251
|
Lv L, Zhao Y, Wei Q, Zhao Y, Yi Q. Downexpression of HSD17B6 correlates with clinical prognosis and tumor immune infiltrates in hepatocellular carcinoma. Cancer Cell Int 2020; 20:210. [PMID: 32514254 PMCID: PMC7268300 DOI: 10.1186/s12935-020-01298-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hydroxysteroid 17-Beta Dehydrogenase 6 (HSD17B6), a key protein involved in synthetizing dihydrotestosterone, is abundant in the liver. Previous studies have suggested a role for dihydrotestosterone in modulating progress of various malignancies, and HSD17B6 dysfunction was associated with lung cancer and prostate cancer. However, little is known about the detailed role of HSD17B6 in hepatocellular carcinoma (HCC). Methods Clinical implication and survival data related to HSD17B6 expression in patients with HCC were obtained through TCGA, ICGC, ONCOMINE, GEO and HPA databases. Survival analysis plots were drawn with Kaplan–Meier Plotter. The ChIP-seq data were obtained from Cistrome DB. Protein–Protein Interaction and gene functional enrichment analyses were performed in STRING database. The correlations between HSD17B6 and tumor immune infiltrates was investigated via TIMER and xCell. The proliferation, migration and invasion of liver cancer cells transfected with HSD17B6 were evaluated by the CCK8 assay, wound healing test and transwell assay respectively. Expression of HSD17B6, TGFB1 and PD-L1 were assessed by quantitative RT-PCR. Results HSD17B6 expression was lower in HCC compared to normal liver and correlated with tumor stage and grade. Lower expression of HSD17B6 was associated with worse OS, PFS, RFS and DSS in HCC patients. HNF4A bound to enhancer and promoter regions of HSD17B6 gene, activating its transcription, and DNA methylation of HSD17B6 promoter negatively controlled the expression. HSD17B6 and its interaction partners were involved in androgen metabolism and biosynthesis in liver. HSD17B6 inhibited tumor cell proliferation, migration and invasion in liver cancer cells and low expression of HSD17B6 correlated with high immune cells infiltration, relative reduction of immune responses and multiple immune checkpoint genes expression in HCC, probably by regulating the expression of TGFB1. Conclusions This study indicate that HSD17B6 could be a new biomarker for the prognosis of HCC and an important negative regulator of immune responses in HCC.
Collapse
Affiliation(s)
- Lei Lv
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031 Anhui People's Republic of China
| | - Yujia Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Qinqin Wei
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| |
Collapse
|
252
|
Clues of in vivo nuclear gene regulation by mitochondrial short non-coding RNAs. Sci Rep 2020; 10:8219. [PMID: 32427953 PMCID: PMC7237437 DOI: 10.1038/s41598-020-65084-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression involves multiple processes, from transcription to translation to the mature, functional peptide, and it is regulated at multiple levels. Small RNA molecules are known to bind RNA messengers affecting their fate in the cytoplasm (a process generically termed ‘RNA interference’). Such small regulatory RNAs are well-known to be originated from the nuclear genome, while the role of mitochondrial genome in RNA interference was largely overlooked. However, evidence is growing that mitochondrial DNA does provide the cell a source of interfering RNAs. Small mitochondrial highly transcribed RNAs (smithRNAs) have been proposed to be transcribed from the mitochondrion and predicted to regulate nuclear genes. Here, for the first time, we show in vivo clues of the activity of two smithRNAs in the Manila clam, Ruditapes philippinarum. Moreover, we show that smithRNAs are present and can be annotated in representatives of the three main bilaterian lineages; in some cases, they were already described and assigned to a small RNA category (e.g., piRNAs) given their biogenesis, while in other cases their biogenesis remains unclear. If mitochondria may affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for them to interact with the nucleus and makes metazoan mitochondrial DNA a much more complex genome than previously thought.
Collapse
|
253
|
Silzer TK, Pathak GA, Phillips NR. Mitochondrial tRNA methylation in Alzheimer's disease and progressive supranuclear palsy. BMC Med Genomics 2020; 13:71. [PMID: 32429992 PMCID: PMC7236490 DOI: 10.1186/s12920-020-0727-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylation of mitochondrial tRNAs (mt-tRNA) at the 9th position ("p9 site") is known to impact translational efficiency and downstream mitochondrial function; however, direct assessment of mt-RNA methylation is challenging. Recent RNA sequence-based methods have been developed to reliably identify post-transcriptional methylation. Though p9 methylation has been studied in healthy human populations and in the context of cancer, it has not yet been analyzed in neurodegenerative disease, where mitochondrial dysfunction is a prominent and early hallmark of disease progression. METHODS Mitochondrial p9 methylation was inferred from multi-allelic calls in RNA-seq data. Gene-based association studies were performed in FUMA. Correlations between nuclear gene expression and p9 methylation were tested using Spearman's rho. Fisher's Exact test was used in PANTHER and IPA to test for overrepresentation and enrichment of biological processes and pathways in the top nuclear genes correlated with p9 methylation. RESULTS Variable methylation was observed at 11 p9 sites in post-mortem cerebellar tissue of elderly subjects who were either healthy or diagnosed with Alzheimer's disease (AD), progressive supranuclear palsy (PSP) or pathological aging (PA). Similarities in degree of methylation were observed between AD and PSP. Certain nuclear encoded genes were identified as significantly associated with p9 methylation. Expression of 5300 nuclear encoded genes was significantly correlated with p9 methylation, with AD and PSP subjects exhibiting similar expression profiles. Overrepresentation and enrichment testing using the top transcripts revealed enrichment for a number of molecular processes, terms and pathways including many of which that were mitochondrial-related. CONCLUSION With mitochondrial dysfunction being an established hallmark of neurodegenerative disease pathophysiology, this work sheds light on the potential molecular underpinnings of this dysfunction. Here we show overlap in cerebellar pathophysiology between common tauopathies such as Alzheimer's disease and progressive supranuclear palsy. Whether p9 hypermethylation is a cause or consequence of pathology remains an area of focus.
