2551
|
Gruber AJ, Solla SA, Surmeier DJ, Houk JC. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 2003; 90:1095-114. [PMID: 12649314 DOI: 10.1152/jn.00618.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit activity in the neostriatum of awake monkeys shows a marked dependence on expected reward. Responses to visual cues differ when animals expect primary reinforcements, such as juice rewards, in comparison to secondary reinforcements, such as tones. The mechanism of this reward-dependent modulation has not been established experimentally. To assess the hypothesis that direct neuromodulatory effects of dopamine on spiny neurons can account for this modulation, we develop a computational model based on simplified representations of key ionic currents and their modulation by D1 dopamine receptor activation. This minimal model can be analyzed in detail. We find that D1-mediated increases of inward rectifying potassium and L-type calcium currents cause a bifurcation: the native up/down state behavior of the spiny neuron model becomes truly bistable, which modulates the peak firing rate and the duration of the up state and introduces a dependence of the response on the past state history. These generic consequences of dopamine neuromodulation through bistability can account for both reward-dependent enhancement and suppression of spiny neuron single-unit responses to visual cues. We validate the model by simulating responses to visual targets in a memory-guided saccade task; our results are in close agreement with the main features of the experimental data. Our model provides a conceptual framework for understanding the functional significance of the short-term neuromodulatory actions of dopamine on signal processing in the striatum.
Collapse
Affiliation(s)
- Aaron J Gruber
- Department of Biomedical Engineering, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
2552
|
Phillips GD, Setzu E, Hitchcott PK. Facilitation of appetitive pavlovian conditioning by d-amphetamine in the shell, but not the core, of the nucleus accumbens. Behav Neurosci 2003; 117:675-84. [PMID: 12931953 DOI: 10.1037/0735-7044.117.4.675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of postsession d-amphetamine within subregions of the ventral and dorsal striatum on appetitive Pavlovian learning were assessed. Rats acquired a conditioned approach response on presentation of a stimulus predictive of 10% sucrose solution (unconditioned stimulus [US]), but not during equally frequent presentations of a stimulus uncorrelated with the US. In Experiment 1, postsession d-amphetamine infusions enhanced acquisition of conditioned responding, with no effect on control measures. In Experiment 2, rats received postsession d-amphetamine in the accumbens shell or core. Shell infusions facilitated conditioning; core infusions did not. In Experiment 3, dorsomedial striatal infusions of d-amphetamine also were ineffective. In sum, dopaminergic activation within the shell, but not the core, of the nucleus accumbens facilitates the acquisition of a Pavlovian association.
Collapse
Affiliation(s)
- Gavin D Phillips
- Department of Psychology, University of York, Heslington, United Kingdom.
| | | | | |
Collapse
|
2553
|
Abstract
Theories of dopamine function are at a crossroads. Computational models derived from single-unit recordings capture changes in dopaminergic neuron firing rate as a prediction error signal. These models employ the prediction error signal in two roles: learning to predict future rewarding events and biasing action choice. Conversely, pharmacological inhibition or lesion of dopaminergic neuron function diminishes the ability of an animal to motivate behaviors directed at acquiring rewards. These lesion experiments have raised the possibility that dopamine release encodes a measure of the incentive value of a contemplated behavioral act. The most complete psychological idea that captures this notion frames the dopamine signal as carrying 'incentive salience'. On the surface, these two competing accounts of dopamine function seem incommensurate. To the contrary, we demonstrate that both of these functions can be captured in a single computational model of the involvement of dopamine in reward prediction for the purpose of reward seeking.
Collapse
Affiliation(s)
- Samuel M McClure
- Center for Theoretical Neuroscience, Human Neuroimaging Laboratory, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
2554
|
Abstract
To perform multiple movements in a preprogrammed order, the brain needs to compute both the visuospatial and temporal organization of such multiple movements. Previous studies revealed participation of the parietal and premotor areas in visuospatial processing, and of the supplementary motor and presupplementary motor areas in temporal structuring of multiple movements. In the basal ganglia, on the other hand, relatively little has been known about how the neuronal processing of the visuospatial and temporal structuring of multiple movements occurs. In the present study, monkeys performed combinations of hand movements, either a lever turn-lever turn or lever turn-button press. Combinations of the two movements were performed under visually instructed condition first, then under remembered condition. We found that activity of 43% (30/69) and 60% (42/69) of putamen neurons was selective to the preprogrammed combination of movements and to the direction of the first movement. The neurons preferring remembered condition were mainly observed in the dorsomedial part of the putamen, where most of neurons were also selective to both direction and combination of movements, while those in the ventrolateral part of the putamen were not selective to the instructed and remembered conditions. The results supported a hypothesis that the movement direction-selective and the movement combination-selective neuron activities in the striatum may play an indispensable role in the visuospatial and temporal organization of movements through the cortico-basal ganglia loop system.
Collapse
Affiliation(s)
- Yasumasa Ueda
- Faculty of Health and Sport Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
2555
|
Bungay PM, Newton-Vinson P, Isele W, Garris PA, Justice JB. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 2003; 86:932-46. [PMID: 12887691 PMCID: PMC2386091 DOI: 10.1046/j.1471-4159.2003.01904.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.
Collapse
Affiliation(s)
- Peter M Bungay
- Division of Bioengineering & Physical Science, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
2556
|
Zheng F, Johnson SW. Dual modulation of gabaergic transmission by metabotropic glutamate receptors in rat ventral tegmental area. Neuroscience 2003; 119:453-60. [PMID: 12770559 DOI: 10.1016/s0306-4522(03)00190-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of metabotropic glutamate receptor (mGluR) activation on non-dopamine (putative GABAergic) neurons and inhibitory synaptic transmission in the ventral tegmental area were examined using intracellular recordings from rat midbrain slices. Perfusion of (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD; agonist for group I and II mGluRs), but not L-amino-4-phosphonobutyric acid (L-AP4; agonist for group III mGluRs), produced membrane depolarization (current clamp) and inward current (voltage clamp) in non-dopamine neurons. The t-ACPD-induced depolarization was concentration-dependent (concentration producing 50% maximal depolarization [EC(50)]=6.1+/-2.5 microM), and was blocked by the antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine, but not by tetrodotoxin and ionotropic glutamate-receptor antagonists. The t-ACPD-evoked responses were mimicked comparably by selective group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the DHPG-induced depolarization in non-dopamine neurons was greatly reduced by mGluR1-specific antagonist 7(hydroxyimino)cyclopropachromen-1a-carboxylate ethyl ester. When recorded in dopamine neurons, the frequency of spontaneous GABA(A) receptor-mediated inhibitory postsynaptic potentials was increased by t-ACPD but not L-AP4. However, the amplitude of evoked inhibitory postsynaptic currents in dopamine neurons was reduced by all three group mGluR agonists. These results reveal a dual modulation of mGLuR activation on inhibitory transmission in midbrain ventral tegmental area: enhancing putative GABAergic neuronal excitability and thus potentiating tonic inhibitory synaptic transmission while reducing evoked synaptic transmission at inhibitory terminals.
