251
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
252
|
Russi M, Martin E, D'Autréaux B, Tixier L, Tricoire H, Monnier V. A Drosophila model of Friedreich ataxia with CRISPR/Cas9 insertion of GAA repeats in the frataxin gene reveals in vivo protection by N-acetyl cysteine. Hum Mol Genet 2020; 29:2831-2844. [PMID: 32744307 DOI: 10.1093/hmg/ddaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia (FA) is caused by GAA repeat expansions in the first intron of FXN, the gene encoding frataxin, which results in decreased gene expression. Thanks to the high degree of frataxin conservation, the Drosophila melanogaster fruitfly appears as an adequate animal model to study this disease and to evaluate therapeutic interventions. Here, we generated a Drosophila model of FA with CRISPR/Cas9 insertion of approximately 200 GAA in the intron of the fly frataxin gene fh. These flies exhibit a developmental delay and lethality associated with decreased frataxin expression. We were able to bypass preadult lethality using genetic tools to overexpress frataxin only during the developmental period. These frataxin-deficient adults are short-lived and present strong locomotor defects. RNA-Seq analysis identified deregulation of genes involved in amino-acid metabolism and transcriptomic signatures of oxidative stress. In particular, we observed a progressive increase of Tspo expression, fully rescued by adult frataxin expression. Thus, Tspo expression constitutes a molecular marker of the disease progression in our fly model and might be of interest in other animal models or in patients. Finally, in a candidate drug screening, we observed that N-acetyl cysteine improved the survival, locomotor function, resistance to oxidative stress and aconitase activity of frataxin-deficient flies. Therefore, our model provides the opportunity to elucidate in vivo, the protective mechanisms of this molecule of therapeutic potential. This study also highlights the strength of the CRISPR/Cas9 technology to introduce human mutations in endogenous orthologous genes, leading to Drosophila models of human diseases with improved physiological relevance.
Collapse
Affiliation(s)
- Maria Russi
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Elodie Martin
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Laura Tixier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Hervé Tricoire
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Véronique Monnier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| |
Collapse
|
253
|
Eskandarani RM, Alghamdi FS. Naphthalene Toxicity in a Three-Year-Old Child Complicated by Severe Hemolytic Anemia and Mild Methemoglobinemia: A Case Report. J Emerg Med 2020; 59:e113-e117. [PMID: 32682642 DOI: 10.1016/j.jemermed.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure to naphthalene, which is widely used in mothballs, does not usually produce adverse effects. However, naphthalene can be toxic, especially in individuals with underlying conditions such as glucose-6-phosphate-dehydrogenase (G6PD) deficiency. CASE REPORT A 3-year-old boy was brought to our Emergency Department after accidentally ingesting naphthalene mothballs 3 days prior to presentation. Laboratory investigations revealed that he had severe hemolytic anemia and mild methemoglobinemia (6%), which were treated with ascorbic acid and N-acetylcysteine. The patient tested positive for G6PD deficiency after stabilization and completion of his treatment. All provided treatments were administered empirically; test results were available only after the patient was discharged. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Naphthalene exposure is a common pediatric presentation with various complications that can occur in certain high-risk individuals, such as those with G6PD deficiency. Emergency physicians should be aware of this to anticipate and be able to treat worsening toxicity.
Collapse
|
254
|
Mukherjea D, Dhukhwa A, Sapra A, Bhandari P, Woolford K, Franke J, Ramkumar V, Rybak L. Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opin Drug Metab Toxicol 2020; 16:965-982. [PMID: 32757852 DOI: 10.1080/17425255.2020.1806235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cisplatin is a highly effective chemotherapeutic agent against a variety of solid tumors in adults and in children. Unfortunately, a large percentage of patients suffer permanent sensorineural hearing loss. Up to 60% of children and at least 50% of adults suffer this complication that seriously compromises their quality of life. Hearing loss is due to damage to the sensory cells in the inner ear. The mechanisms of cochlear damage are still being investigated. However, it appears that inner ear damage is triggered by reactive oxygen species (ROS) formation and inflammation 34. AREAS COVERED We discuss a number of potential therapeutic targets that can be addressed to provide hearing protection. These strategies include enhancing the endogenous antioxidant pathways, heat shock proteins, G protein coupled receptors and counteracting ROS and reactive nitrogen species, and blocking pathways that produce inflammation, including TRPV1 and STAT1 36. EXPERT OPINION Numerous potential protective agents show promise in animal models by systemic or local administration. However, clinical trials have not shown much efficacy to date with the exception of sodium thiosulfate. There is an urgent need to discover safe and effective protective agents that do not interfere with the efficacy of cisplatin against tumors yet preserve hearing 151.
Collapse
Affiliation(s)
| | - Asmita Dhukhwa
- Springfield Combined Laboratory Facility, Novear Therapeutics LLC ., Springfield, IL, USA
| | - Amit Sapra
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Priyanka Bhandari
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Katlyn Woolford
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Jacob Franke
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, SIU School of Medicine , Springfield, IL, USA
| | - Leonard Rybak
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| |
Collapse
|
255
|
Simultaneous improvement of ketoconazole solubility, antifungal and antibiofilm activity by multicomponent complexation. Ther Deliv 2020; 11:701-712. [PMID: 32967581 DOI: 10.4155/tde-2020-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: A novel multicomponent complex (MC) of ketoconazole (KET) with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC) was developed with the purpose of improving the solubility as well as the antifungal and antibiofilm activity of KET against Candida albicans. Results & methodology: The interactions among the components were studied using nuclear magnetic resonance, thermal analysis, powder x-ray diffraction, infrared spectroscopy and scanning electron microscopy. Phase-solubility studies demonstrated a considerable increase in the solubility of the MC. An enhancement in antibiofilm and antifungal activity of MC was determined against C. albicans by XTT assay and microbiological studies. Conclusion: This MC, with improvements in the drug pharmaceutical performance, might have an important potential in the development of new pharmaceutical formulations of KET.
Collapse
|
256
|
Hallajzadeh J, Milajerdi A, Reiner Ž, Kolahdooz F, Asemi Z. The Effects of N-acetylcysteine on Inflammatory Markers and Homocysteine: A Systematic Review and Meta-analysis of Randomized Controlled Trials. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Alireza Milajerdi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Scienes and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
257
|
Physalin B induces G2/M cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by altering mitochondrial function. Anticancer Drugs 2020; 30:128-137. [PMID: 30335624 DOI: 10.1097/cad.0000000000000701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physalin B (PB) is one of the major constituents of Physalis alkekengi var. franchetii, a well-known Chinese traditional herb. In this study, we demonstrated for the first time that PB exhibits significant antiproliferative and apoptotic activity in A549 human lung cancer cells in a concentration-dependent and time-dependent manner. Flow cytometric analyses indicated that PB-induced G2/M arrest through down-regulation of cyclin B1 and cell division control protein cyclin-dependent kinase 1, and up-regulation of p21. The reduction in the level of cyclin B1/cyclin-dependent kinase 1 complex down-regulated oxidative phosphorylation multisubunit activity to reduce mitochondrial energetic homeostasis. Moreover, defects in mitochondrial ATP synthesis and mitochondrial membrane potential were found in PB-treated cell lines. These abnormalities led to an increase in intracellular superoxide and apoptosis. Thus, as an inhibitor of mitochondrial energetic homeostasis, PB demonstrates potent antitumor activities and may be developed as an alternative therapeutic agent against non-small-cell lung cancer.
Collapse
|
258
|
Shi XT, Zhu HL, Xiong YW, Liu WB, Zhou GX, Cao XL, Yi SJ, Dai LM, Zhang C, Gao L, Xu DX, Wang H. Cadmium down-regulates 11β-HSD2 expression and elevates active glucocorticoid level via PERK/p-eIF2α pathway in placental trophoblasts. CHEMOSPHERE 2020; 254:126785. [PMID: 32334250 DOI: 10.1016/j.chemosphere.2020.126785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Fetal overexposure to active glucocorticoid (GC) is the major cause for fetal growth restriction (FGR). This study investigated the influences of cadmium (Cd) exposure on active GC and its mechanism in placental trophoblasts. Pregnant mice were exposed to CdCl2 (4.5 mg/kg, i.p.). Human JEG-3 cells were treated with CdCl2 (0-20 μM). Prenatal Cd exposure significantly increased active GC level in amniotic fluid and placenta. Similarly, Cd treatment also elevated active GC level in medium. Expectedly, the expression of 11β-HSD2 protein was markedly downregulated in Cd-exposed placental trophoblasts. We further found that Cd activated the PERK/p-eIF2α signaling pathway in placental trophoblasts. Mechanistically, PERK siRNA pretreatment completely blocked PERK/p-eIF2α signaling, and thereby restoring Cd-downregulated 11β-HSD2 protein expression in human placental trophoblasts. We further found that N-acetylcysteine, a well-known antioxidant, obviously reversed Cd-downregulated 11β-HSD2 protein expression by inhibiting p-PERK/p-eIF2α signaling in placental trophoblasts. Overall, our data suggest that Cd activates the PERK/p-eIF2α signaling, down-regulates the protein expression of 11β-HSD2, and thereby elevating active GC level in placental trophoblast.
