251
|
Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury. Brain Res 2010; 1349:115-28. [PMID: 20599835 DOI: 10.1016/j.brainres.2010.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 01/01/2023]
Abstract
We tested the effects of mouse embryonic stem cells (mES) grafts in mice spinal cord injury (SCI). Young adult female C57/Bl6 mice were subjected to laminectomy at T9 and 1-minute compression of the spinal cord with a vascular clip. Four groups were analyzed: laminectomy (Sham), injured (SCI), vehicle (DMEM), and mES-treated (EST). mES pre-differentiated with retinoic acid were injected (8 x 10(5) cells/2 microl) into the lesion epicenter, 10 min after SCI. Basso mouse scale (BMS) and Global mobility test (GMT) were assessed weekly up to 8 weeks, when morphological analyses were performed. GMT analysis showed that EST animals moved faster (10.73+/-0.9076, +/-SEM) than SCI (5.581+/-0.2905) and DMEM (5.705+/-0.2848), but slower than Sham animals (15.80+/-0.3887, p<0.001). By BMS, EST animals reached the final phase of locomotor recovery (3.872+/-0.7112, p<0.01), while animals of the SCI and DMEM groups improved to an intermediate phase (2.037+/-0.3994 and 2.111+/-0.3889, respectively). White matter area and number of myelinated nerve fibers were greater in EST (46.80+/-1.24 and 279.4+/-16.33, respectively) than the SCI group (39.97+/-0.925 and 81.39+/-8.078, p<0.05, respectively). EST group also presented better G-ratio values when compared with SCI group (p<0.001). Immunohistochemical revealed the differentiation of transplanted cells into astrocytes, oligodendrocytes, and Schwann cells, indicating an integration of transplanted cells with host tissue. Ultrastructural analysis showed, in the EST group, better tissue preservation and more remyelination by oligodendrocytes and Schwann cells than the other groups. Our results indicate that acute transplantation of predifferentiated mES into the injured spinal cord increased the spared white matter and number of nerve fibers, improving locomotor function.
Collapse
|
252
|
Abstract
Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been evaluated in animal models and humans with SCI. No consensus exists regarding the type of stem cell, if any, that will prove to be effective therapeutically. Most data suggest that no single therapy will be sufficient to overcome all the biological complications caused by SCI. Rationales for therapeutic use of stem cells for SCI include replacement of damaged neurons and glial cells, secretion of trophic factors, regulation of gliosis and scar formation, prevention of cyst formation, and enhancement of axon elongation. Most therapeutic approaches that use stem cells involve implantation of these cells into the spinal cord. The attendant risks of stem cell therapy for SCI--including tumor formation, or abnormal circuit formation leading to dysfunction--must be weighed against the potential benefits of this approach. This Review will examine the biological effects of SCI, the opportunities for stem cell treatment, and the types of stem cells that might be used therapeutically. The limited information available on the possible benefits of stem cell therapy to humans will also be discussed.
Collapse
Affiliation(s)
- Vibhu Sahni
- MGH-HMS Center for Nervous System Repair, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | | |
Collapse
|
253
|
Tirotta E, Carbajal KS, Schaumburg CS, Whitman L, Lane TE. Cell replacement therapies to promote remyelination in a viral model of demyelination. J Neuroimmunol 2010; 224:101-7. [PMID: 20627412 DOI: 10.1016/j.jneuroim.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/21/2022]
Abstract
Persistent infection of the central nervous system (CNS) of mice with the neuroadapted JHM strain of mouse hepatitis (MHV) is characterized by ongoing demyelination mediated by inflammatory T cells and macrophages that is similar both clinically and histologically with the human demyelinating disease multiple sclerosis (MS). Although extensive demyelination occurs in mice persistently infected with MHV there is only limited remyelination. Therefore, the MHV model of demyelination is a relevant model for studying disease and evaluating therapeutic approaches to protect cells of the oligodendrocyte lineage and promote remyelination. This concept is further highlighted as the etiology of MS remains enigmatic, but viruses have long been considered as potential triggering agents in initiating and/or maintaining MS symptoms. As such, understanding mechanisms associated with promoting repair within the CNS in the context of a persistent viral infection is critical given the possible viral etiology of MS. This review focuses on recent studies using either mouse neural stem cells (NSCs) or human oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (hESC) to promote remyelination in mice persistently infected with MHV. In addition, the potential role for chemokines in positional migration of transplanted cells is addressed.
Collapse
Affiliation(s)
- Emanuele Tirotta
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
254
|
Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev Neurother 2010; 10:441-57. [PMID: 20187865 DOI: 10.1586/ern.10.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. A better understanding of why remyelination fails in MS is necessary to improve remyelination strategies. Remyelination is mediated by oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, it is still unclear whether OPCs detectable in MS lesions survive the inflammatory response but are unable to myelinate or whether OPC and oligodendrocyte death is primarily responsible for remyelination failure and detectable OPCs enter demyelinated areas from adjacent tissue as the lesion evolves. Remyelination strategies should, therefore, focus on stimulation of differentiation or prevention of apoptosis, as well as establishment of a supportive environment for OPC-mediated remyelination, which may be especially important in chronically demyelinated lesions.
Collapse
Affiliation(s)
- Jens Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
255
|
Iacobas I, Vats A, Hirschi KK. Vascular potential of human pluripotent stem cells. Arterioscler Thromb Vasc Biol 2010; 30:1110-7. [PMID: 20453170 DOI: 10.1161/atvbaha.109.191601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and preclinical studies to human trials.
