201
|
Thanikachalam K, Khan G. Colorectal Cancer and Nutrition. Nutrients 2019; 11:nu11010164. [PMID: 30646512 PMCID: PMC6357054 DOI: 10.3390/nu11010164] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal Cancer is the third most common cancer diagnosed in the US. While the incidence and the mortality rate of colorectal cancer has decreased due to effective cancer screening measures, there has been an increase in number of young patients diagnosed in colon cancer due to unclear reasons at this point of time. While environmental and genetic factors play a major role in the pathogenesis of colon cancer, extensive research has suggested that nutrition may play both a causal and protective role in the development of colon cancer. In this review article, we aim to provide a review of factors that play a major role in development of colorectal cancer.
Collapse
Affiliation(s)
- Kannan Thanikachalam
- Department of Hematology/Oncology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Gazala Khan
- Department of Hematology/Oncology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
202
|
de Carvalho AC, de Mattos Pereira L, Datorre JG, dos Santos W, Berardinelli GN, Matsushita MDM, Oliveira MA, Durães RO, Guimarães DP, Reis RM. Microbiota Profile and Impact of Fusobacterium nucleatum in Colorectal Cancer Patients of Barretos Cancer Hospital. Front Oncol 2019; 9:813. [PMID: 31555583 PMCID: PMC6727361 DOI: 10.3389/fonc.2019.00813] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Microbial diversity has been pointed out as a major factor in the development and progression of colorectal cancer (CRC). We sought to explore the richness and abundance of the microbial community of a series of colorectal tumor samples treated at Barretos Cancer Hospital, Brazil, through 16S rRNA sequencing. The presence and the impact of Fusobacterium nucleatum (Fn) DNA in CRC prognosis was further evaluated by qPCR in a series of 152 CRC cases. An enrichment for potentially oncogenic bacteria in CRC was observed, with Fusobacterium being the most abundant genus in the tumor tissue. In the validation dataset, Fn was detected in 35/152 (23.0%) of fresh-frozen tumor samples and in 6/57 (10.5%) of paired normal adjacent tissue, with higher levels in the tumor (p = 0.0033). Fn DNA in the tumor tissue was significantly associated with proximal tumors (p = 0.001), higher depth of invasion (p = 0.014), higher clinical stages (p = 0.033), poor differentiation (p = 0.011), MSI-positive status (p < 0.0001), BRAF mutated tumors (p < 0.0001), and the loss of expression of mismatch-repair proteins MLH1 (p < 0.0001), MSH2 (p = 0.003), and PMS2 (p < 0.0001). Moreover, the presence of Fn DNA in CRC tissue was also associated with a worse patient cancer-specific survival (69.9 vs. 82.2% in 5 years; p = 0.028) and overall survival (63.5 vs. 76.5%; p = 0.037). Here we report, for the first time, the association of F. nucleatum presence with important clinical and molecular features in a Brazilian cohort of CRC patients. Tumor detection and classification based on the gut microbiome might provide a promising approach to improve the prediction of patient outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Department of Prevention, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Rui Manuel Reis
| |
Collapse
|
203
|
Liu Y, Baba Y, Ishimoto T, Iwatsuki M, Hiyoshi Y, Miyamoto Y, Yoshida N, Wu R, Baba H. Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol 2019; 54:33-41. [PMID: 30244399 DOI: 10.1007/s00535-018-1512-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 02/04/2023]
Abstract
Microbiome research is a rapidly advancing field in human cancers. Fusobacterium nucleatum is an oral bacterium, indigenous to the human oral cavity, that plays a role in periodontal disease. Recent studies have found that F. nucleatum can promote gastrointestinal tumor progression and affect the prognosis of the disease. In addition, F. nucleatum may contribute to the chemo-resistance of gastrointestinal cancers. This review summarizes recent progress in the pathogenesis of F. nucleatum and its impact on gastrointestinal cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Second Oncology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, China
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Rong Wu
- Second Oncology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110022, China
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
204
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ, Silva AE. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol 2018; 24:5351-5365. [PMID: 30598580 PMCID: PMC6305535 DOI: 10.3748/wjg.v24.i47.5351] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the effect of Fusobacterium nucleatum (F. nucleatum) on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and microRNAs (miRNAs).
METHODS Levels of F. nucleatum DNA, cytokine gene mRNA (TLR2, TLR4, NFKB1, TNF, IL1B, IL6 and IL8), and potentially interacting miRNAs (miR-21-3p, miR-22-3p, miR-28-5p, miR-34a-5p, miR-135b-5p) were measured by quantitative polymerase chain reaction (qPCR) TaqMan® assays in DNA and/or RNA extracted from the disease and adjacent normal fresh tissues of 27 colorectal adenoma (CRA) and 43 colorectal cancer (CRC) patients. KRAS mutations were detected by direct sequencing and microsatellite instability (MSI) status by multiplex PCR. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.
RESULTS Overabundance of F. nucleatum in neoplastic tissue compared to matched normal tissue was detected in CRA (51.8%) and more markedly in CRC (72.1%). We observed significantly greater expression of TLR4, IL1B, IL8, and miR-135b in CRA lesions and TLR2, IL1B, IL6, IL8, miR-34a and miR-135b in CRC tumours compared to their respective normal tissues. Only two transcripts for miR-22 and miR-28 were exclusively downregulated in CRC tumour samples. The mRNA expression of IL1B, IL6, IL8 and miR-22 was positively correlated with F. nucleatum quantification in CRC tumours. The mRNA expression of miR-135b and TNF was inversely correlated. The miRNA:mRNA interaction network suggested that the upregulation of miR-34a in CRC proceeds via a TLR2/TLR4-dependent response to F. nucleatum. Finally, KRAS mutations were more frequently observed in CRC samples infected with F. nucleatum and were associated with greater expression of miR-21 in CRA, while IL8 was upregulated in MSI-high CRC.
CONCLUSION Our findings indicate that F. nucleatum is a risk factor for CRC by increasing the expression of inflammatory mediators through a possible miRNA-mediated activation of TLR2/TLR4.
Collapse
Affiliation(s)
- Marcela Alcântara Proença
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Joice Matos Biselli
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Maysa Succi
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, Univ. Estadual Paulista, Campus of Botucatu, Botucatu, São Paulo 18618-687, Brazil
| | | | - Alaor Caetano
- Endoscopy Center of Rio Preto, São José do Rio Preto, São Paulo 15015-700, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
- Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Campus Gualtar, Braga 4710-057, Portugal
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ana Elizabete Silva
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
205
|
Gut Microbiota, Fusobacteria, and Colorectal Cancer. Diseases 2018; 6:diseases6040109. [PMID: 30544946 PMCID: PMC6313651 DOI: 10.3390/diseases6040109] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota has emerged as an environmental contributor to colorectal cancer (CRC) in both animal models and human studies. It is now generally accepted that bacteria are ubiquitous colonizers of all exposed human body surfaces, including the entire alimentary tract (5). Recently, the concept that a normal bacterial microbiota is essential for the development of inflammation-induced carcinoma has emerged from studies of well-known colonic bacterial microbiota. This review explores the evidence for a role of fusobacteria, an anaerobic gram-negative bacterium that has repeatedly been detected at colorectal tumor sites in higher abundance than surrounding histologically normal tissue. Mechanistic studies provide insight on the interplay between fusobacteria, other gut microbiota, barrier functions, and host responses. Studies have shown that fusobacteria activate host inflammatory responses designed to protect against pathogens that promote tumor growth. We discuss how future research identifying the pathophysiology underlying fusobacteria colon colonization during colorectal cancer may lead to new therapeutic targets for cancer. Furthermore, disease-protective strategies suppressing tumor development by targeting the local tumor environment via bacteria represent another exciting avenue for researchers and are highlighted in this review.
Collapse
|
206
|
Differences in mortality in Fusobacterium necrophorum and Fusobacterium nucleatum infections detected by culture and 16S rRNA gene sequencing. Eur J Clin Microbiol Infect Dis 2018; 38:75-80. [PMID: 30374684 DOI: 10.1007/s10096-018-3394-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Fusobacterium species are components of the normal microbiota of the oral cavity, gastrointestinal tract, and female genital tract. They are increasingly recognized as causative agents of oral, laryngeal, and tonsillar infections. Several fusobacterial species are involved in infections, with F. necrophorum and F. nucleatum being the most commonly cultured subtypes. In this study, we aimed to investigate clinical and prognostic differences in terms of mortality and association with malignancy between F. necrophorum and F. nucleatum detected by culture and 16S rRNA gene sequencing. This is a systematic, comparative, retrospective, non-interventional study. Data were extracted from the Department of Clinical Microbiology, Region Zealand, Denmark: all patients with F. necrophorum or F. nucleatum detected by culture or 16S rRNA gene sequencing from 1st of January 2010 to 30th of June 2015 were included. In total, F. necrophorum was detected in samples from 75 patients, and F. nucleatum in samples from 68 patients (total: n = 143). Thirteen patients had a current cancer diagnosis at the time of fusobacterial sampling. Multivariate analyses revealed a significant association of "current cancer" with 30-day mortality. Fusobacterial subtype was not associated with mortality neither in overall nor in subgroups with or without current cancer. Despite differences in clinical disease pattern between F. necrophorum and F. nucleatum, mortality was unaffected by fusobacterial subtype. Mortality was significantly related to comorbidity, especially a current diagnosis of cancer. Our data highlights the current debate whether fusobacterial involvement in cancer may have disease-altering properties, rather than being opportunistic pathogens secondary to cancer disease.
