251
|
Sun XC, Yuan K, Zhou JH, Yuan CY, Liu HC, Zhang YW. Au3+ Species-Induced Interfacial Activation Enhances Metal–Support Interactions for Boosting Electrocatalytic CO2 Reduction to CO. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao-Chen Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Yue Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hai-Chao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
252
|
Liu H, Wang H, Song Q, Küster K, Starke U, van Aken PA, Klemm E. Assembling Metal Organic Layer Composites for High‐Performance Electrocatalytic CO2 Reduction to Formate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Liu
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry Pfaffenwaldring 55 70569 Stuttgart GERMANY
| | - Hongguang Wang
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Stuttgart Center for Electron Microscopy GERMANY
| | - Qian Song
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry GERMANY
| | - Kathrin Küster
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Interface Analysis GERMANY
| | - Ulrich Starke
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Interface Analysis GERMANY
| | - Peter A. van Aken
- Max-Planck-Institute for Solid State Research: Max-Planck-Institut fur Festkorperforschung Stuttgart Center for Electron Microscopy GERMANY
| | - Elias Klemm
- Universität Stuttgart: Universitat Stuttgart Institute of Technical Chemistry GERMANY
| |
Collapse
|
253
|
Wu ZZ, Zhang XL, Niu ZZ, Gao FY, Yang PP, Chi LP, Shi L, Wei WS, Liu R, Chen Z, Hu S, Zheng X, Gao MR. Identification of Cu(100)/Cu(111) Interfaces as Superior Active Sites for CO Dimerization During CO 2 Electroreduction. J Am Chem Soc 2021; 144:259-269. [PMID: 34962375 DOI: 10.1021/jacs.1c09508] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The electrosynthesis of valuable multicarbon chemicals using carbon dioxide (CO2) as a feedstock has substantially progressed recently but still faces considerable challenges. A major difficulty lines in the sluggish kinetics of forming carbon-carbon (C-C) bonds, especially in neutral media. We report here that oxide-derived copper crystals enclosed by six {100} and eight {111} facets can reduce CO2 to multicarbon products with a high Faradaic efficiency of 74.9 ± 1.7% at a commercially relevant current density of 300 mA cm-2 in 1 M KHCO3 (pH ∼ 8.4). By combining the experimental and computational studies, we uncovered that Cu(100)/Cu(111) interfaces offer a favorable local electronic structure that enhances *CO adsorption and lowers C-C coupling activation energy barriers, performing superior to Cu(100) and Cu(111) surfaces, respectively. On this catalyst, no obvious degradation was observed at 300 mA cm-2 over 50 h of continuous operation.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Sen Wei
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ren Liu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Chen
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shaojin Hu
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Zheng
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
254
|
Sun Z, Wu X, Guan D, Chen X, Dai J, Gu Y, She S, Zhou W, Shao Z. One Pot-Synthesized Ag/Ag-Doped CeO 2 Nanocomposite with Rich and Stable 3D Interfaces and Ce 3+ for Efficient Carbon Dioxide Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59993-60001. [PMID: 34890504 DOI: 10.1021/acsami.1c19529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction (ECR) technology is promising to produce value-added chemicals and alleviate the climate deterioration. Interface engineering is demonstrated to improve the ECR performance for metal and oxide composite catalysts. However, the approach to form a substantial interface is still limited. In this work, we report a facile one-pot coprecipitation method to synthetize novel silver and silver-doped ceria (Ag/CeO2) nanocomposites. This catalyst provides a rich 3D interface and high Ce3+ concentration (33.6%), both of which are beneficial for ECR to CO. As a result, Ag/CeO2 exhibits a 99% faradaic efficiency and 10.5 A g-1 mass activity to convert CO2 into CO at an overpotential of 0.83 V. The strong interfacial interaction between Ag and CeO2 may enable the presence of surface Ce3+ and guarantee the improved durability during the electrolysis. We also develop numerical simulation to understand the local pH effect on the ECR performance and propose that the superior ECR performance of Ag/CeO2 is mainly due to the accelerated CO formation rate rather than the suppressed hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zengsen Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Xiaoyi Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yuxing Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Sixuan She
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
255
|
Zhang R, Wen X, Peng H, Xia Y, Xu F, Sun L. Facet-dependent CO 2 reduction reactions on kesterite Cu 2ZnSnS 4 photo-electro-integrated electrodes. Phys Chem Chem Phys 2021; 24:48-55. [PMID: 34580699 DOI: 10.1039/d1cp03595a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectrochemical CO2 reduction by Cu2ZnSnS4 (CZTS) photocathodes is a potentially low-cost and high-efficiency CO2 conversion approach. However, the current CZTS-based photocathodes for the CO2 reduction reaction (CO2RR) are challenged by the active side reaction of the hydrogen evolution reaction (HER) and the incompatibility with efficient electrocatalysts. In this work, by means of density functional theory (DFT), we predict that a (220)-facet-suppressed kesterite CZTS could be an efficient photo-electro-integrated photocathode for formic acid production in the CO2RR. The results show that the competitive HER is mostly favored on the (220) facet. And the CO2RR for formic acid production on the (112) and (312) facets exhibits a thermodynamic energy barrier lower than 0.26 eV. Different from the d-band theory in metal electrocatalysts, it is found that the density of low energy unoccupied states in the S 3p orbital plays a key role in determining the CO2RR reaction path of the kesterite CZTS. Furthermore, two different trends of adsorption energy depending on the chemical characteristic of adsorbates are analyzed. Our study unveils the potential for selectively reducing CO2 into formic acid with kesterite CZTS and provides a possible route for manipulating the electrocatalytic properties of metal sulfide catalysts.
