201
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
202
|
Diterpenoids from Plectranthus spp. as Potential Chemotherapeutic Agents via Apoptosis. Pharmaceuticals (Basel) 2020; 13:ph13060123. [PMID: 32560101 PMCID: PMC7344685 DOI: 10.3390/ph13060123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Plectranthus spp. is widely known for its medicinal properties and bioactive metabolites. The cytotoxic and genotoxic properties of the four known abietane diterpenoids: 7α-Acetoxy-6β-hydroxyroyleanone (Roy), 6,7-dehydroroyleanone (Deroy), 7β,6β-dihydroxyroyleanone6 (Diroy), and Parvifloron D (Parv), isolated from P. madagascariensis (Roy, DeRoy, and Diroy) and P. ecklonii (Parv) were evaluated. The tested compounds showed cytotoxic effects against the human leukemia cell line CCRF-CEM and the lung adenocarcinoma cell line A549. All tested compounds induced apoptosis by altering the level of pro- and anti-apoptotic genes. The results show that from the tested diterpenoids, Roy and Parv demonstrated the strongest activity in both human cancer cell lines, changing the permeability mitochondrial membrane potential and reactive oxygen species (ROS) levels, and possibly inducing mtDNA or nDNA damage. In conclusion, the abietane diterpenoids tested may be used in the future as potential natural chemotherapeutic agents
Collapse
|
203
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
204
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
205
|
Dhar R. Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
206
|
Qin T, Koneva LA, Liu Y, Zhang Y, Arthur AE, Zarins KR, Carey TE, Chepeha D, Wolf GT, Rozek LS, Sartor MA. Significant association between host transcriptome-derived HPV oncogene E6* influence score and carcinogenic pathways, tumor size, and survival in head and neck cancer. Head Neck 2020; 42:2375-2389. [PMID: 32406560 DOI: 10.1002/hed.26244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) oncogenes E6, E7, and shorter isoforms of E6 (E6*) are known carcinogenic factors in head and neck squamous cell carcinoma (HNSCC). Little is known regarding E6* functions. METHODS We analyzed RNA-seq data from 68 HNSCC HPV type 16-positive tumors to determine host genes and pathways associated with E6+E7 expression (E6E7) or the percent of full-length E6 (E6%FL). Influence scores of E6E7 and E6%FL were used to test for associations with clinical variables. RESULTS For E6E7, we recapitulated all major known affected pathways and revealed additional pathways. E6%FL was found to affect mitochondrial processes, and E6%FL influence score was significantly associated with overall survival and tumor size. CONCLUSIONS HPV E6E7 and E6* result in extensive, dose-dependent compensatory effects and dysregulation of key cancer pathways. The switch from E6 to E6* promotes oxidative phosphorylation, larger tumor size, and worse prognosis, potentially serving as a prognostic factor for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lada A Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Kennedy Institute of Rheumatology, University of Oxford, United Kingdom
| | - Yidan Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Anna E Arthur
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA.,Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas Chepeha
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Otolaryngology/Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Gregory T Wolf
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
207
|
Aminuddin A, Ng PY, Leong CO, Chua EW. Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma. Sci Rep 2020; 10:7885. [PMID: 32398775 PMCID: PMC7217862 DOI: 10.1038/s41598-020-64664-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Cisplatin/pharmacology
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Amnani Aminuddin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
208
|
Choueiri TK, Atkins MB, Bakouny Z, Carlo MI, Drake CG, Jonasch E, Kapur P, Lewis B, Linehan WM, Mitchell MJ, Pal SK, Pels K, Poteat S, Rathmell WK, Rini BI, Signoretti S, Tannir N, Uzzo R, Wood CG, Hammers HJ. Summary From the First Kidney Cancer Research Summit, September 12-13, 2019: A Focus on Translational Research. J Natl Cancer Inst 2020; 113:234-243. [PMID: 32359162 DOI: 10.1093/jnci/djaa064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Kidney cancer is one of the 10 most common cancers both in the United States and worldwide. Until this year, there had not previously been a conference focused on translational studies in the broad and heterogeneous group of kidney cancers. Therefore, a group of researchers, clinicians, and patient advocates dedicated to renal cell carcinoma launched the Kidney Cancer Research Summit (KCRS) to spur collaboration and further therapeutic advances in these tumors. This commentary aims to summarize the oral presentations and serve as a record for future iterations of this meeting. The KCRS sessions addressed the tumor microenvironment, novel methods of drug delivery, single cell sequencing strategies, novel immune checkpoint blockade and cellular therapies, predictive biomarkers, and rare variants of kidney cancers. In addition, the meeting included 2 sessions to promote scientific mentoring and kidney cancer research collaborations. A subsequent KCRS will be planned for the fall of 2020.
Collapse
Affiliation(s)
- Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael B Atkins
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles G Drake
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kevin Pels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian I Rini
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nizar Tannir
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Christopher G Wood
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans J Hammers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
209
|
Koller A, Fazzini F, Lamina C, Rantner B, Kollerits B, Stadler M, Klein-Weigel P, Fraedrich G, Kronenberg F. Mitochondrial DNA copy number is associated with all-cause mortality and cardiovascular events in patients with peripheral arterial disease. J Intern Med 2020; 287:569-579. [PMID: 32037598 PMCID: PMC7318579 DOI: 10.1111/joim.13027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysfunctional mitochondria have an influence on inflammation and increased oxidative stress due to an excessive production of reactive oxygen species. The mitochondrial DNA copy number (mtDNA-CN) is a potential biomarker for mitochondrial dysfunction and has been associated with various diseases. However, results were partially contrasting which might have been caused by methodological difficulties to quantify mtDNA-CN. OBJECTIVE We aimed to investigate whether mtDNA-CN is associated with peripheral arterial disease (PAD) as well as all-cause mortality and cardiovascular events during seven years of follow-up. METHODS A total of 236 male patients with PAD from the Cardiovascular Disease in Intermittent Claudication (CAVASIC) study were compared with 249 age- and diabetes-matched controls. MtDNA-CN was measured with a well-standardized plasmid-normalized quantitative PCR-based assay determining the ratio between mtDNA-CN and nuclear DNA. RESULTS Individuals in the lowest quartile of mtDNA-CN had a twofold increased risk for PAD which, however, was no longer significant after adjusting for leukocytes and platelets. About 67 of the 236 patients had already experienced a cardiovascular event at baseline and those in the lowest mtDNA-CN quartile had a 2.34-fold increased risk for these events (95% CI 1.08-5.13). During follow-up, 37 PAD patients died and 66 patients experienced a cardiovascular event. Patients in the lowest mtDNA-CN quartile had hazard ratios of 2.66 (95% CI 1.27-5.58) for all-cause-mortality and 1.82 (95% CI 1.02-3.27) for cardiovascular events compared with the combined quartile 2-4 (adjusted for age, smoking, CRP, diabetes, prevalent cardiovascular disease, leukocytes and platelets). CONCLUSION This investigation supports the hypothesis of mitochondrial dysfunction in peripheral arterial disease and shows an association of low mtDNA-CNs with all-cause-mortality and prevalent and incident cardiovascular disease in PAD patients with intermittent claudication.