Collapse
Affiliation(s)
- Ionela Iacobas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
256
|
Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL. MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS One 2010; 5:e10480. [PMID: 20463920 PMCID: PMC2864763 DOI: 10.1371/journal.pone.0010480] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/13/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cells of the oligodendrocyte (OL) lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs) are considered the "micromanagers" of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES) cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. METHODOLOGY/PRINCIPAL FINDINGS We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse central nervous system. Principal component analysis revealed four main clusters of miRNA expression corresponding to early, mid, and late progenitors, and mature OLs. These results were supported by correlation analyses between adjacent stages. Interestingly, the highest differentially-expressed miRNAs demonstrated a similar pattern of expression throughout all stages of differentiation, suggesting that they potentially regulate a common target or set of targets in this process. The predicted targets of these miRNAs include those with known or suspected roles in oligodendrocyte development and myelination including C11Orf9, CLDN11, MYTL1, MBOP, MPZL2, and DDR1. CONCLUSIONS/SIGNIFICANCE We demonstrate miRNA profiles during distinct stages in oligodendroglial differentiation that may provide key markers of OL maturation. Our results reveal pronounced trends in miRNA expression and their potential mRNA target interactions that could provide valuable insight into the molecular mechanisms of differentiation.
Collapse
Affiliation(s)
- Brian S. Letzen
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cyndi Liu
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nitish V. Thakor
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Gearhart
- Department of Cell and Developmental Biology, Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Animal Biology, Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angelo H. All
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Candace L. Kerr
- Department of Gynecology and Obstetrics, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
257
|
Shihabuddin LS, Aubert I. Stem cell transplantation for neurometabolic and neurodegenerative diseases. Neuropharmacology 2010; 58:845-54. [DOI: 10.1016/j.neuropharm.2009.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 01/21/2023]
|
258
|
Kemp K, Mallam E, Scolding N, Wilkins A. Stem cells in genetic myelin disorders. Regen Med 2010; 5:425-39. [DOI: 10.2217/rme.10.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic myelin disorders are a range of diseases that manifest with severe neurological problems, often from infancy. It has been postulated for some time that stem cells might be an effective treatment for these disorders, primarily as agents to restore dysfunctional or lost myelin. Stem cells, however, may offer a wider range of therapeutic potential, for instance as vehicles to replace abnormal enzymes or genes, or to provide trophic support for residual CNS tissue. This article will review several of the more common genetic myelin disorders and currently available therapies, including bone marrow transplantation for adrenoleukodystrophy. Specific stem cell subtypes and their relevance to potential therapeutic use will be discussed and stem cell transplantation in animal model studies will also be reviewed.
Collapse
Affiliation(s)
- Kevin Kemp
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Elizabeth Mallam
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Neil Scolding
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
259
|
Abstract
Stem cells represent a unique opportunity for regenerative medicine to cure a broad number of diseases for which current treatment only alleviates symptoms or retards further disease progression. However, the number of stem cells available has speedily increased these past 10 years and their diversity presents new challenges to clinicians and basic scientists who intend to use them in clinics or to study their unique properties. In addition, the recent possibility to derive pluripotent stem cells from somatic cells using epigenetic reprogramming has further increased the clinical interest of stem cells since induced pluripotent stem cells could render personalized cell-based therapy possible. The present review will attempt to summarize the advantages and challenges of each type of stem cell for current and future clinical applications using specific examples.
Collapse
|
260
|
Abstract
This article provides an overview of the current knowledge relating to the potential use of transplanted stem cells in the treatment of patients with multiple sclerosis (MS). Two types of stem cells, CNS-derived neural stem/precursor cells (NPCs) and bone marrow-derived mesenchymal stem cells (MSCs) are considered to provide reproducible and robust therapeutic effects when intravenously or intrathecally injected into both rodents and primates with experimental autoimmune encephalomyelitis. Furthermore, preliminary safety data concerning the use of intrathecally injected autologous MSCs in patients with progressive MS are available. We discuss how the data gathered to date challenge the narrow view that the therapeutic effects of NPCs and MSCs observed in the treatment of MS are accomplished solely by cell replacement. Both types of stem cell, when transplanted systemically, might instead influence disease outcome by releasing a plethora of factors that are immunomodulatory or neuroprotective, thereby directly or indirectly influencing the regenerative properties of intrinsic CNS stem/precursor cells.
Collapse
|
261
|
Kozubenko N, Turnovcova K, Kapcalova M, Butenko O, Anderova M, Rusnakova V, Kubista M, Hampl A, Jendelova P, Sykova E. Analysis of in Vitro and in Vivo Characteristics of Human Embryonic Stem Cell-Derived Neural Precursors. Cell Transplant 2010. [DOI: 10.3727/096368909x484707b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the last decade, much progress has been made in developing protocols for the differentiation of human embryonic stem cells (hESCs) into a neural phenotype. The appropriate agent for cell therapy is neural precursors (NPs). Here, we demonstrate the derivation of highly enriched and expandable populations of proliferating NPs from the CCTL14 line of hESCs. These NPs could differentiate in vitro into functionally active neurons, as confirmed by immunohistochemical staining and electrophysiological analysis. Neural cells differentiated in vitro from hESCs exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. To analyze the population of the derived NPs, we used fluorescence-activated cell sorting (FACS) and characterized the expression of several pluripotent and neural markers, such as Nanog, SSEA-4, SSEA-1, TRA-1-60, CD24, CD133, CD56 (NCAM), β-III-tubulin, NF70, nestin, CD271 (NGFR), CD29, CD73, and CD105 during long-term propagation. The analyzed cells were used for transplantation into the injured rodent brain; the tumorigenicity of the transplanted cells was apparently eliminated following long-term culture. These results complete the characterization of the CCTL14 line of hESCs and provide a framework for developing cell selection strategies for neural cell-based therapies.
