251
|
Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:221-44. [PMID: 23682916 DOI: 10.1146/annurev-phyto-082712-102307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Molecular pathology of forest trees for a long time lagged behind parallel studies on agricultural crop pathology. Recent technological advances have significantly contributed to the observed progress in this field. The first powerful impulse was provided by the completion of the black cottonwood genome sequence in 2006. Genomes of several other important tree species will be completed within a short time. Simultaneously, application of transcriptomics and next-generation sequencing (NGS) has resulted in the rapid accumulation of a vast amount of data on molecular interactions between trees and their microbial parasites. This review provides an overview of our current knowledge about these responses of forest trees to their pathogens, highlighting the achievements of the past decade, discussing the current state of the field, and emphasizing the prospects and challenges for the near future.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Forest Pathology Research Laboratory, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
252
|
Szokol-Borsodi L, Sólyomváry A, Molnár-Perl I, Boldizsár I. Optimum yields of dibenzylbutyrolactone-type lignans from Cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:598-603. [PMID: 22396124 DOI: 10.1002/pca.2360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Dibenzylbutyrolactone-type lignans are the physiologically active constituents of the achene fruits of Cynareae. These lignans occur in glycoside/aglycone forms: in the highest quantity of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin pairs found in the fruits of Arctium lappa L., Centaurea scabiosa L. and Cirsium arvense (L.) Scop. OBJECTIVE To optimise the extraction yield of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin glycoside/aglycone pairs, from the fruits of Arctium lappa, Centaurea scabiosa and Cirsium arvense, under the ripening, germination and enzymatic hydrolysis processes of the fruits. METHODOLOGY Identification and quantification of lignans were performed with on-line gas chromatography-mass spectrometry (GC-MS) and with high performance liquid chromatography (HPLC), both with UV and mass selective detections (HPLC-UV/MS). RESULTS As novelties to the field it was confirmed that: (i) the unripe fruits provide a high amount of lignans, similar to the ripe fruit; (ii) the fruits of Arctium lappa and Cirsium arvense do have glycosidase activity to hydrolyse their lignan glycosides into free lignans; (iii) the glycosidase of Centaurea scabiosa fruit becomes activated under its germination process only; and (iv) the overwhelming part of the fruits lignan contents (80-94%) in all three species are accumulated in the embryo. CONCLUSION The best sources of (i) lignan aglycones are the enzyme-hydrolysed embryos, separating spontaneously during the germination process, and (ii) lignan glycosides are the unripe fruits.
Collapse
Affiliation(s)
- Lilla Szokol-Borsodi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | | | | | | |
Collapse
|
253
|
van Ommen Kloeke AEE, Jager T, van Gestel CAM, Ellers J, van Pomeren M, Krommenhoek T, Styrishave B, Hansen M, Roelofs D. Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber. CHEMOSPHERE 2012; 89:1084-1090. [PMID: 22698371 DOI: 10.1016/j.chemosphere.2012.05.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Glucosinolates are compounds produced by commercial crops which can hydrolyse in a range of natural toxins that may exert detrimental effects on beneficial soil organisms. This study examined the effects of 2-phenylethyl isothiocyanate and 3-phenylpropionitrile on the survival and growth of the woodlouse Porcellio scaber exposed for 28 d. 2-Phenylethyl isothiocyanate dissipated from the soil with half-lives ranging from 19 to 96 h. Exposure through soil showed toxic effects only on survival. The LC50s after 28 d were significantly different at 65.3 mg kg(-1) for 2-phenylethyl isothiocyanate and 155 mg kg(-1) for 3-phenylpropionitrile. A toxicokinetic-toxicodynamic (TKTD) approach, however, revealed that both compounds in fact have very similar effect patterns. The TKTD model was better suited to interpret the survival data than descriptive dose-response analysis (LC(x)), accounting for the fast dissipation of the compounds in the soil. Found effects were within environmentally relevant concentrations. Care should therefore be taken before allowing these natural toxins to enter soil ecosystems in large quantities.
Collapse
Affiliation(s)
- A E Elaine van Ommen Kloeke
- VU University Amsterdam, Faculty of Earth and Life Sciences, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Shaik NM, Misra A, Singh S, Fatangare AB, Ramakumar S, Rawal SK, Khan BM. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul). Mol Biol Rep 2012; 40:1351-63. [DOI: 10.1007/s11033-012-2179-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
255
|
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. PLANT SIGNALING & BEHAVIOR 2012; 7:1306-20. [PMID: 22895106 PMCID: PMC3493419 DOI: 10.4161/psb.21663] [Citation(s) in RCA: 773] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.