Collapse
Affiliation(s)
- A Koller
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - F Fazzini
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lamina
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Rantner
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Kollerits
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - M Stadler
- 3rd Medical Department of Metabolic Diseases and Nephrology, Hietzing Hospital, Vienna, Austria.,Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - P Klein-Weigel
- Clinic of Angiology, Center of Vascular Medicine, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - G Fraedrich
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - F Kronenberg
- From the, Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
210
|
High expression of oxidative phosphorylation genes predicts improved survival in squamous cell carcinomas of the head and neck and lung. Sci Rep 2020; 10:6380. [PMID: 32286489 PMCID: PMC7156383 DOI: 10.1038/s41598-020-63448-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/31/2020] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial activity is a critical component of tumor metabolism, with profound implications for tumorigenesis and treatment response. We analyzed clinical, genomic and expression data from patients with oral cavity squamous cell carcinoma (OCSCC) in order to map metabologenomic events which may correlate with clinical outcomes and identified nuclear genes involved in oxidative phosphorylation and glycolysis (OXPHOG) as a critical predictor of patient survival. This correlation was validated in a secondary unrelated set of lung squamous cell carcinoma (LUSC) and was shown to be driven largely by over-expression of nuclear encoded components of the mitochondrial electron transport chain (ETC) coordinated with an increase in tumor mitochondrial DNA copy number and a strong threshold effect on patient survival. OCSCC and LUSC patients with a favorable OXPHOG signature demonstrated a dramatic (>2fold) improvement in survival compared to their counterparts. Differential OXPHOG expression correlated with varying tumor immune infiltrates suggesting that the interaction between tumor metabolic activity and tumor associated immunocytes may be a critical driver of improved clinical outcomes in this patient subset. These data provide strong support for studies aimed at mechanistically characterizing the interaction between tumor mitochondrial activity and the tumor immune microenvironment.
Collapse
|
211
|
Liu Q, Lin D, Li M, Gu Z, Zhao Y. Evidence of Neutral Evolution of Mitochondrial DNA in Human Hepatocellular Carcinoma. Genome Biol Evol 2020; 11:2909-2916. [PMID: 31599941 PMCID: PMC6804334 DOI: 10.1093/gbe/evz214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies have suggested that mitochondria and mitochondrial DNA (mtDNA) might be functionally associated with tumor genesis and development. Although the heterogeneity of tumors is well known, most studies were based on the analysis of a single tumor sample. The extent of mtDNA diversity in the same tumor is unclear, as is whether the diversity is influenced by selection pressure. Here, we analyzed the whole exon data from 1 nontumor sample and 23 tumor samples from different locations of one single tumor tissue from a hepatocellular carcinoma (HCC) patient. Among 18 heteroplasmic sites identified in the tumor, only 2 heteroplasmies were shared among all tumor samples. By investigating the correlations between the occurrence and frequency of heteroplasmy (Het) and sampling locations (Coordinate), relative mitochondrial copy numbers, and single-nucleotide variants in the nuclear genome, we found that the Coordinate was significantly correlated with Het, suggesting no strong purifying selection or positive selection acted on the mtDNA in HCC. By further investigating the allele frequency and proportion of nonsynonymous mutations in the tumor mtDNA, we found that mtDNA in HCC did not undergo extra selection compared with mtDNA in the adjacent nontumor tissue, and they both likely evolved under neutral selection.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deng Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
212
|
Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim HL, Nakagawa H, Park K, Campbell PJ, Liang H. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 2020; 52:342-352. [PMID: 32024997 PMCID: PMC7058535 DOI: 10.1038/s41588-019-0557-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential cellular organelles that play critical roles in cancer. Here, as part of the International Cancer Genome Consortium/The Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes Consortium, which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we performed a multidimensional, integrated characterization of mitochondrial genomes and related RNA sequencing data. Our analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hypermutated cases. Truncating mutations are markedly enriched in kidney, colorectal and thyroid cancers, suggesting oncogenic effects with the activation of signaling pathways. We find frequent somatic nuclear transfers of mitochondrial DNA, some of which disrupt therapeutic target genes. Mitochondrial copy number varies greatly within and across cancers and correlates with clinical variables. Co-expression analysis highlights the function of mitochondrial genes in oxidative phosphorylation, DNA repair and the cell cycle, and shows their connections with clinically actionable genes. Our study lays a foundation for translating mitochondrial biology into clinical applications.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Ju
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Youngwook Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher J Yoon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yang Yang
- Division of Biostatistics, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keunchil Park
- Division of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
213
|
The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the major cause of death in modern society. CHD is characterized by atherosclerosis, which could lead to vascular cavity stenosis or obstruction, resulting in ischemic cardiac conditions such as angina and myocardial infarction. In terms of the mitochondrion, the main function is to produce adenosine triphosphate (ATP) for cells. And the alterations (including mutations, altered copy number and haplogroups) of mitochondrial DNA (mtDNA) are associated with the abnormal expression of oxidative phosphorylation (OXPHOS) system, resulting in mitochondrial dysfunction, then leading to perturbation on the electron transport chain and increased ROS generation and reduction in ATP level, contributing to ATP-producing disorders and oxidative stress, which may further accelerate development or vulnerability of atherosclerosis and myocardial ischemic injury. Therefore, the mtDNA defects may play an important role in making an early diagnosis, identifying disease-specific biomarkers and therapeutic targets, and predicting outcomes for patients with atherosclerosis and CHD. In this review, we aim to summarize the contribution of mtDNA mutations, altered mtDNA copy number and mtDNA haplogroups on the occurrence and development of CHD.
Collapse
|
214
|
Zhang X, Wang T, Ji J, Wang H, Zhu X, Du P, Zhu Y, Huang Y, Chen W. The distinct spatiotemporal distribution and effect of feed restriction on mtDNA copy number in broilers. Sci Rep 2020; 10:3240. [PMID: 32094402 PMCID: PMC7039872 DOI: 10.1038/s41598-020-60123-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) copy number reflects the abundance of mitochondria in cells and is dependent on the energy requirements of tissues. We hypothesized that the mtDNA copy number in poultry may change with age and tissue, and feed restriction may affect the growth and health of poultry by changing mtDNA content in a tissue-specific pattern. TaqMan real-time PCR was used to quantify mtDNA copy number using three different segments of the mitochondrial genome (D-loop, ATP6, and ND6) relative to the nuclear single-copy preproglucagon gene (GCG). The effect of sex, age, and dietary restriction (quantitative, energy, and protein restriction) on mtDNA copy number variation in the tissues of broilers was investigated. We found that mtDNA copy number varied among tissues (P < 0.01) and presented a distinct change in spatiotemporal pattern. After hatching, the number of mtDNA copies significantly decreased with age in the liver and increased in muscle tissues, including heart, pectoralis, and leg muscles. Newborn broilers (unfed) and embryos (E 11 and E 17) had similar mtDNA contents in muscle tissues. Among 42 d broilers, females had a higher mtDNA copy number than males in the tissues examined. Feed restriction (8-21 d) significantly reduced the body weight but did not significantly change the mtDNA copy number of 21 d broilers. After three weeks of compensatory growth (22-42 d), only the body weight of broilers with a quantitatively restricted diet remained significantly lower than that of broilers in the control group (P < 0.05), while any type of early feed restriction significantly reduced the mtDNA copy number in muscle tissues of 42 d broilers. In summary, the mtDNA copy number of broilers was regulated in a tissue- and age-specific manner. A similar pattern of spatiotemporal change in response to early feed restriction was found in the mtDNA content of muscle tissues, including cardiac and skeletal muscle, whereas liver mtDNA content changed differently with age and dietary restriction. It seems that early restrictions in feed could effectively lower the mtDNA content in muscle cells to reduce the tissue overload in broilers at 42 d to some degree.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Ting Wang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Jiefei Ji
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Huanjie Wang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Xinghao Zhu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Pengfei Du
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yao Zhu
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yanqun Huang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China.
