251
|
Fudali SL, Wang C, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:75-86. [PMID: 22712507 DOI: 10.1094/mpmi-05-12-0107-r] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Infective juveniles of the root-knot nematode Meloidogyne hapla are attracted to the zone of elongation of roots where they invade the host but little is known about what directs the nematode to this region of the root. We found that Arabidopsis roots exposed to an ethylene (ET)-synthesis inhibitor attracted significantly more nematodes than control roots and that ET-overproducing mutants were less attractive. Arabidopsis seedlings with ET-insensitive mutations were generally more attractive whereas mutations resulting in constitutive signaling were less attractive. Roots of the ET-insensitive tomato mutant Never ripe (Nr) were also more attractive, indicating that ET signaling also modulated attraction of root-knot nematodes to this host. ET-insensitive mutants have longer roots due to reduced basipetal auxin transport. However, assessments of Arabidopsis mutants that differ in various aspects of the ET response suggest that components of the ET-signaling pathway directly affecting root length are not responsible for modulating root attractiveness and that other components of downstream signaling result in changes in levels of attractants or repellents for M. hapla. These signals may aid in directing this pathogen to an appropriate host and invasion site for completing its life cycle.
Collapse
Affiliation(s)
- Sylwia L Fudali
- Department of Nematology, University of California, Davis, USA
| | | | | |
Collapse
|
252
|
Role of Defense Compounds in the Beneficial Interaction Between Arabidopsis thaliana and Piriformospora indica. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-33802-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
253
|
Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. FRONTIERS IN PLANT SCIENCE 2013; 4:215. [PMID: 23818890 PMCID: PMC3694216 DOI: 10.3389/fpls.2013.00215] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/05/2013] [Indexed: 05/03/2023]
Abstract
Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
- *Correspondence: Luis A. J. Mur, Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK e-mail:
| | - Elena Prats
- Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Sandra Pierre
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Kim H. Hebelstrup
- Section of Crop Genetics and Biotechnology, Department of Molecular Biology and Genetics Aarhus UniversitySlagelse, Denmark
| |
Collapse
|
254
|
|
255
|
Wang Z, Cao H, Sun Y, Li X, Chen F, Carles A, Li Y, Ding M, Zhang C, Deng X, Soppe WJ, Liu YX. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. THE PLANT CELL 2013; 25:149-66. [PMID: 23371947 PMCID: PMC3584531 DOI: 10.1105/tpc.112.108191] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
Histone (de)acetylation is a highly conserved chromatin modification that is vital for development and growth. In this study, we identified a role in seed dormancy for two members of the histone deacetylation complex in Arabidopsis thaliana, SIN3-LIKE1 (SNL1) and SNL2. The double mutant snl1 snl2 shows reduced dormancy and hypersensitivity to the histone deacetylase inhibitors trichostatin A and diallyl disulfide compared with the wild type. SNL1 interacts with HISTONE DEACETYLASE19 in vitro and in planta, and loss-of-function mutants of SNL1 and SNL2 show increased acetylation levels of histone 3 lysine 9/18 (H3K9/18) and H3K14. Moreover, SNL1 and SNL2 regulate key genes involved in the ethylene and abscisic acid (ABA) pathways by decreasing their histone acetylation levels. Taken together, we showed that SNL1 and SNL2 regulate seed dormancy by mediating the ABA-ethylene antagonism in Arabidopsis. SNL1 and SNL2 could represent a cross-link point of the ABA and ethylene pathways in the regulation of seed dormancy.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Annaick Carles
- Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Yong Li
- Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wim J.J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
256
|
Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. PLANT PHYSIOLOGY 2012; 160:1968-84. [PMID: 23043080 PMCID: PMC3510124 DOI: 10.1104/pp.112.205476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Abstract
The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), respectively. In Arabidopsis, AtRTE1 is required for function of the ETR1 ethylene receptor and acts predominantly through this receptor via direct protein-protein interaction. While most eudicot families including the Brassicaceae possess a single gene that is closely related to AtRTE1, we report that members of the Solanaceae family contain two phylogenetically distinct genes defined by GR and GREEN-RIPE LIKE1 (GRL1), creating the possibility of subfunctionalization. We also show that SlGR and SlGRL1 are differentially expressed in tomato tissues and encode proteins predominantly localized to the Golgi. A combination of overexpression in tomato and complementation of the rte1-3 mutant allele indicates that SlGR and SlGRL1 influence distinct but overlapping ethylene responses. Overexpression of SlGRL1 in the Gr mutant background provides evidence for the existence of different ethylene signaling modules in tomato that are influenced by GR, GRL1, or both. In addition, overexpression of AtRTE1 in tomato leads to reduced ethylene responsiveness in a subset of tissues but does not mimic the Gr mutant phenotype. Together, these data reveal species-specific heterogeneity in the control of ethylene responses mediated by members of the GR/RTE1 family.