Collapse
Affiliation(s)
- Nataliya Kozubenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Miroslava Kapcalova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Olena Butenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Vendula Rusnakova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Lundberg Laboratory, Goteborg, Sweden
| | - Ales Hampl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Eva Sykova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| |
Collapse
|
262
|
Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010; 28:152-63. [PMID: 19877167 DOI: 10.1002/stem.245] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Evidence that cell transplants can improve recovery outcomes in spinal cord injury (SCI) models substantiates treatment strategies involving cell replacement for humans with SCI. Most pre-clinical studies of cell replacement in SCI examine thoracic injury models. However, as most human injuries occur at the cervical level, it is critical to assess potential treatments in cervical injury models and examine their effectiveness using at-level histological and functional measures. To directly address cervical SCI, we used a C5 midline contusion injury model and assessed the efficacy of a candidate therapeutic for thoracic SCI in this cervical model. The contusion generates reproducible, bilateral movement and histological deficits, although a number of injury parameters such as acute severity of injury, affected gray-to-white matter ratio, extent of endogenous remyelination, and at-level locomotion deficits do not correspond with these parameters in thoracic SCI. On the basis of reported benefits in thoracic SCI, we transplanted human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into this cervical model. hESC-derived OPC transplants attenuated lesion pathogenesis and improved recovery of forelimb function. Histological effects of transplantation included robust white and gray matter sparing at the injury epicenter and, in particular, preservation of motor neurons that correlated with movement recovery. These findings further our understanding of the histopathology and functional outcomes of cervical SCI, define potential therapeutic targets, and support the use of these cells as a treatment for cervical SCI.
Collapse
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, California 92697-4292, USA
| | | | | | | | | |
Collapse
|
263
|
Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28:93-9. [PMID: 19904738 DOI: 10.1002/stem.253] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) causes myelopathy, damage to white matter, and myelinated fiber tracts that carry sensation and motor signals to and from the brain. The gray matter damage causes segmental losses of interneurons and motoneurons and restricts therapeutic options. Recent advances in stem cell biology, neural injury, and repair, and the progress toward development of neuroprotective and regenerative interventions are the basis for increased optimism. This review summarizes the pathophysiological mechanisms following SCI and compares human embryonic, adult neural, and the induced pluripotent stem cell-based therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Mohammad Ronaghi
- Cellular Reprogramming Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
264
|
Metallo CM, Azarin SM, Moses LE, Ji L, de Pablo JJ, Palecek SP. Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. Tissue Eng Part A 2010; 16:213-23. [PMID: 19686061 DOI: 10.1089/ten.tea.2009.0325] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Human embryonic stem (hES) cells are an attractive source of cellular material for scientific, diagnostic, and potential therapeutic applications. Protocols are now available to direct hES cell differentiation to specific lineages at high purity under relatively defined conditions; however, researchers must establish the functional similarity of hES cell derivatives and associated primary cell types to validate their utility. Using retinoic acid to initiate differentiation, we generated high-purity populations of keratin 14+ (K14) hES cell-derived keratinocyte (hEK) progenitors and performed microarray analysis to compare the global transcriptional program of hEKs and primary foreskin keratinocytes. Transcriptional patterns were largely similar, though gene ontology analysis identified that genes associated with signal transduction and extracellular matrix were upregulated in hEKs. In addition, we evaluated the ability of hEKs to detect and respond to environmental stimuli such as Ca(2+), serum, and culture at the air-liquid interface. When cultivated on dermal constructs formed with collagen gels and human dermal fibroblasts, hEKs survived and proliferated for 3 weeks in engineered tissue constructs. Maintenance at the air-liquid interface induced stratification of surface epithelium, and immunohistochemistry results indicated that markers of differentiation (e.g., keratin 10, involucrin, and filaggrin) were localized to suprabasal layers. Although the overall tissue morphology was significantly different compared with human skin samples, organotypic cultures generated with hEKs and primary foreskin keratinocytes were quite similar, suggesting these cell types respond to this microenvironment in a similar manner. These results represent an important step in characterizing the functional similarity of hEKs to primary epithelia.
Collapse
Affiliation(s)
- Christian M Metallo
- Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
265
|
Hu J, Deng L, Wang X, Xu XM. Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res 2010; 87:2854-62. [PMID: 19472225 DOI: 10.1002/jnr.22111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) is a component of neural cell niches and regulates multiple functions of diverse cell types. To date, limited information is available concerning its biological effects on the growth properties of oligodendrocyte progenitor cells (OPCs). In the present study, we examined effects of several ECM components, i.e., fibronectin, laminin, and Matrigel, on the survival, proliferation, migration, process extension, and purity of OPCs isolated from embryonic day 15 rat spinal cords. All three ECM components enhanced these biological properties of the OPCs compared with a non-ECM substrate, poly-D-lysine. However, the extents of their effects were somewhat different. Among these ECMs, fibronectin showed the strongest effect on almost all aspects of the growth properties of OPCs, implying that this molecule is a better substrate for the growth of OPCs in vitro. Because of its survival- and growth-promoting effects on OPCs, fibronectin may be considered as a candidate substrate for enhancing OPC-mediated repair under conditions when exogenous delivery or endogenous stimulation of OPCs is applied.
Collapse
Affiliation(s)
- Jianguo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
266
|
Rossi SL, Keirstead HS. Stem cells and spinal cord regeneration. Curr Opin Biotechnol 2010; 20:552-62. [PMID: 19836942 DOI: 10.1016/j.copbio.2009.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 02/02/2023]
Abstract
Cell-based transplantation strategies are inherently combination therapies, as they may mediate spinal cord repair via trophic or phenotypic mechanisms. The growth factor expression profile and phenotype of transplanted cells are determined by the transplant population as well as by the site into which they are transplanted. Identifying the key pathways involved in transplant survival and differentiation, as well as neuroprotection and regeneration of endogenous tissue, will enable manipulation of both the transplanted cells and the microenvironment to improve transplant efficiency. High purity populations derived from stem cells will serve to better delineate lineage-specific mechanisms of repair, while providing both neurotrophic and phenotypic benefits to the injured spinal cord.