Collapse
Affiliation(s)
- F Zheng
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
2557
|
Affiliation(s)
- Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
2558
|
Rodríguez M, González J, Sabaté M, Obeso J, Pereda E. Firing regulation in dopaminergic cells: effect of the partial degeneration of nigrostriatal system in surviving neurons. Eur J Neurosci 2003; 18:53-60. [PMID: 12859337 DOI: 10.1046/j.1460-9568.2003.02723.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two mechanisms for firing rate regulation were identified in dopaminergic nigrostriatal cells (DA cells), one of a renewal nature which prevents short and long interspike intervals (ISIs) and the other of a no-renewal nature which compensates long ISIs with short ISIs and vice versa. Renewal regulation was found in 96% of DA cells and less frequently in nigrocollicular (63%), nigrothalamic (61%) and nigropeduncular (50%) nigral GABA cells. No-renewal regulation was found in 77% of DA cells, and was only observed in 8% of GABA cells. Thus, most DA cells showed both regulatory mechanisms, which justifies the low variability in their firing rate and the low oscillation of extracellular striatal dopamine previously reported. DA cells surviving a partial degeneration of the nigrostriatal system did not show alterations in their firing rate and burst firing but presented a marked disturbance for no-renewal regulation. Under these conditions, small fluctuations in firing rate are not compensated for in time, which could be one of the factors responsible for the motor fluctuations often observed in advanced Parkinson's disease.
Collapse
Affiliation(s)
- Manuel Rodríguez
- Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | |
Collapse
|
2559
|
Rodríguez M, Pereda E, González J, Abdala P, Obeso JA. Neuronal activity in the substantia nigra in the anaesthetized rat has fractal characteristics. Evidence for firing-code patterns in the basal ganglia. Exp Brain Res 2003; 151:167-72. [PMID: 12768261 DOI: 10.1007/s00221-003-1442-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Accepted: 01/28/2003] [Indexed: 10/26/2022]
Abstract
Current models of the basal ganglia assume a firing-rate code for information processing. We have applied five complementary computing methods to assess firing patterns in 188 cells of the substantia nigra in the anaesthetized rat. Fractal firing activity was found in 100% of nigral cells projecting to the superior colliculus, in 51% of cells projecting to the thalamus and in 33% of cells projecting to the pedunculopontine nucleus, but was practically absent in dopaminergic nigrostriatal neurons (3%). The finding of fractal firing patterns may lead to a better understanding of the normal operational mode and pathological manifestations of the basal ganglia.
Collapse
Affiliation(s)
- M Rodríguez
- Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | |
Collapse
|
2560
|
Heuer H, Klein W. One night of total sleep deprivation impairs implicit learning in the serial reaction task, but not the behavioral expression of knowledge. Neuropsychology 2003; 17:507-16. [PMID: 12959516 DOI: 10.1037/0894-4105.17.3.507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Implicit sequence learning in the serial reaction task suffers from total sleep deprivation. The authors compared implicit-learning scores in a sleep-deprivation (SD) group (n = 12) and a control group (n = 6). Both groups were tested immediately after learning a 1st sequence; a delayed test was conducted on the next day (after a night without sleep in the SD group). Immediately after the delayed test a 2nd sequence was learned, followed by an immediate test and a delayed test toward the end of the experiment. In the SD group implicit-learning scores were reduced in both tests of the 2nd sequence, but in neither test of the 1st sequence. Thus, 1 night of total sleep deprivation impairs the acquisition of implicit sequence knowledge, but not its behavioral expression.
Collapse
Affiliation(s)
- Herbert Heuer
- Institut für Arbeitsphysiologie an der Universität Dortmund, Germany.
| | | |
Collapse
|
2561
|
Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J Neurosci 2003. [PMID: 12736363 DOI: 10.1523/jneurosci.23-09-03930.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Projections from the hippocampus, the mediodorsal thalamus (MD), and the ventral tegmental area (VTA) form interconnected neural circuits that converge in the prefrontal cortex (PFC) to participate in the regulation of executive functions. The present study assessed the roles that the MD and VTA play in regulating the hippocampal-PFC pathway using extracellular single-unit recordings in urethane-anesthetized rats. MD stimulation inhibited PFC neuron firing (approximately 100 msec duration) evoked by fimbria/fornix (FF) stimulation in a majority of neurons tested. However, this effect was reduced if activation of thalamocortical inputs occurred almost simultaneously (10 msec) with stimulation of the FF. In a separate population of neurons, burst stimulation of the MD produced a short-term (approximately 100 msec) inhibition or facilitation of FF-evoked firing in 66 and 33% of PFC neurons, respectively. Moreover, tetanic stimulation of the MD caused a longer-lasting (approximately 5 min) potentiation of FF-evoked firing. Burst stimulation of the VTA inhibited FF-evoked firing in a frequency-dependent manner: firing evoked by higher-frequency trains of pulses to the FF was less inhibited than firing evoked by single-pulse stimulation. The inhibitory actions of VTA stimulation were augmented by D1 receptor antagonism and attenuated by D2 and D4 antagonists. Moreover, stimulation of the MD 10 msec before stimulation of the FF attenuated the VTA-mediated inhibition of evoked firing. Thus, both the MD and VTA exert a complex gating action over PFC neural activity, either facilitating or inhibiting firing in the hippocampal-PFC pathway depending on the frequency and relative timing of the arrival of afferent input.
Collapse
|
2562
|
Volz KG, Schubotz RI, von Cramon DY. Predicting events of varying probability: uncertainty investigated by fMRI. Neuroimage 2003; 19:271-80. [PMID: 12814578 DOI: 10.1016/s1053-8119(03)00122-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Many everyday life predictions rely on the experience and memory of event frequencies, i.e., natural samplings. We used functional magnetic resonance imaging (fMRI) to investigate the neural substrates of prediction under varying uncertainty based on a natural sampling approach. The study focused particularly on a comparison with other types of externally attributed uncertainty, such as guessing, and on the frontomedian cortex, which is known to be engaged in many types of decisions under uncertainty. On the basis of preceding stimulus cues, participants predicted events that occurred with probabilities ranging from p = 0.6 to p = 1.0. In contrast to certain predictions in a control task, predictions under uncertainty elicited activations within a posterior frontomedian area (mesial BA 8) and within a set of subcortical areas which are known to subserve dopaminergic modulations. The parametric analysis revealed that activation within the mesial BA 8 significantly increased with increasing uncertainty. A comparison with other types of uncertainty indicates that frontomedian correlates of frequency-based prediction appear to be comparable with those induced in long-term stimulus-response adaptation processes such as hypothesis testing, in contrast to those engaged in short-term error processing such as guessing.
Collapse
Affiliation(s)
- Kirsten G Volz
- Max Planck Institute of Cognitive Neuroscience, Leipzig, Germany.
| | | | | |
Collapse
|
2563
|
Franken IHA. Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:563-79. [PMID: 12787841 DOI: 10.1016/s0278-5846(03)00081-2] [Citation(s) in RCA: 548] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present review, an integrated approach to craving and addiction is discussed, which is based on recent insights from psychology and neuropsychopharmacology. An integrated model explains craving and relapse in humans by the psychological mechanism of "attentional bias" and provides neuropsychopharmacological mechanisms for this bias. According to this model, cognitive processes mediate between drug stimulus and the subject's response to this stimulus and subsequent behavioral response (e.g., drug use, relapse). According to the model, a conditioned drug stimulus produces an increase in dopamine levels in the corticostriatal circuit, in particular the anterior cingulate gyrus, amygdala, and nucleus accumbens, which in turn serves to draw the subject's attention towards a perceived drug stimulus. This process results in motor preparation and a hyperattentive state towards drug-related stimuli that, ultimately, promotes further craving and relapse. Evidence for this attentional bias hypothesis is reviewed from both the psychopharmacological and the neuroanatomical viewpoints. The attentional bias hypothesis raises several suggestions for clinical approaches and further research.
Collapse
Affiliation(s)
- Ingmar H A Franken
- Department of Psychology, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam 3000 DR, The Netherlands.
| |
Collapse
|
2564
|
Abstract
Positron emission tomography (PET) can detect the presence of striatal, pallidal, midbrain, and cortical dopamine terminal dysfunction in vivo in Parkinson's disease (PD). In addition, dopamine release during motor tasks can be assessed as reflected by changes in receptor availability to PET ligands. Furthermore, the functional effects of focal dopamine replacement via implantation of fetal cells or glia-derived neurotrophic factor (GDNF) infusion into putamen can be monitored. In this review, the insight that PET has given us concerning the role of dopamine in motor control is presented, and the functional substrates underlying PD symptomatologies are discussed.