Collapse
|
257
|
Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. PLANT PHYSIOLOGY 2012; 160:1498-514. [PMID: 22977280 PMCID: PMC3490579 DOI: 10.1104/pp.112.206086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.
Collapse
|
258
|
Kim J, Wilson RL, Case JB, Binder BM. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. PLANT PHYSIOLOGY 2012; 160:1567-80. [PMID: 22977279 PMCID: PMC3490611 DOI: 10.1104/pp.112.205799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.
Collapse
|
259
|
Ziliotto F, Corso M, Rizzini FM, Rasori A, Botton A, Bonghi C. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC PLANT BIOLOGY 2012; 12:185. [PMID: 23046684 PMCID: PMC3564861 DOI: 10.1186/1471-2229-12-185] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Auxins act as repressors of ripening inception in grape (véraison), while ethylene and abscisic acid (ABA) play a positive role as inducers of the syndrome. Despite the increasing amount of information made available on this topic, the complex network of interactions among these hormones remains elusive. In order to shed light on these aspects, a holistic approach was adopted to evaluate, at the transcriptomic level, the crosstalk between hormones in grape berries, whose ripening progression was delayed by applying naphtalenacetic acid (NAA) one week before véraison. RESULTS The NAA treatment caused significant changes in the transcription rate of about 1,500 genes, indicating that auxin delayed grape berry ripening also at the transcriptional level, along with the recovery of a steady state of its intracellular concentration. Hormone indices analysis carried out with the HORMONOMETER tool suggests that biologically active concentrations of auxins were achieved throughout a homeostatic recovery. This occurred within 7 days after the treatment, during which the physiological response was mainly unspecific and due to a likely pharmacological effect of NAA. This hypothesis is strongly supported by the up-regulation of genes involved in auxin conjugation (GH3-like) and action (IAA4- and IAA31-like). A strong antagonistic effect between auxin and ethylene was also observed, along with a substantial 'synergism' between auxins and ABA, although to a lesser extent. CONCLUSIONS This study suggests that, in presence of altered levels of auxins, the crosstalk between hormones involves diverse mechanisms, acting at both the hormone response and biosynthesis levels, creating a complex response network.
Collapse
Affiliation(s)
- Fiorenza Ziliotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Massimiliano Corso
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Fabio Massimo Rizzini
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
- Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, CIRVE, University of Padova, Agripolis – Viale dell’Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
260
|
Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A. Histidine kinases in plants: cross talk between hormone and stress responses. PLANT SIGNALING & BEHAVIOR 2012; 7:1230-7. [PMID: 22902699 PMCID: PMC3493402 DOI: 10.4161/psb.21516] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His-Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.