Collapse
Affiliation(s)
- Sharyn L Rossi
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | |
Collapse
|
267
|
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, Denardo D, Bernstein HS, Ritner C, Golovko D, Lu Y, Zhao S, Daldrup-Link HE. Labeling Human Embryonic Stem Cell-Derived Cardiomyocytes with Indocyanine Green for Noninvasive Tracking with Optical Imaging: An FDA-Compatible Alternative to Firefly Luciferase. Cell Transplant 2010. [DOI: 10.3727/096368909x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have demonstrated the ability to improve myocardial function following transplantation into an ischemic heart; however, the functional benefits are transient possibly due to poor cell retention. A diagnostic technique that could visualize transplanted hESC-CMs could help to optimize stem cell delivery techniques. Thus, the purpose of this study was to develop a labeling technique for hESCs and hESC-CMs with the FDA-approved contrast agent indocyanine green (ICG) for optical imaging (OI). hESCs were labeled with 0.5, 1.0, 2.0, and 2.5 mg/ml of ICG for 30, 45, and 60 min at 37°C. Longitudinal OI studies were performed with both hESCs and hESC-CMs. The expression of surface proteins was assessed with immunofluorescent staining. hESCs labeled with 2 mg ICG/ml for 60 min achieved maximum fluorescence. Longitudinal studies revealed that the fluorescent signal was equivalent to controls at 120 h postlabeling. The fluorescence signal of hESCs and hESC-CMs at 1, 24, and 48 h was significantly higher compared to precontrast data ( p < 0.05). Immunocytochemistry revealed retention of cell-specific surface and nuclear markers postlabeling. These data demonstrate that hESCs and hESC-CMs labeled with ICG show a significant fluorescence up to 48 h and can be visualized with OI. The labeling procedure does not impair the viability or functional integrity of the cells. The technique may be useful for assessing different delivery routes in order to improve the engraftment of transplanted hESC-CMs or other stem cell progenitors.
Collapse
Affiliation(s)
| | - Tobias D. Henning
- Department of Radiology, University of California, San Francisco, CA, USA
- Department of Radiology, Technical University of Munich, Munich, Germany
| | - Priyanka Jha
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Christopher R. Schlieve
- Gladstone Institute of Cardiovascular Disease, Gladstone Stem Cell Core, University of California, San Francisco, CA, USA
| | - Lydia Mandrussow
- Department of Radiology, University of California, San Francisco, CA, USA
| | - David Denardo
- Cancer Research Institute, University of California, San Francisco, CA, USA
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carissa Ritner
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Daniel Golovko
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Ying Lu
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Shoujun Zhao
- Department of Radiology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
268
|
Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest 2010; 120:29-40. [PMID: 20051634 PMCID: PMC2798697 DOI: 10.1172/jci40543] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based approaches have received much hype as potential treatments for neurodegenerative disorders. Indeed, transplantation of stem cells or their derivatives in animal models of neurodegenerative diseases can improve function by replacing the lost neurons and glial cells and by mediating remyelination, trophic actions, and modulation of inflammation. Endogenous neural stem cells are also potential therapeutic targets because they produce neurons and glial cells in response to injury and could be affected by the degenerative process. As we discuss here, however, significant hurdles remain before these findings can be responsibly translated to novel therapies. In particular, we need to better understand the mechanisms of action of stem cells after transplantation and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment.
Collapse
Affiliation(s)
- Olle Lindvall
- Address correspondence to: Olle Lindvall, Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, University Hospital, SE-221 84, Lund, Sweden. Phone: 46-46-222-0543; Fax: 46-46-222-0560; E-mail:
| | - Zaal Kokaia
- Address correspondence to: Olle Lindvall, Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, University Hospital, SE-221 84, Lund, Sweden. Phone: 46-46-222-0543; Fax: 46-46-222-0560; E-mail:
| |
Collapse
|
269
|
Tokumoto Y, Ogawa S, Nagamune T, Miyake J. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro. J Biosci Bioeng 2009; 59:882-92. [PMID: 20471604 DOI: 10.1002/glia.21159] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage.
Collapse
Affiliation(s)
- Yasuhito Tokumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
270
|
Kamishina H, Cheeseman JA, Farese JP, Milner RJ, Clemmons RM. Migration and differentiation of canine bone marrow stromal cells transplanted into the developing mouse brain. J Vet Med Sci 2009; 72:353-6. [PMID: 19952514 DOI: 10.1292/jvms.09-0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate whether canine bone marrow stromal cells (BMSCs) can migrate and adopt neural phenotypes in the developing mouse brain we transplanted fluorescently labeled BMSCs into the lateral ventricle of immunocompromised neonatal mice. Most fibroblasts, used as a control, and BMSCs isolated from adult dogs remained around the injection site and exhibited a spindle-shaped appearance. A small number of BMSCs from young dogs were found in the subventricular zone, rostral migratory stream, and olfactory bulbs, and retained expression of neuron marker. Our findings suggest that BMSCs isolated from adult dogs have limited ability of migration and differentiation toward neural cells in the developing brain. Bone marrow of young dogs may contain a primitive stem cell population with neural differentiation capacity.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0126, USA.
