251
|
Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:435-49. [PMID: 19302828 DOI: 10.1016/j.pnpbp.2009.01.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 11/18/2022]
Abstract
Serotonergic receptors take their physiologic effects by affecting adenylyl cyclase (AC) catalytic activity and cyclic adenosine monophosphate (cAMP) concentration. AC-cAMP second messenger pathway has been recently suggested to play an important role in depression. Therefore, the compound that regulates the signal pathway may have potential as antidepressant. Curcumin is the main component of Curcuma longa L, a well-known indigenous herb with comprehensive bioactivities. In the present study, we investigated the effects of chronic unpredictable mild stress (CUMS) and curcumin on behaviours and serotonergic receptor-coupled AC-cAMP signal pathway in rats. Curcumin produced beneficial effects on the stressed rats by effectively improving CUMS-induced low sucrose consumption and reducing serum corticosterone levels in rats. Moreover, curcumin enhanced AC activity and cAMP levels in platelet and various brain regions, and up-regulated mRNA expressions of AC subtypes AC 2, AC 8 and cAMP response element binding protein (CREB) in the hippocampus, cortex and hypothalamus of the CUMS rats. Curcumin also attenuated CUMS-induced reductions of 5-hydroxytryptamine (5-HT) levels and high expressions of central 5-HT(1A/1B/7) receptors in rats. These results suggested that the potent antidepressant property of curcumin might be attributed to its improvement of AC-cAMP pathway as well as CREB via suppressing central 5-HT(1A/1B/7) receptors in the CUMS rats. Our findings provided a basis for examining the interaction of serotonergic receptors and AC-cAMP pathway in depression and curcumin treatment.
Collapse
MESH Headings
- Adenylyl Cyclases/classification
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Analysis of Variance
- Animals
- Antidepressive Agents/therapeutic use
- Body Weight/drug effects
- Brain/drug effects
- Brain/metabolism
- Corticosterone/blood
- Curcumin/therapeutic use
- Cyclic AMP/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drinking/drug effects
- Eating/drug effects
- Fluoxetine/therapeutic use
- Food Deprivation/physiology
- Food Preferences/drug effects
- Food Preferences/physiology
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Serotonin/classification
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Signal Transduction/drug effects
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Up-Regulation/drug effects
- Water Deprivation/physiology
Collapse
Affiliation(s)
- Yu-Cheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
252
|
Valverde O, Célérier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, Vassart G, Ledent C. GPR3 receptor, a novel actor in the emotional-like responses. PLoS One 2009; 4:e4704. [PMID: 19259266 PMCID: PMC2649507 DOI: 10.1371/journal.pone.0004704] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/14/2009] [Indexed: 12/31/2022] Open
Abstract
GPR3 is an orphan G protein-coupled receptor endowed with constitutive Gs signaling activity, which is expressed broadly in the central nervous system, with maximal expression in the habenula. We investigated the consequences of its genetic deletion in several behavioral paradigms and on neurotransmission. Compared to wild-type, hippocampal neurons from Gpr3(-/-) mice displayed lower basal intracellular cAMP levels, consistent with the strong constitutive activity of GPR3 in transiently transfected cells. Behavioral analyses revealed that Gpr3(-/-) mice exhibited a high level of avoidance of novel and unfamiliar environment, associated with increased stress reactivity in behavioral despair paradigms and aggressive behavior in the resident-intruder test. On the contrary, no deficit was found in the learning ability to avoid an aversive event in active avoidance task. The reduced ability of Gpr3(-/-) mice to cope with stress was unrelated to dysfunction of the hypothalamic-pituitary-adrenal axis, with Gpr3(-/-) mice showing normal corticosterone production under basal or stressful conditions. In contrast, dramatic alterations of monoamine contents were found in hippocampus, hypothalamus and frontal cortex of Gpr3(-/-) mice. Our results establish a link between tonic stimulation of the cAMP signaling pathway by GPR3 and control of neurotransmission by monoamines throughout the forebrain. GPR3 qualifies as a new player in the modulation of behavioral responses to stress and constitutes a novel promising pharmacological target for treatment of emotional disorders.