Collapse
Affiliation(s)
- Ramsong Nongpiur
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
- Correspondence to: Ashwani Pareek,
| |
Collapse
|
261
|
Xie F, Qiu L, Wen CK. Possible modulation of Arabidopsis ETR1 N-terminal signaling by CTR1. PLANT SIGNALING & BEHAVIOR 2012; 7:1243-5. [PMID: 22902695 PMCID: PMC3493404 DOI: 10.4161/psb.21545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mitogen-activated protein kinase kinase kinase (MAPKKK) Constitutive Triple-Response1 (CTR1) plays a key role in mediating ethylene receptor signaling via its N-terminal interaction with the ethylene receptor C-terminal histidine kinase (HK) domain. Loss-of-function mutations of CTR1 prevent ethylene receptor signaling, and corresponding ctr1 mutants show a constitutive ethylene response phenotype. We recently reported in Plant Physiology that expression of the truncated ethylene receptor Ethylene Response1 (ETR1) isoforms etr1 ( 1-349) and dominant ethylene-insensitive etr1-1 ( 1-349) , lacking the C-terminal HK and receiver domains, both suppressed the ctr1 mutant phenotype. Therefore, the ETR1 N terminus is capable of receptor signaling independent of CTR1. The constitutive ethylene response phenotype is stronger for ctr1-1 than ctr1-1 lines expressing the etr1 ( 1-349) transgene, so N-terminal signaling by the full-length but not truncated ETR1 is inhibited by ctr1-1. We address possible modulations of ETR1 N-terminal signaling with docking of CTR1 on the ETR1 HK domain.
Collapse
|
262
|
Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. PLANT PHYSIOLOGY 2012; 160:488-97. [PMID: 22797658 PMCID: PMC3440222 DOI: 10.1104/pp.112.202820] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 05/18/2023]
Abstract
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.
Collapse
|
263
|
Hebelstrup KH, van Zanten M, Mandon J, Voesenek LACJ, Harren FJM, Cristescu SM, Møller IM, Mur LAJ. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5581-91. [PMID: 22915746 PMCID: PMC3444272 DOI: 10.1093/jxb/ers210] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene was directly quantified under normoxia, hypoxia (0.1-1.0% O(2)), or full anoxia. The production of both gases was increased with reduced expression of either of the Hb genes GLB1 or GLB2, whereas NO emission decreased in plants overexpressing these genes. NO emission in plants with reduced Hb gene expression represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene expression was correlated with ethylene-induced upward leaf movement (hyponastic growth) but not with hypocotyl growth, which was Hb independent. Taken together the data suggest that Hb can influence flood-induced hyponasty via ethylene-dependent and, possibly, ethylene-independent pathways.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University Forsøgsvej 1, DK-4200 Slagelse Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Qiao H, Shen Z, Huang SSC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 2012; 338:390-3. [PMID: 22936567 DOI: 10.1126/science.1225974] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ethylene gas is essential for many developmental processes and stress responses in plants. ETHYLENE INSENSITIVE2 (EIN2), an NRAMP-like integral membrane protein, plays an essential role in ethylene signaling, but its function remains enigmatic. Here we report that phosphorylation-regulated proteolytic processing of EIN2 triggers its endoplasmic reticulum (ER)-to-nucleus translocation. ER-tethered EIN2 shows CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) kinase-dependent phosphorylation. Ethylene triggers dephosphorylation at several sites and proteolytic cleavage at one of these sites, resulting in nuclear translocation of a carboxyl-terminal EIN2 fragment (EIN2-C'). Mutations that mimic EIN2 dephosphorylation, or inactivate CTR1, show constitutive cleavage and nuclear localization of EIN2-C' and EIN3 and EIN3-LIKE1-dependent activation of ethylene responses. These findings uncover a mechanism of subcellular communication whereby ethylene stimulates phosphorylation-dependent cleavage and nuclear movement of the EIN2-C' peptide, linking hormone perception and signaling components in the ER with nuclear-localized transcriptional regulators.
Collapse
Affiliation(s)
- Hong Qiao
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
265
|
Abstract
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.
Collapse
|
266
|
McDaniel BK, Binder BM. ethylene receptor 1 (etr1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana. J Biol Chem 2012; 287:26094-103. [PMID: 22692214 PMCID: PMC3406693 DOI: 10.1074/jbc.m112.383034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/09/2012] [Indexed: 11/06/2022] Open
Abstract
Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the K(d) for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper.