Collapse
Affiliation(s)
- Ruifen Zhang
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Xin Wen
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Hongliang Peng
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yongpeng Xia
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| |
Collapse
|
256
|
Lin L, Li H, Wang Y, Li H, Wei P, Nan B, Si R, Wang G, Bao X. Temperature‐Dependent CO
2
Electroreduction over Fe‐N‐C and Ni‐N‐C Single‐Atom Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Long Lin
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Haobo Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yi Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Hefei Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Bing Nan
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
257
|
Lin L, Li H, Wang Y, Li H, Wei P, Nan B, Si R, Wang G, Bao X. Temperature-Dependent CO 2 Electroreduction over Fe-N-C and Ni-N-C Single-Atom Catalysts. Angew Chem Int Ed Engl 2021; 60:26582-26586. [PMID: 34651393 DOI: 10.1002/anie.202113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/10/2022]
Abstract
Reaction temperature is an important parameter to tune the selectivity and activity of electrochemical CO2 reduction reaction (CO2 RR) due to different thermodynamics of CO2 RR and competitive hydrogen evolution reaction (HER). In this work, temperature-dependent CO2 RR over Fe-N-C and Ni-N-C single-atom catalysts are investigated from 303 to 343 K. Increasing the reaction temperature improves and decreases CO Faradaic efficiency over Fe-N-C and Ni-N-C catalysts at high overpotentials, respectively. CO current density over Fe-N-C catalyst increases with temperature, then gets into a plateau at 323 K, finally reaches the maximum value of 185.8 mA cm-2 at 343 K. While CO current density over Ni-N-C catalyst achieves the maximum value of 252.5 mA cm-2 at 323 K, and then drops significantly to 202.9 mA cm-2 at 343 K. Temperature programmed desorption results and density functional theory calculations reveal that the difference of temperature-dependent variation on CO Faradaic efficiency and current density between Fe-N-C and Ni-N-C catalysts results from the varied adsorption strength of key reaction intermediates during CO2 RR.
Collapse
Affiliation(s)
- Long Lin
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Haobo Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hefei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Bing Nan
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
258
|
Chen Z, Wang X, Mills JP, Du C, Kim J, Wen J, Wu YA. Two-dimensional materials for electrochemical CO 2 reduction: materials, in situ/ operando characterizations, and perspective. NANOSCALE 2021; 13:19712-19739. [PMID: 34817491 DOI: 10.1039/d1nr06196h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction (CO2 ECR) is an efficient approach to achieving eco-friendly energy generation and environmental sustainability. This approach is capable of lowering the CO2 greenhouse gas concentration in the atmosphere while producing various valuable fuels and products. For catalytic CO2 ECR, two-dimensional (2D) materials stand as promising catalyst candidates due to their superior electrical conductivity, abundant dangling bonds, and tremendous amounts of surface active sites. On the other hand, the investigations on fundamental reaction mechanisms in CO2 ECR are highly demanded but usually require advanced in situ and operando multimodal characterizations. This review summarizes recent advances in the development, engineering, and structure-activity relationships of 2D materials for CO2 ECR. Furthermore, we overview state-of-the-art in situ and operando characterization techniques, which are used to investigate the catalytic reaction mechanisms with the spatial resolution from the micron-scale to the atomic scale, and with the temporal resolution from femtoseconds to seconds. Finally, we conclude this review by outlining challenges and opportunities for future development in this field.
Collapse
Affiliation(s)
- Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Joel P Mills
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Cheng Du
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Jintae Kim
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - John Wen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
259
|
Sang J, Wei P, Liu T, Lv H, Ni X, Gao D, Zhang J, Li H, Zang Y, Yang F, Liu Z, Wang G, Bao X. A Reconstructed Cu
2
P
2
O
7
Catalyst for Selective CO
2
Electroreduction to Multicarbon Products. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jiaqi Sang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Houfu Lv
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Xingming Ni
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Hefei Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yipeng Zang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Fan Yang
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Zhi Liu
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023, Liaoning China
| |
Collapse
|
260
|
Li X, Wu X, Li J, Huang J, Ji L, Leng Z, Qian N, Yang D, Zhang H. Sn-Doped Bi 2O 3 nanosheets for highly efficient electrochemical CO 2 reduction toward formate production. NANOSCALE 2021; 13:19610-19616. [PMID: 34816271 DOI: 10.1039/d1nr06038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electrocatalytic CO2 reduction to formate is considered as a perfect route for efficient conversion of the greenhouse gas CO2 to value-added chemicals. However, it still remains a huge challenge to design a catalyst with both high catalytic activity and selectivity for target products. Here we report a unique Sn-doped Bi2O3 nanosheet (NS) electrocatalyst with different atomic percentages of Sn (1.2, 2.5, and 3.8%) prepared by a simple solvothermal method for highly efficient electrochemical reduction of CO2 to formate. Of them, the 2.5% Sn-doped Bi2O3 NSs exhibited the highest faradaic efficiency (FE) of 93.4% with a current density of 24.3 mA cm-2 for formate at -0.97 V in the H-cell and a maximum current density of nearly 50 mA cm-2 was achieved at -1.27 V. The formate FE is stable maintained at over 90% in a wide potential range from -0.87 V to -1.17 V. Electrochemical and density functional theory (DFT) analyses of undoped and Sn doped Bi2O3 NSs indicated that the strong synergistic effect between Sn and Bi is responsible for the enhancement in the adsorption capacity of the OCHO* intermediate, and thus the activity for formate production. In addition, we coupled 2.5% Sn-doped Bi2O3 NSs with a dimensionally stable anode (DSA) to realize battery-driven highly active CO2RR and OER with decent activity and efficiency.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Zihan Leng
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
261
|
Sang J, Wei P, Liu T, Lv H, Ni X, Gao D, Zhang J, Li H, Zang Y, Yang F, Liu Z, Wang G, Bao X. A Reconstructed Cu 2 P 2 O 7 Catalyst for Selective CO 2 Electroreduction to Multicarbon Products. Angew Chem Int Ed Engl 2021; 61:e202114238. [PMID: 34859554 DOI: 10.1002/anie.202114238] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) over Cu-based catalysts shows great potential for converting CO2 into multicarbon (C2+ ) fuels and chemicals. Herein, we introduce an A2 M2 O7 structure into a Cu-based catalyst through a solid-state reaction synthesis method. The Cu2 P2 O7 catalyst is electrochemically reduced to metallic Cu with a significant structure evolution from grain aggregates to highly porous structure under CO2 RR conditions. The reconstructed Cu2 P2 O7 catalyst achieves a Faradaic efficiency of 73.6 % for C2+ products at an applied current density of 350 mA cm-2 , remarkably higher than the CuO counterparts. The reconstructed Cu2 P2 O7 catalyst has a high electrochemically active surface area, abundant defects, and low-coordinated sites. In situ Raman spectroscopy and density functional theory calculations reveal that CO adsorption with bridge and atop configurations is largely improved on Cu with defects and low-coordinated sites, which decreased the energy barrier of the C-C coupling reaction for C2+ products.