Collapse
|
207
|
Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and Colorectal Cancer. Front Oncol 2018; 8:371. [PMID: 30374420 PMCID: PMC6196248 DOI: 10.3389/fonc.2018.00371] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its pathogenesis has been extensively explored over the past decades. Recently, microorganisms in the gastrointestinal tract have emerged as potential etiological agents. In particular, a direct proportional association between Fusobacterium and CRC has been described. Since then, the functional impact of Fusobacterium in CRC development has been studied using various mouse models. Although some epidemiologic studies did not establish an obvious relationship between Fusobacterium and CRC, numerous pathogenic mechanisms leading to the disease have been described. For instance, Fusobacterium can activate the E-cadherin/β-catenin signaling pathway and is associated with particular epigenetic phenotype, such as microsatellite instability (MSI) and hypermethylation, via its strong adhesive and invasive abilities resulting in malignant transformation of epithelial cells. Also, Fusobacterium could alter the tumor microenvironment (TME) significantly by myeloid-derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), and tumor associated neutrophils (TANs) recruitment and local immune suppression. Herein, we provide an in-depth review of the relationship between Fusobacterium and colorectal cancer. In light of the emergence of microbiome-based therapeutics, potential therapies and preventive strategies for colorectal cancer related to Fusobacterium are also discussed.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiewen Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Herui Yao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
208
|
Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, da Silva A, Song M, Cao Y, Twombly TS, Shi Y, Liu H, Gu M, Koh H, Li W, Du C, Chen Y, Li C, Li W, Mehta RS, Wu K, Wang M, Kostic AD, Giannakis M, Garrett WS, Hutthenhower C, Chan AT, Fuchs CS, Nishihara R, Ogino S, Giovannucci EL. Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol 2018; 16:1622-1631.e3. [PMID: 29702299 PMCID: PMC6151288 DOI: 10.1016/j.cgh.2018.04.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Specific nutritional components are likely to induce intestinal inflammation, which is characterized by increased levels of interleukin 6 (IL6), C-reactive protein (CRP), and tumor necrosis factor-receptor superfamily member 1B (TNFRSF1B) in the circulation and promotes colorectal carcinogenesis. The inflammatory effects of a diet can be estimated based on an empiric dietary inflammatory pattern (EDIP) score, calculated based on intake of 18 foods associated with plasma levels of IL6, CRP, and TNFRSF1B. An inflammatory environment in the colon (based on increased levels of IL6, CRP, and TNFRSF1B in peripheral blood) contributes to impairment of the mucosal barrier and altered immune cell responses, affecting the composition of the intestinal microbiota. Colonization by Fusobacterium nucleatum has been associated with the presence and features of colorectal adenocarcinoma. We investigated the association between diets that promote inflammation (based on EDIP score) and colorectal cancer subtypes classified by level of F nucleatum in the tumor microenvironment. METHODS We calculated EDIP scores based on answers to food frequency questionnaires collected from participants in the Nurses' Health Study (through June 1, 2012) and the Health Professionals Follow-up Study (through January 31, 2012). Participants in both cohorts reported diagnoses of rectal or colon cancer in biennial questionnaires; deaths from unreported colorectal cancer cases were identified through the National Death Index and next of kin. Colorectal tumor tissues were collected from hospitals where the patients underwent tumor resection and F nucleatum DNA was quantified by a polymerase chain reaction assay. We used multivariable duplication-method Cox proportional hazard regression to assess the associations of EDIP scores with risks of colorectal cancer subclassified by F nucleatum status. RESULTS During 28 years of follow-up evaluation of 124,433 participants, we documented 951 incident cases of colorectal carcinoma with tissue F nucleatum data. Higher EDIP scores were associated with increased risk of F nucleatum-positive colorectal tumors (Ptrend = .03); for subjects in the highest vs lowest EDIP score tertiles, the hazard ratio for F nucleatum-positive colorectal tumors was 1.63 (95% CI, 1.03-2.58). EDIP scores did not associate with F nucleatum-negative tumors (Ptrend = .44). High EDIP scores associated with proximal F nucleatum-positive colorectal tumors but not with proximal F nucleatum-negative colorectal tumors (Pheterogeneity = .003). CONCLUSIONS Diets that may promote intestinal inflammation, based on EDIP score, are associated with increased risk of F nucleatum-positive colorectal carcinomas, but not carcinomas that do not contain these bacteria. These findings indicate that diet-induced intestinal inflammation alters the gut microbiome to contribute to colorectal carcinogenesis; nutritional interventions might be used in precision medicine and cancer prevention.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fred K. Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- The 7th Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, P.R. China
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel Nevo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Tyler S. Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Medical Oncology Department 2, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hongli Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Chunxia Du
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yang Chen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Chenxi Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Oncology Department, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, P.R. China
| | - Wenbin Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Raaj S. Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aleksander D. Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Wendy S. Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Hutthenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Charles S. Fuchs
- Yale Cancer Center, New Haven, CT, USA,Department of Medicine, Yale School of Medicine, New Haven, CT, USA,Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 450 Brookline Ave., Room SM1036, Boston, MA 02215 USA, Tel: +1-617-632-1972; Fax: +1-617-582-8558, , Edward L Giovannucci, MD, ScD, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 2, Room 371, Boston, MA 02115 USA, Tel: +1-617-432-4648; Fax: +1-617-432-2435,
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology, Harvard, Cambridge, Massachusetts; Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 450 Brookline Ave., Room SM1036, Boston, MA 02215 USA, Tel: +1-617-632-1972; Fax: +1-617-582-8558, , Edward L Giovannucci, MD, ScD, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 2, Room 371, Boston, MA 02115 USA, Tel: +1-617-432-4648; Fax: +1-617-432-2435,
| |
Collapse
|
209
|
Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, Kosumi K, Masugi Y, Twombly TS, Cao Y, Song M, Liu L, da Silva A, Shi Y, Gu M, Li W, Koh H, Nosho K, Inamura K, Keum N, Wu K, Meyerhardt JA, Kostic AD, Huttenhower C, Garrett WS, Meyerson M, Giovannucci EL, Chan AT, Fuchs CS, Nishihara R, Giannakis M, Ogino S. Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol Res 2018; 6:1327-1336. [PMID: 30228205 DOI: 10.1158/2326-6066.cir-18-0174] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
The presence of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue has been associated with microsatellite instability (MSI), lower-level T-cell infiltrates, and poor clinical outcomes. Considering differences in the tumor-immune microenvironment between MSI-high and non-MSI-high carcinomas, we hypothesized that the association of F. nucleatum with immune response might differ by tumor MSI status. Using samples from 1,041 rectal and colon cancer patients within the Nurses' Health Study and Health Professionals Follow-up Study, we measured F. nucleatum DNA in tumor tissue by a quantitative polymerase chain reaction assay. Multivariable logistic regression models were used to examine the association between F. nucleatum status and histopathologic lymphocytic reactions or density of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells in strata of tumor MSI status. We adjusted for potential confounders, including CpG island methylator phenotype; LINE-1 methylation; and KRAS, BRAF, and PIK3CA mutations. The association of F. nucleatum with tumor-infiltrating lymphocytes (TIL) and intratumoral periglandular reaction differed by tumor MSI status (P interaction = 0.002). The presence of F. nucleatum was negatively associated with TIL in MSI-high tumors [multivariable odds ratio (OR), 0.45; 95% confidence interval (CI), 0.22-0.92], but positively associated with TIL in non-MSI-high tumors (multivariable OR 1.91; 95% CI, 1.12-3.25). No significant differential association was observed for peritumoral lymphocytic reaction, Crohn-like lymphoid reaction, or T-cell densities. In conclusion, the association of F. nucleatum with immune response to colorectal carcinoma differs by tumor MSI status, suggesting that F. nucleatum and MSI status interact to affect antitumor immune reactions. Cancer Immunol Res; 6(11); 1327-36. ©2018 AACR See related Spotlight on p. 1290.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yasutaka Sukawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Kana Wu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Aleksandar D Kostic
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
210
|
Ding C, Tang W, Fan X, Wu G. Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics. Onco Targets Ther 2018; 11:4797-4810. [PMID: 30147331 PMCID: PMC6097518 DOI: 10.2147/ott.s170626] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is believed that genetic factors, immune system dysfunction, chronic inflammation, and intestinal microbiota (IM) dysbiosis contribute to the pathogenesis of colorectal cancer (CRC). The beneficial role played by the direct regulation of IM in inflammatory bowel disease treatment is identified by the decreased growth of harmful bacteria and the increased production of anti-inflammatory factors. Interestingly, gut microbiota has been proven to inhibit tumor formation and progression in inflammation/carcinogen-induced CRC mouse models. Recently, evidence has indicated that IM is involved in the negative regulation of tumor immune response in tumor microenvironment, which then abolishes or accelerates anticancer immunotherapy in several tumor animals. In clinical trials, a benefit of IM-based CRC therapies in improving the intestinal immunity balance, epithelial barrier function, and quality of life has been reported. Meanwhile, specific microbiota signature can modulate host's sensitivity to chemo-/radiotherapy and the prognosis of CRC patients. In this review, we aim to 1) summarize the potential methods of IM-based therapeutics according to the recent results; 2) explore its roles and underlying mechanisms in combination with other therapies, especially in biotherapeutics; 3) discuss its safety, deficiency, and future perspectives.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| |
Collapse
|
211
|
Garraway K, Johannes CM, Bryan A, Peauroi J, Rossi G, Zhang M, Wang C, Allenspach K, Jergens AE. Relationship of the mucosal microbiota to gastrointestinal inflammation and small cell intestinal lymphoma in cats. J Vet Intern Med 2018; 32:1692-1702. [PMID: 30084202 PMCID: PMC6189339 DOI: 10.1111/jvim.15291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/13/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022] Open
Abstract
Background The gastrointestinal (GI) microbiota in healthy cats is altered in IBD. Little research has been performed to identify whether specific bacterial groups are associated with small cell GI lymphoma (LSA). Hypothesis Mucosal bacteria, including Enterobacteriaceae and Fusobacterium spp., are abundant in intestinal biopsies of cats with small cell GI LSA compared to cats with IBD. Animals Fourteen cats with IBD and 14 cats with small cell GI LSA. Methods Retrospective case control study. A search of the medical records was performed to identify cats diagnosed with IBD and with GI LSA. Bacterial groups identified by FISH in GI biopsies were compared between cohorts and correlated to CD11b+ and NF‐κB expression. Results Fusobacterium spp. (median; IQR bacteria/region) were higher in cats with small cell GI LSA in ileal (527; 455.5 – 661.5; P = .046) and colonic (404.5; 328.8 – 455.5; P = .016) adherent mucus, and combined colonic compartments (free mucus, adherent mucus, attaching to epithelium) (8; 0 – 336; P = .017) compared to cats with IBD (ileum: 67; 31.5 – 259; colon: 142.5; 82.3 – 434.5; combined: 3; 0 – 34). Bacteroides spp. were higher in ileal adherent mucus (P = .036) and 3 combined ileal compartments (P = .034) of cats with small cell GI LSA. There were significant correlations between Fusobacterium spp. totals and CD11b+ cell (P = .009; rs .476) and NF‐κB expression (P = .004; rs .523). Conclusions The bacterial alterations appreciated might be influential in development of small cell GI LSA, and should drive further studies to elucidate the effects of microbial‐mediated inflammation on GI cancer progression.