Collapse
Affiliation(s)
- Olga Valverde
- Grup de Recerca de Neurobiologia del Comportament, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Evelyne Célérier
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mária Baranyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Beata Sperlagh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gilbert Vassart
- IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Catherine Ledent
- IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
- * E-mail:
| |
Collapse
|
253
|
Evidence why paroxetine dose escalation is not effective in major depressive disorder: a randomized controlled trial with assessment of serotonin transporter occupancy. Neuropsychopharmacology 2009; 34:999-1010. [PMID: 18830236 DOI: 10.1038/npp.2008.148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dose escalation is often used in depressed patients who fail to respond to standard doses of selective serotonin reuptake inhibitors, but clinical efficacy is equivocal. We aimed to reassess the efficacy of paroxetine dose escalation and quantify whether paroxetine dose escalation increases occupancy of the serotonin transporter (SERT) more than placebo dose escalation in a randomized controlled trial. We recruited 107 nonpsychotic, unipolar depressed outpatients (18-70 years; Hamilton Depression Rating Scale (HDRS(17)) >18) from primary care and psychiatric outpatient departments. After 6 weeks, open-label paroxetine 20 mg per day (T0), nonresponding patients (HDRS(17) decrease <50%; n=60) were randomized to double-blind paroxetine (30-50 mg per day as tolerable) or placebo dose escalation (paroxetine 20 mg per day+placebo). Patients were followed until 6 weeks after randomization (T1). Forty-nine patients, drug free at study entry, underwent single-photon emission-computed tomography (SPECT) scanning before treatment and were scanned repeatedly at T0 and T1. Paroxetine serum concentrations and SERT occupancy were determined at T0 and T1 (n=32). We terminated the dose-escalation trial after an interim analysis. Thirty nonresponding patients were randomized to paroxetine (46.7+/-5.5 mg per day), 27 to placebo dose escalation. Response rates were 10/30 (33.3%) and 10/27 (37.0%), respectively. Repeated measurement analyses showed no significant effect for treatment (p=0.88, exceeding a priori stopping rules for futility (p>0.5)). Overall dropout was higher for placebo (26.7%) than paroxetine (3.3%; p=0.03). Paroxetine dose escalation increased paroxetine serum concentrations (p<0.001). SPECT measurements (12 patients randomized to paroxetine (46.9+/-4.8 mg) and 14 to placebo dose escalation) showed no significant increase of midbrain SERT occupancy (2.5+/-26.4%, paroxetine; 3.1+/-25.8% placebo; p=0.687) nor in diencephalon (p=0.529). Paroxetine dose escalation in depressed patients has no clinical benefit over placebo dose escalation. This is explained by the absence of significant increases of SERT occupancy by paroxetine dose escalation, despite increased paroxetine serum concentrations (ISRCTN44111488).
Collapse
|
254
|
Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iñiguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A, Krishnan V, Neve RL, Cooper DC, Bolaños CA, Barrot M, McClung CA, Nestler EJ. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 2009; 12:200-9. [PMID: 19151710 DOI: 10.1038/nn.2257] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/15/2008] [Indexed: 01/29/2023]
Abstract
Here, we characterized behavioral abnormalities induced by prolonged social isolation in adult rodents. Social isolation induced both anxiety- and anhedonia-like symptoms and decreased cAMP response element-binding protein (CREB) activity in the nucleus accumbens shell (NAcSh). All of these abnormalities were reversed by chronic, but not acute, antidepressant treatment. However, although the anxiety phenotype and its reversal by antidepressant treatment were CREB-dependent, the anhedonia-like symptoms were not mediated by CREB in NAcSh. We found that decreased CREB activity in NAcSh correlated with increased expression of certain K(+) channels and reduced electrical excitability of NAcSh neurons, which was sufficient to induce anxiety-like behaviors and was reversed by chronic antidepressant treatment. Together, our results describe a model that distinguishes anxiety- and depression-like behavioral phenotypes, establish a selective role of decreased CREB activity in NAcSh in anxiety-like behavior, and provide a mechanism by which antidepressant treatment alleviates anxiety symptoms after social isolation.