Collapse
Affiliation(s)
- Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
259
|
Transient Receptor Potential Melastatin 2 (TRPM2) Inhibition by Antioxidant, N-Acetyl-l-Cysteine, Reduces Global Cerebral Ischemia-Induced Neuronal Death. Int J Mol Sci 2020; 21:ijms21176026. [PMID: 32825703 PMCID: PMC7504640 DOI: 10.3390/ijms21176026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
A variety of pathogenic mechanisms, such as cytoplasmic calcium/zinc influx, reactive oxygen species production, and ionic imbalance, have been suggested to play a role in cerebral ischemia induced neurodegeneration. During the ischemic state that occurs after stroke or heart attack, it is observed that vesicular zinc can be released into the synaptic cleft, and then translocated into the cytoplasm via various cation channels. Transient receptor potential melastatin 2 (TRPM2) is highly distributed in the central nervous system and has high sensitivity to oxidative damage. Several previous studies have shown that TRPM2 channel activation contributes to neuroinflammation and neurodegeneration cascades. Therefore, we examined whether anti-oxidant treatment, such as with N-acetyl-l-cysteine (NAC), provides neuroprotection via regulation of TRPM2, following global cerebral ischemia (GCI). Experimental animals were then immediately injected with NAC (150 mg/kg/day) for 3 and 7 days, before sacrifice. We demonstrated that NAC administration reduced activation of GCI-induced neuronal death cascades, such as lipid peroxidation, microglia and astroglia activation, free zinc accumulation, and TRPM2 over-activation. Therefore, modulation of the TRPM2 channel can be a potential therapeutic target to prevent ischemia-induced neuronal death.
Collapse
|
260
|
Luo J, Ao Z, Duan Z, Ao Y, Wei S, Chen W, Chen X. Effects of N-Acetylcysteine on the reproductive performance, oxidative stress and RNA sequencing of Nubian goats. Vet Med Sci 2020; 7:156-163. [PMID: 32812379 PMCID: PMC7840200 DOI: 10.1002/vms3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.
Collapse
Affiliation(s)
- Jinhong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Institute of Prataculture, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ye Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Shinan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
261
|
Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020; 12:cancers12082197. [PMID: 32781581 PMCID: PMC7464599 DOI: 10.3390/cancers12082197] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells possess a multifaceted antioxidant enzyme system, which includes superoxide dismutases, catalase, the peroxiredoxin/thioredoxin and the glutathione peroxidase systems. The dichotomous role of reactive oxygen species and antioxidant enzymes in tumorigenesis and cancer progression complicates the use of small molecule antioxidants, pro-oxidants, and targeting of antioxidant enzymes as therapeutic approaches for cancer treatment. It also highlights the need for additional studies to investigate the role and regulation of these antioxidant enzymes in cancer. The focus of this review is on glutathione peroxidase 3 (GPx3), a selenoprotein, and the only extracellular GPx of a family of oxidoreductases that catalyze the detoxification of hydro- and soluble lipid hydroperoxides by reduced glutathione. In addition to summarizing the biochemical function, regulation, and disease associations of GPx3, we specifically discuss the role and regulation of systemic and tumor cell expressed GPx3 in cancer. From this it is evident that GPx3 has a dichotomous role in different tumor types, acting as both a tumor suppressor and pro-survival protein. Further studies are needed to examine how loss or gain of GPx3 specifically affects oxidant scavenging and redox signaling in the extracellular tumor microenvironment, and how GPx3 might be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Chang
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Beth L. Worley
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology & Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Nadine Hempel
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
- Correspondence: ; Tel.: +1-717-531-4037
| |
Collapse
|
262
|
Blanco-Ayala T, Sathyasaikumar KV, Uys JD, Pérez-de-la-Cruz V, Pidugu LS, Schwarcz R. N-Acetylcysteine Inhibits Kynurenine Aminotransferase II. Neuroscience 2020; 444:160-169. [PMID: 32768617 DOI: 10.1016/j.neuroscience.2020.07.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022]
Abstract
The tryptophan metabolite kynurenic acid (KYNA) may play an important role in normal and abnormal cognitive processes, most likely by interfering with α7 nicotinic and NMDA receptor function. KYNA is formed from its immediate precursor kynurenine either by non-enzymatic oxidation or through irreversible transamination by kynurenine aminotransferases. In the mammalian brain, kynurenine aminotransferase II (KAT II) is the principal enzyme responsible for the neosynthesis of rapidly mobilizable KYNA, and therefore constitutes an attractive target for pro-cognitive interventions. N-acetylcysteine (NAC), a brain-penetrant drug with pro-cognitive efficacy in humans, has been proposed to exert its actions by increasing the levels of the anti-oxidant glutathione (GSH) in the brain. We report here that NAC, but not GSH, inhibits KAT II activity in brain tissue homogenates from rats and humans with IC50 values in the high micromolar to low millimolar range. With similar potency, the drug interfered with the de novo formation of KYNA in rat brain slices, and NAC was a competitive inhibitor of recombinant human KAT II (Ki: 450 μM). Furthermore, GSH failed to S-glutathionylate recombinant human KAT II treated with the dithiocarbamate drug disulfiram. Shown by microdialysis in the prefrontal cortex of rats treated with kynurenine (50 mg/kg, i.p.), peripheral administration of NAC (500 mg/kg, i.p., 120 and 60 min before the application of kynurenine) reduced KYNA neosynthesis by ∼50%. Together, these results suggest that NAC exerts its neurobiological effects at least in part by reducing cerebral KYNA formation via KAT II inhibition.
Collapse
Affiliation(s)
- T Blanco-Ayala
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - V Pérez-de-la-Cruz
- Laboratorio de Neurobioquimica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A. Ciudad de México, Mexico
| | - L S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
263
|
Wertman JN, Melong N, Stoyek MR, Piccolo O, Langley S, Orr B, Steele SL, Razaghi B, Berman JN. The identification of dual protective agents against cisplatin-induced oto- and nephrotoxicity using the zebrafish model. eLife 2020; 9:e56235. [PMID: 32720645 PMCID: PMC7470826 DOI: 10.7554/elife.56235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Dose-limiting toxicities for cisplatin administration, including ototoxicity and nephrotoxicity, impact the clinical utility of this effective chemotherapy agent and lead to lifelong complications, particularly in pediatric cancer survivors. Using a two-pronged drug screen employing the zebrafish lateral line as an in vivo readout for ototoxicity and kidney cell-based nephrotoxicity assay, we screened 1280 compounds and identified 22 that were both oto- and nephroprotective. Of these, dopamine and L-mimosine, a plant-based amino acid active in the dopamine pathway, were further investigated. Dopamine and L-mimosine protected the hair cells in the zebrafish otic vesicle from cisplatin-induced damage and preserved zebrafish larval glomerular filtration. Importantly, these compounds did not abrogate the cytotoxic effects of cisplatin on human cancer cells. This study provides insights into the mechanisms underlying cisplatin-induced oto- and nephrotoxicity and compelling preclinical evidence for the potential utility of dopamine and L-mimosine in the safer administration of cisplatin.
Collapse
Affiliation(s)
- Jaime N Wertman
- Dalhousie University, Department of Microbiology and ImmunologyHalifaxCanada
- IWK Health Centre, Department of PediatricsHalifaxCanada
| | - Nicole Melong
- IWK Health Centre, Department of PediatricsHalifaxCanada
- CHEO Research InstituteOttawaCanada
| | - Matthew R Stoyek
- Dalhousie University, Department of Physiology & BiophysicsHalifaxCanada
| | - Olivia Piccolo
- IWK Health Centre, Department of PediatricsHalifaxCanada
- McMaster University, Department of Global HealthHamiltonCanada
| | | | - Benno Orr
- University of Toronto, Department of Molecular GeneticsTorontoCanada
| | | | - Babak Razaghi
- Dalhousie University, Faculty of DentistryHalifaxCanada
| | - Jason N Berman
- IWK Health Centre, Department of PediatricsHalifaxCanada
- CHEO Research InstituteOttawaCanada
| |
Collapse
|
264
|
Zhou J, Terluk MR, Basso L, Mishra UR, Orchard PJ, Cloyd JC, Schröder H, Kartha RV. N-acetylcysteine Provides Cytoprotection in Murine Oligodendrocytes through Heme Oxygenase-1 Activity. Biomedicines 2020; 8:biomedicines8080240. [PMID: 32717964 PMCID: PMC7460204 DOI: 10.3390/biomedicines8080240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytic injury by oxidative stress can lead to demyelination, contributing to neurodegeneration. We investigated the mechanisms by which an antioxidant, N-acetylcysteine (NAC), reduces oxidative stress in murine oligodendrocytes. We used normal 158N and mutant 158JP cells with endogenously high reactive oxygen species (ROS) levels. Oxidative stress was induced in 158N cells using hydrogen peroxide (H2O2, 500 μM), and both cells were treated with NAC (50 µM to 500 µM). ROS production, total glutathione (GSH) and cell survival were measured 24 h after treatment. In normal cells, H2O2 treatment resulted in a ~5.5-fold increase in ROS and ~50% cell death. These deleterious effects of oxidative stress were attenuated by NAC, resulting in improved cell survival. Similarly, NAC treatment resulted in decreased ROS levels in 158JP cells. Characterization of mechanisms underlying cytoprotection in both cell lines revealed an increase in GSH levels by NAC, which was partially blocked by an inhibitor of GSH synthesis. Interestingly, we observed heme oxygenase-1 (HO-1), a cytoprotective enzyme, play a critical role in cytoprotection. Inhibition of HO-1 activity abolished the cytoprotective effect of NAC with a corresponding decrease in total antioxidant capacity. Our results indicate that NAC promotes oligodendrocyte survival in oxidative stress-related conditions through multiple pathways.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
| | - Marcia R. Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
| | - Lisa Basso
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
| | - Usha R. Mishra
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA;
| | - James C. Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
| | - Henning Schröder
- Department of Pharmaceutics, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA;
| | - Reena V. Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (L.B.); (U.R.M.); (J.C.C.)