Collapse
Affiliation(s)
- Brittany K. McDaniel
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| | - Brad M. Binder
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| |
Collapse
|
267
|
Xu C, Gao X, Sun X, Wen CK. The basal level ethylene response is important to the wall and endomembrane structure in the hypocotyl cells of etiolated Arabidopsis seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:434-455. [PMID: 22591458 DOI: 10.1111/j.1744-7909.2012.01130.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The sub-cellular events that occur during the ethylene-modulated cell elongation were characterized by examining the ultra-structure of etiolated Arabidopsis seedling hypocotyl cells. Preventing the basal level ethylene response facilitated cell elongation, and the cells exhibited wall loosening and separation phenotype. Nearby the wall separation sites were frequently associated with an increase in the cortical rough endoplasmic reticulum (rER) membranes, the presence of paramural bodies, and the circular Golgi formation. The cortical rER proliferation and circular Golgi phenotype were reverted by the protein biosynthesis inhibitor cycloheximide. The cortical rER membranes were longer when the ethylene response was prevented and shortened with elevated ethylene responses. Proteomic changes between wild type and the ethylene-insensitive mutant ethylene insensitive2 (ein2) seedling hypocotyls indicated that distinct subsets of proteins involving endomembrane trafficking, remodeling, and wall modifications were differentially expressed. FM4-64 staining supported the proteomic changes, which indicated reduced endocytosis activity with alleviation of the ethylene response. The basal level ethylene response has an important role in endomembrane trafficking, biological materials transport and maintenance of the endomembrane organization. It is possible that endomembrane alterations may partly associate with the wall modifications, though the biological significance of the alterations should be addressed in future studies.
Collapse
Affiliation(s)
- Chan Xu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Rd, Shanghai, China
| | | | | | | |
Collapse
|
268
|
Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. THE NEW PHYTOLOGIST 2012; 195:450-460. [PMID: 22530619 DOI: 10.1111/j.1469-8137.2012.04160.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Ethylene plays a crucial role in plant resistance to necrotrophic pathogens, in which ETHYLENE RESPONSE FACTORs (ERFs) are often involved. • Here, we evaluated the role of an ERF transcription factor, RELATED TO AP2 2 (RAP2.2), in Botrytis resistance and ethylene responses in Arabidopsis. We analyzed the resistance of transgenic plants overexpressing RAP2.2 and the T-DNA insertion mutant to Botrytis cinerea. We assessed its role in the ethylene signaling pathway by molecular and genetic approaches. • RAP2.2-overexpressing transgenic plants showed increased resistance to B. cinerea, whereas its T-DNA insertion mutant rap2.2-3 showed decreased resistance. Overexpression of RAP2.2 in ethylene insensitive 2 (ein2) and ein3 ein3-like 1 (eil1) mutants restored their resistance to B. cinerea. Both ethylene and Botrytis infection induced the expression of RAP2.2 and the induction was disrupted in ein2 and ein3 eil1 mutants. We identified rap2.12-1 as a T-DNA insertion mutant of RAP2.12, the closest homolog of RAP2.2. The hypocotyls of rap2.2-3 rap2.12-1 double mutants showed ethylene insensitivity. The constitutive triple response in constitutive triple response1 (ctr1) was partially released in the rap2.2-3 rap2.12-1 ctr1 triple mutants. • Our findings demonstrate that RAP2.2 functions as an important regulator in Botrytis resistance and ethylene responses.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100094, China
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Kang-Quan Yin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhangliang Chen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100094, China
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
269
|
Hu HL, Do YY, Huang PL. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 56:47-55. [PMID: 22584359 DOI: 10.1016/j.plaphy.2012.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/03/2012] [Indexed: 05/20/2023]
Abstract
The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process.
Collapse
Affiliation(s)
- Huei-Lin Hu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan, ROC
| | | | | |
Collapse
|
270
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
271
|
Zhang W, Zhou X, Wen CK. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4151-64. [PMID: 22451723 PMCID: PMC3398448 DOI: 10.1093/jxb/ers098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.
Collapse
|
272
|
Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:682-95. [PMID: 22467798 PMCID: PMC3375934 DOI: 10.1104/pp.112.196790] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.