Collapse
Affiliation(s)
- Talisa K Silzer
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Gita A Pathak
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology and Genetics; Graduate School of Biomedical Science, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA.
| |
Collapse
|
254
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
255
|
Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, Yokota T, Kinugawa S, Harashima H, Yamada Y. Validation of Gene Therapy for Mutant Mitochondria by Delivering Mitochondrial RNA Using a MITO-Porter. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:687-698. [PMID: 32388194 PMCID: PMC7210581 DOI: 10.1016/j.omtn.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 10/29/2022]
Abstract
Here, we report on validating a mitochondrial gene therapy by delivering nucleic acids to mitochondria of diseased cells by a MITO-Porter, a liposome-based carrier for mitochondrial delivery. We used cells derived from a patient with a mitochondrial disease with a G625A heteroplasmic mutation in the tRNAPhe of the mitochondrial DNA (mtDNA). It has been reported that some mitochondrial gene diseases are caused by heteroplasmic mutations, in which both mutated and wild-type (WT) genes are present, and the accumulation of pathological mutations leads to serious, intractable, multi-organ diseases. Therefore, the decrease of the mutated gene rate is considered to be a useful gene therapy strategy. To accomplish this, wild-type mitochondrial pre-tRNAPhe (pre-WT-tRNAPhe), prepared by in vitro transcription, was encapsulated in the MITO-Porter. The pre-WT-tRNAPhe encapsulated in the MITO-Porter was transfected into diseased mitochondrial cells, and the resulting mutant levels were examined by an amplification refractory mutation system (ARMS)-quantitative PCR. The mutation rate of tRNAPhe was decreased, and this therapeutic effect was sustained even on the 8th day after transfection. Furthermore, mitochondrial respiratory activity of the disease cells was increased after the transfection of therapeutic pre-WT-tRNAPhe. These results support the conclusion that the mitochondrial delivery of therapeutic nucleic acids represents a viable strategy for mitochondrial gene therapy.
Collapse
Affiliation(s)
- Eriko Kawamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Jiro Abe
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Akira Sudo
- Nire-no-kai Children's Clinic, Atsubetsu-cho Shimonopporo-49, Atsubetsu-ku, Sapporo 004-0007, Japan; Department of Pediatrics, Sapporo City General Hospital, Kita-11, Nishi-13, Chuo-ku, Sapporo 060-8604, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
256
|
Tsagakis I, Douka K, Birds I, Aspden JL. Long non-coding RNAs in development and disease: conservation to mechanisms. J Pathol 2020; 250:480-495. [PMID: 32100288 PMCID: PMC8638664 DOI: 10.1002/path.5405] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
Our genomes contain the blueprint of what makes us human and many indications as to why we develop disease. Until the last 10 years, most studies had focussed on protein-coding genes, more specifically DNA sequences coding for proteins. However, this represents less than 5% of our genomes. The other 95% is referred to as the 'dark matter' of our genomes, our understanding of which is extremely limited. Part of this 'dark matter' includes regions that give rise to RNAs that do not code for proteins. A subset of these non-coding RNAs are long non-coding RNAs (lncRNAs), which in particular are beginning to be dissected and their importance to human health revealed. To improve our understanding and treatment of disease it is vital that we understand the molecular and cellular function of lncRNAs, and how their misregulation can contribute to disease. It is not yet clear what proportion of lncRNAs is actually functional; conservation during evolution is being used to understand the biological importance of lncRNA. Here, we present key themes within the field of lncRNAs, emphasising the importance of their roles in both the nucleus and the cytoplasm of cells, as well as patterns in their modes of action. We discuss their potential functions in development and disease using examples where we have the greatest understanding. Finally, we emphasise why lncRNAs can serve as biomarkers and discuss their emerging potential for therapy. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ioannis Tsagakis
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Katerina Douka
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Isabel Birds
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- LeedsOmicsUniversity of LeedsLeedsUK
| |
Collapse
|
257
|
Analysis of mitochondrial m1A/G RNA modification reveals links to nuclear genetic variants and associated disease processes. Commun Biol 2020; 3:147. [PMID: 32221480 PMCID: PMC7101319 DOI: 10.1038/s42003-020-0879-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
RNA modifications affect the stability and function of RNA species, regulating important downstream processes. Modification levels are often dynamic, varying between tissues and individuals, although it is not always clear what modulates this or what impact it has on biological systems. Here, we quantify variation in m1A/G RNA modification levels at functionally important positions in the human mitochondrial genome across 11,552 samples from 39 tissue/cell types and find that modification levels are associated with mitochondrial transcript processing. We identify links between mitochondrial RNA modification levels and genetic variants in the nuclear genome, including a missense mutation in LONP1, and find that genetic variants within MRPP3 and TRMT61B are associated with RNA modification levels across a large number of tissues. Genetic variants linked to RNA modification levels are associated with multiple disease/disease-related phenotypes, including blood pressure, breast cancer and psoriasis, suggesting a role for mitochondrial RNA modification in complex disease. Ali et al. analyze publicly available RNA-seq data from different tissues to quantify variation in m1A/G methylation levels in mitochondrial RNAs. They show a link between mitochondrial m1A/G modification levels and nuclear genetic variants, many of which are associated with disease.
Collapse
|
258
|
Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS, Gao Y, Hu L, Sun HL, Zhu A, Liu J, Wu KJ, He C. N 6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol Cell 2020; 78:382-395.e8. [PMID: 32183942 DOI: 10.1016/j.molcel.2020.02.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.
Collapse
Affiliation(s)
- Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Pingping Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Caiping Tan
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kai-Wen Hsu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Yawei Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Hu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Allen Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jianzhao Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
259
|
Eldarov CM, Vangely IM, Vays VB, Sheval EV, Holtze S, Hildebrandt TB, Kolosova NG, Popkov VA, Plotnikov EY, Zorov DB, Bakeeva LE, Skulachev VP. Mitochondria in the Nuclei of Rat Myocardial Cells. Cells 2020; 9:E712. [PMID: 32183238 PMCID: PMC7140638 DOI: 10.3390/cells9030712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023] Open
Abstract
Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions.
Collapse
Affiliation(s)
- Chupalav M Eldarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina M Vangely
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeriya B Vays
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Natalia G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lora E Bakeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir P Skulachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
260
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
261
|
Cavalcante GC, Magalhães L, Ribeiro-dos-Santos Â, Vidal AF. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int J Mol Sci 2020; 21:E1838. [PMID: 32155913 PMCID: PMC7084767 DOI: 10.3390/ijms21051838] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.