Collapse
Affiliation(s)
- Kayode Garraway
- Iowa State University, College of Veterinary Medicine, Ames, IA
| | | | - Angela Bryan
- College of Veterinary Medicine, Iowa State University
| | - John Peauroi
- VDx Veterinary Diagnostics and Preclinical Research Services
| | - Giacomo Rossi
- School of Biosciences & Veterinary Medicine, University of Camerino, Italy
| | - Min Zhang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | - Chong Wang
- Department of Statistics, College of Liberal Arts & Sciences, Iowa State University
| | | | | |
Collapse
|
212
|
Ma CT, Luo HS, Gao F, Tang QC, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett 2018; 16:2606-2612. [PMID: 30013655 PMCID: PMC6036566 DOI: 10.3892/ol.2018.8947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests that Fusobacterium nucleatum is involved in colorectal carcinogenesis. Previous studies have explored whether F. nucleatum may trigger colonic epithelial-mesenchymal transition. The results of the present study demonstrated that F. nucleatum enhances the proliferation and invasion of NCM460 cells compared with that of normal control and DH5α cells. Furthermore, F. nucleatum significantly increased the phosphorylation of p65 (a subunit of nuclear factor-κB), as well as the expression of interleukin (IL)-6, IL-1β and matrix metalloproteinase (MMP)-13. Additionally, F. nucleatum infection did not affect the expression levels of epithelial (E-)cadherin and β-catenin. E-cadherin knockdown in NCM460 cells did not induce the activation of inflammatory responses in response to F. nucleatum infection, whereas it increased inflammation in response to β-catenin silencing. F. nucleatum infection could not increase the proportion of cells at S phase when E-cadherin was silenced. Nevertheless, F. nucleatum infection enhanced the proportion of NCM460 cells at S phase when transfected with small interfering RNAs to knock down β-catenin expression. In conclusion, the results of the present study demonstrated that F. nucleatum infection interacted with E-cadherin instead of β-catenin, which in turn enhances the malignant phenotype of colorectal cancer cells.
Collapse
Affiliation(s)
- Chun-Ting Ma
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He-Sheng Luo
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Correspondence to: Dr He-Sheng Luo, Department of Gastroenterology, RenMin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuhan, Hubei 430060, P.R. China, E-mail:
| | - Feng Gao
- Department of Gastroenterology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 8320001, P.R. China
| | - Qin-Cai Tang
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Chen
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
213
|
Lee DW, Han SW, Kang JK, Bae JM, Kim HP, Won JK, Jeong SY, Park KJ, Kang GH, Kim TY. Association Between Fusobacterium nucleatum, Pathway Mutation, and Patient Prognosis in Colorectal Cancer. Ann Surg Oncol 2018; 25:3389-3395. [PMID: 30062471 DOI: 10.1245/s10434-018-6681-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is a close link between Fusobacterium nucleatum and colorectal cancer (CRC) tumorigenesis and chemoresistance. However, the genetic characteristics and clinical significance of CRC related with F. nucleatum remains unclear. This study evaluated the relationship between F. nucleatum, pathway mutation, and patient prognosis. METHODS Fusobacterium nucleatum amount in the tumor tissue and adjacent normal tissue were measured by quantitative polymerase chain reaction in adjuvant (N = 128) and metastatic (N = 118) cohorts. Patients were divided into binary (F. nucleatum-high and F. nucleatum-low) according to F. nucleatum amount. Targeted next-generation sequencing of 40 genes included in the 5 critical pathways (WNT, P53, RTK-RAS, PI3 K, and TGF-β) was performed in the adjuvant cohort. RESULTS Patients with MSI-H and CIMP-H had higher amount of F. nucleatum in tumor tissue. Fusobacterium nucleatum-high patients had higher rates of transition mutation and C to T (G to A) nucleotide change regardless of MSI status. In addition, mutation rate of AMER1 and ATM genes, and TGF-β pathway was higher in F. nucleatum-high patients. Fusobacterium nucleatum-high was associated with poor overall survival (OS) in the palliative cohort (26.4 vs. 30.7 months, p = 0.042). Multivariate analysis revealed F. nucleatum-high as an independent negative prognostic factor for OS [adjusted hazard ratio of 1.69 (95% confidence interval 1.04-2.75), p = 0.034]. However, F. nucleatum amount was not associated with recurrence in the adjuvant cohort. CONCLUSIONS F. nucleatum-high was associated with poor survival in metastatic CRC. In addition, we identified mutational characteristics of colorectal cancer according to F. nucleatum amount.
Collapse
Affiliation(s)
- Dae-Won Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| | - Jun-Kyu Kang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
214
|
Morgillo F, Dallio M, Della Corte CM, Gravina AG, Viscardi G, Loguercio C, Ciardiello F, Federico A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018; 20:721-733. [PMID: 29859426 PMCID: PMC6014569 DOI: 10.1016/j.neo.2018.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Dallio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Gerarda Gravina
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Viscardi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmelina Loguercio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
215
|
Abstract
You are what you eat. This adage has been confirmed by many studies demonstrating the high impact of nutrition on risk of cardiovascular diseases, many malignancies and other diseases. Dietary factors are of major relevance in the evolution of colorectal carcinoma. Various aspects are involved in colorectal carcinoma pathogenesis including genetics, lifestyle, age, chronic inflammation and others. It has only recently been recognized that the gut microbiota might reflect an important missing link in the interaction between diet and subsequent colorectal carcinoma development. Dietary factors are a major confounding factor affecting the composition of the intestinal microbiota. Several preclinical and clinical studies have recently suggested a role for the intestinal microbiota in potentially initiating and driving colorectal carcinoma. Therefore it is increasingly acknowledged that dietary factors might favor carcinogenesis via manipulation of the gut microbiota via potential outgrowth of certain bacterial populations, such as Fusobacterium nucleatum, Escherichia coli or Bacteroides fragilis. Excitingly, recent large clinical studies also highlighted a role for the gut microbiota and in particular Akkermansia muciniphila in tumor response toward chemotherapeutic agents and immune checkpoint inhibitors. This review will concentrate on the role of dietary factors in affecting the microbiota and implications in colorectal carcinoma.
Collapse
|
216
|
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33:954-964. [PMID: 29657127 DOI: 10.1016/j.ccell.2018.03.004] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
217
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
218
|
Shondelmyer K, Knight R, Sanivarapu A, Ogino S, Vanamala JKP. Ancient Thali Diet: Gut Microbiota, Immunity, and Health. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:177-184. [PMID: 29955222 PMCID: PMC6020729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diet provides macronutrients (carbohydrates, proteins, and fats), micronutrients (vitamins and minerals), and phytochemicals (non-nutrient bioactive compounds). Emerging evidence suggests that above dietary components can directly impact the composition and metabolic activity of the mammalian gut microbiota and in turn, affect both physical and mental health. There is a growing recognition that rise in chronic disease burden in Western countries may due to progressive loss of beneficial bacteria and microbial diversity. This perspective explores the possibility of using Indian thali, an ancient approach to diet that provides both fiber and different phytochemicals by incorporating a variety of plant foods in different colors. This variety helps to restore diversity in the gut bacteria and may potentially prevent or reverse chronic disease, such as colon cancer or type 2 diabetes.
Collapse
Affiliation(s)
- Kaitlyn Shondelmyer
- Department of Food Science, The Pennsylvania State University, University Park, PA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Anusha Sanivarapu
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jairam K. P. Vanamala
- Department of Food Science, The Pennsylvania State University, University Park, PA
- The Pennsylvania State Hershey Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, PA
- Center for Molecular Immunology and Infectious Diseases, The Pennsylvania State University, University Park, PA
| |
Collapse
|
219
|
Mendes MCS, Paulino DSM, Brambilla SR, Camargo JA, Persinoti GF, Carvalheira JBC. Microbiota modification by probiotic supplementation reduces colitis associated colon cancer in mice. World J Gastroenterol 2018; 24:1995-2008. [PMID: 29760543 PMCID: PMC5949713 DOI: 10.3748/wjg.v24.i18.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of probiotic supplementation during the development of an experimental model of colitis associated colon cancer (CAC).
METHODS C57BL/6 mice received an intraperitoneal injection of azoxymethane (10 mg/kg), followed by three cycles of sodium dextran sulphate diluted in water (5% w/v). Probiotic group received daily a mixture of Lactobacillus acidophilus, Lactobacillus rhamnosus and Bifidobacterium bifidum. Microbiota composition was assessed by 16S rRNA Illumina HiSeq sequencing. Colon samples were collected for histological analysis. Tumor cytokines was assessed by Real Time-PCR (Polymerase Chain Reaction); and serum cytokines by Multiplex assay. All tests were two-sided. The level of significance was set at P < 0.05. Graphs were generated and statistical analysis performed using the software GraphPad Prism 5.0. The project was approved by the institutional review board committee.
RESULTS At day 60 after azoxymethane injection, the mean number of tumours in the probiotic group was 40% lower than that in the control group, and the probiotic group exhibited tumours of smaller size (< 2 mm) (P < 0.05). There was no difference in richness and diversity between groups. However, there was a significant difference in beta diversity in the multidimensional scaling analysis. The abundance of the genera Lactobacillus, Bifidobacterium, Allobaculum, Clostridium XI and Clostridium XVIII increased in the probiotic group (P < 0.05). The microbial change was accompanied by reduced colitis, demonstrated by a 46% reduction in the colon inflammatory index; reduced expression of the serum chemokines RANTES and Eotaxin; decreased p-IKK and TNF-α and increased IL-10 expression in the colon.