Collapse
Affiliation(s)
- Abdul Rashid War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Patancheru; Andhra Pradesh, India
- Entomology Research Institute; Loyola College; Chennai, Tamil Nadu, India
| | | | - Tariq Ahmad
- Division of Entomology; Department of Zoology; University of Kashmir; Srinagar, India
| | - Abdul Ahad Buhroo
- Division of Entomology; Department of Zoology; University of Kashmir; Srinagar, India
| | | | | | - Hari Chand Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Patancheru; Andhra Pradesh, India
- Correspondence to: Hari Chand Sharma,
| |
Collapse
|
256
|
Gleadow RM, Møldrup ME, O'Donnell NH, Stuart PN. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2234-2238. [PMID: 22700371 DOI: 10.1002/jsfa.5752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cyanogenic glucosides are common bioactive products that break down to release toxic hydrogen cyanide (HCN) when combined with specific β-glucosidases. In forage sorghum, high concentrations of the cyanogenic glucoside dhurrin lead to reduced productivity and sometimes death of grazing animals, especially in times of drought, when the dhurrin content of stunted crops is often higher. The aim of this study was to develop harvesting protocols suitable for sampling in remote areas. RESULTS Dhurrin concentration in air- and oven-dried leaves was the same as in fresh leaves, with no subsequent losses during storage. Dhurrin concentration was halved when leaves were freeze-dried, although activity of the endogenous dhurrinase was preserved. Direct measurement of dhurrin concentration in methanolic extracts using liquid chromatography/mass spectrometry (LC/MS) gave similar results to methods that captured evolved cyanide. A single freezing event was as effective as fine grinding in facilitating complete conversion of dhurrin to cyanide. CONCLUSION Direct measurement of dhurrin using LC/MS is accurate but expensive and not appropriate for fieldwork. Air drying provides an accurate, low-cost method for preparing tissue for dhurrin analysis, so long as the specific β-glucosidase is added. It is recommended that comparative studies like the one presented here be extended to other cyanogenic species.
Collapse
Affiliation(s)
- Roslyn M Gleadow
- School of Biological Science, Monash University, Melbourne 3800, Victoria, Australia.
| | | | | | | |
Collapse
|
257
|
Huang X, Zhao Y, Dai Y, Wu G, Shao Z, Zeng Q, liu Z. Cloning and biochemical characterization of a glucosidase from a marine bacterium Aeromonas sp. HC11e-3. World J Microbiol Biotechnol 2012; 28:3337-44. [DOI: 10.1007/s11274-012-1145-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/02/2012] [Indexed: 11/30/2022]
|
258
|
Zhou C, Tokuhisa JG, Bevan DR, Esen A. Properties of β-thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:82-92. [PMID: 22682567 DOI: 10.1016/j.plantsci.2012.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 05/21/2023]
Abstract
Myrosinases (β-thioglucoside glucohydrolase, TGG; EC 3.2.1.147) catalyze the hydrolysis of glucosinolates, a structurally distinct group of nitrogen- and sulfur-containing secondary metabolites, to give a chemically unstable intermediate, glucose and sulfate. This catalysis initiates a chemical defense in crucifer plants as a response to the tissue-damaging activities of herbivores and pathogens. To characterize the individual and collective biochemical properties of the myrosinase enzymes found in the aerial tissues of Arabidopsis thaliana, we purified TGG1 and TGG2, which share 73% amino acid identity, individually from T-DNA insertion lines of Arabidopsis using lectin affinity and anion exchange chromatography. Electrophoresis under denaturing conditions and the mobility of nondenatured TGG1 and TGG2 protein on gel filtration chromatography indicated that the native proteins exist as dimers of 150 and 126 kDa, respectively. Despite their relatively similar kinetic parameters, both enzymes had distinct physicochemical properties such as extractability in low ionic strength buffer and electrophoretic mobility following deglycosylation treatment. Deglycosylation under nondenaturing conditions had limited effects on TGG1 and no effect on TGG2 activity. Both enzymes functioned across a broad range of temperatures (up to 60 °C) and pH values (5-10). These results demonstrate that myrosinases have the ability to function in environments like the digestive tract of insect herbivores that are significantly different from the environment in a damaged plant.
Collapse
Affiliation(s)
- Changhe Zhou
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
259
|
Filho REM, Bandeira SP, Brillhante RSN, Rocha MFG, Vasconcelos IM, Pereira ML, Castelo-Branco DDSCM, Rocha FAC, Camargo ZPD, Ramos MV, Cordeiro RDA, Sidrim JJC. Biochemical characterization of an in-house Coccidioides antigen: perspectives for the immunodiagnosis of coccidioidomycosis. Molecules 2012; 17:7854-63. [PMID: 22743589 PMCID: PMC6268230 DOI: 10.3390/molecules17077854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate the reactivity of an in-house antigen, extracted from a strain of C. posadasii isolated in northeastern Brazil, by radial immunodiffusion and Western blotting, as well as to establish its biochemical characterization. The protein antigen was initially extracted with the use of solid ammonium sulfate and characterized by 1-D electrophoresis. Subsequently, it was tested by means of double radial immunodiffusion and Western blotting. A positive reaction was observed against the antigen by both immunodiagnostic techniques tested on sera from patients suffering from coccidioidomycosis. Besides this, two immunoreactive protein bands were observed and were revealed to be a β-glucosidase and a glutamine synthetase after sequencing of the respective N-terminal regions. Our in-house Coccidioides antigen can be promising as a quick and low-cost diagnostic tool without the risk of direct manipulation of the microorganism.