Collapse
Affiliation(s)
- Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Rua dos Mundurucus, 4487, 66073-005 Belém, PA, Brazil
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
262
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
263
|
Kanazawa M, Ikeda Y, Nishihama R, Yamaoka S, Lee NH, Yamato KT, Kohchi T, Hirayama T. Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. PLANT & CELL PHYSIOLOGY 2020; 61:470-480. [PMID: 31722408 DOI: 10.1093/pcp/pcz212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants.
Collapse
Affiliation(s)
- Mai Kanazawa
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Yoko Ikeda
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nam-Hee Lee
- Department of Life Sciences, Faculty of Science and Engineering, Sorbonne University, 4 Place Jussieu, Paris 75005, France
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Takashi Hirayama
- Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046 Japan
| |
Collapse
|
264
|
Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, Yang Y, Martincorena I, Creighton CJ, Weinstein JN, Xu Y, Han L, Kim HL, Nakagawa H, Park K, Campbell PJ, Liang H. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 2020; 52:342-352. [PMID: 32024997 PMCID: PMC7058535 DOI: 10.1038/s41588-019-0557-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential cellular organelles that play critical roles in cancer. Here, as part of the International Cancer Genome Consortium/The Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes Consortium, which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we performed a multidimensional, integrated characterization of mitochondrial genomes and related RNA sequencing data. Our analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hypermutated cases. Truncating mutations are markedly enriched in kidney, colorectal and thyroid cancers, suggesting oncogenic effects with the activation of signaling pathways. We find frequent somatic nuclear transfers of mitochondrial DNA, some of which disrupt therapeutic target genes. Mitochondrial copy number varies greatly within and across cancers and correlates with clinical variables. Co-expression analysis highlights the function of mitochondrial genes in oxidative phosphorylation, DNA repair and the cell cycle, and shows their connections with clinically actionable genes. Our study lays a foundation for translating mitochondrial biology into clinical applications.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Ju
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Youngwook Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher J Yoon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yang Yang
- Division of Biostatistics, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | | | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keunchil Park
- Division of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
265
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
266
|
Passamonti M, Plazzi F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clamRuditapes philippinarum. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
267
|
Wu D, Ma Y, Cao Y, Zhang T. Mitochondrial toxicity of nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134994. [PMID: 31715400 DOI: 10.1016/j.scitotenv.2019.134994] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanomaterials have been widely applied in electronics, food, biomedicine and other fields, resulting in increased human exposure and consequent research focus on their biological and toxic effects. Mitochondria, the main target organelle for nanomaterials (NM), play a critical role in their toxic activities. Several studies to date have shown that nanomaterials cause alterations in mitochondrial morphology, mitochondrial membrane potential, opening of the mitochondrial permeability transition pore (MPTP) and mitochondrial respiratory function, and promote cytochrome C release. An earlier mitochondrial toxicity study of NMs additionally reported induction of mitochondrial dynamic changes. Here, we have reviewed the mitochondrial toxicity of NMs and provided a scientific basis for the contribution of mitochondria to the toxicological effects of different NMs along with approaches to reduce mitochondrial and, consequently, overall toxicity of NMs.
Collapse
Affiliation(s)
- Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
268
|
Li Z, Sreekumar PG, Peddi S, Hinton DR, Kannan R, MacKay JA. The humanin peptide mediates ELP nanoassembly and protects human retinal pigment epithelial cells from oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 24:102111. [PMID: 31655204 PMCID: PMC7263384 DOI: 10.1016/j.nano.2019.102111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
Abstract
Humanin (HN) is a hydrophobic 24-amino acid peptide derived from mitochondrial DNA that modulates cellular responses to oxidative stress and protects human retinal pigment epithelium (RPE) cells from apoptosis. To solubilize HN, this report describes two genetically-encoded fusions between HN and elastin-like polypeptides (ELP). ELPs provide steric stabilization and/or thermo-responsive phase separation. Fusions were designed to either remain soluble or phase separate at the physiological temperature of the retina. Interestingly, the soluble fusion assembles stable colloids with a hydrodynamic radius of 39.1 nm at 37°C. As intended, the thermo-responsive fusion forms large coacervates (>1,000 nm) at 37°C. Both fusions bind human RPE cells and protect against oxidative stress-induction of apoptosis (TUNEL, caspase-3 activation). Their activity is mediated through STAT3; furthermore, STAT3 inhibition eliminates their protection. These findings suggest that HN polypeptides may facilitate cellular delivery of biodegradable nanoparticles with potential protection against age-related diseases, including macular degeneration.
Collapse
Affiliation(s)
- Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | | | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - David R Hinton
- Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ram Kannan
- Doheny Eye Institute, Los Angeles, CA 90033, USA
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA; Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
269
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
270
|
Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1429-1449. [PMID: 32048164 DOI: 10.1007/s11427-020-1631-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/23/2022]
Abstract
Mammalian mitochondria have small genomes encoding very limited numbers of proteins. Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria. Here, we report the identification of hundreds of circular RNAs (mecciRNAs) encoded by the mitochondrial genome. We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate the mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins. Known components involved in mitochondrial protein and RNA importation, such as TOM40 and PNPASE, interact with mecciRNAs and regulate protein entry. The expression of mecciRNAs is regulated, and these transcripts are critical for the adaption of mitochondria to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation. mecciRNAs and their associated physiological roles add categories and functions to the known eukaryotic circular RNAs and shed novel light on the communication between mitochondria and the nucleus.
Collapse
|
271
|
Gong S, Wang X, Meng F, Cui L, Yi Q, Zhao Q, Cang X, Cai Z, Mo JQ, Liang Y, Guan MX. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNAHis mutation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49906-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
272
|
van den Ameele J, Li AY, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol 2020; 97:156-166. [DOI: 10.1016/j.semcdb.2019.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
273
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
274
|
Wang S, Mao C, Liu S. Peptides encoded by noncoding genes: challenges and perspectives. Signal Transduct Target Ther 2019; 4:57. [PMID: 31871775 PMCID: PMC6908703 DOI: 10.1038/s41392-019-0092-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The challenges and future trends in searching for and studying NCG peptides are also critically discussed.