CONCLUSION Our results suggest a potential chemopreventive effect of probiotic on CAC. Probiotic supplementation changes microbiota structure and regulates the inflammatory response, reducing colitis and preventing CAC.
Collapse
Affiliation(s)
- Maria Carolina S Mendes
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Daiane SM Paulino
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Sandra R Brambilla
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Juliana A Camargo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| | - Gabriela F Persinoti
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - José Barreto C Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-887, Brazil
| |
Collapse
|
220
|
Noguti J, Chan AA, Bandera B, Brislawn CJ, Protic M, Sim MS, Jansson JK, Bilchik AJ, Lee DJ. Both the intratumoral immune and microbial microenvironment are linked to recurrence in human colon cancer: results from a prospective, multicenter nodal ultrastaging trial. Oncotarget 2018; 9:23564-23576. [PMID: 29805756 PMCID: PMC5955112 DOI: 10.18632/oncotarget.25276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/08/2018] [Indexed: 12/15/2022] Open
Abstract
Colon cancer (CC) is the third most common cancer diagnosed in the United States and the incidence has been rising among young adults. We and others have shown a relationship between the immune infiltrate and prognosis, with improved disease-free survival (DFS) being associated with a higher expression of CD8+ T cells. We hypothesized that a microbial signature might be associated with intratumoral immune cells as well as DFS. We found that the relative abundance of one Operational Taxonomic Unit (OTU), OTU_104, was significantly associated with recurrence even after applying false discovery correction (HR 1.21, CI 1.08 to 1.36). The final multivariable model showed that DFS was influenced by three parameters: N-stage, CD8+ labeling, as well as this OTU_104 belonging to the order Clostridiales. Not only were CD8+ labeling and OTU_104 significant contributors in the final DFS model, but they were also inversely correlated to each other (p=0.022). Interestingly, CD8+ was also significantly associated with the microbiota composition in the tumor: CD8+ T cells was inversely correlated with alpha diversity (p=0.027) and significantly associated with the beta diversity. This study is the first to demonstrate an association among the intratumoral microbiome, CD8+ T cells, and recurrence in CC. An increased relative abundance of a specific OTU_104 was inversely associated with CD8+ T cells and directly associated with CC recurrence. The link between this microbe, CD8+ T cells, and DFS has not been previously shown.
Collapse
Affiliation(s)
- Juliana Noguti
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Los Angeles Biomedical Research Institute, Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Alfred A Chan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Los Angeles Biomedical Research Institute, Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Bradley Bandera
- Department of Surgical Oncology. The John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Colin J Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mladjan Protic
- University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia.,Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Myung S Sim
- UCLA Department of Medicine, Statistics Core, Los Angeles, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Anton J Bilchik
- Department of Surgical Oncology. The John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA.,Los Angeles Biomedical Research Institute, Harbor - UCLA Medical Center, Torrance, CA, USA.,Division of Dermatology, Department of Medicine, Harbor - UCLA Medical Center, Torrance, CA, USA.,David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
221
|
Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Jamal R. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Front Microbiol 2018; 9:767. [PMID: 29755427 PMCID: PMC5934490 DOI: 10.3389/fmicb.2018.00767] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
The human gut holds the densest microbiome ecosystem essential in maintaining a healthy host physiology, whereby disruption of this ecosystem has been linked to the development of colorectal cancer (CRC). The advent of next-generation sequencing technologies such as the 16S rRNA gene sequencing has enabled characterization of the CRC gut microbiome architecture in an affordable and culture-free approach. Nevertheless, the lack of standardization in handling and storage of biospecimens, nucleic acid extraction, 16S rRNA gene primer selection, length, and depth of sequencing and bioinformatics analyses have contributed to discrepancies found in various published studies of this field. Accurate characterization of the CRC microbiome found in different stages of CRC has the potential to be developed into a screening tool in the clinical setting. This mini review aims to concisely compile all available CRC microbiome studies performed till end of 2016 and to suggest standardized protocols that are crucial in developing a gut microbiome screening panel for CRC.
Collapse
Affiliation(s)
- Muhammad-Afiq Osman
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
222
|
Koi M, Okita Y, Carethers JM. Fusobacterium nucleatum Infection in Colorectal Cancer: Linking Inflammation, DNA Mismatch Repair and Genetic and Epigenetic Alterations. J Anus Rectum Colon 2018; 2:37-46. [PMID: 30116794 PMCID: PMC6090547 DOI: 10.23922/jarc.2017-055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
It has been recently reported that the population of Fusobacterium, particularly Fusobacterium nucleatum (Fn), is overrepresented in colorectal cancers and adenomas. The promoting effects of Fn infection on adenoma and/or carcinoma formation have been shown in ApcMin/+mice. Characteristics of Fn-associated CRC were identified through studies using human CRC cohorts, and include right-sided colon location, CpG island methylation phenotype-high (CIMP-H), high level of microsatellite instability (MSI-H), and poor patient prognosis. A subset of Fn-associated CRC exhibits a low level of microsatellite instability (MSI-L) and elevated microsatellite alterations in selected tetra-nucleotide repeats (EMAST) induced by translocation of MSH3 from the nucleus to the cytoplasm in response to oxidative DNA damage or inflammatory signals. The association between CIMP/MSI-H and Fn-infection can be explained by the role of the mismatch repair (MMR) protein complex formed between MSH2 and MSH6 (MutSα) to repair aberrant bases generated by ROS to form 7,8-dihydro-8-oxo-guanine (8-oxoG). Clustered 8-oxoGs formed at CpG-rich regions including promoters by ROS is refractory to base excision repair (BER). Under these conditions, MutSα initiates repair in cooperation with DNA methyltransferases (DNMTs) and the polycomb repressive complex 4 (PRC4). DNMTs at damaged sites methylate CpG islands to repress transcription of target genes and promote repair reactions. Thus, continuous generation of ROS through chronic Fn infection may initiate 1) CIMP-positive adenoma and carcinoma in an MSH2/MSH6-dependent manner, and/or 2) MSI-L/EMAST CRC in an MSH3-dependent manner. The poor prognosis of Fn-associated CRC can be explained by Fn-induced immune-evasion and/or chemo-resistance.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yoshiki Okita
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
223
|
Tsuchiya Y, Loza E, Villa-Gomez G, Trujillo CC, Baez S, Asai T, Ikoma T, Endoh K, Nakamura K. Metagenomics of Microbial Communities in Gallbladder Bile from Patients with Gallbladder Cancer or Cholelithiasis. Asian Pac J Cancer Prev 2018; 19:961-967. [PMID: 29693356 PMCID: PMC6031792 DOI: 10.22034/apjcp.2018.19.4.961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salmonella typhi and Helicobacter infections have been shown to increase risk of gallbladder cancer (GBC), but findings have been inconsistent. Other bacterial infections may also be associated with GBC. However, information on microbial pathogens in gallbladder bile of GBC patients is scarce. We aimed to investigate the microbial communities in gallbladder bile of patients with GBC and cholelithiasis (CL). Seven GBC patients and 30 CL patients were enrolled in this study. Genomic DNA was extracted from bile and the V3-V4 region of 16S rRNA was amplified. The sequencing results were compared with the 16S database, and the bacteria were identified by homology searches and phylogenetic analysis. DNA was detected in the bile of three GBC (42.9%; Bolivia, 1; Chile, 2) and four CL patients (13.3%; Bolivia, 1; Chile, 3). Of the 37 patients, 30 (81.1%) were negative and unable to analyze. Salmonella typhi and Helicobacter sp. were not detected in bile from any GBC patients. As the predominant species, Fusobacterium nucleatum, Escherichia coli, and Enetrobacter sp. were detected in bile from GBC patients. Those in bile from CL patients were Escherichia coli, Salmonella sp., and Enerococcus gallinarum. Escherichia coli was detected in bile samples from both GBC and CL patients. Whether the bacteria detected in bile from GBC patients would associated with the development of GBC warrant further investigation.