Collapse
Affiliation(s)
- Renato Evando Moreira Filho
- Specialized Medical Mycology Center, School of Medicine, Federal University of Ceará, Fortaleza, CE, CEP 60430-270, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
SANTOS R, OLIVEIRA C, VARÉA G, ORRADI DA SILVA M, IDA E, MANDARINO J, CARRÃO-PANIZZI M, RIBEIRO M. PURIFICATION AND CHARACTERIZATION OF SOY COTYLEDON β-GLUCOSIDASE. J Food Biochem 2012. [DOI: 10.1111/j.1745-4514.2011.00632.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
261
|
Pankoke H, Bowers MD, Dobler S. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:426-434. [PMID: 22446106 DOI: 10.1016/j.ibmb.2012.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
Herbivores with polyphagous feeding habits must cope with a diet that varies in quality. One of the most important sources of this variation in host plant suitability is plant secondary chemistry. We examined how feeding on plants containing one such group of compounds, the iridoid glycosides, might affect the growth and enzymatic activity in a polyphagous caterpillar that feeds on over 80 plant species in 50 different families. Larvae of the polyphagous arctiid, Grammia incorrupta, were reared exclusively on one of two plant species, one of which contains iridoid glycosides (Plantago lanceolata, Plantaginaceae) while the other does not (Taraxacum officinale, Asteraceae). Larval weight was measured on the two host plants, and midgut homogenates of last instar larvae were then assayed for activity and kinetic properties of β-glucosidases, using both a standard substrate, 4-nitrophenyl-β-D-glucose (NPβGlc), and the iridoid glycoside aucubin, one of the two main iridoid glycosides in P. lanceolata. Larvae feeding on P. lanceolata weighed significantly less and developed more slowly compared to larvae on T. officinale. While the larval midgut β-glucosidase activity determined with NPβGlc was significantly decreased when fed on P. lanceolata, aucubin was substantially hydrolyzed and the larval β-glucosidase activity towards both substrates correlated negatively with larval weight. Our results demonstrate that host plants containing high concentrations of iridoid glycosides have a negative impact on larval development of this generalist insect herbivore. This is most likely due to the hydrolysis of plant glycosides in the larval midgut which results in the release of toxic aglycones. Linking the reduced larval weight to the toxin-releasing action of an iridoid glycoside cleaving β-glucosidase, our results thus support the detoxification limitation hypothesis, suggesting fitness costs for the larvae feeding solely on P. lanceolata. Thus, in addition to the adaptive regulation of midgut β-glucosidase activity, host plant switching as a behavioral adaptation might be a prerequisite for generalist herbivores that allows them to circumvent the negative effects of plant secondary compounds.
Collapse
Affiliation(s)
- Helga Pankoke
- Biozentrum Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
262
|
Terefe NS, Sheean P, Fernando S, Versteeg C. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study. Appl Microbiol Biotechnol 2012; 97:2917-28. [PMID: 22644526 DOI: 10.1007/s00253-012-4162-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023]
Abstract
The thermal and the combined high pressure-thermal inactivation kinetics of almond β-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2±8.6 kJ/mol decreasing to 55.2±3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature-pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be -29.6±0.6, -29.8±1.7, -20.6±3.2, -41.2±4.8, -36.5±1.8, -39.6±4.3, -31.0±4.5 and -33.8±3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure-temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.
Collapse
|
263
|
Wang Y, Kang W, Xu Y, Li J. Effect of Different Indigenous Yeast β-Glucosidases on the Liberation of Bound Aroma Compounds. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00466.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
264
|
Lázaro-Mixteco PE, Nieto-Sotelo J, Swatek KN, Houston NL, Mendoza-Hernández G, Thelen JJ, Dinkova TD. The absence of heat shock protein HSP101 affects the proteome of mature and germinating maize embryos. J Proteome Res 2012; 11:3246-58. [PMID: 22545728 DOI: 10.1021/pr3000046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maize heat shock protein HSP101 accumulates during embryo maturation and desiccation and persists at high levels during the first 24 h following kernel imbibition in the absence of heat stress. This protein has a known function in disaggregation of high molecular weight complexes and has been proposed to be a translational regulator of specific mRNAs. Here, a global proteomic approach was used to identify changes in the maize proteome due to the absence of HSP101 in embryos from mature-dry or 24 h-imbibed kernels. A total of 26 protein spots from the mature dry embryo exhibited statistically significant expression changes in the L10 inbred hsp101 mutant (hsp101-m5::Mu1/hsp101-m5::Mu1) line as compared to the corresponding wild type (Hsp101/Hsp101). Additional six spots reproducibly showed qualitative changes between the mutant and wild-type mature and germinating embryos. Several chaperones, translation-related proteins, actin, and enzymes participating in cytokinin metabolism were identified in these spots by tandem mass-spectrometry (MS). The proteomic changes partially explain the altered root growth and architecture observed in young hsp101 mutant seedlings. In addition, specific protein de novo synthesis was altered in the 24 h-imbibed mutant embryos indicating that maize HSP101 functions as both chaperone and translational regulator during germination. Supporting this, HSP101 was found as part of Cap-binding and translation initiation complexes during early kernel imbibition. Overall, these findings expose the relevance of maize HSP101 for protein synthesis and balance mechanisms during germination.
Collapse
Affiliation(s)
- Pedro E Lázaro-Mixteco
- Departamento de Bioquímica, Facultad de Química, ‡Jardín Botánico, Instituto de Biología, and #Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México , 04510, México, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
265
|
Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. PHYTOCHEMISTRY 2012; 77:260-7. [PMID: 22385904 DOI: 10.1016/j.phytochem.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/29/2011] [Accepted: 01/24/2012] [Indexed: 05/22/2023]
Abstract
Lotus japonicus contains the two cyanogenic glucosides, linamarin and lotaustralin, and the non cyanogenic hydroxynitriles, rhodiocyanoside A and D, with rhodiocyanoside A as the major rhodiocyanoside. Rhodiocyanosides are structurally related to cyanogenic glucosides but are not cyanogenic. In vitro administration of intermediates of the lotaustralin pathway to microsomes prepared from selected L. japonicus accessions identified 2-methyl-2-butenenitrile as an intermediate in the rhodiocyanoside biosynthetic pathway. In vitro inhibitory studies with carbon monoxide and tetcyclacis indicate that the conversion of (Z)-2-methylbutanal oxime to 2-methyl-2-butenenitrile is catalyzed by cytochrome P450(s). Carbon monoxide inhibited cyanogenic glucosides as well as rhodiocyanosides synthesis, but inhibition of the latter pathway was much stronger. These results demonstrate that the cyanogenic glucoside and rhodiocyanosides pathways share CYP79Ds to obtain (Z)-2-methylbutanaloxime from l-isoleucine, whereas the subsequent conversions are catalyzed by different P450s. The aglycon of rhodiocyanoside A forms the cyclic product 3-methyl-2(5H)-furanone. Furanones are known to possess antimicrobial properties indicating that rhodiocyanoside A may have evolved to serve as a phytoanticipin that following β-glucosidase activation and cyclization of the aglycone formed, give rise to a potent defense compound.