| | - Wen Chen
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| |
Collapse
|
215
|
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI, Boerwinkle E, Arking DE. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 2020; 15:e0228166. [PMID: 32004343 PMCID: PMC6994099 DOI: 10.1371/journal.pone.0228166] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.
Collapse
Affiliation(s)
- Ryan J. Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie Y. Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles E. Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Sumpter
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kent D. Taylor
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Jerome I. Rotter
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
216
|
Abstract
The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression.
Collapse
Affiliation(s)
- Dongkeun Park
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Soyeon Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
217
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
218
|
Yuan P, Yang T, Mu J, Zhao J, Yang Y, Yan Z, Hou Y, Chen C, Xing J, Zhang H, Li J. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett 2020; 469:498-509. [DOI: 10.1016/j.canlet.2019.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
|
219
|
Lin CS, Wei YH, Yeh YC, Pan SC, Lu SY, Chen YJ, Chueh WY. Role of mitochondrial DNA copy number alteration in non-small cell lung cancer. FORMOSAN JOURNAL OF SURGERY 2020. [DOI: 10.4103/fjs.fjs_15_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
220
|
Gnocchi D, Kapoor S, Nitti P, Cavalluzzi MM, Lentini G, Denora N, Sabbà C, Mazzocca A. Novel lysophosphatidic acid receptor 6 antagonists inhibit hepatocellular carcinoma growth through affecting mitochondrial function. J Mol Med (Berl) 2019; 98:179-191. [PMID: 31863151 DOI: 10.1007/s00109-019-01862-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and the commonest liver cancer. It is expected to become the third leading cause of cancer-related deaths in Western countries by 2030. Effective pharmacological approaches for HCC are still unavailable, and the currently approved systemic treatments are unsatisfactory in terms of therapeutic results, showing many side effects. Thus, searching for new effective and nontoxic molecules for HCC treatment is of paramount importance. We previously demonstrated that lysophosphatidic acid (LPA) is an important contributor to the pathogenesis of HCC and that lysophosphatidic acid receptor 6 (LPAR6) actively supports HCC tumorigenicity. Here, we screened for novel LPAR6 antagonists and found that two compounds, 4-methylene-2-octyl-5-oxotetra-hydrofuran-3-carboxylic acid (C75) and 9-xanthenylacetic acid (XAA), efficiently inhibit HCC growth, both in vitro and in vitro, without displaying toxic effects at the effective doses. We further investigated the mechanisms of action of C75 and XAA and found that these compounds determine a G1-phase cell cycle arrest, without inducing apoptosis at the effective doses. Moreover, we discovered that both molecules act on mitochondrial homeostasis, by increasing mitochondrial biogenesis and reducing mitochondrial membrane potential. Overall, our results show two newly identified LPAR6 antagonists with a concrete potential to be translated into effective and side effect-free molecules for HCC therapy.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
221
|
Lin S, Huang C, Sun J, Bollt O, Wang X, Martine E, Kang J, Taylor MD, Fang B, Singh PK, Koomen J, Hao J, Yang S. The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma. EMBO Mol Med 2019; 11:e10849. [PMID: 31633874 PMCID: PMC6895611 DOI: 10.15252/emmm.201910849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial deoxynucleotide triphosphate (dNTP) is maintained by the mitochondrial deoxynucleoside salvage pathway and dedicated for the mtDNA homeostasis, and the mitochondrial deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme in this pathway. Here, we investigated the role of the DGUOK in the self-renewal of lung cancer stem-like cells (CSC). Our data support that DGUOK overexpression strongly correlates with cancer progression and patient survival. The depletion of DGUOK robustly inhibited lung adenocarcinoma tumor growth, metastasis, and CSC self-renewal. Mechanistically, DGUOK is required for the biogenesis of respiratory complex I and mitochondrial OXPHOS, which in turn regulates CSC self-renewal through AMPK-YAP1 signaling. The restoration of mitochondrial OXPHOS in DGUOK KO lung cancer cells using NDI1 was able to prevent AMPK-mediated phosphorylation of YAP and to rescue CSC stemness. Genetic targeting of DGUOK using doxycycline-inducible CRISPR/Cas9 was able to markedly induce tumor regression. Our findings reveal a novel role for mitochondrial dNTP metabolism in lung cancer tumor growth and progression, and implicate that the mitochondrial deoxynucleotide salvage pathway could be potentially targeted to prevent CSC-mediated therapy resistance and metastatic recurrence.
Collapse
Affiliation(s)
- Shengchen Lin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chongbiao Huang
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jianwei Sun
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
- South China Agricultural University, Guangzhou, China
| | - Oana Bollt
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiuchao Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Eric Martine
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiaxin Kang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- South China Agricultural University, Guangzhou, China
| | - Matthew D Taylor
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Bin Fang
- Department of Molecular Oncology, Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pankaj K Singh
- Department of Pathology and Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Koomen
- Department of Molecular Oncology, Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jihui Hao
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
222
|
Costanzini A, Sgarbi G, Maresca A, Del Dotto V, Solaini G, Baracca A. Mitochondrial Mass Assessment in a Selected Cell Line under Different Metabolic Conditions. Cells 2019; 8:cells8111454. [PMID: 31752092 PMCID: PMC6912592 DOI: 10.3390/cells8111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Changes of quantity and/or morphology of cell mitochondria are often associated with metabolic modulation, pathology, and apoptosis. Exogenous fluorescent probes used to investigate changes in mitochondrial content and dynamics are strongly dependent, for their internalization, on the mitochondrial membrane potential and composition, thus limiting the reliability of measurements. To overcome this limitation, genetically encoded recombinant fluorescent proteins, targeted to different cellular districts, were used as reporters. Here, we explored the potential use of mitochondrially targeted red fluorescent probe (mtRFP) to quantify, by flow cytometry, mitochondrial mass changes in cells exposed to different experimental conditions. We first demonstrated that the mtRFP fluorescence intensity is stable during cell culture and it is related with the citrate synthase activity, an established marker of the mitochondrial mass. Incidentally, the expression of mtRFP inside mitochondria did not alter the oxygen consumption rate under both state 3 and 4 respiration conditions. In addition, using this method, we showed for the first time that different inducers of mitochondrial mass change, such as hypoxia exposure or resveratrol treatment of cells, could be consistently detected. We suggest that transfection and selection of stable clones expressing mtRFP is a reliable method to monitor mitochondrial mass changes, particularly when pathophysiological or experimental conditions change ΔΨm, as it occurs during mitochondrial uncoupling or hypoxia/anoxia conditions.