Collapse
|
273
|
Cyanide is an adequate agonist of the plant hormone ethylene for studying signalling of sensor kinase ETR1 at the molecular level. Biochem J 2012; 444:261-7. [DOI: 10.1042/bj20111447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The plant hormone ethylene is involved in many developmental processes and responses to environmental stresses in plants. Although the elements of the signalling cascade and the receptors operating the ethylene pathway have been identified, a detailed understanding of the molecular processes related to signal perception and transfer is still lacking. Analysis of these processes using purified proteins in physical, structural and functional studies is complicated by the gaseous character of the plant hormone. In the present study, we show that cyanide, a π-acceptor compound and structural analogue of ethylene, is a suitable substitute for the plant hormone for in vitro studies with purified proteins. Recombinant ethylene receptor protein ETR1 (ethylene-resistant 1) showed high level and selective binding of [14C]cyanide in the presence of copper, a known cofactor in ethylene binding. Replacement of Cys65 in the ethylene-binding domain by serine dramatically reduced binding of radiolabelled cyanide. In contrast with wild-type ETR1, autokinase activity of the receptor is not reduced in the ETR1-C65S mutant upon addition of cyanide. Additionally, protein–protein interaction with the ethylene signalling protein EIN2 (ethylene-insensitive 2) is considerably sustained by cyanide in wild-type ETR1, but is not affected in the mutant. Further evidence for the structural and functional equivalence of ethylene and cyanide is given by the fact that the ethylene-responsive antagonist silver, which is known to allow ligand binding but prevent intrinsic signal transduction, also allows specific binding of cyanide, but shows no effect on autokinase activity and ETR1–EIN2 interaction.
Collapse
|
274
|
Shi X, Rashotte AM. Advances in upstream players of cytokinin phosphorelay: receptors and histidine phosphotransfer proteins. PLANT CELL REPORTS 2012; 31:789-99. [PMID: 22350315 DOI: 10.1007/s00299-012-1229-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 05/09/2023]
Abstract
Cytokinins are a class of plant hormones that have been linked to numerous growth and developmental aspects in plants. The cytokinin signal is perceived by sensor histidine kinase receptors and transmitted via histidine phosphotransfer proteins (HPts) to downstream response regulators. Since their discovery, cytokinin receptors have been a focus of interest for many researchers. Ongoing research on these transmembrane receptors has greatly broadened our knowledge in terms of cytokinin-receptor interaction, receptor specificity, receptor cellular localization, and receptor functions in cytokinin related growth and developmental processes. This review focuses on the recent advances on the cytokinin receptors and HPt proteins in Arabidopsis.
Collapse
Affiliation(s)
- Xiuling Shi
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
275
|
Capron D, Mouzeyar S, Boulaflous A, Girousse C, Rustenholz C, Laugier C, Paux E, Bouzidi MF. Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development. BMC PLANT BIOLOGY 2012; 12:35. [PMID: 22416807 PMCID: PMC3405487 DOI: 10.1186/1471-2229-12-35] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/14/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wheat grains are an important source of food, stock feed and raw materials for industry, but current production levels cannot meet world needs. Elucidation of the molecular mechanisms underlying wheat grain development will contribute valuable information to improving wheat cultivation. One of the most important mechanisms implicated in plant developmental processes is the ubiquitin-proteasome system (UPS). Among the different roles of the UPS, it is clear that it is essential to hormone signaling. In particular, E3 ubiquitin ligases of the UPS have been shown to play critical roles in hormone perception and signal transduction. RESULTS A NimbleGen microarray containing 39,179 UniGenes was used to study the kinetics of gene expression during wheat grain development from the early stages of cell division to the mid-grain filling stage. By comparing 11 consecutive time-points, 9284 differentially expressed genes were identified and annotated during this study. A comparison of the temporal profiles of these genes revealed dynamic transcript accumulation profiles with major reprogramming events that occurred during the time intervals of 80-120 and 220-240°Cdays. The list of the genes expressed differentially during these transitions were identified and annotated. Emphasis was placed on E3 ligase and hormone-related genes. In total, 173 E3 ligase coding genes and 126 hormone-related genes were differentially expressed during the cell division and grain filling stages, with each family displaying a different expression profile. CONCLUSIONS The differential expression of genes involved in the UPS and plant hormone pathways suggests that phytohormones and UPS crosstalk might play a critical role in the wheat grain developmental process. Some E3 ligase and hormone-related genes seem to be up- or down-regulated during the early and late stages of the grain development.