| | | | | | | | | |
Collapse
|
271
|
Hosking MP, Lane TE. The Biology of Persistent Infection: Inflammation and Demyelination following Murine Coronavirus Infection of the Central Nervous System. ACTA ACUST UNITED AC 2009; 5:267-276. [PMID: 19946572 DOI: 10.2174/157339509789504005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple Sclerosis (MS) is an immune-mediated demyelinating disease of humans. Although causes of MS are enigmatic, underlying elements contributing to disease development include both genetic and environmental factors. Recent epidemiological evidence has pointed to viral infection as a trigger to initiating white matter damage in humans. Mouse hepatitis virus (MHV) is a positive strand RNA virus that, following intracranial infection of susceptible mice, induces an acute encephalomyelitis that later resolves into a chronic fulminating demyelinating disease. Immune cell infiltration into the central nervous system is critical both to quell viral replication and instigate demyelination. Recent efforts by our laboratory and others have focused upon strategies capable of enhancing remyelination in response to viral-induced demyelination, both by dampening chronic inflammation and by surgical engraftment of remyelination - competent neural precursor cells.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900 USA
| | | |
Collapse
|
272
|
Abraham S, Eroshenko N, Rao RR. Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med 2009; 4:561-78. [PMID: 19580405 DOI: 10.2217/rme.09.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent stem cells, including embryonic and induced pluripotent stem cells, hold enormous potential for the treatment of many diseases, owing to their ability to generate cell types useful for therapeutic applications. Currently, many stem cell culture propagation and differentiation systems incorporate animal-derived components for promoting self-renewal and differentiation. However, use of these components is labor intensive, carries the risk of xenogeneic contamination and yields compromised experimental results that are difficult to duplicate. From a biomaterials perspective, the generation of an animal- and cell-free biomimetic microenvironment that provides the appropriate physical and chemical cues for stem cell self-renewal or differentiation into specialized cell types would be ideal. This review presents the use of natural and synthetic polymers that support propagation and differentiation of stem cells, in an attempt to obtain a clear understanding of the factors responsible for the determination of stem cell fate.
Collapse
Affiliation(s)
- Sheena Abraham
- Department of Chemical & Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
273
|
Carpenter MK, Frey-Vasconcells J, Rao MS. Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 2009; 27:606-13. [PMID: 19587662 DOI: 10.1038/nbt0709-606] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
274
|
Hu Z, Li T, Zhang X, Chen Y. Hepatocyte growth factor enhances the generation of high-purity oligodendrocytes from human embryonic stem cells. Differentiation 2009; 78:177-84. [DOI: 10.1016/j.diff.2009.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/23/2009] [Accepted: 05/20/2009] [Indexed: 01/25/2023]
|
275
|
Abstract
We have devised a reproducible protocol by which human embryonic stem cells (hESCs) or inducible pluripotent stem cells (iPSCs) are efficiently differentiated to functional spinal motor neurons. This protocol comprises four major steps. Pluripotent stem cells are induced to form neuroepithelial (NE) cells that form neural tube-like rosettes in the absence of morphogens in the first 2 weeks. The NE cells are then specified to OLIG2-expressing motoneuron progenitors in the presence of retinoic acid (RA) and sonic hedgehog (SHH) or purmorphamine in the next 2 weeks. These progenitor cells further generate post-mitotic, HB9-expressing motoneurons at the 5th week and mature to functional motor neurons thereafter. It typically takes 5 weeks to generate the post-mitotic motoneurons and 8-10 weeks for the production of functional mature motoneurons. In comparison with other methods, our protocol does not use feeder cells, has a minimum dependence on proteins (purmorphamine replacing SHH), has controllable adherent selection and is adaptable for scalable suspension culture.
Collapse
|
276
|
Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Lee H, Harrison N, Tabar V, Studer L. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 2009; 27:521-32. [PMID: 19074416 DOI: 10.1634/stemcells.2008-0884] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) have enormous potential for applications in basic biology and regenerative medicine. However, harnessing the potential of hESCs toward generating homogeneous populations of specialized cells remains challenging. Here we describe a novel technology for the genetic identification of defined hESC-derived neural cell types using bacterial artificial chromosome (BAC) transgenesis. We generated hESC lines stably expressing Hes5::GFP, Dll1::GFP, and HB9::GFP BACs that yield green fluorescent protein (GFP)(+) neural stem cells, neuroblasts, and motor neurons, respectively. Faithful reporter expression was confirmed by cell fate analysis and appropriate transgene regulation. Prospective isolation of HB9::GFP(+) cells yielded purified human motor neurons with proper marker expression and electrophysiological activity. Global mRNA and microRNA analyses of Hes5::GFP(+) and HB9::GFP(+) populations revealed highly specific expression signatures, suggesting that BAC transgenesis will be a powerful tool for establishing expression libraries that define the human neural lineage and for accessing defined cell types in applications of human disease.
Collapse
Affiliation(s)
- Dimitris G Placantonakis
- Department of Neurosurgery, Sloan-Kettering Institute for Cancer Research, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
278
|
Rao RC, Boyd J, Padmanabhan R, Chenoweth JG, McKay RD. Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures. Stem Cells 2009; 27:116-25. [PMID: 18403757 DOI: 10.1634/stemcells.2007-0205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes derived in the laboratory from stem cells have been proposed as a treatment for acute and chronic injury to the central nervous system. Platelet-derived growth factor (PDGF) receptor alpha (PDGFRalpha) signaling is known to regulate oligodendrocyte precursor cell numbers both during development and adulthood. Here, we analyze the effects of PDGFRalpha signaling on central nervous system (CNS) stem cell-enriched cultures. We find that AC133 selection for CNS progenitors acutely isolated from the fetal cortex enriches for PDGF-AA-responsive cells. PDGF-AA treatment of fibroblast growth factor 2-expanded CNS stem cell-enriched cultures increases nestin(+) cell number, viability, proliferation, and glycolytic rate. We show that a brief exposure to PDGF-AA rapidly and efficiently permits the derivation of O4(+) oligodendrocyte-lineage cells from CNS stem cell-enriched cultures. The derivation of oligodendrocyte-lineage cells demonstrated here may support the effective use of stem cells in understanding fate choice mechanisms and the development of new therapies targeting this cell type.