Collapse
Affiliation(s)
- Shuo Wang
- Changhai Hospital, Shanghai, 200433 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300 USA
| | | |
Collapse
|
275
|
Dubin A, Jørgensen TE, Jakt LM, Johansen SD. The mitochondrial transcriptome of the anglerfish Lophius piscatorius. BMC Res Notes 2019; 12:800. [PMID: 31823814 PMCID: PMC6905026 DOI: 10.1186/s13104-019-4835-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.
Collapse
Affiliation(s)
- Arseny Dubin
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Lars Martin Jakt
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
276
|
Zhao X, Cui L, Xiao Y, Mao Q, Aishanjiang M, Kong W, Liu Y, Chen H, Hong F, Jia Z, Wang M, Jiang P, Guan MX. Hypertension-associated mitochondrial DNA 4401A>G mutation caused the aberrant processing of tRNAMet, all 8 tRNAs and ND6 mRNA in the light-strand transcript. Nucleic Acids Res 2019; 47:10340-10356. [PMID: 31504769 PMCID: PMC6821173 DOI: 10.1093/nar/gkz742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial tRNA processing defects were associated with human diseases but their pathophysiology remains elusively. The hypertension-associated m.4401A>G mutation resided at a spacer between mitochondrial tRNAMet and tRNAGln genes. An in vitro processing experiment revealed that the m.4401A>G mutation caused 59% and 69% decreases in the 5' end processing efficiency of tRNAGln and tRNAMet precursors, catalyzed by RNase P, respectively. Using human umbilical vein endothelial cells-derived cybrids, we demonstrated that the m.4401A>G mutation caused the decreases of all 8 tRNAs and ND6 and increases of longer and uncleaved precursors from the Light-strand transcript. Conversely, the m.4401A>G mutation yielded the reduced levels of tRNAMet level but did not change the levels of other 13 tRNAs, 12 mRNAs including ND1, 12S rRNA and 16S rRNA from the Heavy-strand transcript. These implicated the asymmetrical processing mechanisms of H-strand and L-strand polycistronic transcripts. The tRNA processing defects play the determined roles in the impairing mitochondrial translation, respiratory deficiency, diminishing membrane potential, increasing production of reactive oxygen species and altering autophagy. Furthermore, the m.4401A>G mutation altered the angiogenesis, evidenced by aberrant wound regeneration and weaken tube formation in mutant cybrids. Our findings provide new insights into the pathophysiology of hypertension arising from mitochondrial tRNA processing defects.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qin Mao
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Kong
- Department of Clinical Laboratory, Wenzhou Traditional Chinese Medicine Hospital, Wenzhou, Zhejiang 325000, China
| | - Yuqi Liu
- Cardiac Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Chen
- Emergy Medicine Department, Ningbo First Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang 315000, China
| | - Fang Hong
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
277
|
Gong S, Wang X, Meng F, Cui L, Yi Q, Zhao Q, Cang X, Cai Z, Mo JQ, Liang Y, Guan MX. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNA His mutation. J Biol Chem 2019; 295:940-954. [PMID: 31819004 DOI: 10.1074/jbc.ra119.010998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Indexed: 01/19/2023] Open
Abstract
The deafness-associated m.12201T>C mutation affects the A5-U68 base-pairing within the acceptor stem of mitochondrial tRNAHis The primary defect in this mutation is an alteration in tRNAHis aminoacylation. Here, we further investigate the molecular mechanism of the deafness-associated tRNAHis 12201T>C mutation and test whether the overexpression of the human mitochondrial histidyl-tRNA synthetase gene (HARS2) in cytoplasmic hybrid (cybrid) cells carrying the m.12201T>C mutation reverses mitochondrial dysfunctions. Using molecular dynamics simulations, we demonstrate that the m.12201T>C mutation perturbs the tRNAHis structure and function, supported by decreased melting temperature, conformational changes, and instability of mutated tRNA. We show that the m.12201T>C mutation-induced alteration of aminoacylation tRNAHis causes mitochondrial translational defects and respiratory deficiency. We found that the transfer of HARS2 into the cybrids carrying the m.12201T>C mutation raises the levels of aminoacylated tRNAHis from 56.3 to 75.0% but does not change the aminoacylation of other tRNAs. Strikingly, HARS2 overexpression increased the steady-state levels of tRNAHis and of noncognate tRNAs, including tRNAAla, tRNAGln, tRNAGlu, tRNALeu(UUR), tRNALys, and tRNAMet, in cells bearing the m.12201T>C mutation. This improved tRNA metabolism elevated the efficiency of mitochondrial translation, activities of oxidative phosphorylation complexes, and respiration capacity. Furthermore, HARS2 overexpression markedly increased mitochondrial ATP levels and membrane potential and reduced production of reactive oxygen species in cells carrying the m.12201T>C mutation. These results indicate that HARS2 overexpression corrects the mitochondrial dysfunction caused by the tRNAHis mutation. These findings provide critical insights into the pathophysiology of mitochondrial disease and represent a step toward improved therapeutic interventions for mitochondrial disorders.
Collapse
Affiliation(s)
- Shasha Gong
- Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China.,Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoqiong Wang
- Department of Otolaryngology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China.,Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiong Zhao
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiyi Cai
- Department of Otolaryngology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California 92123
| | - Yong Liang
- Taizhou University Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China .,Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
278
|
Noe Gonzalez M, Svejstrup JQ. Watch Out for Those Terrible Twos! Dinucleotide Accumulation Dysregulates Mitochondrial Transcription. Mol Cell 2019; 76:696-698. [PMID: 31809742 DOI: 10.1016/j.molcel.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this issue of Molecular Cell, Nicholls et al. (2019) show that the oligoribonuclease REXO2 degrades mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome, shedding new light on the importance of complete RNA degradation for transcriptional integrity.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
279
|
Grover R, Burse SA, Shankrit S, Aggarwal A, Kirty K, Narta K, Srivastav R, Ray AK, Malik G, Vats A, Motiani RK, Thukral L, Roy SS, Bhattacharya S, Sharma R, Natarajan K, Mukerji M, Pandey R, Gokhale RS, Natarajan VT. Myg1 exonuclease couples the nuclear and mitochondrial translational programs through RNA processing. Nucleic Acids Res 2019; 47:5852-5866. [PMID: 31081026 PMCID: PMC6582341 DOI: 10.1093/nar/gkz371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 01/25/2023] Open
Abstract
Semi-autonomous functioning of mitochondria in eukaryotic cell necessitates coordination with nucleus. Several RNA species fine-tune mitochondrial processes by synchronizing with the nuclear program, however the involved components remain enigmatic. In this study, we identify a widely conserved dually localized protein Myg1, and establish its role as a 3′-5′ RNA exonuclease. We employ mouse melanoma cells, and knockout of the Myg1 ortholog in Saccharomyces cerevisiae with complementation using human Myg1 to decipher the conserved role of Myg1 in selective RNA processing. Localization of Myg1 to nucleolus and mitochondrial matrix was studied through imaging and confirmed by sub-cellular fractionation studies. We developed Silexoseqencing, a methodology to map the RNAse trail at single-nucleotide resolution, and identified in situ cleavage by Myg1 on specific transcripts in the two organelles. In nucleolus, Myg1 processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, Myg1 processes 3′-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins. We provide a molecular link to the possible involvement of Myg1 in chronic depigmenting disorder vitiligo. Our study identifies a key component involved in regulating spatially segregated organellar RNA processing and establishes the evolutionarily conserved ribonuclease as a coordinator of nucleo-mitochondrial crosstalk.