Collapse
Affiliation(s)
- Jiaqi Sang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Houfu Lv
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Xingming Ni
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Hefei Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yipeng Zang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Fan Yang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zhi Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
262
|
Yan S, Peng C, Yang C, Chen Y, Zhang J, Guan A, Lv X, Wang H, Wang Z, Sham TK, Han Q, Zheng G. Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere-Level Electrosynthesis of Formate from CO 2. Angew Chem Int Ed Engl 2021; 60:25741-25745. [PMID: 34617366 DOI: 10.1002/anie.202111351] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Indexed: 11/09/2022]
Abstract
The electrochemical CO2 conversion to formate is a promising approach for reducing CO2 level and obtaining value-added chemicals, but its partial current density is still insufficient to meet the industrial demands. Herein, we developed a surface-lithium-doped tin (s-SnLi) catalyst by controlled electrochemical lithiation. Density functional theory calculations indicated that the Li dopants introduced electron localization and lattice strains on the Sn surface, thus enhancing both activity and selectivity of the CO2 electroreduction to formate. The s-SnLi electrocatalyst exhibited one of the best CO2 -to-formate performances, with a partial current density of -1.0 A cm-2 for producing formate and a corresponding Faradaic efficiency of 92 %. Furthermore, Zn-CO2 batteries equipped with the s-SnLi catalyst displayed one of the highest power densities of 1.24 mW cm-2 and an outstanding stability of >800 cycles. Our work suggests a promising approach to incorporate electron localization and lattice strain for the catalytic sites to achieve efficient CO2 -to-formate electrosynthesis toward potential commercialization.
Collapse
Affiliation(s)
- Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Junbo Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Haozhen Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Qing Han
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
263
|
Yan S, Peng C, Yang C, Chen Y, Zhang J, Guan A, Lv X, Wang H, Wang Z, Sham T, Han Q, Zheng G. Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere‐Level Electrosynthesis of Formate from CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shuai Yan
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Chen Peng
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Chao Yang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Yangshen Chen
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Junbo Zhang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Anxiang Guan
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Ximeng Lv
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Haozhen Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Zhiqiang Wang
- Department of Chemistry University of Western Ontario London Ontario N6A 5B7 Canada
| | - Tsun‐Kong Sham
- Department of Chemistry University of Western Ontario London Ontario N6A 5B7 Canada
| | - Qing Han
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| |
Collapse
|
264
|
Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
265
|
Zhou JH, Yuan CY, Zheng YL, Yin HJ, Yuan K, Sun XC, Zhang YW. The site pair matching of a tandem Au/CuO-CuO nanocatalyst for promoting the selective electrolysis of CO 2 to C 2 products. RSC Adv 2021; 11:38486-38494. [PMID: 35493218 PMCID: PMC9044023 DOI: 10.1039/d1ra07507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
Tandem catalysis, in which a CO2-to-C2 process is divided into a CO2-to-CO/*CO step and a CO/*CO-to-C2 step, is promising for enhancing the C2 product selectivity when using Cu-based electrochemical CO2 reduction catalysts. In this work, a nanoporous hollow Au/CuO–CuO tandem catalyst was used for catalyzing the eCO2RR, which exhibited a C2 product FE of 52.8% at −1.0 V vs. RHE and a C2 product partial current density of 78.77 mA cm−2 at −1.5 V vs. RHE. In addition, the C2 product FE stably remained at over 40% over a wide potential range, from −1.0 V to −1.5 V. This superior performance was attributed to good matching in terms of the optimal working potential and charge-transfer resistance between CO/*CO-production sites (Au/CuO) and CO/*CO-reduction sites (CuO). This site pair matching effect ensured sufficient supplies of CO/*CO and electrons at CuO sites at the working potentials, thus dramatically enhancing the formation rate of C2 products. C2 product FE of 52.8% was achieved in eCO2RR at −1.0 V vs. RHE using a nanoporous hollow Au/CuO–CuO tandem catalyst due to the matching of optimal working potentials and charge-transfer resistances of the CO-production sites and CO-reduction sites.![]()
Collapse
Affiliation(s)
- Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Chen-Yue Yuan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Ya-Li Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Kun Yuan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Xiao-Chen Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University No. 5 Yiheyuan Road, Haidian District Beijing 100871 China +86-10-62756787 +86-10-62756787
| |
Collapse
|
266
|
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, Chang SX, Zhang L, Rinklebe J, Yuan Z, Zhu Q, Xiang L, Tsang DC, Xu L, Jiang X, Liu J, Wei N, Kästner M, Zou Y, Ok YS, Shen J, Peng D, Zhang W, Barceló D, Zhou Y, Bai Z, Li B, Zhang B, Wei K, Cao H, Tan Z, Zhao LB, He X, Zheng J, Bolan N, Liu X, Huang C, Dietmann S, Luo M, Sun N, Gong J, Gong Y, Brahushi F, Zhang T, Xiao C, Li X, Chen W, Jiao N, Lehmann J, Zhu YG, Jin H, Schäffer A, Tiedje JM, Chen JM. Technologies and perspectives for achieving carbon neutrality. Innovation (N Y) 2021; 2:100180. [PMID: 34877561 PMCID: PMC8633420 DOI: 10.1016/j.xinn.2021.100180] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Global development has been heavily reliant on the overexploitation of natural resources since the Industrial Revolution. With the extensive use of fossil fuels, deforestation, and other forms of land-use change, anthropogenic activities have contributed to the ever-increasing concentrations of greenhouse gases (GHGs) in the atmosphere, causing global climate change. In response to the worsening global climate change, achieving carbon neutrality by 2050 is the most pressing task on the planet. To this end, it is of utmost importance and a significant challenge to reform the current production systems to reduce GHG emissions and promote the capture of CO2 from the atmosphere. Herein, we review innovative technologies that offer solutions achieving carbon (C) neutrality and sustainable development, including those for renewable energy production, food system transformation, waste valorization, C sink conservation, and C-negative manufacturing. The wealth of knowledge disseminated in this review could inspire the global community and drive the further development of innovative technologies to mitigate climate change and sustainably support human activities.