Collapse
Affiliation(s)
- David J Brooks
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
2565
|
Pisapia ND, Goddard NH. A neural model of frontostriatal interactions for behavioural planning and action chunking. Neurocomputing 2003. [DOI: 10.1016/s0925-2312(02)00753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2566
|
Ivlieva NY, Timofeeva NO. Neuron activity in the pedunculopontine nucleus during an operant conditioned defensive reflex. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:499-506. [PMID: 12921181 DOI: 10.1023/a:1023419418869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The activity of 109 neurons in the compact and diffuse zones of the pedunculopontine nucleus was studied in freely mobile rabbits during the acquisition and performance of a defensive operant conditioned reflex. A total of 47% of the neurons recorded showed responsive properties to the conditioned stimulus, which is evidence for the involvement of the pedunculopontine nucleus in operant learning. A significant predominance of excitatory conditioned reflex responses to the conditioned stimulus was demonstrated, showing that the nature of the influence of the pedunculopontine nucleus on projection structures during learning is mostly excitatory. The main patterns of cell responses to the conditioned stimulus were identified, these reflecting the nature of the influence of the conditioned stimulus on neuron activity, the structure of the behavioral act, and the properties of the reinforcement, suggesting a relationship between the pedunculopontine nucleus and the processes of attention, motor learning, and reinforcement. A significant decrease in the reactivity of neurons in the pedunculopontine nucleus to the conditioned stimulus as a result of specialization due to learning was demonstrated. Differences in the associative reactive properties of the compact and diffuse zones of the pedunculopontine nucleus to the conditioned stimulus were identified, which is evidence for the functional heterogeneity of this formation and suggests a leading role for the cholinergic compact zone in operant defensive behavior.
Collapse
Affiliation(s)
- N Yu Ivlieva
- Department of Higher Nervous Activity, M. V. Lomonosov Moscow State University
| | | |
Collapse
|
2567
|
O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron 2003; 38:329-37. [PMID: 12718865 DOI: 10.1016/s0896-6273(03)00169-7] [Citation(s) in RCA: 987] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.
Collapse
Affiliation(s)
- John P O'Doherty
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, WC1N 3BG, London, United Kingdom.
| | | | | | | | | |
Collapse
|
2568
|
Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2003; 6 Suppl 1:S31-43. [PMID: 12685517 DOI: 10.1177/070674370200601s05] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylphenidate (MPH) is the most commonly prescribed drug for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). We have used Positron Emission Tomography (PET) to investigate the mechanism of action of MPH in the human brain. We have shown (a) that oral MPH reaches peak concentration in the brain 60-90 minutes after its administration, (b) that therapeutic doses of MPH block more than 50% of the dopamine transporters (DAT), and (c) that of the two enantiomers that compose MPH, it is d-threo-methylphenidate (d-MPH) and not l-threo-methylphenidate (l-MPH) that binds to the DAT. We have also shown that therapeutic doses of MPH significantly enhance extracellular dopamine (DA) in the basal ganglia, which is an effect that appears to be modulated by the rate of DA release and that is affected by age (older subjects show less effect). Thus, we postulate (a) that MPH's therapeutic effects are in part due to amplification of DA signals, (b) that variability in responses is in part due to differences in DA tone between subjects, and (c) that MPH's effects are context dependent. Because DA enhances task specific neuronal signaling and decreases noise, we also postulate that MPH-induced increases in DA could improve attention and decrease distractibility; and that since DA modulates motivation, the increases in DA would also enhance the saliency of the task facilitating the 'interest it elicits' and thus improving performance.
Collapse
Affiliation(s)
- N D Volkow
- Medical Department,Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | | | |
Collapse
|
2569
|
Abstract
We used event-related potentials (ERPs) to probe the effects of feedback in a hypothesis testing (HT) paradigm. Thirteen college students serially tested hypotheses concerning a hidden rule by judging its presence or absence in triplets of digits and revised them on the basis of an exogenous performance feedback. ERPs time-locked to performance feedback were then examined. The results showed differences between responses to positive and negative feedback at all cortical sites. Negative feedback, indicating incorrect performance, was associated to a negative deflection preceding a P300-like wave. Spatiotemporal principal component analysis (PCA) showed the interplay between early frontal components and later central and posterior ones. Lateralization of activity was selectively detectable at frontal sites, with a left frontal dominance for both positive and negative feedback. These results are discussed in terms of a proposed computational model of trial-to-trial feedback in HT in which the cognitive and emotive aspects of feedback are explicitly linked to putative mediating brain mechanisms. The properties of different feedback types and feedback-related deficits in depression are also discussed.
Collapse
Affiliation(s)
- David Papo
- Université de Provence, Marseille Cedex 3, France.
| | | | | | | |
Collapse
|
2570
|
Phillips GD, Setzu E, Vugler A, Hitchcott PK. Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience 2003; 117:755-67. [PMID: 12617979 DOI: 10.1016/s0306-4522(02)00799-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopaminergic activity during Pavlovian or instrumental learning in key target regions of the mesotelencephalic dopamine system was investigated immunohistochemically using antibodies raised against glutaraldehyde-conjugated dopamine. Experiment 1 examined dopamine immunoreactivity during acquisition of a Pavlovian conditioned-approach response. Observations were taken at three stages of learning: initial, intermediate and asymptotic; each with a conditioned stimulus+ (CS+) group for whom visual or auditory stimuli immediately preceded an unconditioned stimulus (sucrose), and a conditioned stimulus- (CS-) group for whom stimuli and the unconditioned stimulus were unpaired. Animals learned to approach the alcove during CS+ presentations, whilst approach behaviour of the CS- group remained low. In general, target regions exhibiting a dopaminergic reaction responded maximally during the intermediate stage of acquisition, and were less responsive initially, and not responsive at all at asymptote. Specifically, the pattern of dopaminergic response was: shell more than core of the nucleus accumbens; prefrontal cortex, central and basolateral nuclei of the amygdala also significantly responsive. Mediodorsal and laterodorsal striatal regions were reactive only very early in training. Experiment 2 examined dopaminergic reaction following acquisition of a novel conditioned instrumental response. The conditioned response+ (CR+) group responded at a much higher rate on the lever for which unconditioned stimulus-associated stimuli were presented, than on the control lever. The conditioned response- (CR-) group responded at a low rate on both levers. In contrast with experiment 1, the most responsive regions were the core of the nucleus accumbens, medial prefrontal cortex and basolateral area of the amygdala. Thus, the acquisition, but not expression of Pavlovian associations activated dopamine within several key target regions of the mesotelencephalic dopamine system, and preferentially within the shell rather than core of the nucleus accumbens. By contrast, acquisition of a novel instrumental response preferentially activated the core of the nucleus accumbens, and basolateral area of the amygdala. These data carry significant implications for the potential role of these regions in learning and memory.