Collapse
Affiliation(s)
- Ritika Grover
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Shaunak A Burse
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Shambhavi Shankrit
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Ayush Aggarwal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| | - Kritika Kirty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kiran Narta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajpal Srivastav
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Ashwini Kumar Ray
- School of environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Malik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Archana Vats
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajender K Motiani
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Sudha Bhattacharya
- School of environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | | | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India.,Academy of Scientific and Innovative Research, Rafi Marg, New Delhi, India
| |
Collapse
|
280
|
Wallis CP, Scott LH, Filipovska A, Rackham O. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190185. [PMID: 31787043 DOI: 10.1098/rstb.2019.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many conventional, modern genome engineering tools cannot be used to study mitochondrial genetics due to the unusual structure and physiology of the mitochondrial genome. Here, we review a number of newly developed, synthetic biology-based approaches for altering levels of mutant mammalian mitochondrial DNA and mitochondrial RNAs, including transcription activator-like effector nucleases, zinc finger nucleases and engineered RNA-binding proteins. These approaches allow researchers to manipulate and visualize mitochondrial processes and may provide future therapeutics. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Christopher P Wallis
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
281
|
Cheng Y, Liu P, Zheng Q, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Tong T, Chen J, Lu Z, Guan J, Wang G. Mitochondrial Trafficking and Processing of Telomerase RNA TERC. Cell Rep 2019; 24:2589-2595. [PMID: 30184494 DOI: 10.1016/j.celrep.2018.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunctions play major roles in many diseases. However, how mitochondrial stresses are relayed to downstream responses remains unclear. Here we show that the RNA component of mammalian telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. We found that the import is regulated by PNPASE, and the processing is controlled by mitochondrion-localized RNASET2. Cytosolic TERC-53 levels respond to changes in mitochondrial functions but have no direct effect on these functions. These findings uncover a mitochondrial RNA trafficking pathway and provide a potential mechanism for mitochondria to relay their functional states to other cellular compartments.
Collapse
Affiliation(s)
- Ying Cheng
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peipei Liu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Zheng
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Gao
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiapei Yuan
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Beijing 100191, China
| | - Jinliang Huang
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Leiming Xie
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinping Lu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhi Lu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jisong Guan
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Geng Wang
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
282
|
Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells 2019; 8:cells8121475. [PMID: 31766319 PMCID: PMC6952824 DOI: 10.3390/cells8121475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.
Collapse
|
283
|
Ruan H, Liao Y, Ren Z, Mao L, Yao F, Yu P, Ye Y, Zhang Z, Li S, Xu H, Liu J, Diao L, Zhou B, Han L, Wang L. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol 2019; 17:89. [PMID: 31722692 PMCID: PMC6854813 DOI: 10.1186/s12915-019-0709-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized. RESULTS In order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features. Through constructing developmental trajectory of cardiac differentiation and putative ligand-receptor interactions, we revealed crosstalk between cardiac progenitor cells and endoderm cells, which could potentially provide a cellular microenvironment supporting cardiac lineage commitment at day 5. In addition, computational analyses of single-cell RNA-Seq data unveiled ETS1 (ETS Proto-Oncogene 1) activation as an important downstream event induced by crosstalk between cardiac progenitor cells and endoderm cells. Consistent with the findings from single-cell analysis, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) against ETS1 revealed genomic occupancy of ETS1 at cardiac structural genes at day 9 and day 14, whereas ETS1 depletion dramatically compromised cardiac differentiation. CONCLUSION Together, our study not only characterized the molecular features of different cell types and identified ETS1 as a crucial factor induced by cell-cell crosstalk contributing to cardiac lineage commitment from a pluripotent state, but may also have important implications for understanding human heart development at early embryonic stage, as well as directed manipulation of cardiac differentiation in regenerative medicine.
Collapse
Affiliation(s)
- Hang Ruan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Yingnan Liao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Zongna Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Hanshi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Jiewei Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA.