Collapse
Affiliation(s)
- Shigeki Saito
- Plant Biochemistry Laboratory, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
266
|
Bjarnholt N, Nakonieczny M, Kędziorski A, Debinski DM, Matter SF, Olsen CE, Zagrobelny M. Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants. J Chem Ecol 2012; 38:525-37. [DOI: 10.1007/s10886-012-0114-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 11/25/2022]
|
267
|
Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 2012; 7:e35498. [PMID: 22545111 PMCID: PMC3335876 DOI: 10.1371/journal.pone.0035498] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 01/26/2023] Open
Abstract
Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP)-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.
Collapse
|
268
|
Opitz SEW, Boevé JL, Nagy ZT, Sonet G, Koch F, Müller C. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS One 2012; 7:e33649. [PMID: 22485146 PMCID: PMC3317781 DOI: 10.1371/journal.pone.0033649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/14/2012] [Indexed: 12/02/2022] Open
Abstract
Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus, we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host shifts between Lamiales and Brassicaceae.
Collapse
Affiliation(s)
| | - Jean-Luc Boevé
- IRSNB-KBIN, Royal Belgian Institute of Natural Sciences, Bruxelles, Belgium
| | - Zoltán Tamás Nagy
- IRSNB-KBIN, Royal Belgian Institute of Natural Sciences, Bruxelles, Belgium
| | - Gontran Sonet
- IRSNB-KBIN, Royal Belgian Institute of Natural Sciences, Bruxelles, Belgium
| | - Frank Koch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
269
|
In vivo protein quality of new sorghum genotypes for human consumption. Food Chem 2012; 134:1549-55. [PMID: 25005979 DOI: 10.1016/j.foodchem.2012.03.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 12/30/2022]
Abstract
The in vivo protein qualities were evaluated in flours from raw sorghum grains (RF) and flours from sorghum grains subjected to heat treatment in an oven (HTF) from the hybrids BRS 305, BRS 309 and BRS 310, developed by the Brazilian Agricultural Research Corporation (Embrapa). There were no differences in feed efficiency ratios among experimental groups. Heat-treated flour from BRS 309 and BRS 310 genotypes had higher protein efficiency ratios and net protein ratio values; however, they did not differ from those of flour from raw grain of BRS 310 genotype. Effects of heat treatment were observed in the BRS 309 genotype. Heat treatment did not affect true digestibility observed for the RF and HTF of the three genotypes. Lysine was the first limiting amino acid of the three sorghum genotypes. The HTF BRS 305 showed the lowest protein digestibility-corrected amino acid score value. Heat treatment improved the protein quality of genotype BRS 309; however, no differences were observed among the other genotypes.
Collapse
|
270
|
Nejat N, Vadamalai G, Dickinson M. Expression patterns of genes involved in the defense and stress response of Spiroplasma citri infected Madagascar Periwinkle Catharanthus roseus. Int J Mol Sci 2012; 13:2301-2313. [PMID: 22408455 PMCID: PMC3292024 DOI: 10.3390/ijms13022301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/01/2012] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang 43400, Malaysia
- Plant Protection Department, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Malaysia; E-Mail:
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; E-Mail:
| |
Collapse
|
271
|
Shah MA, Chaudhuri TK, Mishra S. Strategy for purification of aggregation prone β-glucosidases from the cell wall of yeast: a preparative scale approach. N Biotechnol 2012; 29:311-20. [DOI: 10.1016/j.nbt.2011.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
|
272
|
Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Møller BL, Neale AD. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:54-66. [PMID: 21880107 DOI: 10.1111/j.1467-7652.2011.00646.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Collapse
|
273
|
Chen L, Li N, Zong MH. A glucose-tolerant β-glucosidase from Prunus domestica seeds: Purification and characterization. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
274
|
YOSHIARA L, MADEIRA T, RIBEIRO M, MANDARINO J, CARRÃO-PANIZZI M, IDA E. β-GLUCOSIDASE ACTIVITY OF SOYBEAN (GLYCINE MAX) EMBRYONIC AXIS GERMINATED IN THE PRESENCE OR ABSENCE OF LIGHT. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00585.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
275
|
Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TCJ, Erb M. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:901-11. [PMID: 21838747 DOI: 10.1111/j.1365-313x.2011.04740.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant-insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant-insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-β-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived β-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant-insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.