Collapse
Affiliation(s)
- G D Phillips
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | |
Collapse
|
2571
|
Zheng F, Johnson SW. Metabotropic glutamate and muscarinic cholinergic receptor-mediated preferential inhibition of N-methyl-D-aspartate component of transmissions in rat ventral tegmental area. Neuroscience 2003; 116:1013-20. [PMID: 12617942 DOI: 10.1016/s0306-4522(02)00569-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Presynaptic inhibition is one of the major control mechanisms in the CNS. Our laboratory recently reported that presynaptic GABA(B) and adenosine A(1) receptors mediate a preferential inhibition on N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents recorded in rat midbrain dopamine neurons. Here we extended these findings to metabotropic glutamate and muscarinic cholinergic receptors. Intracellular voltage clamp recordings were made from dopamine neurons in rat ventral tegmental area in slice preparations. (+/-)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (agonist for groups I and II metabotropic glutamate receptors) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4; agonist for group III metabotropic glutamate receptors) were significantly more potent for inhibiting N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents, as compared with inhibition of excitatory postsynaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Such preferential inhibition of the N-methyl-D-aspartate component was also observed for muscarine (agonist for muscarinic cholinergic receptors). Inhibitory effects of (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid, L-AP4, and muscarine were blocked reversibly by their respective antagonists [(RS)-alpha-methyl-4-carboxyphenylglycine, (RS)-alpha-methyl-4-phosphonophenylglycine, and 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide]. In addition, all three agonists increased the ratio of excitatory postsynaptic currents in paired-pulse studies and did not reduce currents induced by exogenous N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. Interestingly, the glutamate release stimulator 4-aminopyridine (30 microM) and the glutamate uptake inhibitor L-anti-endo-3,4-methanopyrrolidine dicarboxylate (300 microM) preferentially increased the amplitude of N-methyl-D-aspartate excitatory postsynaptic currents.Thus, agonists for metabotropic glutamate and muscarinic cholinergic receptors act presynaptically to cause a preferential reduction in the N-methyl-D-aspartate component of excitatory synaptic transmissions. Together with the evidence for GABA(B) and adenosine A(1) receptor-mediated preferential inhibition of the N-methyl-D-aspartate component, the present results suggest that limiting glutamate spillover onto postsynaptic N-methyl-D-aspartate receptors may be a general rule for presynaptic modulation in midbrain dopamine neurons.
Collapse
Affiliation(s)
- F Zheng
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97201, USA
| | | |
Collapse
|
2572
|
Preclinical effects of conventional and atypical antipsychotic drugs: defining the mechanisms of action. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-2772(03)00017-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2573
|
Cromwell HC, Schultz W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J Neurophysiol 2003; 89:2823-38. [PMID: 12611937 DOI: 10.1152/jn.01014.2002] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In behavioral science, it is well known that humans and nonhuman animals are highly sensitive to differences in reward magnitude when choosing an outcome from a set of alternatives. We know that a realm of behavioral reactions is altered when animals begin to expect different levels of reward outcome. Our present aim was to investigate how the expectation for different magnitudes of reward influences behavior-related neurophysiology in the anterior striatum. In a spatial delayed response task, different instruction pictures are presented to the monkey. Each image represents a different magnitude of juice. By reaching to the spatial location where an instruction picture was presented, animals could receive the particular liquid amount designated by the stimulus. Reliable preferences in reward choice trials and differences in anticipatory licks, performance errors, and reaction times indicated that animals differentially expected the various reward amounts predicted by the instruction cues. A total of 374 of 2,000 neurons in the anterior parts of the caudate nucleus, putamen, and ventral striatum showed five forms of task-related activation during the preparation or execution of movement and activations preceding or following the liquid drop delivery. Approximately one-half of these striatal neurons showed differing response levels dependent on the magnitude of liquid to be received. Results of a linear regression analysis showed that reward magnitude and single cell discharge rate were related in a subset of neurons by a monotonic positive or negative relationship. Overall, these data support the idea that the striatum utilizes expectancies that contain precise information concerning the predicted, forthcoming level of reward in directing general behavioral reactions.
Collapse
|
2574
|
Thomas KL, Arroyo M, Everitt BJ. Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur J Neurosci 2003; 17:1964-72. [PMID: 12752796 DOI: 10.1046/j.1460-9568.2003.02617.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether the expression of the plasticity-associated gene, zif268, was associated with memories retrieved by exposure to a discrete stimulus that had been associated with cocaine, either self-administered or administered noncontingently. In the absence of drug, passive presentation of a cocaine-associated light stimulus induced changes in the expression of zif268 measured by in situ hybridization within a limbic cortical-ventral striatal circuit that was not only regionally selective but related to whether the rats had originally received response-contingent or noncontingent stimulus-drug pairings. In rats that had self-administered drug, the cocaine-conditioned stimulus (CS) increased zif268 expression in neurons of the ventral tegmental area, nucleus accumbens core and shell, and basal nucleus of the amygdala but not hippocampus, prelimbic area of the medial prefrontal cortex or amygdala central nucleus. The same CS that had been associated with cocaine administered noncontingently additionally increased zif268 mRNA levels in area Cg1 of the anterior cingulate cortex, ventral and lateral regions of the orbitofrontal cortex and lateral nucleus of the amygdala. Zif268 induction was related to the predictive relationship between the stimulus and cocaine as no changes were seen in cocaine-experienced rats that had received unpaired light and drug presentations during training. Thus, zif268 expression is increased by appetitively (drug) conditioned stimuli after Pavlovian learning. Zif268 may participate in the molecular mechanisms underlying the reconsolidation or re-encoding of Pavlovian stimulus-drug associations across a distributed limbic cortical-ventral striatal neural network and that may contribute to the basis of the enduring drug-seeking behaviour produced by environmental cues.
Collapse
Affiliation(s)
- Kerrie L Thomas
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | |
Collapse
|
2575
|
Braver TS, Brown JW. Principles of pleasure prediction: specifying the neural dynamics of human reward learning. Neuron 2003; 38:150-2. [PMID: 12718849 DOI: 10.1016/s0896-6273(03)00230-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Accumulating evidence from nonhuman primates suggests that midbrain dopamine cells code reward prediction errors and that this signal subserves reward learning in dopamine-receiving brain structures. In this issue of Neuron, McClure et al. and O'Doherty et al. use event-related fMRI to provide some of the strongest evidence to date that the reward prediction error model of dopamine system activity applies equally well to human reward learning.
Collapse
Affiliation(s)
- Todd S Braver
- Department of Psychology, Washington University, St. Louis, MO 63139, USA
| | | |
Collapse
|
2576
|
McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive learning task activate human striatum. Neuron 2003; 38:339-46. [PMID: 12718866 DOI: 10.1016/s0896-6273(03)00154-5] [Citation(s) in RCA: 626] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Functional MRI experiments in human subjects strongly suggest that the striatum participates in processing information about the predictability of rewarding stimuli. However, stimuli can be unpredictable in character (what stimulus arrives next), unpredictable in time (when the stimulus arrives), and unpredictable in amount (how much arrives). These variables have not been dissociated in previous imaging work in humans, thus conflating possible interpretations of the kinds of expectation errors driving the measured brain responses. Using a passive conditioning task and fMRI in human subjects, we show that positive and negative prediction errors in reward delivery time correlate with BOLD changes in human striatum, with the strongest activation lateralized to the left putamen. For the negative prediction error, the brain response was elicited by expectations only and not by stimuli presented directly; that is, we measured the brain response to nothing delivered (juice expected but not delivered) contrasted with nothing delivered (nothing expected).