Collapse
Affiliation(s)
- Yasuo Tsuchiya
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Yang Y, Chen G, Yang Q, Ye J, Cai X, Tsering P, Cheng X, Hu C, Zhang S, Cao P. Gut microbiota drives the attenuation of dextran sulphate sodium-induced colitis by Huangqin decoction. Oncotarget 2018; 8:48863-48874. [PMID: 28415628 PMCID: PMC5564731 DOI: 10.18632/oncotarget.16458] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota, including probiotics and pathogenic microorganisms, is involved in ulcerative colitis (UC) by regulating pathogenic microorganisms and the production of intestinal mucosal antibodies. Huangqin decoction (HQD), a traditional Chinese formula chronicled in the Shanghan lun, has been recognized as an effective drug for UC, owing to its anti-inflammatory and anti-oxidative properties. In the present study, we investigated whether HQD ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. We found that HQD significantly inhibited colitis, alleviating the loss of body weight, disease activity index, colon shortening, tissue injury, and inflammatory cytokine changes induced by DSS treatment. Principal component analysis and principal co-ordinate analysis showed an obvious difference among the groups, with increased diversity in the DSS and DSS+HQD groups. Linear discriminant analysis effect size was used to determine differences between the groups. The relative abundance of Lactococcus was higher in the DSS+HQD group than in the DSS group, whereas Desulfovibrio and Helicobacter were decreased. Furthermore, the protective effect of HQD was attenuated only in antibiotic-treated mice. In conclusion, our results suggest that HQD could ameliorate DSS-induced inflammation through alteration of the gut microbiota.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210097, China
| | - Gang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.,School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qian Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.,School of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Pamo Tsering
- Hainan Tibetan Autonomous Prefecture Tibetan Medical Hospital, Gonghe 813099, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Shuangquan Zhang
- School of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| |
Collapse
|
225
|
Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer 2018; 9:1652-1659. [PMID: 29760804 PMCID: PMC5950595 DOI: 10.7150/jca.24048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
The initiation and progression of colorectal cancer (CRC) involves genetic and epigenetic alterations influenced by dietary and environmental factors. Increasing evidence has linked the intestinal microbiota and colorectal cancer. More recently, Fusobacterium nucleatum (Fn), an opportunistic commensal anaerobe in the oral cavity, has been associated with CRC. Several research teams have reported an overabundance of Fn in human CRC and have elucidated the possible mechanisms by which Fn is involved in colorectal carcinogenesis in vitro and in mouse models. However, the mechanisms by which Fn promotes colorectal carcinogenesis remain unclear. To provide new perspectives for early diagnosis, the identification of high risk populations and treatment for colorectal cancer, this review will summarize the relative research progresses regarding the relationship between Fn and colorectal cancer.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
226
|
Guevarra LA, Afable ACF, Belza PJO, Dy KJS, Lee SJQ, Sy-Ortin TT, Albano PMSP. Immunogenicity of a Fap2 peptide mimotope of Fusobacterium nucleatum and its potential use in the diagnosis of colorectal cancer. Infect Agent Cancer 2018; 13:11. [PMID: 29619076 PMCID: PMC5879760 DOI: 10.1186/s13027-018-0184-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background The role of Fusobacterium nucleatum Fap2 protein in the development of colorectal cancer has recently been explained. Fap2, when bound to the human inhibitory receptor, TIGIT, inhibits the cytotoxic activity of natural killer (NK) cells against cancer cells, thus, allowing proliferation of the latter eventually leading to tumor growth. The aim of the study was to identify the immunogenicity of a peptide mimotope of the Fap2 protein and to determine the reactivity of colorectal cancer patients’ sera against the mimotope. Methods Immunogenic epitope of the Fap2 protein of F. nucleatum was selected using the B-cell epitope prediction of the Immune Epitope Database and Analysis Resource (IEDB). The immunogenicity of the synthetic peptide mimotope of the Fap2 protein was determined in animal models and reactivity of colorectal cancer patients’ sera against the mimotope was done by indirect ELISA. Results Results show that the selected peptide mimotope, with sequence TELAYKHYFGT, of the outer membrane protein Fap2 of F. nucleatum is immunogenic. Increase in the absorbance readings of peptide-immunized rabbit sera was observed starting Week 1 which was sustained up to Week 10 in the indirect ELISA performed. Colorectal cancer cases (n = 37) were all reactive in an ELISA-based analysis using the mimotope as the capture antigen. Conclusions In this study, we identified an immunogenic epitope of the Fap2 protein of the Fusobacterium nucleatum. We demonstrated the reactivity of serum of histopathologically confirmed CRC patients in a peptide-capture indirect ELISA which may serve as proof of concept for the development of CRC diagnostics.
Collapse
Affiliation(s)
- Leonardo A Guevarra
- 1Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,2Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Andrea Claudine F Afable
- 1Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Patricia Joyce O Belza
- 1Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Karen Joy S Dy
- 1Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Scott Justin Q Lee
- 1Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Teresa T Sy-Ortin
- 3Benavidez Cancer Institute, University of Santo Tomas Hospital, Manila, Philippines
| | - Pia Marie S P Albano
- 2Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.,4Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
227
|
Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: A review. World J Gastrointest Oncol 2018; 10:71-81. [PMID: 29564037 PMCID: PMC5852398 DOI: 10.4251/wjgo.v10.i3.71] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative obligate anaerobe bacterium in the oral cavity and plays a role in several oral diseases, including periodontitis and gingivitis. Recently, several studies have reported that the level of F. nucleatum is significantly elevated in human colorectal adenomas and carcinomas compared to that in adjacent normal tissue. Several researchers have also demonstrated that F. nucleatum is obviously associated with colorectal cancer and promotes the development of colorectal neoplasms. In this review, we have summarized the recent reports on F. nucleatum and its role in colorectal cancer and have highlighted the methods of detecting F. nucleatum in colorectal cancer, the underlying mechanisms of pathogenesis, immunity status, and colorectal cancer prevention strategies that target F. nucleatum.
Collapse
Affiliation(s)
- Fu-Mei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hong-Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
228
|
Maisonneuve C, Irrazabal T, Martin A, Girardin SE, Philpott DJ. The Impact of the Gut Microbiome on Colorectal Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Thergiory Irrazabal
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| |
Collapse
|
229
|
Li Y, Hu X, Yang S, Zhou J, Qi L, Sun X, Fan M, Xu S, Cha M, Zhang M, Lin S, Liu S, Hu D. Comparison Between the Fecal Bacterial Microbiota of Healthy and Diarrheic Captive Musk Deer. Front Microbiol 2018; 9:300. [PMID: 29551996 PMCID: PMC5840195 DOI: 10.3389/fmicb.2018.00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrhea constitutes one of the most common diseases affecting the survival of captive musk deer and is usually caused by an imbalance in intestinal microbiota. Currently, research regarding the structure and function of intestinal microbiota in diarrheic musk deer is lacking. Therefore, in the present study, high-throughput 16S-rRNA gene sequencing was used to analyze the intestinal microbiota in feces of healthy captive musk deer (HMD) (n = 8) and musk deer with mild (MMD) (n = 8), and severe (n = 5) (SMD) diarrhea to compare the difference in intestinal microbiota of musk deer under various physiological conditions. The results showed that the diversity of HMD fecal microbiota was significantly higher than that of the two diarrhea samples. β Diversity results indicated that there were extremely significant differences in bacterial communities between the HMD sample and the MMD and SMD samples. However, no significant difference was found between the two diarrhea samples. LefSe analysis showed that the degree of intestinal physiological dysfunction in musk deer was correlated with the types of major pathogens. The main pathogen in the MMD group is Escherichia-Shigella, whereas Fusobacterium is the main pathogen in the SMD group. PICRUSt functional profile prediction indicated that the intestinal microbiota disorder could also lead to changes in the abundance of genes in metabolic pathways of the immune system. Altogether, this study provides a theoretical basis for the exploration of treatments for diarrhea in captive musk deer, which is of considerable significance to the implementation of the musk deer release into the wild program.
Collapse
Affiliation(s)
- Yimeng Li
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shuang Yang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Juntong Zhou
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lei Qi
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiaoning Sun
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengyuan Fan
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shanghua Xu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Muha Cha
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Meishan Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Shaobi Lin
- Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, Beijing, China.,Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
230
|
Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide 2018; 73:81-88. [PMID: 28602746 PMCID: PMC6104390 DOI: 10.1016/j.niox.2017.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
Periodontal disease (PD), a severe form of gum disease, is among the most prevalent chronic infection in humans and is associated with complex microbial synergistic dysbiosis in the subgingival cavity. The immune system of the body interacts with the microbes as the plaque extends and propagates below the gingival sulcus. Once bacteria reach the gingival sulcus, it can enter the blood stream and affect various areas of the human body. The polymicrobial nature of periodontal disease, if left untreated, promotes chronic inflammation, not only within the oral cavity, but also throughout the human body. Alterations seen in the concentrations of healthy gut microbiota may lead to systemic alterations, such as gut motility disorders, high blood pressure, and atherosclerosis. Although gut microbiome has been shown to play a vital role in intestinal motility functions, the role of oral bacteria in this setting remains to be investigated. It is unclear whether oral microbial DNA is present in the large intestine and, if so, whether it alters the gut microbiome. In addition, polybacterial infection induced PD reduced nitric oxide (NO) synthesis and antioxidant enzymes in rodent colon. In this review, we will discuss the interactions between oral and gut microbiome, specifics of how the oral microbiome may modulate the activities of the gut microbiome, and possible ramifications of these alterations.
Collapse
Affiliation(s)
- Miriam Y Walker
- Department of Oral Biology & Research, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Biomedical Informatics Core School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Janet H Southerland
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Cherae M Farmer-Dixon
- Department of Dental Public Health, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Kesavalu Lakshmyya
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Pandu R Gangula
- Department of Oral Biology & Research, School of Dentistry, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
231
|
Jensen TSR, Mahmood B, Damm MB, Backe MB, Dahllöf MS, Poulsen SS, Hansen MB, Bindslev N. Combined activity of COX-1 and COX-2 is increased in non-neoplastic colonic mucosa from colorectal neoplasia patients. BMC Gastroenterol 2018; 18:31. [PMID: 29486731 PMCID: PMC5830335 DOI: 10.1186/s12876-018-0759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background Cyclooxygenase (COX) activity is increased in endoscopic normal colonic mucosa from patients with colorectal neoplasia (CRN). COX-2 is thought to be the predominant COX isozyme involved in neoplasia. Meanwhile, relative contributions of COX-1 and COX-2 isoforms are unknown. Knowledge about their mutual activity in colonic mucosa is important for diagnostics and targeted therapy for CRN. The aim of this study was to assess the relative function, expression and localization of COX-1 and COX-2 enzymes in colonic non-neoplastic human mucosa and thereby to potentially reveal a mucosal disease predisposition for better treatment. Methods Biopsies were pinched from normal appearing colonic mucosa in patients undergoing endoscopy. Ussing chamber technique was applied for an indirect assessment of epithelial activity, RT-qPCR for expression and immunohistochemistry for localization of COX-1 and COX-2 enzymes in patients without (ctrls) and with a history of CRN (CRN-pts). Results Combined COX-1 and COX-2 activity was higher in CRN-pts, p = 0.036. COX-2 was primarily localized in absorptive cells, while COX-1 appeared to be restricted to nonenteroendocrine tuft cells of the colonic epithelium. Conclusions In biopsies from endoscopic normal appearing colonic mucosa, combined activity of COX-1 and COX-2 enzymes is increased in CRN-pts compared with ctrls. This indicates that COX-1 and COX-2 together contribute to an increased proliferation process. Of note, in colonic epithelial cell lining, the COX-1 enzyme seems localized in tuft cells.