Collapse
Affiliation(s)
- Gaétan Glauser
- Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
276
|
Characterization of a Thermostable Family 1 Glycosyl Hydrolase Enzyme from Putranjiva roxburghii Seeds. Appl Biochem Biotechnol 2011; 166:523-35. [DOI: 10.1007/s12010-011-9445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 10/26/2011] [Indexed: 11/26/2022]
|
277
|
Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, Su YJ, Huang JH, Wang RL, Luo SM. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. MYCORRHIZA 2011; 21:721-731. [PMID: 21484338 DOI: 10.1007/s00572-011-0380-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/29/2011] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizas are the most important symbioses in terrestrial ecosystems and they enhance the plant defense against numerous soil-borne pathogenic fungi and nematodes. Two corn (Zea mays) varieties, Gaoyou-115 that is susceptible to sheath blight disease caused by Rhizoctonia solani and Yuenong-9 that is resistant, were used for mycorrhizal inoculation in this study. Pre-inoculation of susceptible Gaoyou-115 with arbuscular mycorrhizal fungus (AMF) Glomus mosseae significantly reduced the disease incidence and disease severity of sheath blight of corn. HPLC analysis showed that AMF inoculation led to significant increase in 2,4-dihydroxy-7-methoxy-2 H-1,4-benzoxazin-3(4 H)-one (DIMBOA) accumulation in the roots of both corn varieties and in leaves of resistant Yuenong-9. R. solani inoculation alone did not result in accumulation of DIMBOA in both roots and leaves of the two corn varieties. Our previous study showed that DIMBOA strongly inhibited mycelial growth of R. solani in vitro. Real-time PCR analysis showed that mycorrhizal inoculation itself did not affect the transcripts of most genes tested. However, pre-inoculation with G. mosseae induced strong responses of three defense-related genes PR2a, PAL, and AOS, as well as BX9, one of the key genes in DIMBOA biosynthesis pathway, in the leaves of corn plants of both Yuenong-9 and Gaoyou-115 after the pathogen attack. Induction of defense responses in pre-inoculated plants was much higher and quicker than that in non-inoculated plants upon R. solani infection. These results indicate that induction of accumulation of DIMBOA, an important phytoalexin in corn, and systemic defense responses by AMF, plays a vital role in enhanced disease resistance of mycorrhizal plants of corn against sheath blight. This study also suggests that priming is an important mechanism in mycorrhiza-induced resistance.
Collapse
Affiliation(s)
- Yuan Yuan Song
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Man Cao
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Li Jun Xie
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Xiao Ting Liang
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Ren Sen Zeng
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China.
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China.
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China.
| | - Yi Juan Su
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Jing Hua Huang
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Rui Long Wang
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| | - Shi Ming Luo
- Key Laboratory of Ecological Agriculture, Ministry of Agriculture, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Wushan, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
278
|
Boldizsár I, Füzfai Z, Molnár-Perl I. Characteristic fragmentation patterns of trimethylsilyl and trimethylsilyl-oxime derivatives of plant disaccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. J Chromatogr A 2011; 1218:7864-8. [DOI: 10.1016/j.chroma.2011.08.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 11/26/2022]
|
279
|
Kannangara R, Motawia MS, Hansen NKK, Paquette SM, Olsen CE, Møller BL, Jørgensen K. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:287-301. [PMID: 21736650 DOI: 10.1111/j.1365-313x.2011.04695.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l-valine and l-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava.
Collapse
Affiliation(s)
- Rubini Kannangara
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Villum Foundation Research Centre "Pro-Active Plants", UNIK Center for Synthetic Biology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
280
|
Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:273-86. [PMID: 21707799 DOI: 10.1111/j.1365-313x.2011.04685.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.
Collapse
Affiliation(s)
- Adam M Takos
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Zagrobelny M, Møller BL. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. PHYTOCHEMISTRY 2011; 72:1585-1592. [PMID: 21429539 DOI: 10.1016/j.phytochem.2011.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/01/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.
Collapse
Affiliation(s)
- Mika Zagrobelny
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | |
Collapse
|
282
|
Dobler S, Petschenka G, Pankoke H. Coping with toxic plant compounds--the insect's perspective on iridoid glycosides and cardenolides. PHYTOCHEMISTRY 2011; 72:1593-1604. [PMID: 21620425 DOI: 10.1016/j.phytochem.2011.04.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 05/27/2023]
Abstract
Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.
Collapse
Affiliation(s)
- Susanne Dobler
- Biocenter Grindel, Hamburg University, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
283
|
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. PLANT PHYSIOLOGY 2011; 157:317-27. [PMID: 21730199 PMCID: PMC3165881 DOI: 10.1104/pp.111.180224] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
Abstract
Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. The first step in BX biosynthesis converts indole-3-glycerol phosphate into indole. In maize (Zea mays), this reaction is catalyzed by either BENZOXAZINELESS1 (BX1) or INDOLE GLYCEROL PHOSPHATE LYASE (IGL). The Bx1 gene is under developmental control and is mainly responsible for BX production, whereas the Igl gene is inducible by stress signals, such as wounding, herbivory, or jasmonates. To determine the role of BXs in defense against aphids and fungi, we compared basal resistance between Bx1 wild-type and bx1 mutant lines in the igl mutant background, thereby preventing BX production from IGL. Compared to Bx1 wild-type plants, BX-deficient bx1 mutant plants allowed better development of the cereal aphid Rhopalosiphum padi, and were affected in penetration resistance against the fungus Setosphaeria turtica. At stages preceding major tissue disruption, R. padi and S. turtica elicited increased accumulation of DIMBOA-glucoside, DIMBOA, and 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucoside (HDMBOA-glc), which was most pronounced in apoplastic leaf extracts. Treatment with the defense elicitor chitosan similarly enhanced apoplastic accumulation of DIMBOA and HDMBOA-glc, but repressed transcription of genes controlling BX biosynthesis downstream of BX1. This repression was also obtained after treatment with the BX precursor indole and DIMBOA, but not with HDMBOA-glc. Furthermore, BX-deficient bx1 mutant lines deposited less chitosan-induced callose than Bx1 wild-type lines, whereas apoplast infiltration with DIMBOA, but not HDMBOA-glc, mimicked chitosan-induced callose. Hence, DIMBOA functions as a defense regulatory signal in maize innate immunity, which acts in addition to its well-characterized activity as a biocidal defense metabolite.