Collapse
Affiliation(s)
- Delphine Capron
- Université Blaise Pascal, UMR 1095 GDEC, 24 avenue des Landais, F-63177 Aubière, France
| | - Said Mouzeyar
- Université Blaise Pascal, UMR 1095 GDEC, 24 avenue des Landais, F-63177 Aubière, France
| | - Aurélia Boulaflous
- Université Blaise Pascal, UMR 1095 GDEC, 24 avenue des Landais, F-63177 Aubière, France
| | - Christine Girousse
- INRA, UMR 1095 GDEC, 234 avenue du Brézet, F-63100 Clermont-Ferrand, France
| | - Camille Rustenholz
- INRA, UMR 1095 GDEC, 234 avenue du Brézet, F-63100 Clermont-Ferrand, France
| | - Christel Laugier
- INRA, UMR 1095 GDEC, 234 avenue du Brézet, F-63100 Clermont-Ferrand, France
| | - Etienne Paux
- INRA, UMR 1095 GDEC, 234 avenue du Brézet, F-63100 Clermont-Ferrand, France
| | - Mohamed Fouad Bouzidi
- Université Blaise Pascal, UMR 1095 GDEC, 24 avenue des Landais, F-63177 Aubière, France
| |
Collapse
|
276
|
Robles LM, Deslauriers SD, Alvarez AA, Larsen PB. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2231-41. [PMID: 22238449 PMCID: PMC3295400 DOI: 10.1093/jxb/err424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 05/20/2023]
Abstract
As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena.
Collapse
|
277
|
Liu Q, Wen CK. Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. PLANT PHYSIOLOGY 2012; 158:1193-207. [PMID: 22227969 PMCID: PMC3291259 DOI: 10.1104/pp.111.187757] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/05/2012] [Indexed: 05/18/2023]
Abstract
The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1((C65Y))(for ethylene response1-1), ers1-1((I62P)) (for ethylene response sensor1-1), and ers1(C65Y) are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1((C65Y)), but not ers1-1((I62P)), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1((I62P)); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1((I62P)) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1(C65Y), which implied that ETR1 and EIN4 have synergistic effects on ers1(C65Y) functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors.
Collapse
|
278
|
Abstract
Tomato ripening is a highly coordinated developmental process that coincides with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids, and volatile compounds that increase attraction to animals. A combination of molecular tools and ripening-affected mutants has permitted researchers to establish a framework for the control of ripening. Tomato is a climacteric fruit, with an absolute requirement for the phytohormone ethylene to ripen. This dependence upon ethylene has established tomato fruit ripening as a model system for study of regulation of its synthesis and perception. In addition, several important ripening mutants, including rin, nor, and Cnr, have provided novel insights into the control of ripening processes. Here, we describe how ethylene and the transcription factors associated with the ripening process fit together into a network controlling ripening.
Collapse
Affiliation(s)
- Harry J Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
279
|
Cho YH, Kim GD, Yoo SD. Giant chloroplast development in ethylene response1-1 is caused by a second mutation in ACCUMULATION AND REPLICATION OF CHLOROPLAST3 in Arabidopsis. Mol Cells 2012; 33:99-103. [PMID: 22228186 PMCID: PMC3887742 DOI: 10.1007/s10059-012-2245-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.