Collapse
Affiliation(s)
- Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhizhang Yuan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Faming Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Li
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Yin
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Huang
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jörg Rinklebe
- Department of Soil and Groundwater Management, Bergische Universität Wuppertal, Wuppertal 42285, Germany
| | - Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266273, China
| | - Ning Wei
- Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig 04318, Germany
| | - Yang Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianlin Shen
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dailiang Peng
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Damià Barceló
- Catalan Institute for Water Research ICRA-CERCA, Girona 17003, Spain
| | - Yongjin Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Wei
- The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hujun Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiao He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxing Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Anhui 230031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Crawley 6009, Australia
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changping Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sabine Dietmann
- Institute for Informatics (I), Washington University, St. Louis, MO 63110-1010, USA
| | - Ming Luo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yulie Gong
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ferdi Brahushi
- Department of Agro-environment and Ecology, Agricultural University of Tirana, Tirana 1029, Albania
| | - Tangtang Zhang
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cunde Xiao
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianfeng Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfu Chen
- Shenyang Agricultural University, Shenyang 110866, China
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and, Xiamen 361005, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Johannes Lehmann
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
- Institute for Advanced Studies, Technical University Munich, Garching 85748, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Jin
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jing M. Chen
- Department of Geography and Planning, University of Toronto, Ontario, Canada, M5S 3G3
| |
Collapse
|
267
|
Song H, Tan YC, Kim B, Ringe S, Oh J. Tunable Product Selectivity in Electrochemical CO 2 Reduction on Well-Mixed Ni-Cu Alloys. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55272-55280. [PMID: 34767344 DOI: 10.1021/acsami.1c19224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrochemical reduction of CO2 on copper-based catalysts has become a promising strategy to mitigate greenhouse gas emissions and gain valuable chemicals and fuels. Unfortunately, however, the generally low product selectivity of the process decreases the industrial competitiveness compared to the established large-scale chemical processes. Here, we present random solid solution Cu1-xNix alloy catalysts that, due to their full miscibility, enable a systematic modulation of adsorption energies. In particular, we find that these catalysts lead to an increase of hydrogen evolution with the Ni content, which correlates with a significant increase of the selectivity for methane formation relative to C2 products such as ethylene and ethanol. From experimental and theoretical insights, we find the increased hydrogen atom coverage to facilitate Langmuir-Hinshelwood-like hydrogenation of surface intermediates, giving an impressive almost 2 orders of magnitude increase in the CH4 to C2H4 + C2H5OH selectivity on Cu0.87Ni0.13 at -300 mA cm-2. This study provides important insights and design concepts for the tunability of product selectivity for electrochemical CO2 reduction that will help to pave the way toward industrially competitive electrocatalyst materials.
Collapse
Affiliation(s)
- Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ying Chuan Tan
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Stefan Ringe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
268
|
Subramanian S, Middelkoop J, Burdyny T. Spatial reactant distribution in CO 2 electrolysis: balancing CO 2 utilization and faradaic efficiency. SUSTAINABLE ENERGY & FUELS 2021; 5:6040-6048. [PMID: 34912970 PMCID: PMC8610086 DOI: 10.1039/d1se01534f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 05/05/2023]
Abstract
The production of value added C1 and C2 compounds within CO2 electrolyzers has reached sufficient catalytic performance that system and process performance - such as CO2 utilization - have come more into consideration. Efforts to assess the limitations of CO2 conversion and crossover within electrochemical systems have been performed, providing valuable information to position CO2 electrolyzers within a larger process. Currently missing, however, is a clear elucidation of the inevitable trade-offs that exist between CO2 utilization and electrolyzer performance, specifically how the faradaic efficiency of a system varies with CO2 availability. Such information is needed to properly assess the viability of the technology. In this work, we provide a combined experimental and 3D modelling assessment of the trade-offs between CO2 utilization and selectivity at 200 mA cm-2 within a membrane-electrode assembly CO2 electrolyzer. Using varying inlet flow rates we demonstrate that the variation in spatial concentration of CO2 leads to spatial variations in faradaic efficiency that cannot be captured using common 'black box' measurement procedures. Specifically, losses of faradaic efficiency are observed to occur even at incomplete CO2 consumption (80%). Modelling of the gas channel and diffusion layers indicated that at least a portion of the H2 generated is considered as avoidable by proper flow field design and modification. The combined work allows for a spatially resolved interpretation of product selectivity occurring inside the reactor, providing the foundation for design rules in balancing CO2 utilization and device performance in both lab and scaled applications.
Collapse
Affiliation(s)
- Siddhartha Subramanian
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Joost Middelkoop
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
269
|
Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Imparting CO 2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202114648. [PMID: 34806265 DOI: 10.1002/anie.202114648] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 μm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Ma
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
270
|
Liang Z, Song L, Sun M, Huang B, Du Y. Tunable CO/H 2 ratios of electrochemical reduction of CO 2 through the Zn-Ln dual atomic catalysts. SCIENCE ADVANCES 2021; 7:eabl4915. [PMID: 34797721 PMCID: PMC8604407 DOI: 10.1126/sciadv.abl4915] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of CO2 (CO2RR) to value-added liquid fuels is a highly appealing solution for carbon-neutral recycling, especially to syngas (CO/H2). Current strategies suffer from poor faradaic efficiency (FE), selectivity, and controllability to the ratio of products. In this work, we have synthesized a series of single and dual atomic catalysts on the carbon nitride nanosheets. Adjusting the ratio of La and Zn atomic sites produces syngas with a wide range of CO/H2 ratios. Moreover, the ZnLa-1/CN electrocatalyst generates the syngas with a ratio of CO/H2 = 0.5 at a wide potential range, and the total FE of CO2RR reaches 80% with good stability. Density functional theory calculations have confirmed that the Zn and La affect electronic structures and determine the formation of CO and H2, respectively. This work indicates a promising strategy in the development of atomic catalysts for more controllable CO2RR.
Collapse
Affiliation(s)
- Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lianpeng Song
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
271
|
Elucidation of the Roles of Ionic Liquid in CO 2 Electrochemical Reduction to Value-Added Chemicals and Fuels. Molecules 2021; 26:molecules26226962. [PMID: 34834053 PMCID: PMC8624163 DOI: 10.3390/molecules26226962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.
Collapse
|
272
|
|
273
|
Zhu X, Huang J, Eikerling M. Electrochemical CO 2 Reduction at Silver from a Local Perspective. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xinwei Zhu
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Michael Eikerling
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
274
|
Pan H, Wang J, Wu H, Li Z, Lian J. Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:212. [PMID: 34736496 PMCID: PMC8570001 DOI: 10.1186/s13068-021-02063-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin-Benson-Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. MAIN BODY In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. CONCLUSIONS Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.