Collapse
|
284
|
Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. PLANT PHYSIOLOGY 2011; 156:2082-97. [PMID: 21690302 PMCID: PMC3149930 DOI: 10.1104/pp.111.179457] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/18/2011] [Indexed: 05/18/2023]
Abstract
Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 μg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps11 were among the most highly up-regulated genes, as was An2, an ent-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficient1 (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense.
Collapse
Affiliation(s)
- Alisa Huffaker
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, Florida 32608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Hermosa R, Botella L, Keck E, Jiménez JÁ, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1295-1302. [PMID: 21466906 DOI: 10.1016/j.jplph.2011.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/21/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
Using the TrichoEST database, generated in a previous functional genomics project from the beneficial filamentous fungus Trichoderma harzianum, a gene named Thkel1, which codes for a putative kelch-repeat protein, was isolated and characterized. Silencing of this gene in T. harzianum leads to a reduction of glucosidase activity and mycelial growth under abiotic stress conditions. Expression of this gene in Arabidopsis enhances plant tolerance to salt and osmotic stresses, accompanied by an increase in glucosidase activity and a reduction of abscisic acid levels compared to those observed in wild-type plants. Data presented throughout this article suggest the high value of T. harzianum as a source of genes able to facilitate the achievement of producing plants resistant to abiotic stresses without alteration of their phenotype.
Collapse
Affiliation(s)
- Rosa Hermosa
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Farmacia, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Witte MD, Walvoort MTC, Li KY, Kallemeijn WW, Donker-Koopman WE, Boot RG, Aerts JMFG, Codée JDC, van der Marel GA, Overkleeft HS. Activity-based profiling of retaining β-glucosidases: a comparative study. Chembiochem 2011; 12:1263-9. [PMID: 21538758 DOI: 10.1002/cbic.201000773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 11/07/2022]
Abstract
Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based profiling of glycosidases, on the other hand, has proven more difficult, and to date no broad-spectrum glycosidase activity-based probes (ABPs) have been reported. In a comparative study, we investigated both 2-deoxy-2-fluoroglycosides and cyclitol epoxides for their utility as a starting point towards retaining β-glucosidase ABP. We also investigated the merits of direct labeling and two-step bio-orthogonal labeling in reporting on glucosidase activity under various conditions. Our results demonstrate that 1) in general cyclitol epoxides are the superior glucosidase ABPs, 2) that direct labeling is the more efficient approach but it hinges on the ability of the glucosidase to be accommodated in the active site of the reporter (BODIPY) entity, and 3) that two-step bio-orthogonal labeling can be achieved on isolated enzymes but translating this protocol to cell extracts requires more investigation.
Collapse
Affiliation(s)
- Martin D Witte
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. PHYTOCHEMISTRY 2011; 72:435-57. [PMID: 21333312 DOI: 10.1016/j.phytochem.2011.01.015] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 05/19/2023]
Abstract
Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny. This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery.
Collapse
Affiliation(s)
- Jörg M Augustin
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Center for Synthetic Biology, VKR Research Centre Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
288
|
|
289
|
Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol 2011; 77:1751-7. [PMID: 21216897 DOI: 10.1128/aem.01125-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Baker's yeast (Saccharomyces cerevisiae) whole-cell bioconversions of naringenin 7-O-β-glucoside revealed considerable β-glucosidase activity, which impairs any strategy to generate or modify flavonoid glucosides in yeast transformants. Up to 10 putative glycoside hydrolases annotated in the S. cerevisiae genome database were overexpressed with His tags in yeast cells. Examination of these recombinant, partially purified polypeptides for hydrolytic activity with synthetic chromogenic α- or β-glucosides identified three efficient β-glucosidases (EXG1, SPR1, and YIR007W), which were further assayed with natural flavonoid β-glucoside substrates and product verification by thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC). Preferential hydrolysis of 7- or 4'-O-glucosides of isoflavones, flavonols, flavones, and flavanones was observed in vitro with all three glucosidases, while anthocyanins were also accepted as substrates. The glucosidase activities of EXG1 and SPR1 were completely abolished by Val168Tyr mutation, which confirmed the relevance of this residue, as reported for other glucosidases. Most importantly, biotransformation experiments with knockout yeast strains revealed that only EXG1 knockout strains lost the capability to hydrolyze flavonoid glucosides.
Collapse
|
290
|
Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. THE NEW PHYTOLOGIST 2011; 189:494-506. [PMID: 20946131 DOI: 10.1111/j.1469-8137.2010.03484.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and/or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. After 10d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain×plant cultivar combination. Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize.