- Correspondence: ; Tel.: +1-612-626-2436
| |
Collapse
|
265
|
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, Williams M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol 2020; 219:108544. [PMID: 32707089 PMCID: PMC7374140 DOI: 10.1016/j.clim.2020.108544] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency facilitates human coronavirus infection due to glutathione depletion. G6PD deficiency may especially predispose to hemolysis upon coronavirus disease-2019 (COVID-19) infection when employing pro-oxidant therapy. However, glutathione depletion is reversible by N-acetylcysteine (NAC) administration. We describe a severe case of COVID-19 infection in a G6PD-deficient patient treated with hydroxychloroquine who benefited from intravenous (IV) NAC beyond reversal of hemolysis. NAC blocked hemolysis and elevation of liver enzymes, C-reactive protein (CRP), and ferritin and allowed removal from respirator and veno-venous extracorporeal membrane oxygenator and full recovery of the G6PD-deficient patient. NAC was also administered to 9 additional respirator-dependent COVID-19-infected patients without G6PD deficiency. NAC elicited clinical improvement and markedly reduced CRP in all patients and ferritin in 9/10 patients. NAC mechanism of action may involve the blockade of viral infection and the ensuing cytokine storm that warrant follow-up confirmatory studies in the setting of controlled clinical trials.
Collapse
Affiliation(s)
- Homam Ibrahim
- New York University Grossman School of Medicine, NY, New York, United States of America.
| | - Andras Perl
- Upstate Medical University Hospital, Syracuse, New York, United States of America.
| | - Deane Smith
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Tyler Lewis
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Zachary Kon
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Ronald Goldenberg
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Kinan Yarta
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Cezar Staniloae
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Mathew Williams
- New York University Grossman School of Medicine, NY, New York, United States of America
| |
Collapse
|
266
|
Narud B, Klinkenberg G, Khezri A, Zeremichael TT, Stenseth EB, Nordborg A, Haukaas TH, Morrell JM, Heringstad B, Myromslien FD, Kommisrud E. Differences in sperm functionality and intracellular metabolites in Norwegian Red bulls of contrasting fertility. Theriogenology 2020; 157:24-32. [PMID: 32777668 DOI: 10.1016/j.theriogenology.2020.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
In the dairy breeding industry, prediction of bull fertility in artificial insemination (AI) is important for efficient and economically sustainable production. However, it is challenging to identify bulls with superior fertility applying conventional in vitro sperm assays. In the present study, sperm functionality was investigated to identify a multivariate model that could predict fertility. Two groups of young Norwegian Red bulls were selected, one with inferior fertility (18 bulls) and one with superior fertility (19 bulls) based on non-return rate after 56 days (NR56). Frozen-thawed semen doses were analysed for sperm chromatin integrity, viability, acrosome integrity, motility, and ATP content. A targeted approach was used to study intracellular concentrations of amino acids and trace elements in viable sperm cells. Significant differences between the two groups of bulls were observed, both for sperm functional attributes and intracellular concentrations of metabolites. Pearson correlation analyses indicated a negative relationship between NR56 and chromatin integrity parameters, DNA fragmentation index (DFI) and high DNA stainability (HDS). Several motility parameters correlated positively with NR56. The concentrations of cysteine and glutamic acid in sperm cells correlated negatively with NR56, while the concentrations of aspartic acid, leucine and serine showed a positive NR56-correlation. The sperm intracellular concentrations of the trace elements Fe, Al and Zn, correlated negatively with NR56. Correlations were observed between several sperm parameters and metabolites. Stepwise multiple regression analysis indicated that the best predictor of NR56 was a model containing %DFI, together with the intracellular sperm concentration of aspartic acid, Fe and Zn. This model explained 59% of the variability in NR56.
Collapse
Affiliation(s)
- Birgitte Narud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Abdolrahman Khezri
- Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Teklu Tewoldebrhan Zeremichael
- Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Else-Berit Stenseth
- Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bjørg Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Norway
| | - Frøydis Deinboll Myromslien
- Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Elisabeth Kommisrud
- Department of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| |
Collapse
|
267
|
Sirota TV. A Chain Reaction of Adrenaline Autoxidation is a Model of Quinoid Oxidation of Catecholamines. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
268
|
Tan Q, Liu Y, Deng X, Chen J, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Autophagy: a promising process for the treatment of acetaminophen-induced liver injury. Arch Toxicol 2020; 94:2925-2938. [PMID: 32529281 DOI: 10.1007/s00204-020-02780-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Toxicity from drugs has become an important cause of acute liver failure. Acetaminophen, a commonly used analgesic, can cause severe acute liver injury that can worsen into acute liver failure. Autophagy, a protective cell programme, has been reported to have protective effects in a variety of diseases such as cancer, immune diseases, neurodegenerative diseases, and inflammatory diseases. In this review, we describe how an excess of acetaminophen causes liver injury step by step, from the formation of the initial protein adduct to the final hepatocyte necrosis, as well as the induction of autophagy and its beneficial effects on diseases. Emphasis is placed on the potential effect of autophagy on improving the damage of acetaminophen to hepatocytes. Finally, we are committed to providing insights into the treatment of acute liver failure through the mechanism of acetaminophen induced liver injury, the mechanism of autophagy, and the link between autophagy and liver injury.
Collapse
Affiliation(s)
- Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) CO., Ltd., New Taipei City, Taiwan, ROC
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) CO., Ltd., New Taipei City, Taiwan, ROC
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology CO. Ltd., Yunfu, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
269
|
N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int J Mol Sci 2020; 21:ijms21114106. [PMID: 32526845 PMCID: PMC7313069 DOI: 10.3390/ijms21114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
N-acetylcysteine (NAC) is a pharmacological alternative with great potential for reducing the deleterious effects of surgical procedures on patients with steatohepatitis. We evaluated the effect of NAC on hepatic ischemia/reperfusion (I/R) injury in C57BL/6J mice, 8 weeks-old, weighing 25-30 g, with steatohepatitis induced by a methionine- and choline-deficient (MCD) diet. Groups: MCD group (steatohepatitis), MCD-I/R group (steatohepatitis plus 30 min of 70% liver ischemia and 24 h of reperfusion), MCD-I/R+NAC group (same as MCD-I/R group plus 150 mg/kg NAC 15 min before ischemia), and control group (normal AIN-93M diet). Liver enzymes and histopathology; nitrite and TBARS (thiobarbituric acid reactive substances) levels; pro-inflammatory cytokines; antioxidants enzymes; Nrf2 (nuclear factor erythroid-2-related factor 2) expression; and apoptosis were evaluated. In the group treated with NAC, reductions in inflammatory infiltration; AST (aspartate aminotransferase), nitrite, and TBARS levels; GPx (gutathione peroxidase) activity; cytokines synthesis; and number of apoptotic cells were observed while the GR (glutathione reductase) activity was increased. No differences were observed in Nfr2 expression or in SOD (superoxide dismutase), CAT (catalase), and GST (glutathione S-transferase) activities. Thus, it may be concluded that NAC exerts beneficial effects on mice livers with steatohepatitis submitted to I/R by reducing oxidative stress, inflammatory response, and cell death.
Collapse
|
270
|
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 2020; 11:2788. [PMID: 32493916 PMCID: PMC7270130 DOI: 10.1038/s41467-020-16544-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is associated with many acute and chronic inflammatory diseases, yet limited treatment is currently available clinically. The development of enzyme-mimicking nanomaterials (nanozymes) with good reactive oxygen species (ROS) scavenging ability and biocompatibility is a promising way for the treatment of ROS-related inflammation. Herein we report a simple and efficient one-step development of ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with multiple enzyme-mimicking and broad-spectrum ROS scavenging ability for the treatment of ROS-related diseases. Cu5.4O USNPs simultaneously possessing catalase-, superoxide dismutase-, and glutathione peroxidase-mimicking enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low dosage and significantly improve treatment outcomes in acute kidney injury, acute liver injury and wound healing. Meanwhile, the ultrasmall size of Cu5.4O USNPs enables rapid renal clearance of the nanomaterial, guaranteeing the biocompatibility. The protective effect and good biocompatibility of Cu5.4O USNPs will facilitate clinical treatment of ROS-related diseases and enable the development of next-generation nanozymes.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Bowen Xiao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhuo Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengzhou Wu
- Department of Respiratory Care, Wuxi County People's Hospital, 405800, Chongqing, China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
271
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
272
|
Lee KB, Shin JW, Kwon MA, Kang H, Kim HM, Lee SJ, Jeong EM, Kang HS, Kim IG. Antioxidants reduce the heterogeneity of the intracellular glutathione level in senescent cell population of human dermal fibroblasts. J Dermatol Sci 2020; 98:195-198. [PMID: 32414633 DOI: 10.1016/j.jdermsci.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory for cellular response to oxidative stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Mee-Ae Kwon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Kang
- Laboratory for cellular response to oxidative stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Hye-Mi Kim
- Laboratory for cellular response to oxidative stress, Cell2in, Inc., Seoul, Republic of Korea
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heun-Soo Kang
- Laboratory for cellular response to oxidative stress, Cell2in, Inc., Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
273
|
Pietruski P, Paskal W, Paluch Ł, Paskal AM, Nitek Ż, Włodarski P, Walecki J, Noszczyk B. The Impact of N-Acetylcysteine on Autologous Fat Graft: First-in-Human Pilot Study. Aesthetic Plast Surg 2020:10.1007/s00266-020-01730-1. [PMID: 32424535 DOI: 10.1007/s00266-020-01730-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/25/2020] [Indexed: 09/29/2022]
Abstract
BACKGROUND Our goal was to determine whether N-acetylcysteine (NAC) administered to the tumescent solution can reduce oxidative stress and increase autologous fat graft (AFG) viability. METHODS The study included 15 women with a mean age of 31.8 years (range 23-39 years) who underwent breast asymmetry correction with AFG harvested from both thighs. One thigh was infiltrated with a standard tumescent fluid (control graft) and other with a NAC-enriched tumescent fluid (NAC-treated graft). Each participant had breast MRI imaging before and 6 months after the procedure. Also, adipose tissue samples from each graft were subjected to biochemical analysis, flow cytometric assay and qRT-PCR to determine the markers of oxidative stress, angiogenesis and adipogenesis. RESULTS Concentration and activity of superoxide dismutase in the NAC-treated grafts turned out to be significantly higher than in the control grafts, in both fresh (p = 0.041 and p = 0.023, respectively) and frozen samples (p = 0.004 and p = 0.003, respectively). The level of nitric oxide in frozen samples from the control grafts was significantly higher than in the NAC-treated grafts (p = 0.009). iNOS was the only qRT-PCR target showing significant intergroup differences, with higher transcription levels observed in the control grafts (p = 0.027). Breast volumetric analysis demonstrated that the NAC-treated group had a 12.19% lower resorption rate than the control group, although it was found to be statistically insignificant (p = 0.149). No postoperative complications were observed during a 6-month follow-up. CONCLUSIONS Some results of this study are promising. Further studies on larger groups are needed to determine NAC impact on AFG. TRIAL REGISTRY NAME The Impact of N-Acetylcysteine on Volumetric Retention of Autologous Fat Graft for Breast Asymmetry Correction. REGISTRATION IDENTIFICATION NUMBER NCT03197103. URL FOR THE REGISTRY: https://clinicaltrials.gov/ct2/show/NCT03197103?term=acetylcysteine&rank=6 LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Piotr Pietruski
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | - Wiktor Paskal
- Laboratory of Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Stefana Banacha 1B, 02-097, Warsaw, Mazowieckie, Poland
| | - Łukasz Paluch
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Adriana M Paskal
- Laboratory of Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Stefana Banacha 1B, 02-097, Warsaw, Mazowieckie, Poland
| | - Żaneta Nitek
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Paweł Włodarski
- Laboratory of Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, Stefana Banacha 1B, 02-097, Warsaw, Mazowieckie, Poland.