Collapse
Affiliation(s)
- Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoliang Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
275
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
276
|
Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev 2021; 50:11785-11843. [PMID: 34559871 DOI: 10.1039/d1cs00219h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of N-doped carbon nanotubes as the first carbon-based metal-free electrocatalyst (C-MFEC) for oxygen reduction reaction (ORR) in 2009, C-MFECs have shown multifunctional electrocatalytic activities for many reactions beyond ORR, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and hydrogen peroxide production reaction (H2O2PR). Consequently, C-MFECs have attracted a great deal of interest for various applications, including metal-air batteries, water splitting devices, regenerative fuel cells, solar cells, fuel and chemical production, water purification, to mention a few. By altering the electronic configuration and/or modulating their spin angular momentum, both heteroatom(s) doping and structural defects (e.g., atomic vacancy, edge) have been demonstrated to create catalytic active sites in the skeleton of graphitic carbon materials. Although certain C-MFECs have been made to be comparable to or even better than their counterparts based on noble metals, transition metals and/or their hybrids, further research and development are necessary in order to translate C-MFECs for practical applications. In this article, we present a timely and comprehensive, but critical, review on recent advancements in the field of C-MFECs within the past five years or so by discussing various types of electrocatalytic reactions catalyzed by C-MFECs. An emphasis is given to potential applications of C-MFECs for energy conversion and storage. The structure-property relationship for and mechanistic understanding of C-MFECs will also be discussed, along with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajib Paul
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Quanbin Dai
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
277
|
Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Highly Ethylene-Selective Electrocatalytic CO 2 Reduction Enabled by Isolated Cu-S Motifs in Metal-Organic Framework Based Precatalysts. Angew Chem Int Ed Engl 2021; 61:e202111700. [PMID: 34687123 DOI: 10.1002/anie.202111700] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/11/2022]
Abstract
Copper-based materials are efficient electrocatalysts for the conversion of CO2 to C2+ products, and most these materials are reconstructed in situ to regenerate active species. It is a challenge to precisely design precatalysts to obtain active sites for the CO2 reduction reaction (CO2 RR). Herein, we develop a strategy based on local sulfur doping of a Cu-based metal-organic framework precatalyst, in which the stable Cu-S motif is dispersed in the framework of HKUST-1 (S-HKUST-1). The precatalyst exhibits a high ethylene selectivity in an H-type cell with a maximum faradaic efficiency (FE) of 60.0 %, and delivers a current density of 400 mA cm-2 with an ethylene FE up to 57.2 % in a flow cell. Operando X-ray absorption results demonstrate that Cuδ+ species stabilized by the Cu-S motif exist in S-HKUST-1 during CO2 RR. Density functional theory calculations indicate the partially oxidized Cuδ+ at the Cu/Cux Sy interface is favorable for coupling of the *CO intermediate due to the modest distance between coupling sites and optimized adsorption energy.
Collapse
Affiliation(s)
- Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Min Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Beibei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - P Hu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
278
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
279
|
Koenig JDB, Dubrawski ZS, Rao KR, Willkomm J, Gelfand BS, Risko C, Piers WE, Welch GC. Lowering Electrocatalytic CO 2 Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. J Am Chem Soc 2021; 143:16849-16864. [PMID: 34597040 DOI: 10.1021/jacs.1c09481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the design, synthesis, and characterization of four N-annulated perylene diimide (NPDI) functionalized rhenium bipyridine [Re(bpy)] supramolecular dyads. The Re(bpy) scaffold was connected to the NPDI chromophore either directly [Re(py-C0-NPDI)] or via an ethyl [Re(bpy-C2-NPDI)], butyl [Re(bpy-C4-NPDI)], or hexyl [Re(bpy-C6-NPDI)] alkyl-chain spacer. Upon electrochemical reduction in the presence of CO2 and a proton source, Re(bpy-C2/4/6-NPDI) all exhibited significant current enhancement effects, while Re(py-C0-NPDI) did not. During controlled potential electrolysis (CPE) experiments at Eappl = -1.8 V vs Fc+/0, Re(bpy-C2/4/6-NPDI) all achieved comparable activity (TONco ∼ 25) and Faradaic efficiency (FEco ∼ 94%). Under identical CPE conditions, the standard catalyst Re(dmbpy) was inactive for electrocatalytic CO2 reduction; only at Eappl = -2.1 V vs Fc+/0 could Re(dmbpy) achieve the same catalytic performance, representing a 300 mV lowering in overpotential for Re(bpy-C2/4/6-NPDI). At higher overpotentials, Re(bpy-C4/6-NPDI) both outperformed Re(bpy-C2-NPDI), indicating the possibility of coinciding electrocatalytic CO2 reduction mechanisms that are dictated by tether-length and overpotential. Using UV-vis-nearIR spectroelectrochemistry (SEC), FTIR SEC, and chemical reduction experiments, it was shown that the NPDI-moiety served as an electron-reservoir for Re(bpy), thereby allowing catalytic activity at lower overpotentials. Density functional theory studies probing the optimized geometries and frontier molecular orbitals of various catalytic intermediates revealed that the geometric configuration of NPDI relative to the Re(bpy)-moiety plays a critical role in accessing electrons from the electron-reservoir. The improved performance of Re(bpy-C2/4/6-NPDI)dyads at lower overpotentials, relative to Re(dmbpy), highlights the utility of chromophore electron-reservoirs as a method for lowering the overpotential for CO2 conversion.
Collapse
Affiliation(s)
- Josh D B Koenig
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Zachary S Dubrawski
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Keerthan R Rao
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Janina Willkomm
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
280
|
Wang W, Wang Z, Yang R, Duan J, Liu Y, Nie A, Li H, Xia BY, Zhai T. In Situ Phase Separation into Coupled Interfaces for Promoting CO 2 Electroreduction to Formate over a Wide Potential Window. Angew Chem Int Ed Engl 2021; 60:22940-22947. [PMID: 34387932 DOI: 10.1002/anie.202110000] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/08/2022]
Abstract
Bimetallic sulfides are expected to realize efficient CO2 electroreduction into formate over a wide potential window, however, they will undergo in situ structural evolution under the reaction conditions. Therefore, clarifying the structural evolution process, the real active site and the catalytic mechanism is significant. Here, taking Cu2 SnS3 as an example, we unveiled that Cu2 SnS3 occurred self-adapted phase separation toward forming the stable SnO2 @CuS and SnO2 @Cu2 O heterojunction during the electrochemical process. Calculations illustrated that the strongly coupled interfaces as real active sites driven the electron self-flow from Sn4+ to Cu+ , thereby promoting the delocalized Sn sites to combine HCOO* with H*. Cu2 SnS3 nanosheets achieve over 83.4 % formate selectivity in a wide potential range from -0.6 V to -1.1 V. Our findings provide insight into the structural evolution process and performance-enhanced origin of ternary sulfides under the CO2 electroreduction.