Collapse
Affiliation(s)
- Deanna L Wallace
- Department of Psychiatry and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Zubenko GS, Jones ML, Estevez AO, Hughes HB, Estevez M. Identification of a CREB-dependent serotonergic pathway and neuronal circuit regulating foraging behavior in Caenorhabditis elegans: a useful model for mental disorders and their treatments? Am J Med Genet B Neuropsychiatr Genet 2009; 150B:12-23. [PMID: 19035344 PMCID: PMC3234207 DOI: 10.1002/ajmg.b.30891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cAMP-response element binding protein (CREB)-mediated cell signaling pathway is conserved through evolution and participates in a broad range of complex behaviors of divergent species including man. This study describes the integration of genetic, pharmacologic, and anatomic methods to elucidate a serotonergic signaling pathway by which the CREB homolog CRH-1 controls foraging rate (FR) in the model organism Caenorhabditis elegans, along with the complete neuronal circuit through which this pathway operates. In the anterior afferent arm of the circuit, CRH-1 controls FR by regulating the expression of tph-1, the sole structural gene for tryptophan hydroxylase, in serotonergic sensory (ADF) neurons whose post-synaptic effects are mediated through 5HT(2)-like SER-1 receptors. The posterior afferent limb of the circuit includes an interneuron (RIH) that does not express tph-1 and whose serotonergic phenotype is dependent on the contribution of this neurotransmitter from another source, probably the ADF neurons. The postsynaptic effects of the RIH interneuron are mediated through 5HT(1)-like SER-4 receptors. This model has potential utility for the study of clinical disorders and experimental therapeutics. Furthermore, the discovery of serotonergic neurons that depend on other sources for their neurotransmitter phenotype could provide a mechanism for rapidly altering the number and distribution of serotonergic pathways in developing and adult nervous systems, providing a dimension of functional complexity that has been previously unrecognized.
Collapse
Affiliation(s)
- George S. Zubenko
- Department of Psychiatry University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Biological Sciences, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA
| | - Michelle L. Jones
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Annette O. Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hugh B. Hughes
- Department of Psychiatry University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Miguel Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Veteran's Affairs Medical Center, Pittsburgh, PA
| |
Collapse
|
256
|
Lin Y, Ter Horst GJ, Wichmann R, Bakker P, Liu A, Li X, Westenbroek C. Sex differences in the effects of acute and chronic stress and recovery after long-term stress on stress-related brain regions of rats. Cereb Cortex 2008; 19:1978-89. [PMID: 19073626 PMCID: PMC2722422 DOI: 10.1093/cercor/bhn225] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies show that sex plays a role in stress-related depression, with women experiencing a higher vulnerability to its effect. Two major targets of antidepressants are brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate response element–binding protein (CREB). The aim of this study was to investigate the levels of CREB, phosphorylation of CREB (pCREB), and BDNF in stress-related brain regions of male and female rats after stress and recovery. CREB and pCREB levels were examined in CA1, CA2, CA3, paraventricular nucleus of the thalamus (PVT), amygdala, anterior cingulate area, dorsal part (ACAd), and infralimbic area of prefrontal cortex (PFC), whereas dentate gyrus (DG) and prelimbic area (PL) of PFC were examined for BDNF levels. Our results demonstrate that levels of CREB and pCREB in male CA1, CA2 and CA3, PVT, amygdala, and ACAd were reduced by stress, whereas the same brain regions of female rats exhibited no change. BDNF levels were decreased by chronic stress in female PL but were increased by acute stress in female DG. BDNF levels in male DG and PL were found not to undergo change in response to stress. Abnormalities in morphology occurred after chronic stress in males but not in females. In all cases, the levels of CREB, pCREB, and BDNF in recovery animals were comparable to the levels of these proteins in control animals. These findings demonstrate a sexual dimorphism in the molecular response to stress and suggest that these differences may have important implications for potential therapeutic treatment of depression.
Collapse
Affiliation(s)
- Yanhua Lin
- Department of Neuroscience, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
257
|
Schmidt HD, Banasr M, Duman RS. Future Antidepressant Targets: Neurotrophic Factors and Related Signaling Cascades. ACTA ACUST UNITED AC 2008; 5:151-156. [PMID: 19802372 DOI: 10.1016/j.ddstr.2008.10.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Preclinical and clinical studies demonstrate that neurotrophic factors play critical roles in the etiology and treatment of depression. While the mechanisms underlying the therapeutic efficacy of antidepressants remain unknown, increasing evidence supports a role for increased trophic support in the treatment of depression. Furthermore, antidepressants block or reverse stress-induced down regulation of neurotrophic factor expression in limbic and cortical nuclei involved in the underlying pathophysiology of depression. Thus, components of neurotrophic factor-mediated signaling cascades or the signal transduction pathways that regulate neurotrophic factor expression may provide additional targets for the development of novel, more efficacious antidepressant drugs.