Collapse
Affiliation(s)
- Samuel M McClure
- Human Neuroimaging Lab, Center for Theoretical Neuroscience, Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
2577
|
Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature 2003; 422:614-8. [PMID: 12687000 DOI: 10.1038/nature01476] [Citation(s) in RCA: 793] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Accepted: 02/03/2003] [Indexed: 11/09/2022]
Abstract
The dopamine-containing projection from the ventral tegmental area of the midbrain to the nucleus accumbens is critically involved in mediating the reinforcing properties of cocaine. Although neurons in this area respond to rewards on a subsecond timescale, neurochemical studies have only addressed the role of dopamine in drug addiction by examining changes in the tonic (minute-to-minute) levels of extracellular dopamine. To investigate the role of phasic (subsecond) dopamine signalling, we measured dopamine every 100 ms in the nucleus accumbens using electrochemical technology. Rapid changes in extracellular dopamine concentration were observed at key aspects of drug-taking behaviour in rats. Before lever presses for cocaine, there was an increase in dopamine that coincided with the initiation of drug-seeking behaviours. Notably, these behaviours could be reproduced by electrically evoking dopamine release on this timescale. After lever presses, there were further increases in dopamine concentration at the concurrent presentation of cocaine-related cues. These cues alone also elicited similar, rapid dopamine signalling, but only in animals where they had previously been paired to cocaine delivery. These findings reveal an unprecedented role for dopamine in the regulation of drug taking in real time.
Collapse
Affiliation(s)
- Paul E M Phillips
- Department of Psychology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
2578
|
|
2579
|
Abstract
Traditionally, addiction research in neuroscience has focused on mechanisms involving dopamine and endogenous opioids. More recently, it has been realized that glutamate also plays a central role in processes underlying the development and maintenance of addiction. These processes include reinforcement, sensitization, habit learning and reinforcement learning, context conditioning, craving and relapse. In the past few years, some major advances have been made in the understanding of how glutamate acts and interacts with other transmitters (in particular, dopamine) in the context of processes underlying addiction. It appears that while many actions of glutamate derive their importance from a stimulatory interaction with the dopaminergic system, there are some glutamatergic mechanisms that contribute to addiction independent of dopaminergic systems. Among those, context-specific aspects of behavioral determinants (ie control over behavior by conditioned stimuli) appear to depend heavily on glutamatergic transmission. A better understanding of the underlying mechanisms might open new avenues to the treatment of addiction, in particular regarding relapse prevention.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, R&D, Department of Pharmacology, Aachen, Germany.
| | | |
Collapse
|
2580
|
Affiliation(s)
- Peter Shizgal
- Center for Studies in Behavioral Neurobiology, Concordia University, Montréal, Quebec, H3G 1M8, Canada.
| | | |
Collapse
|
2581
|
Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003; 299:1898-902. [PMID: 12649484 DOI: 10.1126/science.1077349] [Citation(s) in RCA: 1210] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Uncertainty is critical in the measure of information and in assessing the accuracy of predictions. It is determined by probability P, being maximal at P = 0.5 and decreasing at higher and lower probabilities. Using distinct stimuli to indicate the probability of reward, we found that the phasic activation of dopamine neurons varied monotonically across the full range of probabilities, supporting past claims that this response codes the discrepancy between predicted and actual reward. In contrast, a previously unobserved response covaried with uncertainty and consisted of a gradual increase in activity until the potential time of reward. The coding of uncertainty suggests a possible role for dopamine signals in attention-based learning and risk-taking behavior.
Collapse
|
2582
|
Paladini CA, Robinson S, Morikawa H, Williams JT, Palmiter RD. Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism. Proc Natl Acad Sci U S A 2003; 100:2866-71. [PMID: 12604788 PMCID: PMC151432 DOI: 10.1073/pnas.0138018100] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the firing pattern of midbrain dopamine neurons are thought to encode information for certain types of reward-related learning. In particular, the burst pattern of firing is predicted to result in more efficient dopamine release at target loci, which could underlie changes in synaptic plasticity. In this study, the effects of dopamine on the firing patterns of dopaminergic neurons in vivo and their electrophysiological characteristics in vitro were examined by using a genetic dopamine-deficient (DD) mouse model. Extracellular recordings in vivo showed that, although the firing pattern of dopamine neurons in normal mice included bursting activity, DD mice recordings showed only a single-spike pattern of activity with no bursts. Bursting was restored in DD mice after systemic administration of the dopamine precursor, L-3,4-dihydroxyphenylalanine (L-dopa). Whole-cell recordings in vitro demonstrated that the basic electrophysiology and pharmacology of dopamine neurons were identical between DD and control mice, except that amphetamine did not elicit a hyperpolarizing current in slices from DD mice. These data suggest that endogenously released dopamine plays a critical role in the afferent control of dopamine neuron bursting activity and that this control is exerted via a network feedback mechanism.
Collapse
Affiliation(s)
- Carlos A Paladini
- Vollum Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
2583
|
Both S, Everaerd W, Laan E. Modulation of spinal reflexes by aversive and sexually appetitive stimuli. Psychophysiology 2003; 40:174-83. [PMID: 12820858 DOI: 10.1111/1469-8986.00019] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, modulation of spinal tendinous (T) reflexes by sexual stimulation was investigated. T reflexes are augmented in states of appetitive and defensive action and modified by differences in arousal intensity. Reflexes were expected to be facilitated by both pleasant (sexual) and unpleasant (anxiety) stimuli. Subjects were exposed to a sexual, an anxiety-inducing, a sexually threatening, and a neutral film excerpt. Genital arousal, emotional experience, subjective action tendencies, and T reflexes were monitored. Self-report and genital data confirmed the affective states as intended. T reflex amplitude significantly increased during viewing of emotionally arousing film excerpts as compared with a neutral film excerpt. T reflexes were facilitated by the sex stimulus to the same extent as by the anxiety and sexual threat stimuli. The results support the view of sexual arousal as an emotional state, generating sex-specific autonomic and general somatic motor system responses, which prepare the organism for action.
Collapse
Affiliation(s)
- Stephanie Both
- Department of Clinical Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
2584
|
Abstract
Over the past two decades significant progress has been made toward understanding the neural basis of primate decision making, the biological process that combines sensory data with stored information to select and execute behavioral responses. The most striking progress in this area has been made in studies of visual-saccadic decision making, a system that is becoming a model for understanding decision making in general. In this system, theoretical models of efficient decision making developed in the social sciences are beginning to be used to describe the computations the brain must perform when it connects sensation and action. Guided in part by these economic models, neurophysiologists have been able to describe neuronal activity recorded from the brains of awake-behaving primates during actual decision making. These recent studies have examined the neural basis of decisions, ranging from those made in predictable sensorimotor tasks to those unpredictable decisions made when animals are engaged in strategic conflict. All of these experiments seem to describe a surprisingly well-integrated set of physiological mechanisms that can account for a broad range of behavioral phenomena. This review presents many of these recent studies within the emerging neuroeconomic framework for understanding primate decision making.
Collapse
Affiliation(s)
- Paul W Glimcher
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
2585
|
Volkow ND, Wang GJ, Maynard L, Jayne M, Fowler JS, Zhu W, Logan J, Gatley SJ, Ding YS, Wong C, Pappas N. Brain dopamine is associated with eating behaviors in humans. Int J Eat Disord 2003; 33:136-42. [PMID: 12616579 DOI: 10.1002/eat.10118] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Eating behavior in humans is influenced by variables other than just hunger-satiety including cognitive restraint, emotional distress, and sensitivity to food stimuli. We investigate the role of dopamine (DA), a neurotransmitter involved with food motivation, in these variables. METHODS We used the Dutch Eating Behavior Questionnaire (DEBQ) to measure Restraint, Emotionality, and Externality in 10 subjects. We correlated DEBQ scores with brain DA levels. Positron emission tomography and [(11)C]raclopride uptake were used to measure baseline D(2) receptors (neutral stimulation) and to assess changes in extracellular DA to food stimulation (display of food). RESULTS Restraint was correlated with DA changes with food stimulation (higher restraint, greater responsivity), emotionality was negatively correlated with baseline D(2) receptors (higher emotionality, lower D(2) receptors), whereas externality was not. These correlations were significant in the dorsal but not in the ventral striatum. DISCUSSION These results provide evidence that DA in the dorsal striatum is involved with the restraint and emotionality components regulating eating behavior and that these two dimensions reflect different neurobiologic processes.