Collapse
Affiliation(s)
- Thorbjørn Søren Rønn Jensen
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, NV, Denmark. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, NV, Denmark.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Morten Bach Damm
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, NV, Denmark.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mattias Salling Dahllöf
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, NV, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
232
|
Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin Cancer Biol 2018; 52:1-8. [PMID: 29425888 DOI: 10.1016/j.semcancer.2018.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/03/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023]
Abstract
The human body is a home to more than 1 trillion microbes with a diverse variety of commensal microbes that play a crucial role towards the health of the individual. These microbes occupy different habitats such as gut, skin, vagina, oral etc. Not only the types and abundance of microbes are different in different organs, but also these may differ in different individuals. The genome of these microbiota and their ecosystem constitute to form a microbiome. Factors such as diet, environment, host genetics etc. may be the reason behind the wide microbial diversity. A number of studies performed on human microbiome have revealed that microbiota present in healthy and diseased individuals are distinct. Altered microbiome is many a times the reason behind the overexpression of genes which may cause complex diseases including cancer. Manipulation of the human microbiome can be done by microbial supplements such as probiotics or synbiotics, diet or prebiotics and microbial suppression strategies using antibiotics. Recent advances in genome sequencing technologies and metagenomic analysis provide us the broader understanding of these commensal microbes and highlighting the distinctive features of microbiome during healthy and disease states. Molecular pathological epidemiology (MPE) studies have been very helpful in providing insights into the pathological process behind disease evolution and progression by determining the specific etiological factors. New emerging field of research targets the microbiome for therapeutic purposes by which personalized medicines can be made for treating various types of tumors. Screening programmes might be helpful in identifying patients who are at the verge of developing cancer and in delivering appropriate approaches according to individual risk modes so that disease could be prevented.
Collapse
Affiliation(s)
- Meenakshi Rajpoot
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, 133207, India.
| | - Anil Sharma
- Department of Biochemistry and Molecular Biology, Mayo School of Medicine, Rochester, MN, 55905, USA
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
233
|
Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget 2018; 7:55098-55109. [PMID: 27391152 PMCID: PMC5342404 DOI: 10.18632/oncotarget.10398] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/17/2016] [Indexed: 12/26/2022] Open
Abstract
Colorectal tumors arise with genomic and epigenomic alterations through interactions between neoplastic cells, immune cells, and microbiota that vary along the proximal to distal axis of colorectum. Long interspersed nucleotide element-1 (LINE-1) hypomethylation in colorectal cancer has been associated with worse clinical outcome. Utilizing 1,317 colon and rectal carcinoma cases in two U.S.-nationwide prospective cohort studies, we examined patient survival according to LINE-1 methylation level stratified by tumor location. Cox proportional hazards model was used to assess a statistical interaction between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, and KRAS, BRAF, and PIK3CA mutations. A statistically significant interaction was found between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis (Pinteraction = 0.011). The association of LINE-1 hypomethylation with higher colorectal cancer-specific mortality was stronger in proximal colon cancers (multivariable hazard ratio [HR], 1.66; 95% confidence interval [CI], 1.21 to 2.28) than in distal colon cancers (multivariable HR, 1.18; 95% CI, 0.81 to 1.72) or rectal cancers (multivariable HR, 0.87; 95% CI, 0.57 to 1.34). Our data suggest the interactive effect of LINE-1 methylation level and colorectal cancer location on clinical outcome.
Collapse
|
234
|
Koi M, Tseng-Rogenski SS, Carethers JM. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J Gastrointest Oncol 2018; 10:1-14. [PMID: 29375743 PMCID: PMC5767788 DOI: 10.4251/wjgo.v10.i1.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - Stephanie S Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| |
Collapse
|
235
|
Increased Abundance of Clostridium and Fusobacterium in Gastric Microbiota of Patients with Gastric Cancer in Taiwan. Sci Rep 2018; 8:158. [PMID: 29317709 PMCID: PMC5760541 DOI: 10.1038/s41598-017-18596-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is recognised as a main risk factor for gastric cancer. However, approximately half of the patients with gastritis are negative for H. pylori infection, and the abundance of H. pylori decreases in patients with cancer. In the current study, we profiled gastric epithelium-associated bacterial species in patients with gastritis, intestinal metaplasia, and gastric cancer to identify additional potential pathogenic bacteria. The overall composition of the microbiota was similar between the patients with gastritis and those with intestinal metaplasia. H. pylori was present in half of the non-cancer group, and the dominant bacterial species in the H. pylori-negative patients were Burkholderia, Enterobacter, and Leclercia. The abundance of those bacteria was similar between the cancer and non-cancer groups, whereas the frequency and abundance of H. pylori were significantly lower in the cancer group. Instead, Clostridium, Fusobacterium, and Lactobacillus species were frequently abundant in patients with gastric cancer, demonstrating a gastric cancer-specific bacterial signature. A receiver operating characteristic curve analysis showed that Clostridium colicanis and Fusobacterium nucleatum exhibited a diagnostic ability for gastric cancer. Our findings indicate that the gastric microenvironment is frequently colonised by Clostridium and Fusobacterium in patients with gastric cancer.
Collapse
|
236
|
Hussan H, Clinton SK, Roberts K, Bailey MT. Fusobacterium's link to colorectal neoplasia sequenced: A systematic review and future insights. World J Gastroenterol 2017; 23:8626-8650. [PMID: 29358871 PMCID: PMC5752723 DOI: 10.3748/wjg.v23.i48.8626] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To critically evaluate previous scientific evidence on Fusobacterium's role in colorectal neoplasia development. METHODS Two independent investigators systematically reviewed all original scientific articles published between January, 2000, and July, 2017, using PubMed, EMBASE, and MEDLINE. A total of 355 articles were screened at the abstract level. Of these, only original scientific human, animal, and in vitro studies investigating Fusobacterium and its relationship with colorectal cancer (CRC) were included in the analysis. Abstracts, review articles, studies investigating other colonic diseases, and studies written in other languages than English were excluded from our analysis. Ninety articles were included after removing duplicates, resolving disagreements between the two reviewers, and applying the above criteria. RESULTS Studies have consistently identified positive associations between Fusobacterium, especially Fusobacterium nucleatum (F. nucleatum), and CRC. Stronger associations were seen in CRCs proximal to the splenic flexure and CpG island methylator phenotype (CIMP)-high CRCs. There was evidence of temporality and a biological gradient, with increased F. nucleatum DNA detection and quantity along the traditional adenoma-carcinoma sequence and in CIMP-high CRC precursors. Diet may have a differential impact on colonic F. nucleatum enrichment; evidence suggests that high fiber diet may reduce the risk of a subset of CRCs that are F. nucleatum DNA-positive. Data also suggest shorter CRC and disease-specific survival with increased amount of F. nucleatum DNA in CRC tissue. The pathophysiology of enrichment of F. nucleatum and other Fusobacterium species in colonic tissue is unclear; however, the virulence factors and changes to the local colonic environment with disruption of the protective mucus layer may contribute. The presence of a host lectin (Gal-GalNAc) in the colonic epithelium may also mediate F. nucleatum attachment to CRC and precursors through interaction with an F. nucleatum protein, fibroblast activation protein 2 (FAP2). The clinical significance of detection or enrichment of Fusobacterium in colorectal neoplasia is ambiguous, but data suggest a procarcinogenic effect of F. nucleatum, likely due to activation of oncogenic and inflammatory pathways and modulation of the tumor immune environment. This is hypothesized to be mediated by certain F. nucleatum strains carrying invasive properties and virulence factors such as FadA and FAP. CONCLUSION Evidence suggests a potential active role of Fusobacterium, specifically F. nucleatum, in CRC. Future prospective and experimental human studies would fill an important gap in this literature.
Collapse
Affiliation(s)
- Hisham Hussan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Michael T Bailey
- Department of Pediatrics, OSU College of Medicine And Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States
| |
Collapse
|
237
|
Kaur H, Das C, Mande SS. In Silico Analysis of Putrefaction Pathways in Bacteria and Its Implication in Colorectal Cancer. Front Microbiol 2017; 8:2166. [PMID: 29163445 PMCID: PMC5682003 DOI: 10.3389/fmicb.2017.02166] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Fermentation of undigested proteins in human gastrointestinal tract (gut) by the resident microbiota, a process called bacterial putrefaction, can sometimes disrupt the gut homeostasis. In this process, essential amino acids (e.g., histidine, tryptophan, etc.) that are required by the host may be utilized by the gut microbes. In addition, some of the products of putrefaction, like ammonia, putrescine, cresol, indole, phenol, etc., have been implicated in the disease pathogenesis of colorectal cancer (CRC). We have investigated bacterial putrefaction pathways that are known to be associated with such metabolites. Results of the comprehensive in silico analysis of the selected putrefaction pathways across bacterial genomes revealed presence of these pathways in limited bacterial groups. Majority of these bacteria are commonly found in human gut. These include Bacillus, Clostridium, Enterobacter, Escherichia, Fusobacterium, Salmonella, etc. Interestingly, while pathogens utilize almost all the analyzed pathways, commensals prefer putrescine and H2S production pathways for metabolizing the undigested proteins. Further, comparison of the putrefaction pathways in the gut microbiomes of healthy, carcinoma and adenoma datasets indicate higher abundances of putrefying bacteria in the carcinoma stage of CRC. The insights obtained from the present study indicate utilization of possible microbiome-based therapies to minimize the adverse effects of gut microbiome in enteric diseases.