Collapse
Affiliation(s)
- Heath D Schmidt
- Division of Molecular Psychiatry Abraham Ribicoff Research Facilities Department of Psychiatry and Pharmacology Yale University School of Medicine New Haven, Connecticut 06508, U.S.A
| | | | | |
Collapse
|
258
|
Donati RJ, Rasenick MM. Lipid rafts, G proteins and the etiology of and treatment for depression: progress toward a depression biomarker. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Robert J Donati
- University of Illinois at Chicago College of Medicine, Department of Physiology & Biophysics, Chicago, IL 60612-7342, USA and, Basic & Health Science Department, Illinois College of Optometry, Chicago, IL 60616, USA
| | - Mark M Rasenick
- University of Illinois at Chicago College of Medicine, Departments of Physiology & Biophysics & Psychiatry, 835 S Wolcott Ave, M/C 901, Rm E202, Chicago, IL 60612-7342, USA
| |
Collapse
|
259
|
Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology 2008; 54:1136-42. [DOI: 10.1016/j.neuropharm.2008.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 03/12/2008] [Indexed: 11/25/2022]
|
260
|
Rantamäki T, Castrén E. Targeting TrkB neurotrophin receptor to treat depression. Expert Opin Ther Targets 2008; 12:705-15. [DOI: 10.1517/14728222.12.6.705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
261
|
Green TA, Alibhai IN, Unterberg S, Neve RL, Ghose S, Tamminga CA, Nestler EJ. Induction of activating transcription factors (ATFs) ATF2, ATF3, and ATF4 in the nucleus accumbens and their regulation of emotional behavior. J Neurosci 2008; 28:2025-32. [PMID: 18305237 PMCID: PMC6671840 DOI: 10.1523/jneurosci.5273-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 11/21/2022] Open
Abstract
Previous research has shown that cAMP response element (CRE) binding protein (CREB) in the nucleus accumbens gates behavioral responses to emotional stimuli. For example, overexpression of CREB decreases anxiety, sucrose preference, and sensitivity to drugs of abuse and increases depression-like behavior, whereas blocking CREB via overexpression of inducible cAMP early repressor (ICER) or other dominant-negative inhibitors of CRE-mediated transcription has the opposite effects. However, CREB and ICER are but two members of a larger family of leucine zipper-containing transcription factors composed of multiple products of the creb, crem (cAMP response element modulator), and atf (activating transcription factor) genes. We demonstrate here that ATF2, ATF3, and ATF4 are each robustly induced in the nucleus accumbens and dorsal striatum by restraint stress or by amphetamine administration. In contrast, little induction is seen for ATF1 or CREM. Using viral-mediated gene transfer, we show that ATF2 overexpression in nucleus accumbens produces increases in emotional reactivity and antidepressant-like responses, a behavioral phenotype similar to that caused by dominant-negative antagonists of CREB. In contrast, ATF3 or ATF4 overexpression in nucleus accumbens decreases emotional reactivity and increases depression-like behavior, consistent with the behavioral phenotype induced by CREB. Because amphetamine and stress induce ATF2, ATF3, and ATF4 in nucleus accumbens, and overexpression of these transcription factors in this brain region in turn alters behavioral responsiveness to amphetamine and stress, our findings support novel roles for these ATF family members in regulating emotional behavior.
Collapse
Affiliation(s)
- Thomas A. Green
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Imran N. Alibhai
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Stephen Unterberg
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Rachael L. Neve
- McLean Hospital, Department of Psychiatry, Harvard University School of Medicine, Belmont, Massachusetts 02478
| | - Subroto Ghose
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Carol A. Tamminga
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| | - Eric J. Nestler
- Departments of Psychiatry and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, and
| |
Collapse
|
262
|
Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 2008; 63:353-9. [PMID: 17889834 PMCID: PMC2277331 DOI: 10.1016/j.biopsych.2007.07.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Elevated phosphorylation of neurotrophin-regulated transcription factors, such as cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB), in the hippocampus has been proposed as a common mediator of antidepressant (ADT) efficacy in otherwise naive rodents. The intracellular factors by which ADTs and glucocorticoids, causal factors in depression, regulate depression-like behavior remain unclear, but extracellular signal-regulated kinase 1/2 (ERK1/2), upstream of CREB, is a likely candidate. METHODS We explored the long-term consequences of glucocorticoid exposure and subsequent ADT treatment in a novel model of chronic depression. Motivated behaviors, immobility during tail suspension, and ERK1/2, known to be required for behavioral response to ADTs, were quantified. RESULTS Chronic corticosterone (CORT) increased immobility, decreased responding in an operant conditioning task of motivation, and selectively reduced phosphorylated ERK1/2 (pERK1/2) in the dentate gyrus. Behavioral and biochemical measures were restored to baseline by amitriptyline (AMI) treatment. Corticosterone regulated pERK1/2 on a time course that paralleled increases in heat shock proteins associated with depression and decreased tyrosine kinase receptor B (trkB) phosphorylation. Chronic AMI also produced regionally dissociable effects on pERK1/2 in CA1/CA3, amygdala, and striatum, but not prefrontal cortex. CONCLUSIONS Antidepressant efficacy in a motivational task and behavioral despair assay are associated with altered limbic pERK1/2, including restored pERK1/2 in the dentate gyrus after stress-related insult.