| | - Jerzy Walecki
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| |
Collapse
|
274
|
Mendonça MCP, de Jesus MB, van Gestel CAM. Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles: Bioavailability and toxicokinetics in Enchytraeus crypticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136797. [PMID: 32014764 DOI: 10.1016/j.scitotenv.2020.136797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 05/21/2023]
Abstract
We previously demonstrated that N-acetylcysteine (NAC) could reduce the toxicity of silver (Ag) materials (nanoparticles (NPs) and Ag nitrate) to the soil invertebrate Enchytraeus crypticus (Oligochaeta). It remains however, unclear whether the antitoxic mechanism of NAC was caused by NAC-Ag binding in the soil or inside the organisms. This study aimed at determining the bioavailability of Ag in the soil in a 21-day toxicity test as well as the Ag uptake and elimination kinetics in E. crypticus exposed to AgNPs in LUFA 2.2 standard soil amended with low (100 mg/kg dry soil) and high (600 mg/kg dry soil) NAC concentrations. The addition of NAC to the soil alleviated the toxicity of AgNPs by decreasing the internal Ag concentration of E. crypticus in a dose-dependent manner. Indeed, NAC reduced the binding of Ag to the soil, which probably was due to the formation of soluble but biologically unavailable Ag-cysteine complexes. The reduced Ag uptake in the enchytraeids was explained from an increased elimination at high NAC levels. These findings reinforce the view that metal complexing-compounds like NAC play a key role in the modulation of AgNP toxicity and bioavailability in terrestrial environments. Further, it may inform on the potential of NAC as a remediation solution for Ag or other metal-contaminated soils.
Collapse
Affiliation(s)
- Monique Culturato Padilha Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil; Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
275
|
Fu R, Chen F, Guo Y. Anti-inflammatory mechanism and active ingredients of the Chinese tallow tree. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112497. [PMID: 31870794 DOI: 10.1016/j.jep.2019.112497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf of the Chinese tallow tree (CTT, Sapium sebiferum (L.) Roxb) has been used in Traditional Chinese Medicine (TCM) to treat eczema, shingles, edema, swelling, ascites, scabs, and snakebites. AIM OF THIS STUDY The present work aimed to explore the antioxidant-related anti-inflammatory mechanisms of CTT leaf and to further investigate their possible active ingredients. MATERIALS AND METHODS The anti-inflammatory activities of different fractions were determined using a 12-O-tetradecanoylphorbol-13-acetate (TPA) induced model of acute edema in mouse ears. The SOD, CAT and GCL activities and the GSH content of the ear tissue were measured using kits, and the ratio of the treated and control ears was calculated. The anti-inflammatory activities of each single compound and those of a mixture of the compounds were also determined using the TPA-induced model. RESULTS The anti-inflammatory effects of the three fractions were positively correlated with their increasing GSH capacities. Although the GSH levels decreased during TPA-induced acute edema, the CTT leaf extract could recover these levels by increasing the glutamate cysteine ligase activity. The mixture of ellagic acid, isoquercitrin and astragalin showed an anti-inflammatory effect similar to that of the CTT leaf extract. However, none of these three individual compounds showed comparable activity alone. CONCLUSION These results demonstrated that increasing GSH is an antioxidant-related anti-inflammatory mechanism of CTT leaves. In addition, ellagic acid, isoquercitrin and astragalin were found to be jointly responsible for this bioactivity.
Collapse
Affiliation(s)
- Rao Fu
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Chengdu, China
| | - Fang Chen
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, Chengdu, China
| | - Yiran Guo
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
276
|
Georgiou-Siafis SK, Samiotaki MK, Demopoulos VJ, Panayotou G, Tsiftsoglou AS. Formation of novel N-acetylcysteine-hemin adducts abrogates hemin-induced cytotoxicity and suppresses the NRF2-driven stress response in human pro-erythroid K562 cells. Eur J Pharmacol 2020; 880:173077. [PMID: 32222495 DOI: 10.1016/j.ejphar.2020.173077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023]
Abstract
Heme (iron protoporphyrin IX), as the prosthetic group in hemoproteins, regulates vital cellular functions in human tissues. However, free heme released during hemolysis events promotes severe complications to millions of people worldwide. Over the years, thiols like glutathione (GSH) were known to antagonize heme toxicity. In this study, we have uncovered the underlying molecular mechanism by which N-acetylcysteine (NAC), a well-known thiol prevents hemin-induced cytotoxicity (HIC). Hemin-responsive human pro-erythroid K562 cells were employed to assess hemin intracellular accumulation and cytotoxicity at concentrations ≥50 μΜ, in cultures exposed only to hemin and/or both hemin and NAC. NAC inhibited the intracellular accumulation of hemin and prevented hemin-induced cell growth inhibition, cell death, oxidative stress, and accumulation of ubiquitinated proteins. Meanwhile, the activation of the NF-E2-related factor-2 (NRF2)-driven stress gene activation, a key element involved in HIC, was suppressed by NAC. A refined mechanism of the chemical reaction between NAC and hemin leading to adduct formation via a nucleophilic attack on hemin was uncovered for the first time by tandem mass spectrometry analysis (LC-MS/MS). Such thiol-hemin adducts acted as intermediates to mitigate HIC and to suppress hemin-induced NRF2-driven gene activation. Our findings support the concept that NAC-hemin adduct formation is the major novel molecular mechanism rather than the reactive oxygen species-scavenging capacity of thiols to protect cells from HIC. Our results imply that thiols and their derivatives can be of potential therapeutic value in hemolytic disorders.
Collapse
Affiliation(s)
- Sofia K Georgiou-Siafis
- Laboratory of Pharmacology Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, 54124, Greece
| | | | - Vassilis J Demopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, 54124, Greece
| | | | - Asterios S Tsiftsoglou
- Laboratory of Pharmacology Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, 54124, Greece.
| |
Collapse
|
277
|
Rajasekaran NS, Shelar SB, Jones DP, Hoidal JR. Reductive stress impairs myogenic differentiation. Redox Biol 2020; 34:101492. [PMID: 32361680 PMCID: PMC7199008 DOI: 10.1016/j.redox.2020.101492] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Myo-satellite cells regenerate and differentiate into skeletal muscle (SM) after acute or chronic injury. Changes in the redox milieu towards the oxidative arm at the wound site are known to compromise SM regeneration. Recently, we reported that abrogation of Nrf2/antioxidant signaling promotes oxidative stress and impairs SM regeneration in C57/Bl6 mice. Here, we investigated whether the activation of intracellular Nrf2 signaling favors antioxidant transcription and promotes myoblast differentiation. Satellite cell-like C2C12 myoblasts were treated with sulforaphane (SF; 1.0 & 5.0 μM) to activate Nrf2/antioxidant signaling during proliferation and differentiation (i.e. formation of myotubes/myofibers). SF-mediated Nrf2 activation resulted in increased expression of Nrf2-antioxidants (e.g. GCLC and G6PD) and augmented the production of reduced glutathione (GSH) leading to a reductive redox state. Surprisingly, this resulted in significant inhibition of myoblast differentiation, as observed from morphological changes and reduced expression of MyoD, Pax7, and Myh2, due to reductive stress (RS). Furthermore, supplementation of N-acetyl-cysteine (NAC) or GSH-ester or genetic knock-down of Keap1 (using siRNA) also resulted in RS-driven inhibition of differentiation. Interestingly, withdrawing Nrf2 activation rescued differentiation potential and formation of myotubes/myofibers from C2C12 myoblasts. Thus, abrogation of physiological ROS signaling through over-activation of Nrf2 (i.e. RS) and developing RS hampers differentiation of muscle satellite cells. Sulforaphane activates Nrf2 and establishes reductive stress (RS) in C2C12 myoblasts. RS abolishes basal ROS and significantly impede the differentiation of myoblasts. Augmentation of glutathione using pharmacological agents (NAC and GSH-ester) promotes RS and impairs differentiation. Precluding RS restores the myoblast differentiation process.