Collapse
Affiliation(s)
- Anna Costanzini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
| | - Alessandra Maresca
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy;
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy;
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| |
Collapse
|
223
|
Mitochondrial Dysfunction in Aging and Cancer. J Clin Med 2019; 8:jcm8111983. [PMID: 31731601 PMCID: PMC6912717 DOI: 10.3390/jcm8111983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for developing cancer, suggesting that these two events may represent two sides of the same coin. It is becoming clear that some mechanisms involved in the aging process are shared with tumorigenesis, through convergent or divergent pathways. Increasing evidence supports a role for mitochondrial dysfunction in promoting aging and in supporting tumorigenesis and cancer progression to a metastatic phenotype. Here, a summary of the current knowledge of three aspects of mitochondrial biology that link mitochondria to aging and cancer is presented. In particular, the focus is on mutations and changes in content of the mitochondrial genome, activation of mitochondria-to-nucleus signaling and the newly discovered mitochondria-telomere communication.
Collapse
|
224
|
Talotta R, Sarzi-Puttini P, Laska MJ, Atzeni F. Retrotransposons shuttling genetic and epigenetic information from the nuclear to the mitochondrial compartment: Do they play a pathogenetic role in scleroderma? Cytokine Growth Factor Rev 2019; 49:42-58. [PMID: 31677967 DOI: 10.1016/j.cytogfr.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Endogenous retroelements are a class of ancient defective viral insertions contained in the genome of host cells, where they account for up to 40% of all DNA. Centuries of co-existence in host genome have led to the development of immunotolerance to endogenous retroelements, most of which are defective and unable to replicate or transcribe functional proteins. However, given their capacity to move across the nuclear and mitochondrial genome and recombine, they could mix phenotypes and give rise to infections that may trigger innate and adaptive immune responses by sensing receptors capable of recognising foreign nucleic acids and proteins. It has recently been suggested that they play a role in the pathogenesis of autoimmune diseases on the grounds of their partial reactivation or the epigenetic control of host gene transcription. A number of studies have confirmed their contribution to the development of rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus, but there is still a lack of data concerning systemic sclerosis (SSc). Their role in the pathogenesis of SSc can be hypothesised on the basis of mitochondrial and nuclear chromatinic damage, and hyper-activation of the immune pathway involved in antiviral defense. SSc is characterised by genetic and immunological evidence of a viral infection but, as no viral agent has yet been isolated from SSc patients, the hypothesis that partial reactivation of endogenous retroviruses may trigger the disease cannot be excluded and deserves further investigation.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, University Hospital ASST-Fatebenefratelli-Sacco, Via G.B Grassi 74, 20157 Milan, Italy.
| | | | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Azienda Ospedaliera Gaetano Martino, Via Consolare Valeria 1, 98100 Messina, Italy.
| |
Collapse
|
225
|
Guha M, Srinivasan S, Sheehan MM, Kijima T, Ruthel G, Whelan K, Tanaka K, Klein-Szanto A, Chandramouleeswaran PM, Nakagawa H, Avadhani NG. Esophageal 3D organoids of MPV17-/- mouse model of mitochondrial DNA depletion show epithelial cell plasticity and telomere attrition. Oncotarget 2019; 10:6245-6259. [PMID: 31692873 PMCID: PMC6817447 DOI: 10.18632/oncotarget.27264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with late-stage detection and poor prognosis. This emphasizes the need to identify new markers for early diagnosis and treatment. Altered mitochondrial genome (mtDNA) content in primary tumors correlates with poor patient prognosis. Here we used three-dimensional (3D) organoids of esophageal epithelial cells (EECs) from the MPV17-/- mouse model of mtDNA depletion to investigate the contribution of reduced mtDNA content in ESCC oncogenicity. To test if mtDNA defects are a contributing factor in ESCC, we used oncogenic stimuli such as ESCC carcinogen 4-nitroquinoline oxide (4-NQO) treatment, or expressing p53R175H oncogenic driver mutation. We observed that EECs and 3D-organoids with mtDNA depletion had cellular, morphological and genetic alterations typical of an oncogenic transition. Furthermore, mitochondrial dysfunction induced cellular transformation is accompanied by elevated mitochondrial fission protein, DRP1 and pharmacologic inhibition of mitochondrial fission by mDivi-1 in the MPV17-/- organoids reversed the phenotype to that of normal EEC organoids. Our studies show that mtDNA copy number depletion, activates a mitochondrial retrograde response, potentiates telomere defects, and increases the oncogenic susceptibility towards ESCC. Furthermore, mtDNA depletion driven cellular plasticity is mediated via altered mitochondrial fission-fusion dynamics.
Collapse
Affiliation(s)
- Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maura M. Sheehan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takashi Kijima
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Gordon Ruthel
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Whelan
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Tanaka
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andres Klein-Szanto
- Histopathology Facility, Fox Chase Cancer Center, Temple University, Philadelphia, PA, USA
| | - Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
226
|
van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019; 36:350-368. [PMID: 31614115 DOI: 10.1016/j.ccell.2019.09.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Widespread adaptation of liquid biopsy for the early detection of cancer has yet to reach clinical utility. Circulating tumor DNA is commonly detected though the presence of genetic alterations, but only a minor fraction of tumor-derived cell-free DNA (cfDNA) fragments exhibit mutations. The cellular processes occurring in cancer development mark the chromatin. These epigenetic marks are reflected by modifications in the cfDNA methylation, fragment size, and structure. In this review, we describe how going beyond DNA sequence information alone, by analyzing cfDNA epigenetic and immune signatures, boosts the potential of liquid biopsy for the early detection of cancer.
Collapse
Affiliation(s)
- Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
227
|
Zhang W, Meyfeldt J, Wang H, Kulkarni S, Lu J, Mandel JA, Marburger B, Liu Y, Gorka JE, Ranganathan S, Prochownik EV. β-Catenin mutations as determinants of hepatoblastoma phenotypes in mice. J Biol Chem 2019; 294:17524-17542. [PMID: 31597698 DOI: 10.1074/jbc.ra119.009979] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver cancer. Although long-term survival of HB is generally favorable, it depends on clinical stage, tumor histology, and a variety of biochemical and molecular features. HB appears almost exclusively before the age of 3 years, is represented by seven histological subtypes, and is usually associated with highly heterogeneous somatic mutations in the catenin β1 (CTNNB1) gene, which encodes β-catenin, a Wnt ligand-responsive transcriptional co-factor. Numerous recurring β-catenin mutations, not previously documented in HB, have also been identified in various other pediatric and adult cancer types. Little is known about the underlying factors that determine the above HB features and behaviors or whether non-HB-associated β-catenin mutations are tumorigenic when expressed in hepatocytes. Here, we investigated the oncogenic properties of 14 different HB- and non-HB-associated β-catenin mutants encoded by Sleeping Beauty vectors following their delivery into the mouse liver by hydrodynamic tail-vein injection. We show that all β-catenin mutations, as well as WT β-catenin, are tumorigenic when co-expressed with a mutant form of yes-associated protein (YAP). However, tumor growth rates, histologies, nuclear-to-cytoplasmic partitioning, and metabolic and transcriptional landscapes were strongly influenced by the identities of the β-catenin mutations. These findings provide a context for understanding at the molecular level the notable biological diversity of HB.