Collapse
Affiliation(s)
- Shannon L. Gourley
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Florence J. Wu
- Department of Psychology, Yale University, New Haven, CT
| | - Drew D. Kiraly
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | | | - Alexia T. Kedves
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
| | - Ronald S. Duman
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Department of Pharmacology, Yale University, New Haven, CT
| | - Jane R. Taylor
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT
- Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
263
|
Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M. Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res 2008; 1196:53-8. [DOI: 10.1016/j.brainres.2007.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/06/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022]
|
264
|
Brański P, Palucha A, Szewczyk B, Wierońska JM, Pilc A, Nowak G. Antidepressant-like activity of 8-Br-cAMP, a PKA activator, in the forced swim test. J Neural Transm (Vienna) 2008; 115:829-30. [PMID: 18239846 DOI: 10.1007/s00702-008-0023-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 11/25/2022]
Abstract
The PKA activator, 8-Br-cAMP, dose-dependently reduced the immobility time in the forced swim test in rats. This effect was antagonized by co-treatment with selective PKA inhibitor Rp-cAMPS. This is the first demonstration of the antidepressant-like activity of the PKA activator.
Collapse
Affiliation(s)
- Piotr Brański
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
265
|
Affiliation(s)
- R H Belmaker
- Ben Gurion University of the Negev, Beersheba, Israel.
| | | |
Collapse
|
266
|
Abstract
Plasticity in the brain is important for learning and memory, and allows us to respond to changes in the environment. Furthermore, long periods of stress can lead to structural and excitatory changes associated with anxiety and depression that can be reversed by pharmacological treatment. Drugs of abuse can also cause long-lasting changes in reward-related circuits, resulting in addiction. Each of these forms of long-term plasticity in the brain requires changes in gene expression. Upon stimulation, second messenger pathways are activated that lead to an enhancement in transcription factor activity at gene promoters. This stimulation results in the expression of new growth factors, ion channels, structural molecules, and other proteins necessary to alter the neuronal circuit. With repeated stimulation, more permanent modifications to transcription factors and chromatin structure are made that result in either sensitization or desensitization of a circuit. Studies are beginning to uncover the molecular mechanisms that lead to these types of long-term changes in the brain. This review summarizes some of the major transcriptional mechanisms that are thought to underlie neuronal and behavioral plasticity.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry and Center for Basic Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
267
|
Abstract
Depression is a disorder not only in the central nervous system (CNS), but also in the systemic neuroendocrine, autonomic nervous, and immune systems. The changes in these systems have been widely studied in depression by using serum proteins because they are easily and repetitively studied before, during, and after treatment. Recently, gene expressions in the peripheral blood leukocytes have been used to assess the depressive changes in the CNS by DNA microarrays and/or real-time polymerase chain reaction (PCR) methods. These studies will give us clues to assess depression because circulating peripheral leukocytes are influenced by systems that underlie depression, and the quantification of mRNAs in them is methodologically precise and easier than that of protein. In this paper, we review the studies on the leukocyte gene expression, including our own, and discuss the limitations and strengths of the current gene expression-based molecular assessment of depression by the leukocyte mRNA expression.
Collapse
Affiliation(s)
- Jun-ichi Iga
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | |
Collapse
|
268
|
Abstract
Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of neuronal adaptation, is disrupted in mood disorders and in animal models of stress. Here we provide an overview of the evidence that chronic stress, which can precipitate or exacerbate depression, disrupts neuroplasticity, while antidepressant treatment produces opposing effects and can enhance neuroplasticity. We discuss neuroplasticity at different levels: structural plasticity (such as plastic changes in spine and dendrite morphology as well as adult neurogenesis), functional synaptic plasticity, and the molecular and cellular mechanisms accompanying such changes. Together, these studies elucidate mechanisms that may contribute to the pathophysiology of depression. Greater appreciation of the convergence of mechanisms between stress, depression, and neuroplasticity is likely to lead to the identification of novel targets for more efficacious treatments.