Collapse
Affiliation(s)
- Nora D Volkow
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2586
|
El-Ghundi M, O'Dowd BF, Erclik M, George SR. Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 2003; 17:851-62. [PMID: 12603275 DOI: 10.1046/j.1460-9568.2003.02496.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopaminergic systems are thought to mediate the rewarding and reinforcing effects of palatable food. However, the relative contribution of different dopamine receptor subtypes is not clear. We used dopamine D1 receptor deficient mice (D1 -/-) and their wild-type and heterozygous littermates to study the role of the D1 receptor in palatable food reinforced behaviour using operant responding and free access paradigms. Non-deprived mice were trained to press a lever for sucrose pellets under three schedules of reinforcement including fixed ratios (FR-1 and FR-4) and a progressive ratio (PR). Responding on one lever was reinforced by the delivery of a sucrose pellet or solution while responding on a second lever had no programmed consequences. Initially, D1 mutant mice took longer to learn to discriminate between the two levers and had significantly lower operant responding for sucrose pellets and solution than wild-type and heterozygous mice under all schedules of reinforcement. Food deprivation enhanced responding on the active lever in all mice although it remained significantly lower in D1 -/- mice than in control mice. Following extinction of sucrose reinforcement and reversal of the levers, D1 -/- mice showed deficits in extinguishing and reversing previously learned responses. Home cage intake and preference of sucrose pellets and solutions when given under free-choice access paradigms were similar among the groups. These results suggest that the dopamine D1 receptor plays a role in the motivation to work for reward (palatable food) but not in reward perception and is critical in learning new but relevant information and discontinuing previously learned responses.
Collapse
Affiliation(s)
- Mufida El-Ghundi
- Department of Pharmacology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
2587
|
Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 2003. [PMID: 12514211 DOI: 10.1523/jneurosci.23-01-00149.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca(2+)-sensitive K(+) channels, which is mediated by the release of Ca(2+) from intracellular stores. Neurotransmitter-induced mobilization of Ca(2+) is generally ascribed to the action of inositol 1,4,5-triphosphate (IP(3)) in neurons. Here we show that the mGluR-mediated Ca(2+) mobilization in dopamine neurons is caused by two intracellular second messengers: IP(3) and cyclic ADP-ribose (cADPR). Focal activation of mGluRs, attained by synaptic release of glutamate or iontophoretic application of aspartate, induced a wave of Ca(2+) that spread over a distance of approximately 50 microm through dendrites and the soma. Simultaneous inhibition of both IP(3)- and cADPR-dependent pathways with heparin and 8-NH(2)-cADPR was required to block the mGluR-induced Ca(2+) release, indicating a redundancy in the signaling mechanism. Activation of ryanodine receptors was suggested to mediate the cADPR-dependent pathway, because ruthenium red, an antagonist of ryanodine receptors, inhibited the mGluR response only when the cADPR-dependent pathway was isolated by blocking the IP(3)-dependent pathway with heparin. Finally, the mGluR-mediated hyperpolarization was shown to induce a transient pause in the spontaneous firing of dopamine neurons. These results demonstrate that an excitatory neurotransmitter glutamate uses multiple intracellular pathways to exert an inhibitory control on the excitability of dopamine neurons.
Collapse
|
2588
|
Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 2003. [PMID: 12514194 DOI: 10.1523/jneurosci.23-01-00007.2003] [Citation(s) in RCA: 382] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Orexins/hypocretins are involved in mechanisms of emotional arousal and short-term regulation of feeding. The dense projection of orexin neurons from the lateral hypothalamus to mesocorticolimbic dopaminergic neurons in the ventral tegmental area (VTA) is likely to be important in both of these processes. We used single-unit extracellular and whole-cell patch-clamp recordings to examine the effects of orexins (A and B) and melanin-concentrating hormone (MCH) on neurons in this region. Orexins caused an increase in firing frequency (EC(50) 78 nm), burst firing, or no change in firing in different groups of A10 dopamine neurons. Neurons showing oscillatory firing in response to orexins had smaller afterhyperpolarizations than the other groups of dopamine neurons. Orexins (100 nm) also increased the firing frequency of nondopaminergic neurons in the VTA. In the presence of tetrodotoxin (0.5 microm), orexins depolarized both dopaminergic and nondopaminergic neurons, indicating a direct postsynaptic effect. Unlike the orexins, MCH did not affect the firing of either group of neurons. Single-cell PCR experiments showed that orexin receptors were expressed in both dopaminergic and nondopaminergic neurons and that the calcium binding protein calbindin was only expressed in neurons, which also expressed orexin receptors. In narcolepsy, in which the orexin system is disrupted, dysfunction of the orexin modulation of VTA neurons may be important in triggering attacks of cataplexy.
Collapse
|
2589
|
Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J Neurosci 2003. [PMID: 12486176 DOI: 10.1523/jneurosci.22-24-10829.2002] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We combined event-related functional magnetic resonance imaging (fMRI) with olfactory classical conditioning to differentiate the neural responses evoked during appetitive and aversive olfactory learning. Three neutral faces [the conditioned stimuli (CS+)] were repetitively paired with pleasant, neutral, or unpleasant odors [the unconditioned stimuli (UCS)] in a partial reinforcement schedule. A fourth face was never paired to odor [the nonconditioned stimulus (CS-)]. Learning-related neural activity, comparing unpaired (face only) CS+ stimuli with CS-, showed valence-independent activations in rostral and caudal orbitofrontal cortex (OFC). Medial OFC responded to the appetitive (app) CS+, whereas lateral OFC responded to the aversive (av) CS+. Within nucleus accumbens, neural responses showed divergent activation profiles that increased with time in response to the appCS+ but decreased in response to the avCS+. In posterior amygdala, responses were elicited by the appCS+, which habituated over time. In temporal piriform cortex, neural responses were evoked by the avCS+, which progressively increased with time. These results highlight regional and temporal dissociations during olfactory learning and imply that emotionally salient odors can engender cross-modal associative learning. Moreover, the findings suggest that the role of human primary (piriform) and secondary olfactory cortices transcends their function as mere intermediaries of chemosensory information processing.
Collapse
|
2590
|
Coizet V, Comoli E, Westby GWM, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci 2003; 17:28-40. [PMID: 12534966 DOI: 10.1046/j.1460-9568.2003.02415.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The source of short-latency visual input to midbrain dopaminergic (DA) neurons is not currently known; however, the superior colliculus (SC) is a subcortical visual structure which has response latencies consistently shorter than those recorded for DA neurons in substantia nigra and the ventral tegmental area. To test whether the SC represents a plausible route by which visual information may gain short latency access to the ventral midbrain, the present study examined whether experimental stimulation of the SC can influence the activity of midbrain DA neurons. In urethane-anaesthetized rats, 63 pairs of extracellular recordings were obtained from neurons in the SC and ipsilateral ventral midbrain, before and after local disinhibitory injections of the GABA antagonist bicuculline (20-40 ng/200-400 nL saline) into the SC. Neurons recorded from substantia nigra and the ventral tegmental area were classified as putative DA (25/63, 39.7%) or putative non-DA (38/63, 60.3%). In nearly half the cases (27/63, 42.8%), chemical stimulation of the SC evoked a corresponding increase in neural activity in the ventral midbrain. This excitatory effect did not distinguish between DA and non-DA neurons. In 6/63 cases (9.5%), SC activation elicited a reliable suppression of activity, while the remaining 30/63 cases (47.6%) were unaffected. In almost a third of cases (16/57, 28.1%) intense phasic activation of the SC was associated with correlated phasic activation of neurons in substantia nigra and the ventral tegmental area. These data suggest that the SC is in a position to play an important role in discriminating the appropriate stimulus qualities required to activate DA cells at short latency.