Collapse
Affiliation(s)
- Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sandeep Balu Shelar
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John R Hoidal
- Division of Pulmonary, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
278
|
Slowly Repaired Bulky DNA Damages Modulate Cellular Redox Environment Leading to Premature Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5367102. [PMID: 32104534 PMCID: PMC7035574 DOI: 10.1155/2020/5367102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 11/17/2022]
Abstract
Treatments on neoplastic diseases and cancer using genotoxic drugs often cause long-term health problems related to premature aging. The underlying mechanism is poorly understood. Based on the study of a long-lasting senescence-like growth arrest (10-12 weeks) of human dermal fibroblasts induced by psoralen plus UVA (PUVA) treatment, we here revealed that slowly repaired bulky DNA damages can serve as a “molecular scar” leading to reduced cell proliferation through persistent endogenous production of reactive oxygen species (ROS) that caused accelerated telomere erosion. The elevated levels of ROS were the results of mitochondrial dysfunction and the activation of NADPH oxidase (NOX). A combined inhibition of DNA-PK and PARP1 could suppress the level of ROS. Together with a reduced expression level of BRCA1 as well as the upregulation of PP2A and 53BP1, these data suggest that the NHEJ repair of DNA double-strand breaks may be the initial trigger of metabolic changes leading to ROS production. Further study showed that stimulation of the pentose phosphate pathway played an important role for NOX activation, and ROS could be efficiently suppressed by modulating the NADP/NADPH ratio. Interestingly, feeding cells with ribose-5-phosphate, a precursor for nucleotide biosynthesis that produced through the PPP, could evidently suppress the ROS level and prevent the cell enlargement related to mitochondrial biogenesis. Taken together, these results revealed an important signaling pathway between DNA damage repair and the cell metabolism, which contributed to the premature aging effects of PUVA, and may be generally applicable for a large category of chemotherapeutic reagents including many cancer drugs.
Collapse
|
279
|
Short-Term versus Long-Term Culture of A549 Cells for Evaluating the Effects of Lipopolysaccharide on Oxidative Stress, Surfactant Proteins and Cathelicidin LL-37. Int J Mol Sci 2020; 21:ijms21031148. [PMID: 32050475 PMCID: PMC7036965 DOI: 10.3390/ijms21031148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Alveolar epithelial type II (ATII) cells and their proper function are essential for maintaining lung integrity and homeostasis. However, they can be damaged by lipopolysaccharide (LPS) during Gram-negative bacterial infection. Thus, this study evaluated and compared the effects of LPS on short and long-term cultures of A549 cells by determining the cell viability, levels of oxidative stress and antimicrobial peptide cathelicidin LL-37 and changes in the expression of surfactant proteins (SPs). Moreover, we compared A549 cell response to LPS in the presence of different serum concentrations. Additionally, the effect of N-acetylcysteine (NAC) on LPS-induced oxidative stress as a possible treatment was determined. Our results indicate that A549 cells are relatively resistant to LPS and able to maintain integrity even at high LPS concentrations. Their response to endotoxin is partially dependent on serum concentration. NAC failed to lower LPS-induced oxidative stress in A549 cells. Finally, LPS modulates SP gene expression in A549 cells in a time dependent manner and differences between short and long-term cultures were present. Our results support the idea that long-term cultivation of A549 cells could promote a more ATII-like phenotype and thus could be a more suitable model for ATII cells, especially for in vitro studies dealing with surfactant production.
Collapse
|
280
|
Zhao R, Yu Q, Hou L, Dong X, Zhang H, Chen X, Zhou Z, Ma J, Huang S, Chen L. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells. Int J Biochem Cell Biol 2020; 121:105715. [PMID: 32035180 DOI: 10.1016/j.biocel.2020.105715] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Cadmium (Cd), a heavy metal pollutant, contributes to neurodegenerative disorders. Recently, we have demonstrated that Cd induction of reactive oxygen species (ROS) causes apoptosis in neuronal cells. Whether X-linked inhibitor of apoptosis protein (XIAP) is involved in Cd-induced ROS-dependent neuronal apoptosis remains unclear. Here, we show that Cd-induced ROS reduced the expression of XIAP, which resulted in up-regulation of murine double minute 2 homolog (MDM2) and down-regulation of p53, leading to apoptosis in PC12 cells and primary neurons. Inhibition of MDM2 with Nutlin-3a reversed Cd-induced reduction of p53 and substantially rescued cells from excess ROS-dependent death. Overexpression of XIAP protected against Cd induction of ROS-dependent neuronal apoptosis. Inhibition of XIAP by Embelin strengthened Cd-induced ROS and apoptosis in the cells. Furthermore, we found that Cd inactivation of XIAP pathway was attributed to Cd induction of mitochondrial ROS, as evidenced by using a mitochondrial superoxide indicator MitoSOX and a mitochondria-targeted antioxidant Mito-TEMPO. Taken together, these results indicate that Cd induces mitochondrial ROS inactivation of XIAP-MDM2-p53 pathway leading to apoptosis in neuronal cells. Our findings suggest that activators of XIAP or modulation of XIAP-MDM2-p53 pathway by antioxidants may be exploited for the prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
281
|
Albano GD, Moscato M, Montalbano AM, Anzalone G, Gagliardo R, Bonanno A, Giacomazza D, Barone R, Drago G, Cibella F, Profita M. Can PBDEs affect the pathophysiologic complex of epithelium in lung diseases? CHEMOSPHERE 2020; 241:125087. [PMID: 31622892 DOI: 10.1016/j.chemosphere.2019.125087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Brominated flame-retardant (BFRs) exposure promotes multiple adverse health outcomes involved in oxidative stress, inflammation, and tissues damage. We investigated BFR effects, known as polybrominated diphenyl ethers (PBDEs) (47, 99 and 209) in an air-liquid-interface (ALI) airway tissue derived from A549 cell line, and compared with ALI culture of primary human bronchial epithelial cells (pHBEC). The cells, exposed to PBDEs (47, 99 and 209) (0.01-1 μM) for 24 h, were studied for IL-8, Muc5AC and Muc5B (mRNAs and proteins) production, as well as NOX-4 (mRNA) expression. Furthermore, we evaluated tight junction (TJ) integrity by Trans-Epithelial Electrical Resistance (TEER) measurements, and zonula occludens-1 (ZO-1) expression in the cells, and pH variations and rheological properties (elastic G', and viscous G″, moduli) in apical washes of ALI cultures. N-acetylcysteine (NAC) (10 mM) effects were tested in our experimental model of A549 cells. PBDEs (47, 99 and 209) exposure decreased TEER, ZO-1 and pH values, and increased IL-8, Muc5AC, Muc5B (mRNAs and proteins), NOX-4 (mRNA), and rheological parameters (G', G″) in ALI cultures of A549 cell line and pHBEC. NAC inhibited PBDE effects in A549 cells. PBDE inhalation might impairs human health of the lungs inducing oxidative stress, inflammatory response, loss of barrier integrity, unchecked mucus production, as well as altered physicochemical and biological properties of the fluids in airway epithelium. The treatment with anti-oxidants restored the negative effects of PBDEs in epithelial cells.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | | | | | - Gaspare Drago
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
282
|
Ågren L, Elfsmark L, Akfur C, Hägglund L, Ekstrand-Hammarström B, Jonasson S. N-acetyl cysteine protects against chlorine-induced tissue damage in an ex vivo model. Toxicol Lett 2020; 322:58-65. [PMID: 31962155 DOI: 10.1016/j.toxlet.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023]
Abstract
High-level concentrations of chlorine (Cl2) can cause life-threatening lung injuries and the objective in this study was to understand the pathogenesis of short-term sequelae of Cl2-induced lung injury and to evaluate whether pre-treatment with the antioxidant N-acetyl cysteine (NAC) could counteract these injuries using Cl2-exposed precision-cut lung slices (PCLS). The lungs of Sprague-Dawley rats were filled with agarose solution and cut into 250 μm-thick slices that were exposed to Cl2 (20-600 ppm) and incubated for 30 min. The tissue slices were pre-treated with NAC (5-25 mM) before exposure to Cl2. Toxicological responses were analyzed after 5 h by measurement of LDH, WST-1 and inflammatory mediators (IL-1β, IL-6 and CINC-1) in medium or lung tissue homogenate. Exposure to Cl2 induced a concentration-dependent cytotoxicity (LDH/WST-1) and IL-1β release in medium. Similar cytokine response was detected in tissue homogenate. Contraction of larger airways was measured using electric-field-stimulation method, 200 ppm and control slices had similar contraction level (39 ± 5%) but in the 400 ppm Cl2 group, the evoked contraction was smaller (7 ± 3%) possibly due to tissue damage. NAC-treatment improved cell viability and reduced tissue damage and the contraction was similar to control levels (50 ± 11%) in the NAC treated Cl2-exposed slices. In conclusion, Cl2 induced a concentration-dependent lung tissue damage that was effectively prevented with pre-treatment with NAC. There is a great need to improve the medical treatment of acute lung injury and this PCLS method offers a way to identify and to test new concepts of treatment of Cl2-induced lung injuries.