Collapse
Affiliation(s)
- Christopher Pittenger
- Department of Psychiatry, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 6508, USA
| | | |
Collapse
|
269
|
Karssen AM, Her S, Li JZ, Patel PD, Meng F, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Stress-induced changes in primate prefrontal profiles of gene expression. Mol Psychiatry 2007; 12:1089-102. [PMID: 17893703 DOI: 10.1038/sj.mp.4002095] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
Collapse
Affiliation(s)
- A M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Serra G, Fratta W. A possible role for the endocannabinoid system in the neurobiology of depression. Clin Pract Epidemiol Ment Health 2007; 3:25. [PMID: 18021439 PMCID: PMC2169225 DOI: 10.1186/1745-0179-3-25] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 11/19/2007] [Indexed: 02/03/2023]
Abstract
The present review synthetically describes the currently advanced hypotheses for a neurobiological basis of depression, ranging from the classical monoaminergic to the more recent neurotrophic hypothesis. Moreover, the Authors review the available preclinical and clinical evidence suggesting a possible role for the endocannabinoid system in the physiopathology of depression. Indeed, in spite of the reporting of conflicting results, the pharmacological enhancement of endocannabinoid activity at the CB1 cannabinoid receptor level appears to exert an antidepressant-like effect in some animal models of depression. On the contrary, a reduced activity of the endogenous cannabinoid system seems to be associated with the animal model of depression, namely the chronic mild stress model. Moreover, a few studies have reported an interaction of antidepressants with the endocannabinoid system. With regard to clinical studies, several authors have reported an alteration of endocannabinoid serum levels in depression, while post mortem studies have demonstrated increased levels of endocannabinoids associated to a concomitant hyperactivity of CB1 receptor in the prefrontal cortex of suicide victims. No clinical trials carried out using cannabinoids in the treatment of affective disorders have been published to date, although anecdotal reports have described both antidepressant and antimanic properties of cannabis as well as the ability of cannabis to induce mania that has also been documented. These findings are discussed, leading us to conclude that, although data available are sufficient to suggest a possible involvement of the endogenous cannabinoid system in the neurobiology of depression, additional studies should be performed in order to better elucidate the role of this system in the physiopathology of depression.
Collapse
Affiliation(s)
- Gino Serra
- Dipartimento di Neuroscienze " B B Brodie " Università di Cagliari Cittadella Universitaria 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
271
|
Luo CX, Jiang J, Zhou QG, Zhu XJ, Wang W, Zhang ZJ, Han X, Zhu DY. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke. J Neurosci Res 2007; 85:1637-46. [PMID: 17465031 DOI: 10.1002/jnr.21317] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spatial cognitive impairment is common after stroke insults. Voluntary exercise could improve the impaired spatial memory. Newly generated neurons in the dentate gyrus are necessary for the acquisition of new hippocampus-dependent memories. However, it is not well known whether voluntary exercise after stroke promotes neurogenesis in the adult dentate gyrus, thereby promoting spatial memory recovery. Here, we examined in mice subjected to focal cerebral ischemia the effect of voluntary or forced exercise on neurogenesis in the ischemic dentate gyrus and spatial memory. Exposure to voluntary wheel running after stroke enhanced newborn cell survival and up-regulated the phosphorylation of cAMP response element binding protein (CREB) in the dentate gyrus and reversed ischemia-induced spatial memory impairment. However, the enhanced newborn cell survival and CREB phosphorylation in the dentate gyrus and improved spatial memory were not observed in the mice exposed to forced swimming. Moreover, there was a significant correlation between the total number of surviving newborn cells in the dentate gyrus and the ability of mice to locate the platform in the Morris water maze. These results suggest that, in the adult mice, exposure to voluntary exercise after ischemic stroke may promote newborn cells survival in the dentate gyrus by up-regulating CREB phosphorylation and consequently restore impaired hippocampus-dependent memory.