Collapse
Affiliation(s)
- Rajesh C Rao
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
279
|
Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 2009; 136:1443-52. [PMID: 19363151 DOI: 10.1242/dev.029447] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human embryonic stem cells (hESCs) offer a platform to bridge what we have learned from animal studies to human biology. Using oligodendrocyte differentiation as a model system, we show that sonic hedgehog (SHH)-dependent sequential activation of the transcription factors OLIG2, NKX2.2 and SOX10 is required for sequential specification of ventral spinal OLIG2-expressing progenitors, pre-oligodendrocyte precursor cells (pre-OPCs) and OPCs from hESC-derived neuroepithelia, indicating that a conserved transcriptional network underlies OPC specification in human as in other vertebrates. However, the transition from pre-OPCs to OPCs is protracted. FGF2, which promotes mouse OPC generation, inhibits the transition of pre-OPCs to OPCs by repressing SHH-dependent co-expression of OLIG2 and NKX2.2. Thus, despite the conservation of a similar transcriptional network across vertebrates, human stem/progenitor cells may respond differently to those of other vertebrates to certain extrinsic factors.
Collapse
Affiliation(s)
- Bao-Yang Hu
- Department of Anatomy and Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
280
|
Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27:78-87. [PMID: 18845761 PMCID: PMC2729673 DOI: 10.1634/stemcells.2008-0543] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration.
Collapse
Affiliation(s)
- Slaven Erceg
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
281
|
Ghosh D, Yan X, Tian Q. Gene regulatory networks in embryonic stem cells and brain development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:182-91. [PMID: 19530135 DOI: 10.1002/bdrc.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders.
Collapse
|
282
|
Rooney GE, Howard L, O'Brien T, Windebank AJ, Barry FP. Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev 2009; 18:387-98. [PMID: 18554089 DOI: 10.1089/scd.2008.0080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aims of this research were to examine the neural expression profile of undifferentiated mesenchymal stem cells (MSCs), to define a serum-free environment that would support the survival of MSCs, and to assess the effects of elevated cyclic adenosine monophosphate (cAMP) levels on MSC morphology and expression of neural markers. The neural profile of MSCs was assessed using immunocytochemistry and real-time polymerase chain reaction (PCR) techniques. These MSCs were then cultured in varying serum-free environments, with flow cytometry analysis of cell viability and apoptosis. The effects of forskolin and 8 bromo-cAMP treatment on MSC morphology and expression of neural markers were assessed using light microscopy, immunocytochemistry and real-time PCR analysis. Expression of the neural markers nestin, vimentin, beta III tubulin, glial fibrillary acidic protein, and the tropomyosin-related kinases was demonstrated in normal undifferentiated MSCs. Furthermore, MSCs cultured in serum-free conditions containing ascorbic acid 2-phosphate demonstrated greater long-term survival and reduced apoptosis. In contrast, forskolin increased the percentage of cells undergoing apoptosis. Culture in the presence of forskolin induced a 6-fold increase in beta III tubulin expression after a 6-h exposure time, which was accompanied by dramatic changes in morphology. However, this effect was transient, with the cells reverting to their normal morphology by 24 h. Treatment with 8 bromo-cAMP induced similar increases in beta III tubulin expression without such dramatic morphological changes. Factors which increase the concentration of cAMP induce transient changes in expression of neural markers that appear to be the result of cellular adaptation to changes in culture conditions rather than a real process of neural differentiation.
Collapse
Affiliation(s)
- Gemma E Rooney
- Regenerative Medicine Institute, National Centre for Biomedical and Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
283
|
Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2009; 2:553-65. [PMID: 18522848 DOI: 10.1016/j.stem.2008.03.020] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/05/2008] [Accepted: 03/26/2008] [Indexed: 01/17/2023]
Abstract
Congenitally hypomyelinated shiverer mice fail to generate compact myelin and die by 18-21 weeks of age. Using multifocal anterior and posterior fossa delivery of sorted fetal human glial progenitor cells into neonatal shiverer x rag2(-/-) mice, we achieved whole neuraxis myelination of the engrafted hosts, which in a significant fraction of cases rescued this otherwise lethal phenotype. The transplanted mice exhibited greatly prolonged survival with progressive resolution of their neurological deficits. Substantial myelination in multiple regions was accompanied by the acquisition of normal nodes of Ranvier and transcallosal conduction velocities, ultrastructurally normal and complete myelination of most axons, and a restoration of a substantially normal neurological phenotype. Notably, the resultant mice were cerebral chimeras, with murine gray matter but a predominantly human white matter glial composition. These data demonstrate that the neonatal transplantation of human glial progenitor cells can effectively treat disorders of congenital and perinatal hypomyelination.
Collapse
Affiliation(s)
- Martha S Windrem
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Buchet D, Baron-Van Evercooren A. In search of human oligodendroglia for myelin repair. Neurosci Lett 2009; 456:112-9. [DOI: 10.1016/j.neulet.2008.09.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
|
285
|
Hatch MN, Schaumburg CS, Lane TE, Keirstead HS. Endogenous remyelination is induced by transplant rejection in a viral model of multiple sclerosis. J Neuroimmunol 2009; 212:74-81. [PMID: 19477025 DOI: 10.1016/j.jneuroim.2009.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cell-derived oligodendrocyte progenitors (OPCs) were transplanted into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus with established demyelination. Engrafted cells did not survive past 2 weeks following transplantation despite treatment with high dose cyclosporine A. While T cell infiltration into the CNS was dampened, elevated numbers of macrophage/microglia and endogenous OPCs were evident surrounding the implantation site and this was associated with increased remyelination. These data suggest that remyelination was initiated by the local response to xenograft transplantation. These findings illustrate the complexities of OPC transplantation into areas of robust immune-mediated pathology.