Collapse
Affiliation(s)
- Weiqi Zhang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Tsinghua University School of Medicine, Beijing 100084, China
| | - Jennifer Meyfeldt
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sucheta Kulkarni
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Jordan A Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Brady Marburger
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ying Liu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Joanna E Gorka
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Sarangarajan Ranganathan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224 .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213.,Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
228
|
Abstract
Apart from reliable management of the "powerhouse" of the cell, mitochondria faithfully orchestrate a diverse array of important and critical functions in governing cellular signaling, apoptosis, autophagy, mitophagy and innate and adaptive immune system. Introduction of instability and imbalance in the mitochondrial own genome or the nuclear encoded mitochondrial proteome would result in the manifestation of various diseases through alterations in the oxidative phosphorylation system (OXPHOS) and nuclear-mitochondria retrograde signaling. Understanding mitochondrial biology and dynamism are thus of paramount importance to develop strategies to prevent or treat various diseases caused due to mitochondrial alterations.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
229
|
Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2019; 14:678-687. [PMID: 30120380 DOI: 10.1038/s41581-018-0051-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.
Collapse
|
230
|
Jang SC, Crescitelli R, Cvjetkovic A, Belgrano V, Olofsson Bagge R, Sundfeldt K, Ochiya T, Kalluri R, Lötvall J. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J Extracell Vesicles 2019; 8:1635420. [PMID: 31497264 PMCID: PMC6719261 DOI: 10.1080/20013078.2019.1635420] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are secreted from all cells, and convey messages between cells in health and disease. However, the diversity of EV subpopulations is only beginning to be explored. Since EVs have been implicated in tumour microenvironmental communication, we started to determine the diversity of EVs specifically in this tissue. To do this, we isolated EVs directly from patient melanoma metastatic tissues. Using EV membrane isolation and mass spectrometry analysis, we discovered enrichment of mitochondrial membrane proteins in the melanoma tissue-derived EVs, compared to non-melanoma-derived EVs. Interestingly, two mitochondrial inner membrane proteins MT-CO2 (encoded by the mitochondrial genome) and COX6c (encoded by the nuclear genome) were highly prevalent in the plasma of melanoma patients, as well as in ovarian and breast cancer patients. Furthermore, this subpopulation of EVs contains active mitochondrial enzymes. In summary, tumour tissues are enriched in EVs with mitochondrial membrane proteins and these mitochondrial membrane proteins can be detected in plasma and are increased in melanoma, ovarian cancer as well as breast cancer.
Collapse
Affiliation(s)
- Su Chul Jang
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rossella Crescitelli
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Aleksander Cvjetkovic
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valerio Belgrano
- Department of Surgery and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstretrics and Gynecology and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Lötvall
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
231
|
O'Rourke MB, Town SEL, Dalla PV, Bicknell F, Koh Belic N, Violi JP, Steele JR, Padula MP. What is Normalization? The Strategies Employed in Top-Down and Bottom-Up Proteome Analysis Workflows. Proteomes 2019; 7:proteomes7030029. [PMID: 31443461 PMCID: PMC6789750 DOI: 10.3390/proteomes7030029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available. However, there are many other sources of bias that can occur during experimental design and sample handling that are currently unaddressed. This article aims to cast light on the potential sources of bias and where normalization could be applied to return the sample to its normal state. Throughout we suggest solutions where possible but, in some cases, solutions are not available. Thus, we see this article as a starting point for discussion of the definition of and the issues surrounding the concept of normalization as it applies to the proteomic analysis of biological samples. Specifically, we discuss a wide range of different normalization techniques that can occur at each stage of the sample preparation and analysis process.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer & Biomarker Lab, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney Lvl 8, Kolling Institute. Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Stephanie E L Town
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Penelope V Dalla
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe 2037, Australia
| | - Fiona Bicknell
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Naomi Koh Belic
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Jake P Violi
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Joel R Steele
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
232
|
Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 2019; 10:3763. [PMID: 31434891 PMCID: PMC6704063 DOI: 10.1038/s41467-019-11738-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
The tumor milieu consists of numerous cell types each existing in a different environment. However, a characterization of metabolic heterogeneity at single-cell resolution is not established. Here, we develop a computational pipeline to study metabolic programs in single cells. In two representative human cancers, melanoma and head and neck, we apply this algorithm to define the intratumor metabolic landscape. We report an overall discordance between analyses of single cells and those of bulk tumors with higher metabolic activity in malignant cells than previously appreciated. Variation in mitochondrial programs is found to be the major contributor to metabolic heterogeneity. Surprisingly, the expression of both glycolytic and mitochondrial programs strongly correlates with hypoxia in all cell types. Immune and stromal cells could also be distinguished by their metabolic features. Taken together this analysis establishes a computational framework for characterizing metabolism using single cell expression data and defines principles of the tumor microenvironment. Each cell type in the tumour microenvironment has unique metabolic demands enabling specific functions. Here the authors use published single-cell RNA-seq data and develop a computational framework to better understand the heterogeneity of tumour metabolism, highlighting the discordance between results obtained from single cells and bulk tumours.
Collapse
|
233
|
Targeting Cellular Metabolism Modulates Head and Neck Oncogenesis. Int J Mol Sci 2019; 20:ijms20163960. [PMID: 31416244 PMCID: PMC6721038 DOI: 10.3390/ijms20163960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Considering the great energy and biomass demand for cell survival, cancer cells exhibit unique metabolic signatures compared to normal cells. Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. Recent findings have shown that environmental challenges, as well as intrinsic metabolic manipulations, could modulate HNSCC experimentally and serve as clinic prognostic indicators, suggesting that a better understanding of dynamic metabolic changes during HNSCC development could be of great benefit for developing adjuvant anti-cancer schemes other than conventional therapies. However, the following questions are still poorly understood: (i) how does metabolic reprogramming occur during HNSCC development? (ii) how does the tumorous milieu contribute to HNSCC tumourigenesis? and (iii) at the molecular level, how do various metabolic cues interact with each other to control the oncogenicity and therapeutic sensitivity of HNSCC? In this review article, the regulatory roles of different metabolic pathways in HNSCC and its microenvironment in controlling the malignancy are therefore discussed in the hope of providing a systemic overview regarding what we knew and how cancer metabolism could be translated for the development of anti-cancer therapeutic reagents.