Collapse
|
291
|
Klink VP, Hosseini P, Matsye PD, Alkharouf NW, Matthews BF. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. PLANT MOLECULAR BIOLOGY 2011; 75:141-65. [PMID: 21153862 DOI: 10.1007/s11103-010-9715-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/13/2010] [Indexed: 05/09/2023]
Abstract
Glycine max L. Merr. (soybean) resistance to Heterodera glycines Ichinohe occurs at the site of infection, a nurse cell known as the syncytium. Resistance is classified into two cytologically-defined responses, the G. max ([Peking])- and G. max ([PI 88788])-types. Each type represents a cohort of G. max genotypes. Resistance in G. max ([Peking]) occurs by a potent and rapid localized response, affecting parasitic second stage juveniles (p-J2). In contrast, resistance occurs by a potent but more prolonged reaction in the genotype G. max ([PI 88788]) that affects nematode development at the J3 and J4 stages. Microarray analyses comparing these cytologically and developmentally distinct resistant reactions reveal differences in gene expression in pericycle and surrounding cells even before infection. The differences include higher relative levels of the differentially expressed in response to arachidonic acid 1 gene (DEA1 [Gm-DEA1]) (+224.19-fold) and a protease inhibitor (+68.28-fold) in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). Gene pathway analyses compare the two genotypes (1) before, (2) at various times during, (3) constitutively throughout the resistant reaction and (4) at all time points prior to and during the resistant reaction. The amplified levels of transcriptional activity of defense genes may explain the rapid and potent reaction in G. max ([Peking/PI 548402]) as compared to G. max ([PI 88788]). In contrast, the shared differential expression levels of genes in G. max ([Peking/PI 548402]) and G. max ([PI 88788]) may indicate a conserved genomic program underlying the G. max resistance on which the genotype-specific gene expression programs are built off.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Harned Hall, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
292
|
Affiliation(s)
- Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
293
|
Pankoke H, Bowers MD, Dobler S. Influence of iridoid glycoside containing host plants on midgut β-glucosidase activity in a polyphagous caterpillar, Spilosoma virginica Fabricius (Arctiidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1907-1912. [PMID: 20727899 DOI: 10.1016/j.jinsphys.2010.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 05/29/2023]
Abstract
Iridoid glycosides are secondary plant compounds that have deterrent, growth reducing or even toxic effects on non-adapted herbivorous insects. To investigate the effects of iridoid glycoside containing plants on the digestive metabolism of a generalist herbivore, larvae of Spilosoma virginica (Lepidoptera: Arctiidae) were reared on three plant species that differ in their secondary plant chemistry: Taraxacum officinale (no iridoid glycosides), Plantago major (low iridoid glycoside content), and P. lanceolata (high iridoid glycoside content). Midguts of fifth instar larvae were assayed for the activity and kinetic properties of β-glucosidase using different substrates. Compared to the larvae on T. officinale, the β-glucosidase activity of larvae feeding on P. lanceolata was significantly lower measured with 4-nitrophenyl-β-d-glucopyranoside. Using the iridoid glycoside aucubin as a substrate, we did not find differences in the β-glucosidase activity of the larvae reared on the three plants. Heat inactivation experiments revealed the existence of a heat-labile and a more heat-stable β-glucosidase with similar Michaelis constants for 4-nitrophenyl-β-d-glucopyranoside. We discuss possible mechanisms leading to the observed decrease of β-glucosidase activity for larvae reared on P. lanceolata and its relevance for generalist herbivores in adapting to iridoid glycoside containing plant species and their use as potential host plants.
Collapse
Affiliation(s)
- Helga Pankoke
- Biozentrum Grindel, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
294
|
Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y. A Novel Glucosylation Reaction on Anthocyanins Catalyzed by Acyl-Glucose–Dependent Glucosyltransferase in the Petals of Carnation and Delphinium. THE PLANT CELL 2010; 22:3374-89. [PMID: 20971893 PMCID: PMC2990145 DOI: 10.1105/tpc.110.077487] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abstract
Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose–dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose–dependent glucosyltransferases.
Collapse
Affiliation(s)
- Yuki Matsuba
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Nobuhiro Sasaki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Masachika Okamura
- Central Laboratories for Frontier Technology, Kirin Holdings Company, Tochigi 329-1414, Japan
| | - Yutaka Abe
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Emi Okamoto
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Haruka Nakamura
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Hisakage Funabashi
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Makoto Takatsu
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Mikako Saito
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Hideaki Matsuoka
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
295
|
Wang Z, Wang Z, Shi L, Wang L, Xu F. Proteomic alterations of Brassica napus root in response to boron deficiency. PLANT MOLECULAR BIOLOGY 2010; 74:265-78. [PMID: 20694506 DOI: 10.1007/s11103-010-9671-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/26/2010] [Indexed: 05/02/2023]
Abstract
Boron (B) deficiency is a worldwide problem, and Brassica napus is one of the most sensitive crops to B deficiency. To better understand the B starvation response of Brassica napus, we conducted a comparative proteomic analysis of seedling stage Brassica napus root between B-sufficient and B-limited conditions: 45 differentially expressed proteins were successfully identified by 2-DE coupled with MALDI-TOF/TOF-MS and LTQ-ESI-MS/MS analysis. Among these proteins, 10 were down-regulated and 35 were up-regulated under B-limited condition. Combining GO and KEGG analyses with data from previous reports, proteins were categorized into several functional groups, including antioxidant and detoxification, defense-related proteins, signaling and regulation, carbohydrate and energy metabolism, amino acid and fatty acid metabolism, protein translation and degradation, cell wall structure, and transporter. The genes of selected proteins were analyzed by quantitative RT-PCR. Our results provide novel information for better understanding the physiological and biochemical responses to B deficiency in plants.