Collapse
Affiliation(s)
- Lina Ågren
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Christine Akfur
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lars Hägglund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
283
|
Wu S, Li Y, Deng T, Wang X, Hu S, Peng G, Huang XA, Ling Y, Liu F. A new fluorescent probe for sensing of biothiols and screening of acetylcholinesterase inhibitors. Org Biomol Chem 2020; 18:2468-2474. [DOI: 10.1039/d0ob00020e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An axial N2O-type BODIPY probe has been proposed for sensitive and selective sensing of biothiols and screening of AChE inhibitors using a fluorescence turn-on assay.
Collapse
Affiliation(s)
- Shengjun Wu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Yuge Li
- The Second Clinical College of Guangzhou University of Chinese Medicine
- Guangzhou 510120
- PR. China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Xiaojuan Wang
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Shiyou Hu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Guiyuan Peng
- The Second Clinical College of Guangzhou University of Chinese Medicine
- Guangzhou 510120
- PR. China
| | - Xin-an Huang
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| | - Yanwu Ling
- Department of Human Anatomy
- Youjiang Medical University for Nationalities
- Baise 533000
- PR. China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center
- Guangzhou University of Chinese Medicine
- Guangzhou 510405
- PR. China
| |
Collapse
|
284
|
Effect of N-acetylcysteine on liver and kidney function tests after surgical bypass in obstructive jaundice: A randomized controlled trial. Asian J Surg 2020; 43:322-329. [DOI: 10.1016/j.asjsur.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
|
285
|
Zhu S, Makosa D, Miller BF, Griffin TM. Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis. Connect Tissue Res 2020; 61:34-47. [PMID: 31522568 PMCID: PMC6884680 DOI: 10.1080/03008207.2019.1665035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: An underlying cause of osteoarthritis (OA) is the inability of chondrocytes to maintain homeostasis in response to changing stress conditions. The purpose of this article was to review and experimentally evaluate oxidative stress resistance and resilience concepts in cartilage using glutathione redox homeostasis as an example. This framework may help identify novel approaches for promoting chondrocyte homeostasis during aging and obesity.Materials and Methods: Changes in glutathione content and redox ratio were evaluated in three models of chondrocyte stress: (1) age- and tissue-specific changes in joint tissues of 10 and 30-month old F344BN rats, including ex vivo patella culture experiments to evaluate N-acetylcysteine dependent resistance to interleukin-1beta; (2) effect of different durations and patterns of cyclic compressive loading in bovine cartilage on glutathione stress resistance and resilience pathways; (3) time-dependent changes in GSH:GSSG in primary chondrocytes from wild-type and Sirt3 deficient mice challenged with the pro-oxidant menadione.Results: Glutathione was more abundant in cartilage than meniscus or infrapatellar fat pad, although cartilage was also more susceptible to age-related glutathione oxidation. Glutathione redox homeostasis was sensitive to the duration of compressive loading such that load-induced oxidation required unloaded periods to recover and increase total antioxidant capacity. Exposure to a pro-oxidant stress enhanced stress resistance by increasing glutathione content and GSH:GSSG ratio, especially in Sirt3 deficient cells. However, the rate of recovery, a marker of resilience, was delayed without Sirt3.Conclusions: OA-related models of cartilage stress reveal multiple mechanisms by which glutathione provides oxidative stress resistance and resilience.
Collapse
Affiliation(s)
- Shouan Zhu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dawid Makosa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
286
|
Li C, Sun X, Li A, Mo M, Zhao Z. S-Allylmercaptocysteine attenuates Bleomycin-induced pulmonary fibrosis in mice via suppressing TGF-β1/Smad and oxidative stress pathways. Int Immunopharmacol 2019; 79:106110. [PMID: 31874367 DOI: 10.1016/j.intimp.2019.106110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022]
Abstract
Pulmonary fibrosis (PF) is a disease characterized by diffusing alveolar inflammation and alveolar structural disorders that ultimately lead to pulmonary interstitial fibrosis. S-allylmercaptocysteine (SAMC) as a water-soluble organosulfur garlic derivative exhibits efficient anti-inflammatory and anti-oxidative activities. In this study, we attempted to explore the function of SAMC in inhibiting bleomycin (BLM)-induced pulmonary fibrosis in mice. 0.035 U/g of BLM was intraperitoneally injected into mice twice per week for 4 weeks to induce fibrosis. SAMC (25 and 50 mg/kg) and N-acetylcysteine (NAC, 600 mg/kg) were given to mice for 28 days. The results indicate that SAMC could significantly ameliorate the pathological structure, and decrease inflammatory cell infiltration and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) in BLM-induced pulmonary fibrosis mice. SAMC showed an anti-fibrosis effect by increasing anti-oxidants like HO-1, GSH and SOD as well as decreasing hydroxyproline (HYP) in BLM-induced mice. Mechanistic studies suggested that SAMC alleviated oxidative stress probably by impacting the Nox4/Nrf2 pathways, and played an anti-fibrosis role with decreasing the expression of α-SMA, collagen III, collagen I by suppressing the TGF-β1/Smad pathway. These findings indicate that SAMC may be partially responsible for the therapeutic effect on PF patients.
Collapse
Affiliation(s)
- Chunyan Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Min Mo
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
287
|
Ping F, Guo Y, Cao Y, Shang J, Yao S, Zhang J, Li Y. Metabolomics Analysis of the Renal Cortex in Rats With Acute Kidney Injury Induced by Sepsis. Front Mol Biosci 2019; 6:152. [PMID: 31921892 PMCID: PMC6934034 DOI: 10.3389/fmolb.2019.00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) can increase the mortality of critically ill patients and the incidence of chronic kidney disease in critically ill survivors. The main goal was to investigate the possible link between metabolic changes and sepsis-induced AKI development. The experimental animal model of sepsis-induced AKI was established by intraperitoneal injection of lipopolysaccharide in rats. Non-targeted metabolic screening of the renal cortex in the control and sepsis-induced AKI groups was carried out based on gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC-TOFMS) technology. The data between the two groups were analyzed by combining univariate and multivariate statistical methods, and the metabolites associated with AKI in rats with sepsis were screened. By examining the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, altered metabolic pathways associated with acute renal injury in sepsis were identified. The cross validated scores plot of orthogonal partial least squares discriminant analysis (OPLS-DA) showed a distinct separation trend between the model and control groups in the profile of renal cortex metabolites, indicating a significant change in endogenous metabolites in the rat renal cortex. Further analysis and screening showed that 26 different metabolites were identified in the renal cortex between the two groups, mainly involving taurine and hypotaurine metabolism, pantothenic acid and CoA biosynthesis, phenylalanine metabolism, and other metabolic pathways. The metabolic disorders of taurine, pantothenic acid, and phenylalanine in the renal cortex are related to the development of acute renal injury in sepsis. Correcting these metabolic disorders is expected to prevent and treat sepsis-induced AKI.
Collapse
Affiliation(s)
- Feng Ping
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Guo
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yongmei Cao
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Shang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sijia Yao
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yingchuan Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
288
|
Kurkin DV, Morkovin EI, Osadchenko NA, Knyshova LP, Bakulin DA, Abrosimova EE, Gorbunova YV, Tyurenkov IN. Correction of psychological and neurological signs of alcohol hangover in rats with acetylcysteine. PHARMACY & PHARMACOLOGY 2019. [DOI: 10.19163/2307-9266-2019-7-5-291-299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
289
|
Chao CT, Yeh HY, Tsai YT, Chuang PH, Yuan TH, Huang JW, Chen HW. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification. Cell Death Discov 2019; 5:145. [PMID: 31754473 PMCID: PMC6853969 DOI: 10.1038/s41420-019-0225-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with advanced age, or those with chronic kidney disease and diabetes, accounting for substantial global cardiovascular burden. The pathophysiology of VC involves active mineral deposition by transdifferentiated vascular smooth muscle cells exhibiting osteoblast-like behavior, building upon cores with or without apoptotic bodies. Oxidative stress drives the progression of the cellular phenotypic switch and calcium deposition in the vascular wall. In this review, we discuss potential compounds that shield these cells from the detrimental influences of reactive oxygen species as promising treatment options for VC. A comprehensive summary of the current literature regarding antioxidants for VC is important, as no effective therapy is currently available for this disease. We systematically searched through the existing literature to identify original articles investigating traditional antioxidants and novel compounds with antioxidant properties with regard to their effectiveness against VC in experimental or clinical settings. We uncovered 36 compounds with antioxidant properties against VC pathology, involving mechanisms such as suppression of NADPH oxidase, BMP-2, and Wnt/β-catenin; anti-inflammation; and activation of Nrf2 pathways. Only two compounds have been tested clinically. These findings suggest that a considerable opportunity exists to harness these antioxidants for therapeutic use for VC. In order to achieve this goal, more translational studies are needed.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - You-Tien Tsai
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Huan Chuang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
290
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
291
|
Gaydos J, McNally A, Burnham EL. The impact of alcohol use disorders on pulmonary immune cell inflammatory responses to Streptococcus pneumoniae. Alcohol 2019; 80:119-130. [PMID: 30195043 DOI: 10.1016/j.alcohol.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Community-acquired pneumonia due to Streptococcus pneumoniae occurs commonly in alcohol use disorders (AUDs). Pneumonia in the AUD patient is associated with poorer outcomes, and specific therapies to mitigate disease severity in these patients do not exist. Numerous investigations have attributed increased severity of pneumonia in AUDs to aberrant function of the alveolar macrophage (AM), a lung immune cell critical in host defense initiation. No studies have examined the response of human AMs to S. pneumoniae in AUDs. We hypothesized that the inflammatory mediators released by AMs after S. pneumoniae stimulation would differ quantitatively in individuals with AUDs compared to non-AUD participants. We further postulated that AM inflammatory mediators would be diminished after exposure to the antioxidant, N-acetylcysteine (NAC). For comparison, responses of peripheral blood mononuclear cells (PBMCs) to pneumococcal protein were also examined. Otherwise healthy participants with AUDs and smoking-matched controls underwent bronchoalveolar lavage and peripheral blood sampling to obtain AMs and PBMCs, respectively. Freshly collected cells were cultured with increasing doses of heat-killed S. pneumoniae protein, with and without exposure to N-acetylcysteine. Cell culture supernatants were collected, and inflammatory mediators were measured, including interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. IFN-γ and IL-6 were significantly higher in unstimulated AM cell culture supernatants from subjects with AUDs. After stimulation with pneumococcal protein, a dose-response and time-dependent increase in pro-inflammatory cytokine production by both AMs and PBMCs was also observed; differences were not observed between AUD and non-AUD subjects. Addition of NAC to pneumococcal-stimulated AMs and PBMCs was generally associated with diminished cytokine production, with the exception of IL-1β that was elevated in AM culture supernatants from subjects with AUDs. Our observations suggest that AUDs contribute to basal alterations in AM pro-inflammatory cytokine elaboration, but did not support consistent differences in pneumococcal-stimulated AM or PBMC inflammatory mediator secretion that were referable to AUDs.