Collapse
Affiliation(s)
- Véronique Coizet
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | | | | | | |
Collapse
|
2591
|
Abstract
Meta-parameters in reinforcement learning should be tuned to the environmental dynamics and the animal performance. Here, we propose a biologically plausible meta-reinforcement learning algorithm for tuning these meta-parameters in a dynamic, adaptive manner. We tested our algorithm in both a simulation of a Markov decision task and in a non-linear control task. Our results show that the algorithm robustly finds appropriate meta-parameter values, and controls the meta-parameter time course, in both static and dynamic environments. We suggest that the phasic and tonic components of dopamine neuron firing can encode the signal required for meta-learning of reinforcement learning.
Collapse
Affiliation(s)
- Nicolas Schweighofer
- CREST, Japan Science and Technology Corporation, ATR, Human Information Science Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, 619-0288, Kyoto, Japan.
| | | |
Collapse
|
2592
|
Joel D, Doljansky J. Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive-compulsive disorder. Neuropsychopharmacology 2003; 28:77-85. [PMID: 12496943 DOI: 10.1038/sj.npp.1300010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rats undergoing extinction of lever-pressing for food after the attenuation of an external feedback for this behavior exhibit excessive lever-pressing unaccompanied by an attempt to collect a reward. This behavior may be analogous to the excessive and unreasonable behavior seen in obsessive-compulsive disorder. In the present study, we tested the hypothesis that the compulsive behavior induced by signal attenuation is mediated via D(1) rather than D(2) receptors. Administration of 0.005, 0.01 and 0.03 mg/kg of the D(1) antagonist SCH 23390 reduced the number of compulsive lever-presses without affecting the number of lever-presses followed by an attempt to collect a reward. In contrast, administration of 0.005, 0.01, 0.024, 0.036 and 0.05 of the D(2) antagonist haloperidol dose-dependently decreased both types of lever-presses. In addition, haloperidol at doses that decreased lever-pressing in the post-training signal attenuation procedure (0.036 and 0.05 mg/kg) had a similar effect in regular extinction, whereas an SCH 23390 dose that decreased compulsive lever-pressing in the post-training signal attenuation procedure (0.01 mg/kg) had no effect on regular extinction. On the basis of electrophysiological data on the response of dopamine neurons to the omission of an expected reward, these results were interpreted as suggesting that compulsive lever-pressing depends on a phasic decrease in the stimulation of D(1) receptors. The implications of these results for the pathophysiology and treatment of obsessive-compulsive disorder are discussed.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel Aviv University, Romat-Aviv, Israel.
| | | |
Collapse
|
2593
|
Escola L, Michelet T, Macia F, Guehl D, Bioulac B, Burbaud P. Disruption of information processing in the supplementary motor area of the MPTP-treated monkey: a clue to the pathophysiology of akinesia? Brain 2003; 126:95-114. [PMID: 12477699 DOI: 10.1093/brain/awg004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that the underactivity of mesial frontal structures induced by dopamine depletion could constitute one of the main substrates underlying akinesia in Parkinson's disease. Functional imaging and movement-related potential recordings indicate an implication of the frontal lobes in this pathological process, but the question has not yet been investigated at a cellular level using single unit recording. We therefore compared neuronal activity in both the presupplementary motor area (pre-SMA) and the supplementary motor area proper (SMAp) of the Macaca mulatta monkey during a delayed motor task, before and after MPTP treatment. In the pre-SMA, which receives strong inputs from the prefrontal cortex, the baseline firing frequency and the percentage of neurons responding to visual instruction cues decreased in lesioned monkeys. In the SMAp, which sends direct outputs to the primary motor cortex, not only was the response to visual cues impaired, but the percentage of SMAp neurons responding to intracortical microstimulation fell and the threshold of response rose. Neuronal activity after the Go signal diminished sharply in both structures in the symptomatic animal and the discharge pattern became more irregular; in the SMAp neuronal activity remained modified longer. Most of these changes could already be observed in the presymptomatic animal presenting no clinical signs of parkinsonism. These data would indicate that, at the moment when dopamine depletion has impaired the ability of cortical neurons to operate the focused selection of incoming information giving instructions for movement, pre-SMA and SMAp neurons are also in a state of severe hypoactivity. The conjunction of these phenomena could play a critical role in the genesis of akinesia.
Collapse
Affiliation(s)
- L Escola
- Laboratoire de Neurophysiologie, Université Victor Segalen, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
2594
|
Abstract
Despite the fact that Parkinson's disease (PD) is a relatively common neurological condition, the physiological derangements that result in its clinical features remain unclear. On combining findings from psychophysical, clinical and electrophysiological studies, an overriding theme is proposed that PD deficits are essentially quantitative rather than qualitative in nature. This may arise because the normal function of the basal ganglia is to activate neural processes selectively, providing appropriate diversion of "attentional" resources for decision-making aspects of motor tasks and appropriate "energising" of the executive aspects of such tasks. It is suggested that these concepts of attention, an idea stemming from psychophysical studies, and of energisation, which has derived from kinematic studies, may in fact reflect the same universal process of selective facilitation of particular processes and inhibition of others. In PD, without efficient facilitation, tasks may still be performed but less well than in normal individuals. Possible underlying mechanisms of basal ganglial function are discussed in the context of new findings on direct and indirect pathway actions and the role that oscillatory modulations may play in achieving selective facilitation is explored. Further investigation of disturbances of such mechanisms in PD may prove important in understanding the underlying pathophysiology of the condition.
Collapse
Affiliation(s)
- J H McAuley
- Department of Neurology, Royal London Hospital, Whitechapel, London E1 1BB, UK.
| |
Collapse
|
2595
|
Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 2002. [PMID: 12451147 DOI: 10.1523/jneurosci.22-23-10477.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient, elevated concentrations of extracellular dopamine were characterized in the dorsal and ventral striatum of male rats during solitude, brief interaction with a conspecific, and copulation. Conspecific rats were systematically presented to male rats and allowed to interact for 30 sec; the males were kept in solitude between each presentation. During these episodes, 125 dopamine concentration transients from 17 rats were detected with fast-scan cyclic voltammetry at carbon-fiber microelectrodes (peak amplitude, 210 +/- 10 nm; duration, 530 +/- 20 msec). The frequency of dopamine transients increased sixfold during conspecific episodes compared with solitude. However, the phasic dopamine activity habituated on the second presentation of the conspecifics. When males were allowed to copulate with receptive females, additional dopamine transients were observed at frequencies approximately 20% of those during the previous interaction episodes. A subset of these transients immediately preceded intromission. Overall, phasic dopamine activity appeared to be associated with input from multiple sensory modalities and was followed by a variety of approach and appetitive behaviors, consistent with electrophysiological observations of dopaminergic neuron burst-firing. In summary, (1) dopamine concentration transients occur in awake rats during solitude, in the absence of overt external cues; (2) dopamine transients are significantly more frequent in the presence of a conspecific, although this effect habituates; and (3) dopamine transients are less frequent during copulation than during brief conspecific episodes. These results establish for the first time that transient dopamine fluctuations occur throughout the dorsal and ventral striatum and demonstrate that they are more frequent with salient stimuli that elicit a response behavior.