Collapse
Affiliation(s)
- Harrisham Kaur
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Chandrani Das
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| |
Collapse
|
238
|
Amitay EL, Werner S, Vital M, Pieper DH, Höfler D, Gierse IJ, Butt J, Balavarca Y, Cuk K, Brenner H. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 2017; 38:781-788. [PMID: 28582482 DOI: 10.1093/carcin/bgx053] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a leading cause of morbidity and mortality worldwide in both men and women. The gut microbiome is increasingly recognized as having an important role in human health and disease. Fusobacterium has been identified in former studies as a leading gut bacterium associated with colorectal cancer, but it is still not clear if it plays an oncogenic role. In the current study, fecal samples were collected prior to bowel preparation from participants of screening colonoscopy in the German BliTz study. Using 16S rRNA gene analysis, we examined the presence and relative abundance of Fusobacterium in fecal samples from 500 participants, including 46, 113, 110 and 231 individuals with colorectal cancer, advanced adenomas, non-advanced adenomas and without any neoplasms, respectively. We found that the abundance of Fusobacterium in feces was strongly associated with the presence of colorectal cancer (P-value < 0.0001). This was confirmed by PCR at the species level for Fusobacterium nucleatum. However, no association was seen with the presence of advanced adenomas (P-value = 0.80) or non-advanced adenomas (P-value = 0.80), nor were there any associations observed with dietary or lifestyle habits. Although a causal role cannot be ruled out, our observations, based on fecal microbiome, support the hypothesis that Fusobacterium is a passenger that multiplies in the more favorable conditions caused by the malignant tumor rather than a causal factor in colorectal cancer development.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Simone Werner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Daniela Höfler
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Indra-Jasmin Gierse
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
239
|
Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 2017; 7:11590. [PMID: 28912574 PMCID: PMC5599497 DOI: 10.1038/s41598-017-11237-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and recent advances in subtype classification have successfully stratified the disease using molecular profiling. The contribution of bacterial species to CRC development is increasingly acknowledged, and here, we sought to analyse CRC microbiomes and relate them to tumour consensus molecular subtypes (CMS), in order to better understand the relationship between bacterial species and the molecular mechanisms associated with CRC subtypes. We classified 34 tumours into CRC subtypes using RNA-sequencing derived gene expression and determined relative abundances of bacterial taxonomic groups using 16S rRNA amplicon metabarcoding. 16S rRNA analysis showed enrichment of Fusobacteria and Bacteroidetes, and decreased levels of Firmicutes and Proteobacteria in CMS1. A more detailed analysis of bacterial taxa using non-human RNA-sequencing reads uncovered distinct bacterial communities associated with each molecular subtype. The most highly enriched species associated with CMS1 included Fusobacterium hwasookii and Porphyromonas gingivalis. CMS2 was enriched for Selenomas and Prevotella species, while CMS3 had few significant associations. Targeted quantitative PCR validated these findings and also showed an enrichment of Fusobacterium nucleatum, Parvimonas micra and Peptostreptococcus stomatis in CMS1. In this study, we have successfully associated individual bacterial species to CRC subtypes for the first time.
Collapse
Affiliation(s)
- Rachel V Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand.
| | - Martina Visnovska
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Patrick J Biggs
- Hopkirk Institute, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| |
Collapse
|
240
|
Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017; 13:1633-1647. [PMID: 28829193 DOI: 10.2217/fon-2017-0145] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
241
|
Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, Nowak JA, Kosumi K, Hamada T, Masugi Y, Bullman S, Drew DA, Kostic AD, Fung TT, Garrett WS, Huttenhower C, Wu K, Meyerhardt JA, Zhang X, Willett WC, Giovannucci EL, Fuchs CS, Chan AT, Ogino S. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol 2017; 3:921-927. [PMID: 28125762 PMCID: PMC5502000 DOI: 10.1001/jamaoncol.2016.6374] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Fusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of the hosts' immune response to tumor. Evidence also suggests that diet influences intestinal F nucleatum. However, the role of F nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown. OBJECTIVE To test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F nucleatum in tumor tissue. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study was conducted using data from the Nurses' Health Study (June 1, 1980, to June 1, 2012) and the Health Professionals Follow-up Study (June 1, 1986, to June 1, 2012) on a total of 121 700 US female nurses and 51 529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively (both predominantly white individuals), at enrollment. Data analysis was performed from March 15, 2015, to August 10, 2016. EXPOSURES Prudent and Western diets. MAIN OUTCOMES AND MEASURES Incidence of colorectal carcinoma subclassified by F nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction. RESULTS Of the 173 229 individuals considered for the study, 137 217 were included in the analysis, 47 449 were male (34.6%), and mean (SD) baseline age for men was 54.0 (9.8) years and for women, 46.3 (7.2) years. A total of 1019 incident colon and rectal cancer cases with available F nucleatum data were documented over 26 to 32 years of follow-up, encompassing 3 643 562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F nucleatum status (P = .01 for heterogeneity); prudent diet score was associated with a lower risk of F nucleatum-positive cancers (P = .003 for trend; multivariable hazard ratio of 0.43; 95% CI, 0.25-0.72, for the highest vs the lowest prudent score quartile) but not with F nucleatum-negative cancers (P = .47 for trend, the corresponding multivariable hazard ratio of 0.95; 95% CI, 0.77-1.17). There was no significant heterogeneity between the subgroups in relation to Western dietary pattern scores. CONCLUSIONS AND RELEVANCE Prudent diets rich in whole grains and dietary fiber are associated with a lower risk for F nucleatum-positive colorectal cancer but not F nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms.
Collapse
Affiliation(s)
- Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Reiko Nishihara
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts8Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aleksandar D Kostic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge
| | - Teresa T Fung
- Program in Dietetics, Simmons College, Boston, Massachusetts
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts11Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts13Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
242
|
Yang Q, Huang X, Zhao S, Sun W, Yan Z, Wang P, Li S, Huang W, Zhang S, Liu L, Gun S. Structure and Function of the Fecal Microbiota in Diarrheic Neonatal Piglets. Front Microbiol 2017; 8:502. [PMID: 28392784 PMCID: PMC5364137 DOI: 10.3389/fmicb.2017.00502] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/10/2017] [Indexed: 12/12/2022] Open
Abstract
Diarrhea is a leading cause of increased mortality in neonatal and young piglets. Aberration of the gut microbiota is one important factor in the etiology of piglet diarrhea. However, information regarding the structure and function of the gut microbiome in diarrheic neonatal piglets is limited. To investigate the composition and functional potential of the fecal microbiota in neonatal piglets, we performed 16S rRNA gene sequencing on 20 fecal samples from diarrheic piglets and healthy controls, and metagenomics sequencing on a subset of six samples. We found striking compositional and functional differences in fecal microbiota between diarrheic and healthy piglets. Neonatal piglet diarrhea was associated with increases in the relative abundance of Prevotella, Sutterella, and Campylobacter, as well as Fusobacteriaceae. The increased relative abundance of Prevotella was correlated with the reduction in Escherichia coli and the majority of beneficial bacteria that belonging to the Firmicutes phylum (e.g., Enterococcus, Streptococcus, Lactobacillus, Clostridium, and Blautia) in diarrheic piglets. The differentially functional gene abundances in diarrheic piglets were an increase in bacterial ribosome, and contributed primarily by the genera Prevotella, this indicates a growth advantage of the Prevotella in diarrheic conditions. Additional functional gene sets were associated with the reduction of polyamine transport, monosaccharide and sugar-specific PTS transport, amino acid transport, and two-component regulatory system. These profiles likely impact the ability to transport and uptake nutrients, as well as the ability to fight microbial infections in the piglet gut ecosystem. This work identifies a potential role for Prevotella in the community-wide microbial aberration and dysfunction that underpins the pathogenesis of piglet diarrhea. Identification of these microbial and functional signatures may provide biomarkers of neonatal piglet diarrhea.
Collapse
Affiliation(s)
- Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shenggui Li
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Wangzhou Huang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Shengwei Zhang
- College of Animal Science and Technology, Gansu Agricultural University Lanzhou, China
| | - Lixia Liu
- College of Life Science and Engineering, Northwest University for Nationalities Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural UniversityLanzhou, China; Gansu Research Center for Swine Production Engineering and TechnologyLanzhou, China
| |
Collapse
|
243
|
Zhang C, Powell SE, Betel D, Shah MA. The Gastric Microbiome and Its Influence on Gastric Carcinogenesis: Current Knowledge and Ongoing Research. Hematol Oncol Clin North Am 2017; 31:389-408. [PMID: 28501083 DOI: 10.1016/j.hoc.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric malignancies are a leading cause of cancer-related death worldwide. At least 2 microbial species are currently linked to carcinogenesis and the development of cancer within the human stomach. These include the bacterium Helicobacter pylori and the Epstein-Barr virus. In recent years, there has been increasing evidence that within the human gastrointestinal tract it is not only pathogenic microbes that impact human health but also the corresponding autochthonous microbial communities. This article reviews the gastrointestinal microbiome as it relates primarily to mechanisms of disease and carcinogenesis within the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sarah Ellen Powell
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manish A Shah
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Gastrointestinal Oncology Program, Center for Advanced Digestive Care, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
244
|
Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, Jordana F, de La Cochetière MF. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol 2017; 63:475-492. [PMID: 28257583 DOI: 10.1139/cjm-2016-0603] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many studies show that the human microbiome plays a critical role in the chronic pathologies of obesity, inflammatory bowel diseases, and diabetes. More recently, the interaction between cancer and the microbiome has been highlighted. Most studies have focused on the gut microbiota because it represents the most extensive bacterial community, and the body of evidence correlating it with gut syndromes is increasing. However, in the strict sense, the gastrointestinal (GI) tract begins in the oral cavity, and special attention should be paid to the specific flora of this cavity. This study reviewed the current knowledge about the various microbial ecosystems of the upper part of the GI tract and discussed their potential link to carcinogenesis. The overall composition of the microbial communities, as well as the presence or absence of "key species", in relation to carcinogenesis is addressed. Alterations in the oral microbiota can potentially be used to predict the risk of cancer. Molecular advances and the further monitoring of the microbiota will increase our understanding of the role of the microbiota in carcinogenesis and open new perspectives for future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Pierre Le Bars
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Sébastien Matamoros
- b Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1, place de l'Université, 1348 Brussels, Belgium
| | - Emmanuel Montassier
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| | - Françoise Le Vacon
- d Biofortis Innovation Services - Mérieux NutriSciences, 3, route de la Chatterie, 44800 Saint-Herblain, France
| | - Gilles Potel
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| | - Assem Soueidan
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Fabienne Jordana
- a UFR d'odontologie, UIC Odontologie, CHU hôtel-Dieu, Université de Nantes, 1, place Alexis Ricordeau, B.P. 84215, 44042 Nantes CEDEX 1, France
| | - Marie-France de La Cochetière
- c EA 3826 Thérapeutiques cliniques et expérimentales des infections, Faculté de médecine, CHU hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France
| |
Collapse
|
245
|
Holt RA, Cochrane K. Tumor Potentiating Mechanisms of Fusobacterium nucleatum, A Multifaceted Microbe. Gastroenterology 2017; 152:694-696. [PMID: 28143770 DOI: 10.1053/j.gastro.2017.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Robert A Holt
- British Columbia Cancer Agency Genome Sciences Centre, University of British Columbia Department of Medical Genetics, Simon Fraser University Department of Biochemistry & Molecular Biology
| | - Kyla Cochrane
- British Columbia Cancer Agency Genome Sciences Centre, University of British Columbia Department of Medical Genetics, Simon Fraser University Department of Biochemistry & Molecular Biology.