Collapse
Affiliation(s)
- Zhifang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | |
Collapse
|
296
|
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010; 67:3389-405. [PMID: 20490603 PMCID: PMC11115901 DOI: 10.1007/s00018-010-0399-2] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)(8)-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)(6) barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.
| | | |
Collapse
|
297
|
Holse M, Husted S, Hansen Å. Chemical composition of marama bean (Tylosema esculentum)—A wild African bean with unexploited potential. J Food Compost Anal 2010. [DOI: 10.1016/j.jfca.2010.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
298
|
Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. Strictosidine activation in Apocynaceae: towards a "nuclear time bomb"? BMC PLANT BIOLOGY 2010; 10:182. [PMID: 20723215 PMCID: PMC3095312 DOI: 10.1186/1471-2229-10-182] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/19/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND The first two enzymatic steps of monoterpene indole alkaloid (MIA) biosynthetic pathway are catalysed by strictosidine synthase (STR) that condensates tryptamine and secologanin to form strictosidine and by strictosidine beta-D-glucosidase (SGD) that subsequently hydrolyses the glucose moiety of strictosidine. The resulting unstable aglycon is rapidly converted into a highly reactive dialdehyde, from which more than 2,000 MIAs are derived. Many studies were conducted to elucidate the biosynthesis and regulation of pharmacologically valuable MIAs such as vinblastine and vincristine in Catharanthus roseus or ajmaline in Rauvolfia serpentina. However, very few reports focused on the MIA physiological functions. RESULTS In this study we showed that a strictosidine pool existed in planta and that the strictosidine deglucosylation product(s) was (were) specifically responsible for in vitro protein cross-linking and precipitation suggesting a potential role for strictosidine activation in plant defence. The spatial feasibility of such an activation process was evaluated in planta. On the one hand, in situ hybridisation studies showed that CrSTR and CrSGD were coexpressed in the epidermal first barrier of C. roseus aerial organs. However, a combination of GFP-imaging, bimolecular fluorescence complementation and electromobility shift-zymogram experiments revealed that STR from both C. roseus and R. serpentina were localised to the vacuole whereas SGD from both species were shown to accumulate as highly stable supramolecular aggregates within the nucleus. Deletion and fusion studies allowed us to identify and to demonstrate the functionality of CrSTR and CrSGD targeting sequences. CONCLUSIONS A spatial model was drawn to explain the role of the subcellular sequestration of STR and SGD to control the MIA metabolic flux under normal physiological conditions. The model also illustrates the possible mechanism of massive activation of the strictosidine vacuolar pool upon enzyme-substrate reunion occurring during potential herbivore feeding constituting a so-called "nuclear time bomb" in reference to the "mustard oil bomb" commonly used to describe the myrosinase-glucosinolate defence system in Brassicaceae.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Vincent Courdavault
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Arnaud Lanoue
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Samira Mahroug
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
- Laboratoire Biodiversité Végétale, Conservation et Valorisation, Faculté des Sciences, Université Djillali Liabés, Sidi Bel Abbes, Algérie
| | - Anthony Guihur
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Nathalie Blanc
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Benoit St-Pierre
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
| | - Vincent Burlat
- Université François Rabelais de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales"; IFR 135 "Imagerie fonctionnelle" 37200, Tours, France
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
299
|
Bennett RN, Shiga TM, Hassimotto NMA, Rosa EAS, Lajolo FM, Cordenunsi BR. Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7991-8003. [PMID: 20553046 DOI: 10.1021/jf1008692] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Banana fruits are important foods, but there have been very few studies evaluating the phenolics associated with their cell walls. In the present study, (+) catechin, gallocatechin, and (-) epicatechin, as well as condensed tannins, were detected in the soluble extract of the fruit pulp; neither soluble anthocyanidins nor anthocyanins were present. In the soluble cell wall fraction, two hydroxycinnamic acid derivatives were predominant, whereas in the insoluble cell wall fraction, the anthocyanidin delphinidin, which is reported in banana cell walls for the first time, was predominant. Cell wall fractions showed remarkable antioxidant capacity, especially after acid and enzymatic hydrolysis, which was correlated with the total phenolic content released after the hydrolysis of the water-insoluble polymer, but not for the posthydrolysis water-soluble polymer. The acid hydrolysis released various monosaccharides, whereas enzymatic hydrolysis released one peak of oligosaccharides. These results indicate that banana cell walls could be a suitable source of natural antioxidants and that they could be bioaccessible in the human gut.
Collapse
Affiliation(s)
- Richard N Bennett
- CITAB-Departamento de Fitotecnia e Engenharia Rural, Edificio Ciencias Agrárias, Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Apartado 1013, 5001-801 Vila Real, Portugal
| | | | | | | | | | | |
Collapse
|
300
|
Akak CM, Djama CM, Nkengfack AE, Tu PF, Lei LD. New coumarin glycosides from the leaves of Diospyros crassiflora (Hiern). Fitoterapia 2010; 81:873-7. [PMID: 20580922 DOI: 10.1016/j.fitote.2010.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Two new 5-methylcoumarin glycosides named diosfeboside A (1) and B (2) and five known compounds namely kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 2)-β-D-glucopyranoside (3), ursolic acid (4), betulinic acid (5), stigmasterol (6) and stigmasterol 3-O-β-D-glucopyranoside (7) were isolated from the leaves of Diospyros crassiflora (Hiern). Their structures were established through interpretation of 1 and 2D NMR, mass spectra analysis and comparison with reported data. In vitro cytotoxic activity of the new compounds against human carcinoma cell lines (HL-60, Bel-7402, BGC-823, and KB) was evaluated and no cytotoxicity was observed for each of them.
Collapse
Affiliation(s)
- Carine Mvot Akak
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon.
| | | | | | | | | |
Collapse
|