Collapse
|
292
|
Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 2019; 1727:146514. [PMID: 31628933 DOI: 10.1016/j.brainres.2019.146514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Glutathione (GSH) has been studied for its neuroprotection value in several diseases, but the effect of GSH on intracerebral hemorrhage (ICH) is unclear. In this study, we examined the protective effects of GSH in an experimentally induced ICH model and investigated the relative mechanisms. Adult male C57BL/6j mice were randomized into Sham, ICH and GSH treatment groups. GSH was injected with the dose of 50, 100 or 200 mg/kg once per day for 3 days, starting immediately after operation. The results revealed a GSH-mediated improvement of neurological deficits score (NDS), motor and sensory functions impairment in a dose-dependent manner three days post ICH (p < 0.01, GSH 200 vs ICH. Sham, n = 12; ICH, n = 9; GSH 50, n = 10; GSH 100, n = 10; GSH 200, n = 11) in addition to significantly reduced mortality rate (p = 0.2632, GSH 200 vs ICH. n = 12 per group) and damage volume (p < 0.05, GSH 200 vs ICH. n = 12 per group). GSH treatment also attenuated injury measured by decreased brain edema (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), blood-brain barrier disruption (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), and histopathological damage (p < 0.05, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) 72 h after ICH. In addition, GSH treatment also decreased cell apoptosis (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) and resulted in up-regulated protein expression of complex I (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8), which was consistent with an overall up-regulation of complex I function in mitochondria using Oxygraph-2 K high resolution respirometry (p < 0.05, GSH 200 vs ICH. Sham, n = 4; ICH, n = 5; GSH 200, n = 6). In conclusion, GSH effectively improved the prognosis of ICH mice by attenuating neurological impairment, decreasing neural damage, and inhibiting apoptosis. The neuroprotection by GSH resulted from the up-regulation of mitochondrial oxidative respiration function. The results of our study suggest that GSH can be a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Guilin Medical University, Guilin 541004, China
| | - Zixian Zhou
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Wenjing Xiang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Ning Tian
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoling Tang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Sangsang Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Jian Wen
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Meiling Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Kaixiang Liu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
293
|
Dynamic observation and analysis of metabolic response to moxibustion stimulation on ethanol-induced gastric mucosal lesions (GML) rats. Chin Med 2019; 14:44. [PMID: 31636695 PMCID: PMC6794790 DOI: 10.1186/s13020-019-0266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gastric mucosal lesion (GML) is the initiating pathological process in many refractory gastric diseases. And moxibustion is an increasingly popular alternative therapy that prevents and treats diseases. However, there are few published reports about developing pathology of GML and therapeutic mechanism of moxibustion treatment on GML. In this study, we investigated pathology of GML and therapeutic mechanism of moxibustion treatment on GML. Methods The male Sprague-Dawley (SD) rats were induced by intragastric administration of 75% ethanol after fasting for 24 h and treated by moxibustion at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days or 7 days. Then we applied 1H NMR-based metabolomics to dynamic analysis of metabolic profiles in biological samples (stomach, cerebral cortex and medulla). And the conventional histopathological examinations as well as metabolic pathways assays were also performed. Results Moxibustion intervention showed a beneficial effect on GML by modulating comprehensive metabolic alterations caused by GML, including energy metabolism, membrane metabolism, cellular active and neurotransmitters function. Conclusions Moxibustion can effectively treat gastric mucosal damage and effectively regulate the concentration of some related differential metabolites to maintain the stability of the metabolic pathway.
Collapse
|
294
|
Ciofu O, Smith S, Lykkesfeldt J. Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst Rev 2019; 10:CD007020. [PMID: 31580490 PMCID: PMC6777741 DOI: 10.1002/14651858.cd007020.pub4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Airway infection leads to progressive damage of the lungs in cystic fibrosis (CF) and oxidative stress has been implicated in the etiology. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, beta-carotene and selenium) or N-acetylcysteine (NAC) as a source of glutathione, may therefore potentially help maintain an oxidant-antioxidant balance. Glutathione or NAC can also be inhaled and if administered in this way can also have a mucolytic effect besides the antioxidant effect. Current literature suggests a relationship between oxidative status and lung function. This is an update of a previously published review. OBJECTIVES To synthesise existing knowledge on the effect of antioxidants such as vitamin C, vitamin E, beta-carotene, selenium and glutathione (or NAC as precursor of glutathione) on lung function through inflammatory and oxidative stress markers in people with CF. SEARCH METHODS The Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register and PubMed were searched using detailed search strategies. We contacted authors of included studies and checked reference lists of these studies for additional, potentially relevant studies. We also searched online trials registries.Last search of Cystic Fibrosis Trials Register: 08 January 2019. SELECTION CRITERIA Randomised and quasi-randomised controlled studies comparing antioxidants as listed above (individually or in combination) in more than a single administration to placebo or standard care in people with CF. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, extracted data and assessed the risk of bias in the included studies. We contacted study investigators to obtain missing information. If meta-analysed, studies were subgrouped according to supplement, method of administration and the duration of supplementation. We assessed the quality of the evidence using GRADE. MAIN RESULTS One quasi-randomised and 19 randomised controlled studies (924 children and adults) were included; 16 studies (n = 639) analysed oral antioxidant supplementation and four analysed inhaled supplements (n = 285). Only one of the 20 included studies was judged to be free of bias.Oral supplements versus controlThe change from baseline in forced expiratory volume in one second (FEV1) % predicted at three months and six months was only reported for the comparison of NAC to control. Four studies (125 participants) reported at three months; we are uncertain whether NAC improved FEV1 % predicted as the quality of the evidence was very low, mean difference (MD) 2.83% (95% confidence interval (CI) -2.16 to 7.83). However, at six months two studies (109 participants) showed that NAC probably increased FEV1 % predicted from baseline (moderate-quality evidence), MD 4.38% (95% CI 0.89 to 7.87). A study of a combined vitamin and selenium supplement (46 participants) reported a greater change from baseline in FEV1 % predicted in the control group at two months, MD -4.30% (95% CI -5.64 to -2.96). One study (61 participants) found that NAC probably makes little or no difference in the change from baseline in quality of life (QoL) at six months (moderate-quality evidence), standardised mean difference (SMD) -0.03 (95% CI -0.53 to 0.47), but the two-month combined vitamin and selenium study reported a small difference in QoL in favour of the control group, SMD -0.66 (95% CI -1.26 to -0.07). The NAC study reported on the change from baseline in body mass index (BMI) (62 participants) and similarly found that NAC probably made no difference between groups (moderate-quality evidence). One study (69 participants) found that a mixed vitamin and mineral supplement may lead to a slightly lower risk of pulmonary exacerbation at six months than a multivitamin supplement (low-quality evidence). Nine studies (366 participants) provided information on adverse events, but did not find any clear and consistent evidence of differences between treatment or control groups with the quality of the evidence ranging from low to moderate. Studies of β-carotene and vitamin E consistently reported greater plasma levels of the respective antioxidants.Inhaled supplements versus controlTwo studies (258 participants) showed inhaled glutathione probably improves FEV1 % predicted at three months, MD 3.50% (95% CI 1.38 to 5.62), but not at six months compared to placebo, MD 2.30% (95% CI -0.12 to 4.71) (moderate-quality evidence). The same studies additionally reported an improvement in FEV1 L in the treated group compared to placebo at both three and six months. One study (153 participants) reported inhaled glutathione probably made little or no difference to the change in QoL from baseline, MD 0.80 (95% CI -1.63 to 3.23) (moderate-quality evidence). No study reported on the change from baseline in BMI at six months, but one study (16 participants) reported at two months and a further study (105 participants) at 12 months; neither study found any difference at either time point. One study (153 participants) reported no difference in the time to the first pulmonary exacerbation at six months. Two studies (223 participants) reported treatment may make little or no difference in adverse events (low-quality evidence), a further study (153 participants) reported that the number of serious adverse events were similar across groups. AUTHORS' CONCLUSIONS With regards to micronutrients, there does not appear to be a positive treatment effect of antioxidant micronutrients on clinical end-points; however, oral supplementation with glutathione showed some benefit to lung function and nutritional status. Based on the available evidence, inhaled and oral glutathione appear to improve lung function, while oral administration decreases oxidative stress; however, due to the very intensive antibiotic treatment and other concurrent treatments that people with CF take, the beneficial effect of antioxidants remains difficult to assess in those with chronic infection without a very large population sample and a long-term study period. Further studies, especially in very young children, using outcome measures such as lung clearance index and the bronchiectasis scores derived from chest scans, with improved focus on study design variables (such as dose levels and timing), and elucidating clear biological pathways by which oxidative stress is involved in CF, are necessary before a firm conclusion regarding effects of antioxidants supplementation can be drawn. The benefit of antioxidants in people with CF who receive CFTR modulators therapies should also be assessed in the future.