Collapse
|
234
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
235
|
Poulos RC, Perera D, Packham D, Shah A, Janitz C, Pimanda JE, Hawkins N, Ward RL, Hesson LB, Wong JWH. Scarcity of Recurrent Regulatory Driver Mutations in Colorectal Cancer Revealed by Targeted Deep Sequencing. JNCI Cancer Spectr 2019; 3:pkz012. [PMID: 31360895 PMCID: PMC6649856 DOI: 10.1093/jncics/pkz012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
Background Genetic testing of cancer samples primarily focuses on protein-coding regions, despite most mutations arising in noncoding DNA. Noncoding mutations can be pathogenic if they disrupt gene regulation, but the benefits of assessing promoter mutations in driver genes by panel testing has not yet been established. This is especially the case in colorectal cancer, for which few putative driver variants at regulatory elements have been reported. Methods We designed a unique target capture sequencing panel of 39 colorectal cancer driver genes and their promoters, together with more than 35 megabases of regulatory elements focusing on gene promoters. Using this panel, we sequenced 95 colorectal cancer and matched normal samples at high depth, averaging 170× and 82× coverage, respectively. Results Our target capture sequencing design enabled improved coverage and variant detection across captured regions. We found cases with hereditary defects in mismatch and base excision repair due to deleterious germline coding variants, and we identified mutational spectra consistent with these repair deficiencies. Focusing on gene promoters and other regulatory regions, we found little evidence for base or region-specific recurrence of functional somatic mutations. Promoter elements, including TERT, harbored few mutations, with none showing strong functional evidence. Recurrent regulatory mutations were rare in our sequenced regions in colorectal cancer, though we highlight some candidate mutations for future functional studies. Conclusions Our study supports recent findings that regulatory driver mutations are rare in many cancer types and suggests that the inclusion of promoter regions into cancer panel testing is currently likely to have limited clinical utility in colorectal cancer.
Collapse
Affiliation(s)
- Rebecca C Poulos
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Children's Medical Research Institute, Faculty of Medicine and Health The University of Sydney, Westmead, NSW, Australia
| | - Dilmi Perera
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Deborah Packham
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline Janitz
- Next-Generation Sequencing Facility, Office of the Deputy Vice-Chancellor (R&D), Western Sydney University, Penrith, NSW, Australia
| | - John E Pimanda
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas Hawkins
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Robyn L Ward
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Luke B Hesson
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jason W H Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
236
|
Ciesielski GL, Nadalutti CA, Oliveira MT, Jacobs HT, Griffith JD, Kaguni LS. Structural rearrangements in the mitochondrial genome of Drosophila melanogaster induced by elevated levels of the replicative DNA helicase. Nucleic Acids Res 2019; 46:3034-3046. [PMID: 29432582 PMCID: PMC5887560 DOI: 10.1093/nar/gky094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of the mitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA.,Institute of Biosciences and Medical Technology, University of Tampere, FI-33014 Tampere, Finland
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marcos T Oliveira
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA
| | - Howard T Jacobs
- Institute of Biosciences and Medical Technology, University of Tampere, FI-33014 Tampere, Finland.,Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA.,Institute of Biosciences and Medical Technology, University of Tampere, FI-33014 Tampere, Finland
| |
Collapse
|
237
|
Abstract
Perturbed mitochondrial bioenergetics constitute a core pillar of cancer-associated metabolic dysfunction. While mitochondrial dysfunction in cancer may result from myriad biochemical causes, a historically neglected source is that of the mitochondrial genome. Recent large-scale sequencing efforts and clinical studies have highlighted the prevalence of mutations in mitochondrial DNA (mtDNA) in human tumours and their potential roles in cancer progression. In this review we discuss the biology of the mitochondrial genome, sources of mtDNA mutations, and experimental evidence of a role for mtDNA mutations in cancer. We also propose a ‘metabolic licensing’ model for mtDNA mutation-derived dysfunction in cancer initiation and progression.
Collapse
Affiliation(s)
- Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK. .,CRUK Beatson Institute for Cancer Research, Glasgow, UK.
| | | |
Collapse
|
238
|
Sun JT, Duan XZ, Hoffmann AA, Liu Y, Garvin MR, Chen L, Hu G, Zhou JC, Huang HJ, Xue XF, Hong XY. Mitochondrial variation in small brown planthoppers linked to multiple traits and probably reflecting a complex evolutionary trajectory. Mol Ecol 2019; 28:3306-3323. [PMID: 31183910 DOI: 10.1111/mec.15148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill-coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function-altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal-level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xing-Zhi Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Michael R Garvin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jin-Cheng Zhou
- Department of Entomology, Shengyang Agricultural University, Shenyang, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
239
|
Pozzi A, Dowling DK. The Genomic Origins of Small Mitochondrial RNAs: Are They Transcribed by the Mitochondrial DNA or by Mitochondrial Pseudogenes within the Nucleus (NUMTs)? Genome Biol Evol 2019; 11:1883-1896. [PMID: 31218347 PMCID: PMC6619488 DOI: 10.1093/gbe/evz132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies have linked mitochondrial genetic variation to phenotypic modifications; albeit the identity of the mitochondrial polymorphisms involved remains elusive. The search for these polymorphisms led to the discovery of small noncoding RNAs, which appear to be transcribed by the mitochondrial DNA ("small mitochondrial RNAs"). This contention is, however, controversial because the nuclear genome of most animals harbors mitochondrial pseudogenes (NUMTs) of identical sequence to regions of mtDNA, which could alternatively represent the source of these RNAs. To discern the likely contributions of the mitochondrial and nuclear genome to transcribing these small mitochondrial RNAs, we leverage data from six vertebrate species exhibiting markedly different levels of NUMT sequence. We explore whether abundances of small mitochondrial RNAs are associated with levels of NUMT sequence across species, or differences in tissue-specific mtDNA content within species. Evidence for the former would support the hypothesis these RNAs are primarily transcribed by NUMT sequence, whereas evidence for the latter would provide strong evidence for the counter hypothesis that these RNAs are transcribed directly by the mtDNA. No association exists between the abundance of small mitochondrial RNAs and NUMT levels across species. Moreover, a sizable proportion of transcripts map exclusively to the mtDNA sequence, even in species with highest NUMT levels. Conversely, tissue-specific abundances of small mitochondrial RNAs are strongly associated with the mtDNA content. These results support the hypothesis that small mitochondrial RNAs are primarily transcribed by the mitochondrial genome and that this capacity is conserved across Amniota and, most likely, across most metazoan lineages.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
240
|
Chu Q, Ding Y, Cai W, Liu L, Zhang H, Song J. Marek's Disease Virus Infection Induced Mitochondria Changes in Chickens. Int J Mol Sci 2019; 20:ijms20133150. [PMID: 31252692 PMCID: PMC6651546 DOI: 10.3390/ijms20133150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are crucial cellular organelles in eukaryotes and participate in many cell processes including immune response, growth development, and tumorigenesis. Marek’s disease (MD), caused by an avian alpha-herpesvirus Marek’s disease virus (MDV), is characterized with lymphomas and immunosuppression. In this research, we hypothesize that mitochondria may play roles in response to MDV infection. To test it, mitochondrial DNA (mtDNA) abundance and gene expression in immune organs were examined in two well-defined and highly inbred lines of chickens, the MD-susceptible line 72 and the MD-resistant line 63. We found that mitochondrial DNA contents decreased significantly at the transformation phase in spleen of the MD-susceptible line 72 birds in contrast to the MD-resistant line 63. The mtDNA-genes and the nucleus-genes relevant to mtDNA maintenance and transcription, however, were significantly up-regulated. Interestingly, we found that POLG2 might play a potential role that led to the imbalance of mtDNA copy number and gene expression alteration. MDV infection induced imbalance of mitochondrial contents and gene expression, demonstrating the indispensability of mitochondria in virus-induced cell transformation and subsequent lymphoma formation, such as MD development in chicken. This is the first report on relationship between virus infection and mitochondria in chicken, which provides important insights into the understanding on pathogenesis and tumorigenesis due to viral infection.