Collapse
Affiliation(s)
- Chun Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Neue Erkenntnisse zur Pathogenese und Pathophysiologie der Depression. DER NERVENARZT 2007; 78 Suppl 3:531-47; quiz 548-9. [DOI: 10.1007/s00115-007-2370-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
273
|
Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 2007; 103:1843-54. [PMID: 17854383 DOI: 10.1111/j.1471-4159.2007.04914.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that depression may be associated with a lack of hippocampal neurogenesis. It is well established that neuronal nitric oxide synthase (nNOS)-derived NO exerts a negative control on the hippocampal neurogenesis. Using genetic and pharmacological methods, we investigated the roles of nNOS in depression induced by chronic mild stress (CMS) in mice. Hippocampal nNOS over-expression was first observed 4 days and remained elevated 21 and 56 days after exposure to CMS. The mice exposed to CMS exhibited behavioral changes typical of depression, and impaired neurogenesis in the hippocampus. The CMS-induced behavioral despair and hippocampal neurogenesis impairment were prevented and reversed in the null mutant mice lacking nNOS gene (nNOS-/-) and in the mice receiving nNOS inhibitor. Disrupting hippocampal neurogenesis blocked the antidepressant effect of nNOS inhibition. Moreover, nNOS-/- mice exhibited antidepressant-like properties. Our findings suggest that nNOS over-expression in the hippocampus is essential for chronic stress-induced depression and inhibiting nNOS signaling in brain may represent a novel approach for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Gur TL, Conti AC, Holden J, Bechtholt AJ, Hill TE, Lucki I, Malberg JE, Blendy JA. cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response. J Neurosci 2007; 27:7860-8. [PMID: 17634380 PMCID: PMC6672880 DOI: 10.1523/jneurosci.2051-07.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
cAMP response element-binding protein (CREB) has been implicated in the molecular and cellular mechanisms of chronic antidepressant (AD) treatment, although its role in the behavioral response is unclear. CREB-deficient (CREB(alpha delta) mutant) mice demonstrate an antidepressant phenotype in the tail suspension test (TST) and forced-swim test. Here, we show that, at baseline, CREB(alpha delta) mutant mice exhibited increased hippocampal cell proliferation and neurogenesis compared with wild-type (WT) controls, effects similar to those observed in WT mice after chronic desipramine (DMI) administration. Neurogenesis was not further augmented by chronic DMI treatment in CREB(alpha delta) mutant mice. Serotonin depletion decreased neurogenesis in CREB(alpha delta) mutant mice to WT levels, which correlated with a reversal of the antidepressant phenotype in the TST. This effect was specific for the reversal of the antidepressant phenotype in these mice, because serotonin depletion did not alter a baseline anxiety-like behavior in CREB(alpha delta) mutant mice. The response to chronic AD treatment in the novelty-induced hypophagia (NIH) test may rely on neurogenesis. Therefore, we used this paradigm to evaluate chronic AD treatment in CREB(alpha delta) mutant mice to determine whether the increased neurogenesis in these mice alters their response in the NIH paradigm. Whereas both WT and CREB(alpha delta) mutant mice responded to chronic AD treatment in the NIH paradigm, only CREB(alpha delta) mutant mice responded to acute AD treatment. However, in the elevated zero maze, DMI did not reverse anxiety behavior in mutant mice. Together, these data show that increased hippocampal neurogenesis allows for an antidepressant phenotype as well as a rapid onset of behavioral responses to AD treatment.
Collapse
Affiliation(s)
| | | | | | - Anita J. Bechtholt
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Tiffany E. Hill
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Irwin Lucki
- Departments of Pharmacology and
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | | | | |
Collapse
|
275
|
Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, Vaidya VA. Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 2007; 32:1504-19. [PMID: 17164818 DOI: 10.1038/sj.npp.1301276] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stress regulation of brain-derived neurotrophic factor (BDNF) is implicated in the hippocampal damage observed in depression. BDNF has a complex gene structure with four 5' untranslated exons (I-IV) with unique promoters, and a common 3' coding exon (V). To better understand the stress regulation of BDNF, we addressed whether distinct stressors differentially regulate exon-specific BDNF transcripts in the postnatal and adult hippocampus. The early life stress of maternal separation (MS) resulted in a time point-dependent differential upregulation of BDNF transcripts restricted to early postnatal life (P14-BDNF II, P21-BDNF IV, V). In adulthood, distinct stressors regulated BDNF transcripts in a signature manner. Immobilization stress, administered once, decreased all BDNF splice variants but had differing effects on BDNF I/II (increase) and III/IV (decrease) when administered chronically. Although immobilization stress reduced BDNF (V) mRNA, chronic unpredictable stress did not influence total BDNF despite altering specific BDNF transcripts. Furthermore, a prior history of MS altered the signature pattern in which adult-onset stress regulated specific BDNF transcripts. We also examined the expression of cyclic AMP response element-binding protein (CREB), an upstream transcriptional activator of BDNF, and observed a CREB induction in the postnatal hippocampus following MS. As a possible consequence of enhanced CREB and BDNF expression following MS, we examined hippocampal progenitor proliferation and observed a significant increase restricted to early life. These results suggest that alterations in CREB/BDNF may contribute to the generation of individual differences in stress neurocircuitry, providing a substrate for altered vulnerability to depressive disorders.