Collapse
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
281
|
Dongare S, Singh N, Bhunia H, Bajpai PK. Electrochemical reduction of CO2 using oxide based Cu and Zn bimetallic catalyst. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
282
|
Park BJ, Wang Y, Lee Y, Noh KJ, Cho A, Jang MG, Huang R, Lee KS, Han JW. Effective Screening Route for Highly Active and Selective Metal-Nitrogen-Doped Carbon Catalysts in CO 2 Electrochemical Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103705. [PMID: 34558171 DOI: 10.1002/smll.202103705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
To identify high-efficiency metal-nitrogen-doped (M-N-C) electrocatalysts for the electrochemical CO2 -to-CO reduction reaction (CO2 RR), a method that uses density functional theory calculation is presented to evaluate their selectivity, activity, and structural stability. Twenty-three M-N4 -C catalysts are evaluated, and three of them (M = Fe, Co, or Ni) are identified as promising candidates. They are synthesized and tested as proof-of-concept catalysts for CO2 -to-CO conversion. Different key descriptors, including the maximum reaction energy, differences of the *H and *CO binding energy (ΔG*H -ΔG*CO ), and *CO desorption energy (ΔG*CO→CO( g ) ), are used to clarify the reaction mechanism. These computational descriptors effectively predict the experimental observations in the entire range of electrochemical potential. The findings provide a guideline for rational design of heterogeneous CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Byoung Joon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Ying Wang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yechan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kyung-Jong Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Ara Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Rui Huang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kug-Seung Lee
- Beamline Division, Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
283
|
Savino U, Sacco A. Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
284
|
Empower C1: Combination of Electrochemistry and Biology to Convert C1 Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:213-241. [PMID: 34518909 DOI: 10.1007/10_2021_171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The idea to somehow combine electrical current and biological systems is not new. It was subject of research as well as of science fiction literature for decades. Nowadays, in times of limited resources and the need to capture greenhouse gases like CO2, this combination gains increasing interest, since it might allow to use C1 compounds and highly oxidized compounds as substrate for microbial production by "activating" them with additional electrons. In this chapter, different possibilities to combine electrochemistry and biology to convert C1 compounds into useful products will be discussed. The chapter first shows electrochemical conversion of C1 compounds, allowing the use of the product as substrate for a subsequent biosynthesis in uncoupled systems, further leads to coupled systems of biology and electrochemical conversion, and finally reaches the discipline of bioelectrosynthesis, where electrical current and C1 compounds are directly converted by microorganisms or enzymes. This overview will give an idea about the potentials and challenges of combining electrochemistry and biology to convert C1 molecules.
Collapse
|
285
|
Choi W, Park JW, Park W, Jung Y, Song H. Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO 2 reduction. NANOSCALE 2021; 13:14346-14353. [PMID: 34477717 DOI: 10.1039/d1nr03928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high surface activities is critical for effective eCO2RR. In this study, we introduced a surface overgrowth method on stable Au icosahedrons to generate Au nanostars with large bumps. As a catalyst for eCO2RR, the Au nanostars exhibited a maximum faradaic efficiency (FE) of 98% and a mass activity of 138.9 A g-1 for CO production, where the latter was one of the highest activities among Au catalysts. Despite the deducted electrochemically active surface area per mass, the high-energy surfaces from overgrowth provided a 3.8-fold larger specific activity than the original Au icosahedral seeds, resulting in superior eCO2RR performances that outweigh the trade-off of size and shape in nanoparticles. The Au nanostars also represented prolonged stability due to the durability of high-energy facets. The characterization of surface morphology and density functional theory calculations revealed that predominant Au(321) facets on the Au nanostars effectively stabilized *COOH adsorbates, thus lowering the overpotential and improving the FE for CO production. This overgrowth method is simple and universal for various materials, which would be able to extend into a wide range of electrochemical catalysts.
Collapse
Affiliation(s)
- Woong Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
286
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
287
|
Wang W, Wang Z, Yang R, Duan J, Liu Y, Nie A, Li H, Xia BY, Zhai T. In Situ Phase Separation into Coupled Interfaces for Promoting CO
2
Electroreduction to Formate over a Wide Potential Window. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Anmin Nie
- Center for High Pressure Science State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao Hebei 066004 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
288
|
Fan J, Zhao X, Mao X, Xu J, Han N, Yang H, Pan B, Li Y, Wang L, Li Y. Large-Area Vertically Aligned Bismuthene Nanosheet Arrays from Galvanic Replacement Reaction for Efficient Electrochemical CO 2 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100910. [PMID: 34302394 DOI: 10.1002/adma.202100910] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Indexed: 05/03/2023]
Abstract
There is a lack of straightforward methods to prepare high-quality bismuthene nanosheets, or, even more challengingly, to grow their arrays due to the low melting point and high oxophilicity of bismuth. This synthetic obstacle has hindered their potential applications. In this work, it is demonstrated that the galvanic replacement reaction can do the trick. Under well-controlled conditions, large-area vertically aligned bismuthene nanosheet arrays are grown on Cu substrates of various shapes and sizes. The product features small nanosheet thickness of two to three atomic layers, large surface areas, and abundant porosity between nanosheets. Most remarkably, bismuthene nanosheet arrays grown on Cu foam can enable efficient CO2 reduction to formate with high Faradaic efficiency of >90%, large current density of 50 mA cm-2 , and great stability.