Collapse
Affiliation(s)
- Maya N Hatch
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697-4292, United States
| | | | | | | |
Collapse
|
286
|
Kulbatski I, Tator CH. Region-specific differentiation potential of adult rat spinal cord neural stem/precursors and their plasticity in response to in vitro manipulation. J Histochem Cytochem 2009; 57:405-23. [PMID: 19124840 PMCID: PMC2675070 DOI: 10.1369/jhc.2008.951814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022] Open
Abstract
This study characterized the differentiation of neural stem/precursor cells (NSPCs) isolated from different levels of the spinal cord (cervical vs lumbar cord) and different regions along the neuraxis (brain vs cervical spinal cord) of adult male Wistar enhanced green fluorescent protein rats. The differentiation of cervical spinal cord NSPCs was further examined after variation of time in culture, addition of growth factors, and changes in cell matrix and serum concentration. Brain NSPCs did not differ from cervical cord NSPCs in the percentages of neurons, astrocytes, or oligodendrocytes but produced 26.9% less radial glia. Lumbar cord NSPCs produced 30.8% fewer radial glia and 6.9% more neurons compared with cervical cord NSPCs. Spinal cord NSPC differentiation was amenable to manipulation by growth factors and changes in in vitro conditions. This is the first study to directly compare the effect of growth factors, culturing time, serum concentration, and cell matrix on rat spinal cord NSPCs isolated, propagated, and differentiated under identical conditions.
Collapse
Affiliation(s)
- Iris Kulbatski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
287
|
Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2009; 25:E2. [PMID: 18980476 DOI: 10.3171/foc.2008.25.11.e2] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current understanding of spinal cord injury pathophysiology and discusses important emerging regenerative approaches that have been translated into clinical trials or have a strong potential to do so. The pathophysiology of spinal cord injury involves a primary mechanical injury that directly disrupts axons, blood vessels, and cell membranes. This primary mechanical injury is followed by a secondary injury phase involving vascular dysfunction, edema, ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. Following injury, the mammalian central nervous system fails to adequately regenerate due to intrinsic inhibitory factors expressed on central myelin and the extracellular matrix of the posttraumatic gliotic scar. Regenerative approaches to block inhibitory signals including Nogo and the Rho-Rho-associated kinase pathways have shown promise and are in early stages of clinical evaluation. Cell-based strategies including using neural stem cells to remyelinate spared axons are an attractive emerging approach.
Collapse
Affiliation(s)
- James W Rowland
- Division of Genetics and Development, Toronto Western Research Institute, Institute of Medical Science, University of Toronto, Canada
| | | | | | | |
Collapse
|
288
|
Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 2009; 32:105-14. [PMID: 19569457 PMCID: PMC2678281 DOI: 10.1080/10790268.2009.11760761] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
Affiliation(s)
- Rishi S. Nandoe Tewarie
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andres Hurtado
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ronald H Bartels
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andre Grotenhuis
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin Oudega
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
289
|
Hawryluk G, Fehlings M. Cellular Transplantation Approaches for Repair of the Injured Spinal Cord. Top Spinal Cord Inj Rehabil 2009. [DOI: 10.1310/sci1404-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
290
|
Peh GSL, Lang RJ, Pera MF, Hawes SM. CD133 Expression by Neural Progenitors Derived from Human Embryonic Stem Cells and Its Use for Their Prospective Isolation. Stem Cells Dev 2009; 18:269-82. [DOI: 10.1089/scd.2008.0124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Gary S.-L. Peh
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Richard J. Lang
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Martin F. Pera
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Susan M. Hawes
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Current affiliation: Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
291
|
Gil JE, Woo DH, Shim JH, Kim SE, You HJ, Park SH, Paek SH, Kim SK, Kim JH. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett 2009; 583:561-7. [PMID: 19162023 DOI: 10.1016/j.febslet.2008.12.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/01/2008] [Accepted: 12/29/2008] [Indexed: 02/06/2023]
Abstract
We demonstrate enhanced differentiation of oligodendrocytes during neurogenesis of human embryonic stem cells (hESCs) using an extracellular matrix protein, vitronectin (VN). We show that VN is expressed in the ventral part of the developing human spinal cord. Combined treatment of retinoic acid, sonic hedgehog, and noggin in the presence of VN allows hESCs to differentiate into O4-positive oligodendrocytes. Particularly, VN profoundly promotes the derivation of oligodendrocyte progenitors that proliferate and differentiate into oligodendrocytes in response to mitogenic and survival factors. These results support the beneficial effect of VN on oligodendrocytic differentiation of hESCs.
Collapse
Affiliation(s)
- Jung-Eun Gil
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Sharp J, Keirstead HS. Stem cell-based cell replacement strategies for the central nervous system. Neurosci Lett 2009; 456:107-11. [PMID: 19429144 DOI: 10.1016/j.neulet.2008.04.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/15/2008] [Accepted: 04/27/2008] [Indexed: 12/26/2022]
Abstract
During human development, cells of the blastocyst inner cell mass proliferate and give rise to each cell in the human body. It is that potential which focuses intense interest on these stem cells as a substrate for cell-based regenerative medicine. An increased understanding of the interrelation of processes that govern the formation of various cell types will allow for the directed differentiation of stem cells into specified cells or tissues that can ameliorate the effects of disease or damage. Perhaps the most difficult cells and tissues to derive for use in cell replacement strategies are the diverse neurons, glia and complex networks of the central nervous system (CNS). Here we present emerging perspectives on the development of neuronal and glial cells from stem cells for clinical application to CNS diseases and injury.