Collapse
|
2596
|
Horvitz JC. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 2002; 137:65-74. [PMID: 12445716 DOI: 10.1016/s0166-4328(02)00285-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area (VTA) respond to a wide category of salient stimuli. Activation of SN and VTA DA neurons, and consequent release of nigrostriatal and mesolimbic DA, modulates the processing of concurrent glutamate inputs to dorsal and ventral striatal target regions. According to the view described here, this occurs under conditions of unexpected environmental change regardless of whether that change is rewarding or aversive. Nigrostriatal and mesolimbic DA activity gates the input of sensory, motor, and incentive motivational (e.g. reward) signals to the striatum. In light of recent single-unit and brain imaging data, it is suggested that the striatal reward signals originate in the orbitofrontal cortex and basolateral amygdala (BLA), regions that project strongly to the striatum. A DA signal of salient unexpected event occurrence, from this framework, gates the throughput of the orbitofrontal glutamate reward input to the striatum just as it gates the throughput of corticostriatal sensory and motor signals needed for normal response execution. Processing of these incoming signals is enhanced when synaptic DA levels are high, because DA enhances the synaptic efficacy of strong concurrent glutamate inputs while reducing the efficacy of weak glutamate inputs. The impairments in motor performance and incentive motivational processes that follow from nigrostriatal and mesolimbic DA loss can be understood in terms of a single mechanism: abnormal processing of sensorimotor and incentive motivation-related glutamate input signals to the striatum.
Collapse
Affiliation(s)
- Jon C Horvitz
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, Rm 406, New York, NY 10027, USA.
| |
Collapse
|
2597
|
Hasue RH, Shammah-Lagnado SJ. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 2002; 454:15-33. [PMID: 12410615 DOI: 10.1002/cne.10420] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The origin of the dopaminergic innervation of the central extended amygdala (EAc; i.e., the lateral bed nucleus of the stria terminalis [BSTl]-central amygdaloid nucleus [Ce] continuum) and accumbens shell (AcSh) was studied in the rat by combining retrograde transport of Fluoro-Gold (FG) with tyrosine hydroxylase (TH) immunofluorescence. Perikaryal profiles (PP) immunoreactive to FG and to both FG and TH were counted in A8-A14 dopaminergic districts. Our results suggest that dopaminergic inputs to the EAc and AcSh arise from the ventral tegmental area-A10, substantia nigra, pars compacta-A9, and retrorubral nucleus-A8 groups as well as from the dorsal raphe nucleus and periaqueductal gray substance, housing the dorsocaudal part of A10 group (A10dc). Quantitative estimates reveal that the A10dc group contains approximately half of the total number of FG/TH double-labeled PP projecting to Ce and BSTl. By using an anti-dopamine serum, DR/PAG projections to Ce were confirmed to be in part dopaminergic. In contrast, modest numbers of FG/TH double-labeled PP were seen in the A10dc group after injections in the sublenticular extended amygdala, interstitial nucleus of the posterior limb of the anterior commissure or AcSh. Ventral mesencephalic projections to the EAc display a crude mediolateral topographic organization, whereas those to the AcSh are topographically organized along a mediolateral and an inverted dorsoventral dimension. The diencephalic dopaminergic groups do not innervate the EAc or AcSh, except for the periventricular gray-A11 which sends light dopaminergic projections to Ce and BSTl. Overall, the present results provide additional details on the organization of the mesolimbic dopaminergic system that critically controls behavioral responsiveness to salient environmental stimuli.
Collapse
Affiliation(s)
- Renata H Hasue
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
2598
|
Neill DB, Fenton H, Justice JB. Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Behav Brain Res 2002; 137:129-38. [PMID: 12445719 DOI: 10.1016/s0166-4328(02)00288-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rats were trained to lever-press for intracranial self-stimulation (ICSS) of the lateral hypothalamus on either a fixed ratio (FR) 1 or 10 schedule. Their brains were removed after a 20 min session and tissue punches taken from the nucleus accumbens, olfactory tubercle, anterior striatum, or central striatum. These punches were assayed for content of dopamine (DA) and the major DA metabolite DOPAC. Compared with implanted controls, only the FR10 group showed significantly elevated DOPAC/DA ratios. These elevations were statistically significant in nucleus accumbens and central striatum and near significance in anterior striatum. They occurred to similar degrees in each hemisphere. In contrast, we found that stimulation of the ventral tegmental area of anesthetized rats asymmetrically increased the DOPAC/DA ratio, being most prominent in the ipsilateral accumbens. Because the FR10 group made only 58% of the responses of the FR1 group and received only 6% of the stimulations of the FR1 group, yet unlike the FR1 group showed a significant increase in the DOPAC/DA ratio, we suggest that the DA release was primarily influenced by the schedule, not the stimulation or the reward of the stimulation. These results were interpreted in terms of a model in which hypothalamic ICSS reward is largely dependent on non-dopaminergic mechanisms, with accumbal DA transmission being strongly dependent on the costs versus benefits of ongoing behavior.
Collapse
Affiliation(s)
- Darryl B Neill
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
2599
|
Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 2002; 137:47-63. [PMID: 12445715 DOI: 10.1016/s0166-4328(02)00284-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in electrophysiology and voltammetry permit monitoring of dopamine (DA) neuronal activity in real time in the brain of awake animals. Studies using these approaches demonstrate that behaviorally relevant events elicit characteristic patterns of electrical activity in midbrain DA neurons as well as large, transient changes in extracellular DA in the nucleus accumbens (NAc). In addition to providing insight into the role of the DA system in the processing of motor, motivational, and sensory information, the new findings also shed light on fast DA neurotransmission in a behavioral context. This report, (1). summarizes the information obtained by electrophysiological and real-time voltammetric approaches and (2). describes a general model of phasic DA signaling in the NAc that links the observed changes in DA electrical activity and extracellular dynamics. The analysis demonstrates that the behaviorally evoked DA transients are governed by similar mechanisms as those produced by short trains of electrical stimulation. Thus, action potential-dependent release and presynaptic uptake are primary determinants of functional DA levels in the brain during behavior. Interestingly, the model predicts that the same burst of electrical activity generated at DA cell bodies produces markedly different DA dynamics in forebrain projection fields. The distinct changes result from heterogeneous release and uptake rates and may underlie region-specific effects of DA. Auto- and heteroreceptors, as well as other sites of presynaptic control, could further modulate the DA transients.
Collapse
Affiliation(s)
- Paul A Garris
- Department of Biological Sciences, Illinois State University, 244 SLB, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
2600
|
Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav Brain Res 2002; 137:27-46. [PMID: 12445714 DOI: 10.1016/s0166-4328(02)00283-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review expounds the idea that the analysis of dopamine (DA) action on target cells under behaviorally relevant conditions and behavior-related changes in DA activity can offer new information to clarify the functional significance of mesocorticolimbic DA. In contrast to the traditional association of DA with certain behavioral processes and mechanisms (activation, arousal, conditioning, motivation, reinforcement, sensorimotor integration, etc.), evaluation of DA activity during well-controlled behaviors established by different reinforcers can provide important clues for determining the role of DA in the development and regulation of goal-directed behavior. This review summarizes the results of our microiontophoretic studies of striatal neurons in awake, unrestrained rats, particularly the action of DA on spontaneously active and glutamate (GLU)-stimulated cells, the pattern of DA-GLU interaction, and the role of tonic DA release in regulating the activity and afferent responsiveness of these units. We present the results of our iontophoretic studies of ventral tegmental area (VTA) neurons in freely moving animals suggesting the complexity and limitations in their identification as DA- and non-DA cells under behaviorally relevant conditions. We also consider technical and methodological problems related to electrophysiological and electrochemical evaluation of DA transmission in behaving animals. Finally, we discuss parallels and differences in the activity of presumed DA VTA neurons and changes of nucleus accumbens DA-dependent electrochemical signal during heroin self-administration (SA) behavior.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224 USA.
| |
Collapse
|