Collapse
Affiliation(s)
- Jia Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Na Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yongshen Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
289
|
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M, Wang E, Guo S. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102576. [PMID: 34296795 DOI: 10.1002/adma.202102576] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Indexed: 05/24/2023]
Abstract
Atomically dispersed metal catalysts with well-defined structures have been the research hotspot in heterogeneous catalysis because of their high atomic utilization efficiency, outstanding activity, and selectivity. Dual-atomic-site catalysts (DASCs), as an extension of single-atom catalysts (SACs), have recently drawn surging attention. The DASCs possess higher metal loading, more sophisticated and flexible active sites, offering more chance for achieving better catalytic performance, compared with SACs. In this review, recent advances on how to design new DASCs for enhancing energy catalysis will be highlighted. It will start with the classification of marriage of two kinds of single-atom active sites, homonuclear DASCs and heteronuclear DASCs according to the configuration of active sites. Then, the state-of-the-art characterization techniques for DASCs will be discussed. Different synthetic methods and catalytic applications of the DASCs in various reactions, including oxygen reduction reaction, carbon dioxide reduction reaction, carbon monoxide oxidation reaction, and others will be followed. Finally, the major challenges and perspectives of DASCs will be provided.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Yuguang Chao
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Wenshu Zhang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jinhui Zhou
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Kai Wang
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Fangxu Lin
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Heng Luo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| | - Jing Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Erkang Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Guo
- School of Materials Science & Engineering, and College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
290
|
Stable, active CO 2 reduction to formate via redox-modulated stabilization of active sites. Nat Commun 2021; 12:5223. [PMID: 34471135 PMCID: PMC8410779 DOI: 10.1038/s41467-021-25573-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Electrochemical reduction of CO2 (CO2R) to formic acid upgrades waste CO2; however, up to now, chemical and structural changes to the electrocatalyst have often led to the deterioration of performance over time. Here, we find that alloying p-block elements with differing electronegativities modulates the redox potential of active sites and stabilizes them throughout extended CO2R operation. Active Sn-Bi/SnO2 surfaces formed in situ on homogeneously alloyed Bi0.1Sn crystals stabilize the CO2R-to-formate pathway over 2400 h (100 days) of continuous operation at a current density of 100 mA cm−2. This performance is accompanied by a Faradaic efficiency of 95% and an overpotential of ~ −0.65 V. Operating experimental studies as well as computational investigations show that the stabilized active sites offer near-optimal binding energy to the key formate intermediate *OCHO. Using a cation-exchange membrane electrode assembly device, we demonstrate the stable production of concentrated HCOO– solution (3.4 molar, 15 wt%) over 100 h. Stable electrochemical reduction to formate is still challenging. Here, the authors demonstrate a redox-modulation and active-site stabilization strategy for CO2 to formate conversion over 100 days of continuous operation at 100 mA/cm2 with a cathodic energy efficiency of 70%.
Collapse
|
291
|
Wang Z, Zhou Y, Xia C, Guo W, You B, Xia BY. Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Amino‐Functionalized Indium–Organic Framework Electrocatalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 China
| |
Collapse
|
292
|
Lin TY, Baker SE, Duoss EB, Beck VA. Analysis of the Reactive CO 2 Surface Flux in Electrocatalytic Aqueous Flow Reactors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiras Y. Lin
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sarah E. Baker
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric B. Duoss
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Victor A. Beck
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
293
|
Rahaman M, Kiran K, Zelocualtecatl Montiel I, Dutta A, Broekmann P. Suppression of the Hydrogen Evolution Reaction Is the Key: Selective Electrosynthesis of Formate from CO 2 over Porous In 55Cu 45 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35677-35688. [PMID: 34288647 DOI: 10.1021/acsami.1c07829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct electrosynthesis of formate through CO2 electroreduction (denoted CO2RR) is currently attracting great attention because formate is a highly valuable commodity chemical that is already used in a wide range of applications (e.g., formic acid fuel cells, tanning, rubber production, preservatives, and antibacterial agents). Herein, we demonstrate highly selective production of formate through CO2RR from a CO2-saturated aqueous bicarbonate solution using a porous In55Cu45 alloy as the electrocatalyst. This novel high-surface-area material was produced by means of an electrodeposition process utilizing the dynamic hydrogen bubble template approach. Faradaic efficiencies (FEs) of formate production (FEformate) never fell below 90% within a relatively broad potential window of approximately 400 mV, ranging from -0.8 to -1.2 V vs the reversible hydrogen electrode (RHE). A maximum FEformate of 96.8%, corresponding to a partial current density of jformate = -8.9 mA cm-2, was yielded at -1.0 V vs RHE. The experimental findings suggested a CO2RR mechanism involving stabilization of the HCOO* intermediate on the In55Cu45 alloy surface in combination with effective suppression of the parasitic hydrogen evolution reaction. What makes this CO2RR alloy catalyst particularly valuable is its stability against degradation and chemical poisoning. An almost constant formate efficiency of ∼94% was maintained in an extended 30 h electrolysis experiment, whereas pure In film catalysts (the reference benchmark system) showed a pronounced decrease in formate efficiency from 82% to 50% under similar experimental conditions. The identical location scanning electron microscopy approach was applied to demonstrate the structural stability of the applied In55Cu45 alloy foam catalysts at various length scales. We demonstrate that the proposed catalyst concept could be transferred to technically relevant support materials (e.g., carbon cloth gas diffusion electrode) without altering its excellent figures of merit.
Collapse
Affiliation(s)
- Motiar Rahaman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Kiran Kiran
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Ivan Zelocualtecatl Montiel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Abhijit Dutta
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
294
|
Xie H, Zhang T, Xie R, Hou Z, Ji X, Pang Y, Chen S, Titirici MM, Weng H, Chai G. Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008373. [PMID: 34174114 DOI: 10.1002/adma.202008373] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Indexed: 05/03/2023]
Abstract
Bismuth (Bi) is a topological crystalline insulator (TCI), which has gapless topological surface states (TSSs) protected by a specific crystalline symmetry that strongly depends on the facet. Bi is also a promising electrochemical CO2 reduction reaction (ECO2 RR) electrocatalyst for formate production. In this study, single-crystalline Bi rhombic dodecahedrons (RDs) exposed with (104) and (110) facets are developed. The Bi RDs demonstrate a very low overpotential and high selectivity for formate production (Faradic efficiency >92.2%) in a wide partial current density range from 9.8 to 290.1 mA cm-2 , leading to a remarkably high full-cell energy efficiency (69.5%) for ECO2 RR. The significantly reduced overpotential is caused by the enhanced *OCHO adsorption on the Bi RDs. The high selectivity of formate can be ascribed to the TSSs and the trivial surface states opening small gaps in the bulk gap on Bi RDs, which strengthens and stabilizes the preferentially adsorbed *OCHO and mitigates the competing adsorption of *H during ECO2 RR. This study describes a promising application of Bi RDs for high-rate formate production and high-efficiency energy storage of intermittent renewable electricity. Optimizing the geometry of TCIs is also proposed as an effective strategy to tune the TSSs of topological catalysts.