Collapse
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-4292, United States
| | | |
Collapse
|
293
|
West E, Pearson R, MacLaren R, Sowden J, Ali R. Cell transplantation strategies for retinal repair. PROGRESS IN BRAIN RESEARCH 2009; 175:3-21. [PMID: 19660645 PMCID: PMC3272389 DOI: 10.1016/s0079-6123(09)17501-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells from both adult and embryonic-derived stem cells and their potential for retinal cell transplantation. We also discuss the strategies used to overcome barriers present in the degenerate neural retina and improve retinal cell integration. Finally, we consider the future translation of retinal cell therapy as a therapeutic strategy to treat retinal degeneration.
Collapse
Affiliation(s)
- E.L. West
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.A. Pearson
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - R.E. MacLaren
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Vitreoretinal Service, Moorfields Eye Hospital, London, UK
| | - J.C. Sowden
- Developmental Biology Unit, UCL Institute of Child Health, London, UK
| | - R.R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
294
|
Abstract
Oligodendrocytes are a type of glial cells that play a critical role in supporting the central nervous system (CNS), in particular insulating axons within the CNS by wrapping them with a myelin sheath, thereby enabling saltatory conduction. They are lost, and myelin damaged - demyelination - in a wide variety of neurological disorders. Replacing depleted cell types within demyelinated areas, however, has been shown experimentally to achieve remyelination and so help restore function. One method to produce oligodendrocytes for cellular replacement therapies is through the use of progenitor or stem cells. The ability to differentiate progenitor or stem cells into high-purity fates not only permits the generation of specific cells for transplantation therapies, but also provides powerful tools for studying cellular mechanisms of development. This chapter outlines methods of generating high-purity OPCs from multipotent neonatal progenitor or human embryonic stem cells.
Collapse
Affiliation(s)
- Maya N Hatch
- Department of Anatomy and Neurobiology, Reeve-Irvine Research Center, University of California at Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
295
|
Cellular remyelinating therapy in multiple sclerosis. J Neurol Sci 2009; 276:1-5. [DOI: 10.1016/j.jns.2008.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 11/19/2022]
|
296
|
Abstract
Stem cells, as subjects of study for use in treating neurological diseases, are envisioned as a replacement for lost neurons and glia, a means of trophic support, a therapeutic vehicle, and, more recently, a tool for in vitro modeling to understand disease and to screen and personalize treatments. In this review we analyze the requirements of stem cell-based therapy for clinical translation, advances in stem cell research toward clinical application for neurological disorders, and different animal models used for analysis of these potential therapies. We focus on Parkinson's disease (typically defined by the progressive loss of dopaminergic nigral neurons), stroke (neurodegeneration associated with decreased blood perfusion in the brain), and multiple sclerosis (an autoimmune disorder that generates demyelination, axonal damage, astrocytic scarring, and neurodegeneration in the brain and spinal cord). We chose these disorders for their diversity and the number of people affected by them. An additional important consideration was the availability of multiple animal models in which to test stem cell applications for these diseases. We also discuss the relationship between the limited number of systematic stem cell studies performed in animals, in particular nonhuman primates and the delayed progress in advancing stem cell therapies to clinical success.
Collapse
Affiliation(s)
- Valerie L Joers
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
297
|
Abstract
Recent advances in stem cell biology have raised expectations that both diseases of, and injuries to, the central nervous system may be ameliorated by cell transplantation. In particular, cell therapy has been studied for inducing efficient remyelination in disorders of myelin, including both the largely pediatric disorders of myelin formation and maintenance and the acquired demyelinations of both children and adults. Potential cell-based treatments of two major groups of disorders include both delivery of myelinogenic replacements and mobilization of residual oligodendrocyte progenitor cells as a means of stimulating endogenous repair; the choice of modality is then predicated upon the disease target. In this review we consider the potential application of cell-based therapeutic strategies to disorders of myelin, highlighting the promises as well as the problems and potential perils of this treatment approach.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
298
|
Crook JM, Kobayashi NR. Human stem cells for modeling neurological disorders: Accelerating the drug discovery pipeline. J Cell Biochem 2008; 105:1361-6. [DOI: 10.1002/jcb.21967] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
299
|
Stocum DL, Zupanc GK. Stretching the limits: Stem cells in regeneration science. Dev Dyn 2008; 237:3648-71. [DOI: 10.1002/dvdy.21774] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
300
|
Novel therapeutic strategies for multiple sclerosis--a multifaceted adversary. Nat Rev Drug Discov 2008; 7:909-25. [PMID: 18974749 DOI: 10.1038/nrd2358] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapeutic strategies for multiple sclerosis have radically changed in the past 15 years. Five regulatory-approved immunomodulatory agents are reasonably effective in the treatment of relapsing-remitting multiple sclerosis, and appear to delay the time to progression to disabling stages. Inhibiting disease progression remains the central challenge for the development of improved therapies. As understanding of the immunopathogenesis of multiple sclerosis has advanced, a number of novel potential therapeutics have been identified, and are discussed here. It has also become apparent that traditional views of multiple sclerosis simply as a CD4+ T-cell-mediated disease of the central nervous system are incomplete. The pathogenic role of other immune components such as the innate immune system, regulatory T cells, T helper 17 cells and B cells is reaching centre stage, opening up exciting avenues and novel potential targets to affect the natural course of multiple sclerosis.
Collapse
|