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
284
|
Zheng Q, Huang J, Wang G. Mitochondria, Telomeres and Telomerase Subunits. Front Cell Dev Biol 2019; 7:274. [PMID: 31781563 PMCID: PMC6851022 DOI: 10.3389/fcell.2019.00274] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial functions and telomere functions have mostly been studied independently. In recent years, it, however, has become clear that there are intimate links between mitochondria, telomeres, and telomerase subunits. Mitochondrial dysfunctions cause telomere attrition, while telomere damage leads to reprogramming of mitochondrial biosynthesis and mitochondrial dysfunctions, which has important implications in aging and diseases. In addition, evidence has accumulated that telomere-independent functions of telomerase also exist and that the protein component of telomerase TERT shuttles between the nucleus and mitochondria under oxidative stress. Our previously published data show that the RNA component of telomerase TERC is also imported into mitochondria, processed, and exported back to the cytosol. These data show a complex regulation network where telomeres, nuclear genome, and mitochondria are co-regulated by multi-localization and multi-function proteins and RNAs. This review summarizes the connections between mitochondria and telomeres, the mitochondrion-related functions of telomerase subunits, and how they play a role in crosstalk between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Qian Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
285
|
Fan W, Zheng J, Kong W, Cui L, Aishanjiang M, Yi Q, Wang M, Cang X, Tang X, Chen Y, Mo JQ, Sondheimer N, Ge W, Guan MX. Contribution of a mitochondrial tyrosyl-tRNA synthetase mutation to the phenotypic expression of the deafness-associated tRNA Ser(UCN) 7511A>G mutation. J Biol Chem 2019; 294:19292-19305. [PMID: 31685661 DOI: 10.1074/jbc.ra119.010598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Nuclear modifier genes have been proposed to modify the phenotypic expression of mitochondrial DNA mutations. Using a targeted exome-sequencing approach, here we found that the p.191Gly>Val mutation in mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) interacts with the tRNASer(UCN) 7511A>G mutation in causing deafness. Strikingly, members of a Chinese family bearing both the YARS2 p.191Gly>Val and m.7511A>G mutations displayed much higher penetrance of deafness than those pedigrees carrying only the m.7511A>G mutation. The m.7511A>G mutation changed the A4:U69 base-pairing to G4:U69 pairing at the aminoacyl acceptor stem of tRNASer(UCN) and perturbed tRNASer(UCN) structure and function, including an increased melting temperature, altered conformation, instability, and aberrant aminoacylation of mutant tRNA. Using lymphoblastoid cell lines derived from symptomatic and asymptomatic members of these Chinese families and control subjects, we show that cell lines harboring only the m.7511A>G or p.191Gly>Val mutation revealed relatively mild defects in tRNASer(UCN) or tRNATyr metabolism, respectively. However, cell lines harboring both m.7511A>G and p.191Gly>Val mutations displayed more severe defective aminoacylations and lower tRNASer(UCN) and tRNATyr levels, aberrant aminoacylation, and lower levels of other tRNAs, including tRNAThr, tRNALys, tRNALeu(UUR), and tRNASer(AGY), than those in the cell lines carrying only the m.7511A>G or p.191Gly>Val mutation. Furthermore, mutant cell lines harboring both m.7511A>G and p.191Gly>Val mutations exhibited greater decreases in the levels of mitochondrial translation, respiration, and mitochondrial ATP and membrane potentials, along with increased production of reactive oxygen species. Our findings provide molecular-level insights into the pathophysiology of maternally transmitted deafness arising from the synergy between tRNASer(UCN) and mitochondrial YARS mutations.
Collapse
Affiliation(s)
- Wenlu Fan
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Kong
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Limei Cui
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiuzi Yi
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min Wang
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaowen Tang
- Attardi Institute of Biomedicine, School of Life Sciences and Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California 92123
| | - Neal Sondheimer
- Department of Molecular Genetics, University of Toronto School of Medicine and the Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Wanzhong Ge
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and the University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
286
|
Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. EBioMedicine 2019; 48:554-567. [PMID: 31631040 PMCID: PMC6838390 DOI: 10.1016/j.ebiom.2019.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both idiopathic and familial Parkinson's disease are associated with mitochondrial dysfunction. Mitochondria have their own mitochondrial DNA (mtDNA) and previous studies have reported that the release of mtDNA is a biomarker of Parkinson's disease. METHODS We have now investigated the relationship between mtDNA replication, transcription and release in fibroblasts from patients with idiopathic (iPD) and Leucine-rich repeat kinase 2G2019S -associated Parkinson's disease (LRRK2-PD), using Selfie-digital PCR, a method that allows absolute quantification of mtDNA genomes and transcripts. FINDINGS In comparison with healthy controls, we found that fibroblasts from patients with iPD or LRRK2-PD had a high amount of mitochondrial 7S DNA along with a low mtDNA replication rate that was associated with a reduction of cf-mtDNA release. Accumulation of 7S DNA in iPD and LRRK2-PD fibroblasts was related with an increase in H-strand mtDNA transcription. INTERPRETATION These results show that 7S DNA accumulation, low mtDNA replication, high H-strand transcription, and low mtDNA release compose a pattern of mtDNA dysfunction shared by both iPD and LRRK2-PD fibroblasts. Moreover, these results suggest that the deregulation of the genetic switch formed by 7SDNA that alternates between mtDNA replication and transcription is a fundamental pathophysiological mechanism in both idiopathic and monogenic Parkinson's disease.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Núria Serra
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rubén Fernández-Santiago
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mario Ezquerra
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
287
|
Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes. Sci Rep 2019; 9:14806. [PMID: 31616005 PMCID: PMC6794255 DOI: 10.1038/s41598-019-51313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.
Collapse
|
288
|
Wang P, Tang W, Li Z, Zou Z, Zhou Y, Li R, Xiong T, Wang J, Zou P. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat Chem Biol 2019; 15:1110-1119. [PMID: 31591565 DOI: 10.1038/s41589-019-0368-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
RNA molecules are highly compartmentalized in eukaryotic cells, with their localizations intimately linked to their functions. Despite the importance of RNA targeting, our current knowledge of the spatial organization of the transcriptome has been limited by a lack of analytical tools. In this study, we develop a chemical biology approach to label RNAs in live cells with high spatial specificity. Our method, called CAP-seq, capitalizes on light-activated, proximity-dependent photo-oxidation of RNA nucleobases, which could be subsequently enriched via affinity purification and identified by high-throughput sequencing. Using this technique, we investigate the local transcriptomes that are proximal to various subcellular compartments, including the endoplasmic reticulum and mitochondria. We discover that messenger RNAs encoding for ribosomal proteins and oxidative phosphorylation pathway proteins are highly enriched at the outer mitochondrial membrane. Due to its specificity and ease of use, CAP-seq is a generally applicable technique to investigate the spatial transcriptome in many biological systems.