Collapse
Affiliation(s)
- Huan Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Tan Zhang
- Beijing National Research Center for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zhufeng Hou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xuecong Ji
- Beijing National Research Center for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Yongyu Pang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Shaoqing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | | | - Hongming Weng
- Beijing National Research Center for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
295
|
Duarte M, Daems N, Hereijgers J, Arenas-Esteban D, Bals S, Breugelmans T. Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
296
|
The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics. SUSTAINABILITY 2021. [DOI: 10.3390/su13158218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plastics have been revolutionary in numerous sectors, and many of the positive attributes of modern life can be attributed to their use. However, plastics are often treated only as disposable commodities, which has led to the ever-increasing accumulation of plastic and plastic by-products in the environment as waste, and an unacceptable growth of microplastic and nanoplastic pollution. The catchphrase “plastics are everywhere”, perhaps once seen as extolling the virtues of plastics, is now seen by most as a potential or actual threat. Scientists are confronting this environmental crisis, both by developing recycling methods to deal with the legacy of plastic waste, and by highlighting the need to develop and implement effective whole-of-life strategies in the future use of plastic materials. The importance and topicality of this subject are evidenced by the dramatic increase in the use of terms such as “whole of life”, “life-cycle assessment”, “circular economy” and “sustainable polymers” in the scientific and broader literature. Effective solutions, however, are still to be forthcoming. In this review, we assess the potential for implementing whole-of-life strategies for plastics to achieve our vision of a circular economy. In this context, we consider the ways in which given plastics might be recycled into the same plastic for potential use in the same application, with minimal material loss, the lowest energy cost, and the least potential for polluting the environment.
Collapse
|
297
|
Somoza-Tornos A, Guerra OJ, Crow AM, Smith WA, Hodge BM. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO 2: a review. iScience 2021; 24:102813. [PMID: 34337363 PMCID: PMC8313747 DOI: 10.1016/j.isci.2021.102813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical reduction of CO2 has emerged as a promising alternative to traditional fossil-based technologies for the synthesis of chemicals. Its industrial implementation could lead to a reduction in the carbon footprint of chemicals and the mitigation of climate change impacts caused by hard-to-decarbonize industrial applications, among other benefits. However, the current low technology readiness levels of such emerging technologies make it hard to predict their performance at industrial scales. During the past few years, researchers have developed diverse techniques to model and assess the electrochemical reduction of CO2 toward its industrial implementation. The aim of this literature review is to provide a comprehensive overview of techno-economic and life cycle assessment methods and pave the way for future assessment approaches. First, we identify which modeling approaches have been conducted to extend analysis to the production scale. Next, we explore the metrics used to evaluate such systems, regarding technical, environmental, and economic aspects. Finally, we assess the challenges and research opportunities for the industrial implementation of CO2 reduction via electrolysis.
Collapse
Affiliation(s)
- Ana Somoza-Tornos
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Allison M. Crow
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Wilson A. Smith
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Bri-Mathias Hodge
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
298
|
Wang Z, Zhou Y, Xia C, Guo W, You B, Xia BY. Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Amino-Functionalized Indium-Organic Framework Electrocatalyst. Angew Chem Int Ed Engl 2021; 60:19107-19112. [PMID: 34164898 DOI: 10.1002/anie.202107523] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/06/2022]
Abstract
We report an amino-functionalized indium-organic framework for efficient CO2 reduction to formate. The immobilized amino groups strengthen the absorption and activation of CO2 and stabilize the active intermediates, which endow an enhanced catalytic conversion to formate despite the inevitable reduction and reconstruction of the functionalized indium-based catalyst during electrocatalysis. The reconstructed amino-functionalized indium-based catalyst demonstrates a high Faradaic efficiency of 94.4 % and a partial current density of 108 mA cm-2 at -1.1 V vs. RHE in a liquid-phase flow cell, and also delivers an enhanced current density of ca. 800 mA cm-2 at 3.4 V for the formate production in a gas-phase flow cell configuration. This work not only provides a molecular functionalization and assembling concept of hybrid electrocatalysts but also offers valuable understandings in electrocatalyst evolution and reactor optimization for CO2 electrocatalysis and beyond.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
299
|
Shao P, Zhou W, Hong QL, Yi L, Zheng L, Wang W, Zhang HX, Zhang H, Zhang J. Synthesis of a Boron-Imidazolate Framework Nanosheet with Dimer Copper Units for CO 2 Electroreduction to Ethylene. Angew Chem Int Ed Engl 2021; 60:16687-16692. [PMID: 33978299 DOI: 10.1002/anie.202106004] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 01/01/2023]
Abstract
Fundamental understanding of the dependence between the structure and composition on the electrochemical CO2 reduction reaction (CO2 RR) would guide the rational design of highly efficient and selective electrocatalysts. A major impediment to the deep reduction CO2 to multi-carbon products is the complexity of carbon-carbon bond coupling. The chemically well-defined catalysts with atomically dispersed dual-metal sites are required for these C-C coupling involved processes. Here, we developed a catalyst (BIF-102NSs) that features Cl- bridged dimer copper (Cu2 ) units, which delivers high catalytic activity and selectivity for C2 H4 . Mechanistic investigation verifies that neighboring Cu monomers not only perform as regulator for varying the reaction barrier, but also afford distinct reaction paths compared with isolated monomers, resulting in greatly improved electroreduction performance for CO2 .
Collapse
Affiliation(s)
- Ping Shao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Luocai Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
300
|
Wang D, Liu C, Zhang Y, Wang Y, Wang Z, Ding D, Cui Y, Zhu X, Pan C, Lou Y, Li F, Zhu Y, Zhang Y. CO 2 Electroreduction to Formate at a Partial Current Density up to 590 mA mg -1 via Micrometer-Scale Lateral Structuring of Bismuth Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100602. [PMID: 34121332 DOI: 10.1002/smll.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
2D bismuth nanosheets are a promising layered material for formate-producing via electrocatalytic CO2 conversion. However, the commercial interest of bismuth nanosheets in CO2 electroreduction is still rare due to the undesirable current density for formate at moderate operation potentials (about 200 mA mg-1 ) and harsh synthesis conditions (high temperature and/or high pressure). This work reports the preparation of Bi nanosheets with a lateral size in micrometer-scale via electrochemical cathodic exfoliation in aqueous solution at normal pressure and temperature. As-prepared Bi LNSs (L indicates large lateral size) possess high Faradaic efficiencies over 90% within a broad potential window from -0.44 to -1.10 V versus RHE and a superior partial current density about 590 mA mg-1 for formate in comparison with state-of-the-art results. Structure analysis, electrochemical results, and density functional theory calculations demonstrate that the increasing tensile lattice strain observed in Bi LNSs leads to less overlap of d orbitals and a narrower d-band width, which tuning the intermediate binding energies, and therefore promotes the intrinsic activity.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chuangwei Liu
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Yaning Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yanying Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenlin Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ding Ding
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiangmiao Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Lou
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Fengwang Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ying Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|