented by Rhizopus oryzae 3.2751 on cancer cells was verified by series experiments in vitro and in vivo. The cell viability, colony formation, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and western blot were determined in vitro. The toxicity of EASs and xenograft mouse model were performed in vivo. Results: MTT assay indicated that EASs interference suppressed the proliferation of four human cancer cells in a dose-dependent manner without a significant impact on two normal cells. EASs (0.2, 0.4, and 0.8 μg/mL) resulted in the G2/M and S phase arrest, apoptosis, depolarization of MMP, and ROS generation in HepG2 cells by flow cytometry. p53, JNK, caspase-9, and caspase-3 were activated and the expression of Bax was promoted, while the expression of Bcl-2 was reduced in HepG2 cells exposed to EASs via western blot. Furthermore, the in vivo study using a xenograft mouse model demonstrated that EASs attenuated the tumor growth with low systemic toxicity. Conclusions: EASs exhibited anti-cancer activities in vitro and in vivo via cell cycle arrest and apoptosis. This finding suggests that polyphenol-enriched composition from fermented oats might become a promising candidate for impeding the development and progression of liver cancer.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Shengbao Cai
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 6505000, China
| | - Xiang Zeng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|