| |
Collapse
|
246
|
Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, Li H, Guo B, Zhu Q, Wei Q, Moyer MP, Wang P, Cai S, Goel A, Qin H, Ma Y. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017; 152:851-866.e24. [PMID: 27876571 PMCID: PMC5555435 DOI: 10.1053/j.gastro.2016.11.018] [Citation(s) in RCA: 619] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Nearly 20% of the global cancer burden can be linked to infectious agents. Fusobacterium nucleatum promotes tumor formation by epithelial cells via unclear mechanisms. We aimed to identify microRNAs (miRNAs) induced by F nucleatum and evaluate their ability to promote colorectal carcinogenesis in mice. METHODS Colorectal cancer (CRC) cell lines were incubated with F nucleatum or control reagents and analyzed in proliferation and would healing assays. HCT116, HT29, LoVo, and SW480 CRC cell lines were incubated with F nucleatum or phosphate-buffered saline (PBS [control]) and analyzed for miRNA expression patterns and in chromatin immunoprecipitation assays. Cells were incubated with miRNAs mimics, control sequences, or small interfering RNAs; expression of reporter constructs was measured in luciferase assays. CRC cells were incubated with F nucleatum or PBS and injected into BALB/C nude mice; growth of xenograft tumors was measured. C57BL adenomatous polyposis colimin/+, C57BL miR21a-/-, and C57BL mice with full-length miR21a (controls) were given F nucleatum by gavage; some mice were given azoxymethane and dextran sodium sulfate to induce colitis and colon tumors. Intestinal tissues were collected and tumors were counted. Serum samples from mice were analyzed for cytokine levels by enzyme-linked immunosorbent assay. We performed in situ hybridization analyses to detect enrichment of F nucleatum in CRC cells. Fusobacterium nucleatum DNA in 90 tumor and matched nontumor tissues from patients in China were explored for the expression correlation analysis; levels in 125 tumor tissues from patients in Japan were compared with their survival times. RESULTS Fusobacterium nucleatum increased proliferation and invasive activities of CRC cell lines compared with control cells. CRC cell lines infected with F nucleatum formed larger tumors, more rapidly, in nude mice than uninfected cells. Adenomatous polyposis colimin/+ mice gavaged with F nucleatum developed significantly more colorectal tumors than mice given PBS and had shorter survival times. We found several inflammatory factors to be significantly increased in serum from mice given F nucleatum (interleukin 17F, interleukin 21, and interleukin 22, and MIP3A). We found 50 miRNAs to be significantly up-regulated and 52 miRNAs to be significantly down-regulated in CRCs incubated with F nucleatum vs PBS; levels of miR21 increased by the greatest amount (>4-fold). Inhibitors of miR21 prevented F nucleatum from inducing cell proliferation and invasion in culture. miR21a-/- mice had a later appearance of fecal blood and diarrhea after administration of azoxymethane and dextran sodium sulfate, and had longer survival times compared with control mice. The colorectum of miR21a-/- mice had fewer tumors, of smaller size, and the miR21a-/- mice survived longer than control mice. We found RASA1, which encodes an RAS GTPase, to be one of the target genes consistently down-regulated in cells that overexpressed miR21 and up-regulated in cells exposed to miR21 inhibitors. Infection of cells with F nucleatum increased expression of miR21 by activating Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB. Levels of F nucleatum DNA and miR21 were increased in tumor tissues (and even more so in advanced tumor tissues) compared with non-tumor colon tissues from patients. Patients whose tumors had high amounts of F nucleatum DNA and miR21 had shorter survival times than patients whose tumors had lower amounts. CONCLUSIONS We found infection of CRC cells with F nucleatum to increase their proliferation, invasive activity, and ability to form xenograft tumors in mice. Fusobacterium nucleatum activates Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB and increased expression of miR21; this miRNA reduces levels of the RAS GTPase RASA1. Patients with both high amount of tissue F nucleatum DNA and miR21 demonstrated a higher risk for poor outcomes.
Collapse
Affiliation(s)
- Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Wenhao Weng
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott &White Research Institute and Charles A. Sammons Cancer Center, Texas, USA,Department of Clinical Laboratory, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Leiming Hong
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Yang
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Renyuan Gao
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Minfeng Liu
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingming Yin
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Cheng Pan
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Hao Li
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Bomin Guo
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingchao Zhu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University
| | | | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
247
|
Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18010197. [PMID: 28106826 PMCID: PMC5297828 DOI: 10.3390/ijms18010197] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%–5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.
Collapse
|
248
|
Abstract
Colorectal cancer is one of the so-called westernized diseases and the second leading cause of cancer death worldwide. On the basis of global epidemiological and scientific studies, evidence suggests that the risk of colorectal cancer is increased by processed and unprocessed meat consumption but suppressed by fibre, and that food composition affects colonic health and cancer risk via its effects on colonic microbial metabolism. The gut microbiota can ferment complex dietary residues that are resistant to digestion by enteric enzymes. This process provides energy for the microbiota but culminates in the release of short-chain fatty acids including butyrate, which are utilized for the metabolic needs of the colon and the body. Butyrate has a remarkable array of colonic health-promoting and antineoplastic properties: it is the preferred energy source for colonocytes, it maintains mucosal integrity and it suppresses inflammation and carcinogenesis through effects on immunity, gene expression and epigenetic modulation. Protein residues and fat-stimulated bile acids are also metabolized by the microbiota to inflammatory and/or carcinogenic metabolites, which increase the risk of neoplastic progression. This Review will discuss the mechanisms behind these microbial metabolite effects, which could be modified by diet to achieve the objective of preventing colorectal cancer in Western societies.
Collapse
|
249
|
Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, Shi Y, Song M, da Silva A, Gu M, Li W, Hamada T, Kosumi K, Hanyuda A, Liu L, Kostic AD, Giannakis M, Bullman S, Brennan CA, Milner DA, Baba H, Garraway LA, Meyerhardt JA, Garrett WS, Huttenhower C, Meyerson M, Giovannucci EL, Fuchs CS, Nishihara R, Ogino S. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol 2016; 7:e200. [PMID: 27811909 PMCID: PMC5543402 DOI: 10.1038/ctg.2016.53] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
Objectives: Evidence suggests a possible role of Fusobacterium nucleatum in colorectal carcinogenesis, especially in right-sided proximal colorectum. Considering a change in bowel contents and microbiome from proximal to distal colorectal segments, we hypothesized that the proportion of colorectal carcinoma enriched with F. nucleatum might gradually increase along the bowel subsites from rectum to cecum. Methods: A retrospective, cross-sectional analysis was conducted on 1,102 colon and rectal carcinomas in molecular pathological epidemiology databases of the Nurses’ Health Study and the Health Professionals Follow-up Study. We measured the amount of F. nucleatum DNA in colorectal tumor tissue using a quantitative PCR assay and equally dichotomized F. nucleatum-positive cases (high vs. low). We used multivariable logistic regression analysis to examine the relationship of a bowel subsite variable (rectum, rectosigmoid junction, sigmoid colon, descending colon, splenic flexure, transverse colon, hepatic flexure, ascending colon, and cecum) with the amount of F. nucleatum. Results: The proportion of F. nucleatum-high colorectal cancers gradually increased from rectal cancers (2.5% 4/157) to cecal cancers (11% 19/178), with a statistically significant linear trend along all subsites (P<0.0001) and little evidence of non-linearity. The proportion of F. nucleatum-low cancers was higher in rectal, ascending colon, and cecal cancers than in cancers of middle segments. Conclusions: The proportion of F. nucleatum-high colorectal cancers gradually increases from rectum to cecum. Our data support the colorectal continuum model that reflects pathogenic influences of the gut microbiota on neoplastic and immune cells and challenges the prevailing two-colon (proximal vs. distal) dichotomy paradigm.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mancang Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wanwan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Akiko Hanyuda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Aleksandar D Kostic
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danny A Milner
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
250
|
Wang HF, Li LF, Guo SH, Zeng QY, Ning F, Liu WL, Zhang G. Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci Rep 2016; 6:33440. [PMID: 27678333 PMCID: PMC5039407 DOI: 10.1038/srep33440] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum, Fn) is associated with the colorectal cancer (CRC). Fn-infection could induce significant levels of serum Fn-specific antibodies in human and mice. The objective of this study was to identify Fn-infection that elicit a humoral response in patients with CRC and evaluate the diagnostic performance of serum anti-Fn antibodies. In this work, we showed the mean absorbance value of anti-Fn-IgA and -IgG in the CRC group were significantly higher than those in the benign colon disease group and healthy control group (P < 0.001). The sensitivity and specificity of ELISA for the detection of anti-Fn-IgA were 36.43% and 92.71% based on the optimal cut-off. The combination of anti-Fn-IgA and carcino-embryonic antigen (CEA) was better for diagnosing CRC (Sen: 53.10%, Spe: 96.41%; AUC = 0.848). Furthermore, combining anti-Fn-IgA with CEA and carbohydrate antigen 19-9 (CA19-9) (Sen: 40.00%, Spe: 94.22%; AUC = 0.743) had the better ability to classify CRC patients with stages I-II. These results suggested that Fn-infection elicited high level of serum anti-Fn antibodies in CRC patients, and serum anti-Fn-IgA level may be a potential diagnosing biomarker for CRC. Serum anti-Fn-IgA in combination with CEA and CA19-9 increases the sensitivity of detecting early CRC.
Collapse
Affiliation(s)
- Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin-Fang Li
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Song-He Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Yao Zeng
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wan-Li Liu
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|