Collapse
Affiliation(s)
- Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Wentao Cai
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Lei Liu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
241
|
Mitochondrial DNA Variants and Common Diseases: A Mathematical Model for the Diversity of Age-Related mtDNA Mutations. Cells 2019; 8:cells8060608. [PMID: 31216686 PMCID: PMC6627076 DOI: 10.3390/cells8060608] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is the only organelle in the human cell, besides the nucleus, with its own DNA (mtDNA). Since the mitochondrion is critical to the energy metabolism of the eukaryotic cell, it should be unsurprising, then, that a primary driver of cellular aging and related diseases is mtDNA instability over the life of an individual. The mutation rate of mammalian mtDNA is significantly higher than the mutation rate observed for nuclear DNA, due to the poor fidelity of DNA polymerase and the ROS-saturated environment present within the mitochondrion. In this review, we will discuss the current literature showing that mitochondrial dysfunction can contribute to age-related common diseases such as cancer, diabetes, and other commonly occurring diseases. We will then turn our attention to the likely role that mtDNA mutation plays in aging and senescence. Finally, we will use this context to develop a mathematical formula for estimating for the accumulation of somatic mtDNA mutations with age. This resulting model shows that almost 90% of non-proliferating cells would be expected to have at least 100 mutations per cell by the age of 70, and almost no cells would have fewer than 10 mutations, suggesting that mtDNA mutations may contribute significantly to many adult onset diseases.
Collapse
|
242
|
Campo DS, Nayak V, Srinivasamoorthy G, Khudyakov Y. Entropy of mitochondrial DNA circulating in blood is associated with hepatocellular carcinoma. BMC Med Genomics 2019; 12:74. [PMID: 31167647 PMCID: PMC6551242 DOI: 10.1186/s12920-019-0506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Ultra-Deep Sequencing (UDS) enabled identification of specific changes in human genome occurring in malignant tumors, with current approaches calling for the detection of specific mutations associated with certain cancers. However, such associations are frequently idiosyncratic and cannot be generalized for diagnostics. Mitochondrial DNA (mtDNA) has been shown to be functionally associated with several cancer types. Here, we study the association of intra-host mtDNA diversity with Hepatocellular Carcinoma (HCC). Results UDS mtDNA exome data from blood of patients with HCC (n = 293) and non-cancer controls (NC, n = 391) were used to: (i) measure the genetic heterogeneity of nucleotide sites from the entire population of intra-host mtDNA variants rather than to detect specific mutations, and (ii) apply machine learning algorithms to develop a classifier for HCC detection. Average total entropy of HCC mtDNA is 1.24-times lower than of NC mtDNA (p = 2.84E-47). Among all polymorphic sites, 2.09% had a significantly different mean entropy between HCC and NC, with 0.32% of the HCC mtDNA sites having greater (p < 0.05) and 1.77% of the sites having lower mean entropy (p < 0.05) as compared to NC. The entropy profile of each sample was used to further explore the association between mtDNA heterogeneity and HCC by means of a Random Forest (RF) classifier The RF-classifier separated 232 HCC and 232 NC patients with accuracy of up to 99.78% and average accuracy of 92.23% in the 10-fold cross-validation. The classifier accurately separated 93.08% of HCC (n = 61) and NC (n = 159) patients in a validation dataset that was not used for the RF parameter optimization. Conclusions Polymorphic sites contributing most to the mtDNA association with HCC are scattered along the mitochondrial genome, affecting all mitochondrial genes. The findings suggest that application of heterogeneity profiles of intra-host mtDNA variants from blood may help overcome barriers associated with the complex association of specific mutations with cancer, enabling the development of accurate, rapid, inexpensive and minimally invasive diagnostic detection of cancer.
Collapse
Affiliation(s)
- David S Campo
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Vishal Nayak
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Ganesh Srinivasamoorthy
- Office of Advanced Molecular Detection, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CSRA, Inc, Corporate Blvd NE, Atlanta, GA, USA
| | - Yury Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
243
|
Hoitzing H, Gammage PA, Haute LV, Minczuk M, Johnston IG, Jones NS. Energetic costs of cellular and therapeutic control of stochastic mitochondrial DNA populations. PLoS Comput Biol 2019; 15:e1007023. [PMID: 31242175 PMCID: PMC6615642 DOI: 10.1371/journal.pcbi.1007023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/09/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
The dynamics of the cellular proportion of mutant mtDNA molecules is crucial for mitochondrial diseases. Cellular populations of mitochondria are under homeostatic control, but the details of the control mechanisms involved remain elusive. Here, we use stochastic modelling to derive general results for the impact of cellular control on mtDNA populations, the cost to the cell of different mtDNA states, and the optimisation of therapeutic control of mtDNA populations. This formalism yields a wealth of biological results, including that an increasing mtDNA variance can increase the energetic cost of maintaining a tissue, that intermediate levels of heteroplasmy can be more detrimental than homoplasmy even for a dysfunctional mutant, that heteroplasmy distribution (not mean alone) is crucial for the success of gene therapies, and that long-term rather than short intense gene therapies are more likely to beneficially impact mtDNA populations.
Collapse
Affiliation(s)
- Hanne Hoitzing
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Payam A. Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Iain G. Johnston
- Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
- Alan Turing Institute, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
244
|
DiNatale RG, Sanchez A, Hakimi AA, Reznik E. Metabolomics informs common patterns of molecular dysfunction across histologies of renal cell carcinoma. Urol Oncol 2019; 38:755-762. [PMID: 31155438 DOI: 10.1016/j.urolonc.2019.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
The last 30 years of research in renal cell carcinoma (RCC) has revealed that the vast majority of RCC histologies share a recurrent pattern of mutations to metabolic genes, including VHL, MTOR, ELOC, TSC1/2, FH, SDH, and mitochondrial DNA. This has prompted intense study of the consequences of these mutations on cellular metabolism and physiology in vivo by leveraging high-throughput technologies to measure small-molecule metabolites (i.e., metabolomics). The purpose of this review is to give a broad and integrated view on the discoveries made in RCC with metabolomics, and to give a basic understanding of the experimental design of metabolomic studies. Our discussion is organized around five concepts which synthesize discoveries from genomics and metabolomics into the molecular basis of RCC and transcend the different RCC histologies: (1) metabolic phenotypes unique to certain genotypes, (2) mitochondrial dysfunction, (3) the oxidative stress response, (4) epigenetics, and (5) therapy targeted to metabolism. We conclude by proposing several promising lines of investigation that intersect metabolism with emerging ideas in RCC biology.