Collapse
Affiliation(s)
- Amrita Nair
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
276
|
Iga JI, Ueno SI, Yamauchi K, Numata S, Kinouchi S, Tayoshi-Shibuya S, Song H, Ohmori T. Altered HDAC5 and CREB mRNA expressions in the peripheral leukocytes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:628-32. [PMID: 17258370 DOI: 10.1016/j.pnpbp.2006.12.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/15/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gene expressions of the peripheral leukocytes in depressive patients might reflect the systemic dysfunction of major depression. We determined mRNA expression levels of Histone deacetylase 5 (HDAC5) gene and cyclic AMP response element-binding protein 1 (CREB) gene in the leukocyte of depressive patients. HDAC5 and CREB are reported to be important targets of antidepressants, the latter being located in the downstream of the former in lymphocyte calcium signaling. METHODS 25 patients with major depression and 25 age- and sex-matched healthy controls were included in this study. Twenty patients were able to be followed up until the 8 week-treatment. The mRNA levels were determined by a quantitative RT-PCR method. RESULT Levels of HDAC5 and CREB mRNA were significantly higher in drug-free depressive patients than those of controls and the higher mRNA levels decreased to control levels after 8-week paroxetine treatment. There were positive correlation between levels of HDAC5 and CREB. CONCLUSION Our results suggest the alteration of HDAC5 and CREB gene expression in the systemic pathophysiology of major depression.
Collapse
Affiliation(s)
- Jun-Ichi Iga
- Department of Psychiatry, Course of Integrated Brain Sciences, University of Tokushima School of Medicine, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Rao JS, Ertley RN, Lee HJ, DeMar JC, Arnold JT, Rapoport SI, Bazinet RP. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12:36-46. [PMID: 16983391 DOI: 10.1038/sj.mp.4001888] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022]
Abstract
Decreased docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF) have been implicated in bipolar disorder. It also has been reported that dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) for 15 weeks in rats, increased their depression and aggression scores. Here, we show that n-3 PUFA deprivation for 15 weeks decreased the frontal cortex DHA level and reduced frontal cortex BDNF expression, cAMP response element binding protein (CREB) transcription factor activity and p38 mitogen-activated protein kinase (MAPK) activity. Activities of other CREB activating protein kinases were not significantly changed. The addition of DHA to rat primary cortical astrocytes in vitro, induced BDNF protein expression and this was blocked by a p38 MAPK inhibitor. DHA's ability to regulate BDNF via a p38 MAPK-dependent mechanism may contribute to its therapeutic efficacy in brain diseases having disordered cell survival and neuroplasticity.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
278
|
Abstract
The transcription factor CREB has been implicated in signalling pathways relevant for pathogenesis and therapy of depression. CREB is upregulated and activated in the hippocampus by chronic antidepressant treatment, similarly as neurogenesis. Surprisingly, a recent study using CREB-deficient mice also demonstrates an upregulation of neurogenesis correlating with an antidepressant behavioral phenotype.1 Interestingly, CREB-deficient mice show a rapid behavioral response to antidepressants, while wild-type mice do not. This minireview tries to reconcile these new findings with established concepts on CREB, neurogenesis and depression. It also outlines some crucial experiments and lines of future research that could clarify some of the pending questions.
Collapse
Affiliation(s)
- Peter Gass
- Central Institute of Mental Health Mannheim, University of Heidelberg, Germany.
| | | |
Collapse
|
279
|
Froyen G, Bauters M, Voet T, Marynen P. X-linked mental retardation and epigenetics. J Cell Mol Med 2006; 10:808-25. [PMID: 17125586 PMCID: PMC3933076 DOI: 10.1111/j.1582-4934.2006.tb00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/23/2006] [Indexed: 01/08/2023] Open
Abstract
The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA, qPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the underlying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology. Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inactivation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitutional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derangements in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant percentage of patients with unexplained mental retardation results from epigenetic modifications.
Collapse
Affiliation(s)
- Guy Froyen
- Human Genome Laboratory, VIB, Department Molecular and Developmental Genetics, University of Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|