Collapse
Affiliation(s)
- Pengchong Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Zeyao Li
- School of Life Sciences, Tsinghua University, Beijing, China.,Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, Beijing, China
| | - Zhongyu Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Ying Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China
| | - Ran Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Tianyu Xiong
- Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China. .,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China. .,Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China. .,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| |
Collapse
|
289
|
Nicholls TJ, Spåhr H, Jiang S, Siira SJ, Koolmeister C, Sharma S, Kauppila JHK, Jiang M, Kaever V, Rackham O, Chabes A, Falkenberg M, Filipovska A, Larsson NG, Gustafsson CM. Dinucleotide Degradation by REXO2 Maintains Promoter Specificity in Mammalian Mitochondria. Mol Cell 2019; 76:784-796.e6. [PMID: 31588022 PMCID: PMC6900737 DOI: 10.1016/j.molcel.2019.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Min Jiang
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden.
| |
Collapse
|
290
|
Shtolz N, Mishmar D. The Mitochondrial Genome–on Selective Constraints and Signatures at the Organism, Cell, and Single Mitochondrion Levels. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00342] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
291
|
Perks KL, Rossetti G, Kuznetsova I, Hughes LA, Ermer JA, Ferreira N, Busch JD, Rudler DL, Spahr H, Schöndorf T, Shearwood AMJ, Viola HM, Siira SJ, Hool LC, Milenkovic D, Larsson NG, Rackham O, Filipovska A. PTCD1 Is Required for 16S rRNA Maturation Complex Stability and Mitochondrial Ribosome Assembly. Cell Rep 2019; 23:127-142. [PMID: 29617655 DOI: 10.1016/j.celrep.2018.03.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 03/08/2018] [Indexed: 12/25/2022] Open
Abstract
The regulation of mitochondrial RNA life cycles and their roles in ribosome biogenesis and energy metabolism are not fully understood. We used CRISPR/Cas9 to generate heart- and skeletal-muscle-specific knockout mice of the pentatricopeptide repeat domain protein 1, PTCD1, and show that its loss leads to severe cardiomyopathy and premature death. Our detailed transcriptome-wide and functional analyses of these mice enabled us to identify the molecular role of PTCD1 as a 16S rRNA-binding protein essential for its stability, pseudouridylation, and correct biogenesis of the mitochondrial large ribosomal subunit. We show that impaired mitoribosome biogenesis can have retrograde signaling effects on nuclear gene expression through the transcriptional activation of the mTOR pathway and upregulation of cytoplasmic protein synthesis and pro-survival factors in the absence of mitochondrial translation. Taken together, our data show that impaired assembly of the mitoribosome exerts its consequences via differential regulation of mitochondrial and cytoplasmic protein synthesis.
Collapse
Affiliation(s)
- Kara L Perks
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Nicola Ferreira
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jakob D Busch
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spahr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Schöndorf
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ann-Marie J Shearwood
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Livia C Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
292
|
Benayoun BA, Lee C. MOTS-c: A Mitochondrial-Encoded Regulator of the Nucleus. Bioessays 2019; 41:e1900046. [PMID: 31378979 PMCID: PMC8224472 DOI: 10.1002/bies.201900046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome-bearing organelles would likely include gene expression regulation. Multiple nuclear-encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial-encoded factors are known to actively regulate nuclear gene expression. MOTS-c (mitochondrial open reading frame of the 12S ribosomal RNA type-c) is a recently identified peptide encoded within the mitochondrial 12S ribosomal RNA gene that has metabolic functions. Notably, MOTS-c can translocate to the nucleus upon metabolic stress (e.g., glucose restriction and oxidative stress) and directly regulate adaptive nuclear gene expression to promote cellular homeostasis. It is hypothesized that cellular fitness requires the coevolved mitonuclear genomes to coordinate adaptive responses using gene-encoded factors that cross-regulate the opposite genome. This suggests that cellular gene expression requires the bipartite split genomes to operate as a unified system, rather than the nucleus being the sole master regulator.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
293
|
Jia Z, Zhang Y, Li Q, Ye Z, Liu Y, Fu C, Cang X, Wang M, Guan MX. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis. Nucleic Acids Res 2019; 47:2056-2074. [PMID: 30541130 PMCID: PMC6393294 DOI: 10.1093/nar/gky1241] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
The tissue specificity of mitochondrial tRNA mutations remains largely elusive. In this study, we demonstrated the deleterious effects of tRNAThr 15927G>A mutation that contributed to pathogenesis of coronary artery disease. The m.15927G>A mutation abolished the highly conserved base-pairing (28C-42G) of anticodon stem of tRNAThr. Using molecular dynamics simulations, we showed that the m.15927G>A mutation caused unstable tRNAThr structure, supported by decreased melting temperature and slower electrophoretic mobility of mutated tRNA. Using cybrids constructed by transferring mitochondria from a Chinese family carrying the m.15927G>A mutation and a control into mitochondrial DNA (mtDNA)-less human umbilical vein endothelial cells, we demonstrated that the m.15927G>A mutation caused significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr. The aberrant tRNAThr metabolism yielded variable decreases in mtDNA-encoded polypeptides, respiratory deficiency, diminished membrane potential and increased the production of reactive oxygen species. The m.15927G>A mutation promoted the apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 3, 7, 9 and PARP. Moreover, the lower wound healing cells and perturbed tube formation were observed in mutant cybrids, indicating altered angiogenesis. Our findings provide new insights into the pathophysiology of coronary artery disease, which is manifested by tRNAThr mutation-induced alterations.
Collapse
Affiliation(s)
- Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Zhang
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Li
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqi Liu
- Cardiac Department, PLA General Hospital, Beijing 100853, China
| | - Changzhu Fu
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
294
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
295
|
De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat Biotechnol 2019; 37:1137-1144. [DOI: 10.1038/s41587-019-0227-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
|
296
|
Chen W, Wang P, Lu Y, Jin T, Lei X, Liu M, Zhuang P, Liao J, Lin Z, Li B, Peng Y, Pan G, Lv X, Zhang H, Ou Z, Xie S, Lin X, Sun S, Ferrone S, Tannous BA, Ruan Y, Li J, Fan S. Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Am J Cancer Res 2019; 9:5739-5754. [PMID: 31534516 PMCID: PMC6735381 DOI: 10.7150/thno.37556] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have been recently found in the mitochondria, and were named “mitomiRs”, but their function has remained elusive. Here, we aimed to assess the presence and function(s) of mitomiRs in tongue squamous cell carcinoma (TSCC). Methods: miRNA microarray was performed in paired TSCC cell lines, Cal27 and its chemoresistant counterpart, Cal27-re. Decreased expression of mitomiRs in chemoresistant cells was characterized. The functions of mitomiRs were investigated by a series of in vitro and in vivo experiments. Results: Differential microarray analysis identified downregulation of mitomiR-5787 in Cal27-re cells. We knocked down mitomiR-5787 in parental cells and upregulated its expression in cisplatin-resistant cells. The sensitivity of TSCC cells to cisplatin was regulated by miR-5787. The glucose metabolism assay suggested that reduced expression of miR-5787 changed the balance of glucose metabolism by shifting it from oxidative phosphorylation to aerobic glycolysis. Xenograft experiments in BALB/c-nu mice further verified the in vitro results. Reduced expression of miR-5787 contributes to chemoresistance in TSCC cells by inhibiting the translation of mitochondrial cytochrome c oxidase subunit 3 (MT-CO3). The prognostic analysis of 126 TSCC patients showed that the patients with low expression of miR-5787 and/or MT-CO3 had poor cisplatin sensitivity and prognosis. Conclusions: Mitochondrial miR-5787 could regulate cisplatin resistance of TSCC cells and affect oxidative phosphorylation and aerobic glycolysis. Downregulation of miR-5787 inhibited the translation of MT-CO3 to regulate cisplatin resistance of TSCC. Mitochondrial miR-5787 and MT-CO3 can be used as predictive biomarkers or therapeutic targets for cisplatin chemotherapy resistance.