Collapse
Affiliation(s)
- Oana Ciofu
- University of CopenhagenDepartment of International Health, Immunology and MicrobiologyBlegdamsvej 3CopenhagenDenmark2200
| | - Sherie Smith
- University of NottinghamDivision of Child Health, Obstetrics & Gynaecology (COG), School of Medicine1701 E FloorEast Block Queens Medical CentreNottinghamNG7 2UHUK
| | - Jens Lykkesfeldt
- University of CopenhagenDepartment of Veterinary Disease Biology, Experimental Animal ModelsRidebanevej 9CopenhagenDenmark1870 Frb.
| | | |
Collapse
|
295
|
Mlejnek P, Dolezel P, Maier V, Kikalova K, Skoupa N. N-acetylcysteine dual and antagonistic effect on cadmium cytotoxicity in human leukemia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103213. [PMID: 31288199 DOI: 10.1016/j.etap.2019.103213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Although cadmium (Cd2+) is unable to form reactive oxygen species (ROS) directly, many of its adverse effects are connected to increased ROS generation resulting in cell death. In support of this supposition, a large number of studies have shown protective effects of antioxidants such as N-acetylcysteine (NAC) against cadmium induced cytotoxicity. Here, we describe the cytotoxic effects of Cd2+ on human leukemia U937 and K562 cells that were not mediated by oxidative stress. Surprisingly, we observed that addition of low concentrations of NAC can drastically potentiate cadmium cytotoxicity solely via ROS production. However, all adverse effects of the metal were prevented by NAC at high concentrations. Detailed analysis indicated that the protective effect of NAC was mediated by its ability to form stable complex with cadmium [Cd(NAC)2]. In conclusion, NAC exhibits dual and antagonistic effects on Cd2+ cytotoxicity in human leukemia cells.
Collapse
Affiliation(s)
- P Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - P Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - V Maier
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - K Kikalova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - N Skoupa
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
296
|
Martin-Hurtado A, Martin-Morales R, Robledinos-Antón N, Blanco R, Palacios-Blanco I, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep 2019; 9:13896. [PMID: 31554934 PMCID: PMC6761261 DOI: 10.1038/s41598-019-50356-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NRF2 is a master regulator of cellular antioxidant and detoxification responses, but it also regulates other processes such as autophagy and pluripotency. In human embryonic stem cells (hESCs), NRF2 antagonizes neuroectoderm differentiation, which only occurs after NRF2 is repressed via a Primary Cilia-Autophagy-NRF2 (PAN) axis. However, the functional connections between NRF2 and primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae, remain poorly understood. For instance, nothing is known about whether NRF2 affects cilia, or whether cilia regulation of NRF2 extends beyond hESCs. Here, we show that NRF2 and primary cilia reciprocally regulate each other. First, we demonstrate that fibroblasts lacking primary cilia have higher NRF2 activity, which is rescued by autophagy-activating mTOR inhibitors, indicating that the PAN axis also operates in differentiated cells. Furthermore, NRF2 controls cilia formation and function. NRF2-null cells grow fewer and shorter cilia and display impaired Hedgehog signaling, a cilia-dependent pathway. These defects are not due to increased oxidative stress or ciliophagy, but rather to NRF2 promoting expression of multiple ciliogenic and Hedgehog pathway genes. Among these, we focused on GLI2 and GLI3, the transcription factors controlling Hh pathway output. Both their mRNA and protein levels are reduced in NRF2-null cells, consistent with their gene promoters containing consensus ARE sequences predicted to bind NRF2. Moreover, GLI2 and GLI3 fail to accumulate at the ciliary tip of NRF2-null cells upon Hh pathway activation. Given the importance of NRF2 and ciliary signaling in human disease, our data may have important biomedical implications.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Natalia Robledinos-Antón
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ruth Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ines Palacios-Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Isabel Lastres-Becker
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Francesc R Garcia-Gonzalo
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain. .,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.
| |
Collapse
|
297
|
Zhang Y, Xiao JF, Yang HF, Jiao Y, Cao WW, Shi HM, Cun JF, Tay FR, Ping J, Xiao YH. N-Acetyl Cysteine as a Novel Polymethyl Methacrylate Resin Component: Protection against Cell Apoptosis and Genotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1301736. [PMID: 31636802 PMCID: PMC6766130 DOI: 10.1155/2019/1301736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The present study investigated the antiapoptotic and antigenotoxic capabilities of N-acetyl cysteine- (NAC-) containing polymethyl methacrylate (PMMA) resin. An in vitro Transwell insert model was used to mimic the clinical provisional restorations placed on vital teeth. Various parameters associated with cell apoptosis and genotoxicity were investigated to obtain a deeper insight into the underlying mechanisms. The exposure of human dental pulp cell (hDPC) cultures to the PMMA resin (Unifast Trad™) resulted in a rapid increase in reactive oxygen species (ROS) level beginning at 1 h, which was followed by time-dependent cell detachment and overt death. The formation of γ-H2AX and cell cycle G1 phase arrest indicated that oxidative DNA damage occurred as a result of the interactions between DNA bases and ROS, beyond the capacities of cellular redox regulation. Such oxidative DNA damage triggers the activation of p53 via the ataxia telangiectasia mutated (ATM) signaling pathway and the induction of intrinsic mitochondrial apoptosis. Oxidative stress, cell apoptosis, and DNA damage induced by the PMMA resin were recovered to almost the level of untreated controls by the incorporation of NAC. The results indicate that the PMMA resin induced the intrinsic mitochondrial apoptosis as a consequence of p53 activation via the ATM pathway in response to oxidative DNA damage. More importantly, the incorporation of NAC as a novel component into the Unifast Trad™ PMMA resin offers protective effects against cell apoptosis and genotoxicity. This procedure represents a beneficial strategy for developing more biocompatible PMMA-based resin materials.
Collapse
Affiliation(s)
- Yu Zhang
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Jian-feng Xiao
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - He-feng Yang
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center of PLA General Hospital, Beijing, China
| | | | - Huan-min Shi
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Jing-fen Cun
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Jie Ping
- Department of Medical Administration, The 7th Medical Center of PLA General Hospital, Beijing, China
| | - Yu-hong Xiao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
298
|
Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019; 11:E2073. [PMID: 31484368 PMCID: PMC6770193 DOI: 10.3390/nu11092073] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
Collapse
Affiliation(s)
- Deanna M Minich
- Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA.
| | - Benjamin I Brown
- BCNH College of Nutrition and Health, 116-118 Finchley Road, London NW3 5HT, UK
| |
Collapse
|
299
|
Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism. J Ginseng Res 2019; 44:664-671. [PMID: 32617047 PMCID: PMC7322759 DOI: 10.1016/j.jgr.2019.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)–induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress–related cardiac diseases.
Collapse
|
300
|
Sirota TV. [Effect of the sulfur-containing compounds on the quinoid process of adrenaline autoxidation; potential neuroprotectors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:316-323. [PMID: 31436173 DOI: 10.18097/pbmc20196504316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The superoxide-generating reaction of adrenaline autoxidation in an alkaline medium, used in vitro to identify the antioxidant properties of various compounds, simulates the complex multistep process of quinoid oxidation of catecholamines (CA) in the body. Sulfur-containing cysteine (Cys) and reduced glutathione (GSH), as well as oxidized glutathione (GSSG), have been shown to inhibit this process. The studied substances were considered as inhibitors of quinoid oxidation and are evaluated as antioxidants. The IC50 values for Cys and GSH were close to 7.5 mM. Inhibition by GSSG was weaker; represented approximately 50-70% of Cys and GSH. Other sulfur-containing compounds that differ in chemical structure, the amino acids taurine and methionine were ineffective. The interest in this model and the search for effective compounds acting on this reaction is associated with one of the mechanisms of the etiopathogenesis of Parkinson's disease (PD) discussed in the literature, which occurs when the biochemical transformations of dopamine CA and its quinoid oxidation process are violated. Cys, GSH and GSSG in the model system inhibit quinoid oxidation of adrenaline, as a result of which the formation of superoxide (O2 ·-) is also inhibited. Experiments with the superoxide-generating enzymatic reaction xanthine xanthioxidase, the chemistry of which is different and not related to formation of quinoid metabolites, showed that the studied substances did not inhibit O2 ·- formation in this model. Thus, it was established that the biologically active sulfur-containing compounds Cys, GSH and GSSG are specific inhibitors of quinoid oxidation of CA, and are likely to be able to play the role of a neuroprotector. It is proposed to use these compounds in the treatment and prevention of PD by activating their biosynthesis in the body.
Collapse
Affiliation(s)
- T V Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|