Collapse
Affiliation(s)
- Renzo G DiNatale
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alejandro Sanchez
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY
| | - A Ari Hakimi
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
245
|
Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin Cell Dev Biol 2019; 98:15-25. [PMID: 31085323 DOI: 10.1016/j.semcdb.2019.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cancer is now considered a multifactorial disorder with different aetiologies and outcomes. Yet, all cancers share some common molecular features. Among these, the reprogramming of cellular metabolism has emerged as a key player in tumour initiation and progression. The finding that metabolic enzymes such as fumarate hydratase (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), when mutated, cause cancer suggested that metabolic dysregulation is not only a consequence of oncogenic transformation but that it can act as cancer driver. However, the mechanisms underpinning the link between metabolic dysregulation and cancer remain only partially understood. In this review we discuss the role of FH loss in tumorigenesis, focusing on the role of fumarate as a key activator of a variety of oncogenic cascades. We also discuss how these alterations are integrated and converge towards common biological processes. This review highlights the complexity of the signals elicited by FH loss, describes that fumarate can act as a bona fide oncogenic event, and provides a compelling hypothesis of the stepwise neoplastic progression after FH loss.
Collapse
|
246
|
Expression of mitochondrial genes predicts survival in pediatric acute myeloid leukemia. Int J Hematol 2019; 110:205-212. [DOI: 10.1007/s12185-019-02666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
247
|
Lin CS, Huang YY, Pan SC, Cheng CT, Liu CC, Shih CH, Ho HL, Yeh YC, Chou TY, Lee MY, Wei YH. Involvement of increased p53 expression in the decrease of mitochondrial DNA copy number and increase of SUV max of FDG-PET scan in esophageal squamous cell carcinoma. Mitochondrion 2019; 47:54-63. [PMID: 31071450 DOI: 10.1016/j.mito.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/27/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
We appraised Warburg effect through analysis of mitochondrial DNA (mtDNA) copy number and maximum standard uptake value (SUVmax) of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scan and their alterations in esophageal squamous cell carcinoma (ESCC). Later T-status and longer longitudinal tumor length were associated with lower mtDNAESCC copy number (p < .05) but higher SUVmax-ESCC (p < .05), respectively. Lower mtDNAESCC copy number correlated with higher SUVmax-ESCC, reciprocally (p < .05). ESCCs expressing mutant p53 protein had lower mtDNAESCC copy number (p = .056) but higher SUVmax-ESCC (p = .046). We conclude that mutant p53 protein may be involved in the Warburg effect of ESCC.
Collapse
Affiliation(s)
- Chen-Sung Lin
- Center for General Education, Kainan University, Taoyuan City, Taiwan; School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Yu-Yi Huang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Nuclear Medicine, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Chih-Tao Cheng
- Division of Psychiatry, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Chia-Chuan Liu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Chih-Hsun Shih
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ying Chou
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Yuan Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|
248
|
Grandhi S, Gould L, Wang J, Grandhi A, LaFramboise T. Mitochondrial genomics in the cancer cell line encyclopedia and a scoring method to effectively pair cell lines for cytoplasmic hybridization. Mitochondrion 2019; 46:256-261. [DOI: 10.1016/j.mito.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/25/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
|
249
|
Antoniou SX, Gaude E, Ruparel M, van der Schee MP, Janes SM, Rintoul RC. The potential of breath analysis to improve outcome for patients with lung cancer. J Breath Res 2019; 13:034002. [PMID: 30822771 DOI: 10.1088/1752-7163/ab0bee] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer remains the most common cause of cancer related death in both the UK and USA. Development of diagnostic approaches that have the ability to detect lung cancer early are a research priority with potential to improve survival. Analysis of exhaled breath metabolites, or volatile organic compounds (VOCs) is an area of considerable interest as it could fulfil such requirements. Numerous studies have shown that VOC profiles are different in the breath of patients with lung cancer compared to healthy individuals or those with non-malignant lung diseases. This review provides a scientific and clinical assessment of the potential value of a breath test in lung cancer. It discusses the current understanding of metabolic pathways that contribute to exhaled VOC production in lung cancer and reviews the research conducted to date. Finally, we highlight important areas for future research and discuss how a breath test could be incorporated into various clinical pathways.
Collapse
Affiliation(s)
- S X Antoniou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.,Equal contribution
| | - E Gaude
- Owlstone Medical, Cambridge, United Kingdom,Equal contribution
| | - M Ruparel
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | | | - S M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - R C Rintoul
- Papworth Trials Unit Collaboration, Royal Papworth Hospital, Cambridge, United Kingdom,Department of Oncology, University of Cambridge, United Kingdom
| | | |
Collapse
|
250
|
Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I. tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res 2019; 79:3034-3049. [PMID: 30996049 DOI: 10.1158/0008-5472.can-19-0789] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
tRNA-derived fragments (tRF) are a class of potent regulatory RNAs. We mined the datasets from The Cancer Genome Atlas (TCGA) representing 32 cancer types with a deterministic and exhaustive pipeline for tRNA fragments. We found that mitochondrial tRNAs contribute disproportionally more tRFs than nuclear tRNAs. Through integrative analyses, we uncovered a multitude of statistically significant and context-dependent associations between the identified tRFs and mRNAs. In many of the 32 cancer types, these associations involve mRNAs from developmental processes, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways that include glycolysis, oxidative phosphorylation, and ATP synthesis. Even though the pathways are common to multiple cancers, the association of specific mRNAs with tRFs depends on and differs from cancer to cancer. The associations between tRFs and mRNAs extend to genomic properties as well; specifically, tRFs are positively correlated with shorter genes that have a higher density in repeats, such as ALUs, MIRs, and ERVLs. Conversely, tRFs are negatively correlated with longer genes that have a lower repeat density, suggesting a possible dichotomy between cell proliferation and differentiation. Analyses of bladder, lung, and kidney cancer data indicate that the tRF-mRNA wiring can also depend on a patient's sex. Sex-dependent associations involve cyclin-dependent kinases in bladder cancer, the MAPK signaling pathway in lung cancer, and purine metabolism in kidney cancer. Taken together, these findings suggest diverse and wide-ranging roles for tRFs and highlight the extensive interconnections of tRFs with key cellular processes and human genomic architecture. SIGNIFICANCE: Across 32 TCGA cancer contexts, nuclear and mitochondrial tRNA fragments exhibit associations with mRNAs that belong to concrete pathways, encode proteins with particular destinations, have a biased repeat content, and are sex dependent.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yohei Kirino
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|