Collapse
|
297
|
Baechler SA, Dalla Rosa I, Spinazzola A, Pommier Y. Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle 2019; 18:2377-2384. [PMID: 31345095 DOI: 10.1080/15384101.2019.1646563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria contain their own genome (mtDNA), encoding 13 proteins of the enzyme complexes of the oxidative phosphorylation. Synthesis of these 13 mitochondrial proteins requires a specific translation machinery, the mitoribosomes whose RNA components are encoded by the mtDNA, whereas more than 80 proteins are encoded by nuclear genes. It has been well established that mitochondrial topoisomerase I (TOP1MT) is important for mtDNA integrity and mitochondrial transcription as it prevents excessive mtDNA negative supercoiling and releases topological stress during mtDNA replication and transcription. We recently showed that TOP1MT also supports mitochondrial protein synthesis, and thus is critical for promoting tumor growth. Impaired mitochondrial protein synthesis leads to activation of the mitonuclear stress response through the transcription factor ATF4, and induces cytoprotective genes in order to prevent mitochondrial and cellular dysfunction. In this perspective, we highlight the novel role of TOP1MT in mitochondrial protein synthesis and as potential target for chemotherapy.
Collapse
Affiliation(s)
- Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
298
|
Ramanjaneya M, Jerobin J, Bettahi I, Bensila M, Aye M, Siveen KS, Sathyapalan T, Skarulis M, Abou-Samra AB, Atkin SL. Lipids and insulin regulate mitochondrial-derived peptide (MOTS-c) in PCOS and healthy subjects. Clin Endocrinol (Oxf) 2019; 91:278-287. [PMID: 31066084 DOI: 10.1111/cen.14007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Polycystic ovarian syndrome (PCOS) is a heterogeneous endocrine disorder associated with mitochondrial dysfunction and insulin resistance (IR). MOTS-c, a mitochondrial peptide, promotes insulin sensitivity (IS) through activating AKT and AMPK-dependent pathways. The current study was designed to examine the response of MOTS-c to lipids (intralipid) followed by insulin in PCOS and healthy subjects. METHODS All subjects underwent 5-hour intralipid/saline infusion with a hyperinsulinemic-euglycaemic clamp in the final 2 hours. Plasma samples were collected to measure circulating MOTS-c using a commercial ELISA kit. Subsequently, this was repeated following an eight-week exercise intervention. RESULTS Intralipid significantly increased plasma MOTS-c both in controls and PCOS subjects, whilst the insulin infusion blunted the intralipid-induced response seen for both lipids and MOT-c. Intralipid elevated plasma MOTS-c to 232 ± 124% of basal in control (P < 0.01) and to 349 ± 206% of basal in PCOS (P < 0.001) subjects. Administration of insulin suppressed intralipid-induced MOTS-c from 232 ± 124% to 165 ± 97% (NS) in control and from 349 ± 206% to 183 ± 177% (P < 0.05) in PCOS subjects, respectively. Following exercise, intralipid elevated plasma MOTS-c to 305 ± 153% of basal in control (P < 0.01) and to 215 ± 103% of basal in PCOS (P < 0.01) subjects; insulin suppressed intralipid-induced MOTS-c only in controls. CONCLUSIONS In conclusion, this is the first study to show increased lipid enhanced circulating MOTS-c whilst insulin attenuated the MOTS-c response in human. Further, eight weeks of moderate exercise training did not show any changes in circulating MOTS-c levels in healthy controls and in women with PCOS.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ilham Bettahi
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Milin Bensila
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Myint Aye
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | - Monica Skarulis
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
299
|
Bouda E, Stapon A, Garcia-Diaz M. Mechanisms of mammalian mitochondrial transcription. Protein Sci 2019; 28:1594-1605. [PMID: 31309618 DOI: 10.1002/pro.3688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023]
Abstract
Numerous age-related human diseases have been associated with deficiencies in cellular energy production. Moreover, genetic alterations resulting in mitochondrial dysfunction are the cause of inheritable disorders commonly known as mitochondrial diseases. Many of these deficiencies have been directly or indirectly linked to deficits in mitochondrial gene expression. Transcription is an essential step in gene expression and elucidating the molecular mechanisms involved in this process is critical for understanding defects in energy production. For the past five decades, substantial efforts have been invested in the field of mitochondrial transcription. These efforts have led to the discovery of the main protein factors responsible for transcription as well as to a basic mechanistic understanding of the transcription process. They have also revealed various mechanisms of transcriptional regulation as well as the links that exist between the transcription process and downstream processes of RNA maturation. Here, we review the knowledge gathered in early mitochondrial transcription studies and focus on recent findings that shape our current understanding of mitochondrial transcription, posttranscriptional processing, as well as transcriptional regulation in mammalian systems.
Collapse
Affiliation(s)
- Emilie Bouda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Anthony Stapon
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
300
|
Zhou Y, Wang G, Wang P, Li Z, Yue T, Wang J, Zou P. Expanding APEX2 Substrates for Proximity‐Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Zhou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Gang Wang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Pengchong Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Zeyao Li
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- Peking-Tsinghua-NIBS Joint Graduate Program Tsinghua University Beijing 100084 China
| | - Tieqiang Yue
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Jianbin Wang
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- School of Life Sciences Tsinghua University Beijing 100084 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
| |
Collapse
|