Collapse
Affiliation(s)
| | - Geun-Don Kim
- Department of Biological Science, SungKyunKwan University, Suwon 440-746,
Korea
| | - Sang-Dong Yoo
- Department of Biological Science, SungKyunKwan University, Suwon 440-746,
Korea
| |
Collapse
|
280
|
|
281
|
Mworia EG, Yoshikawa T, Salikon N, Oda C, Asiche WO, Yokotani N, Abe D, Ushijima K, Nakano R, Kubo Y. Low-temperature-modulated fruit ripening is independent of ethylene in 'Sanuki Gold' kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:963-71. [PMID: 22058408 PMCID: PMC3254691 DOI: 10.1093/jxb/err324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fruit ripening in response to treatments with propylene, 1-methycyclopropene (1-MCP), and low temperature was characterized in 'Sanuki Gold' kiwifruit, Actinidia chinensis Planch. Propylene treatment immediately induced rapid fruit softening, increased AC-PG (polygalacturonase) and AC-EXP (expansin) mRNA accumulation, and stimulated an increase in the soluble solid concentration (SSC) and a decrease in titratable acidity (TA). After 3 d exposure to propylene, ethylene production and AC-PL (pectate lyase) mRNA accumulation were observed. 1-MCP treatment after 24 h exposure to propylene eliminated AC-PG mRNA accumulation and suppressed continued changes in SSC and TA. Application of 1-MCP at the start of the treatment, followed by continuous propylene exposure, markedly delayed fruit softening, and the expression of the cell wall-modifying genes, and changes in the SSC and TA, indicating that kiwifruit become insensitive to ethylene at least for 3 d following 1-MCP exposure. Surprisingly, significant fruit softening, mRNA accumulation of AC-PG, AC-PL, and AC-EXP, and decreased TA were observed without ethylene production in intact fruit stored at low temperature for 1 month, but not in fruit stored at room temperature. Repeated 1-MCP treatments (twice a week) failed to inhibit the changes that occurred in low temperature storage. These observations indicate that low temperature modulates the ripening of kiwifruit in an ethylene-independent manner, suggesting that kiwifruit ripening is inducible by either ethylene or low temperature signals.
Collapse
|
282
|
Ju C, Chang C. Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AOB PLANTS 2012; 2012:pls031. [PMID: 23119138 PMCID: PMC3485614 DOI: 10.1093/aobpla/pls031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 05/21/2023]
Abstract
The gaseous plant hormone ethylene plays critical roles in plant responses to environmental and endogenous signals that modulate growth and development. Over the past 25 years, great progress has been made in elucidating the ethylene signalling pathway. Genetic studies in Arabidopsis thaliana have identified key components of the pathway, and subcellular localization studies have shown that most of these components, other than transcription factors and protein turnover machinery, are associated with or lie within the endoplasmic reticulum (ER) membrane. The ethylene receptors are found in high-molecular-mass protein complexes and interact with the CTR1 serine/threonine protein kinase and the genetically downstream EIN2 Nramp-like protein. To more fully understand the ethylene signalling pathway, recent research has focused on examining the molecular connections between these components and how they are regulated. Here, we review recent advances and remaining gaps in our understanding of the early steps in the ethylene signalling pathway taking place at the ER.
Collapse
|
283
|
Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 2011; 31:118-28. [PMID: 22198202 DOI: 10.1016/j.biotechadv.2011.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022]
Abstract
Plant stress tolerance depends on many factors among which signaling by mitogen-activated protein-kinase (MAPK) modules plays a crucial role. Reversible phosphorylation of MAPKs, their upstream activators and downstream targets such as transcription factors can trigger a myriad of transcriptomic, cellular and physiological responses. Genetic manipulation of abundance and/or activity of some of these modular MAPK components can lead to better stress tolerance in Arabidopsis and crop plant species such as tobacco and cereals. The main focus of this review is devoted to the MAPK-related signaling components which show the most promising biotechnological potential. Additionally, recent studies identified MAPK components to be involved both in plant development as well as in stress responses, suggesting that these processes are tightly linked in plants.
Collapse
Affiliation(s)
- Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
284
|
Trivellini A, Ferrante A, Vernieri P, Serra G. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5437-52. [PMID: 21841180 PMCID: PMC3223042 DOI: 10.1093/jxb/err218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/23/2011] [Accepted: 06/15/2011] [Indexed: 05/04/2023]
Abstract
The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style-stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l(-1) methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style-stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style-stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | - Antonio Ferrante
- Department of Plant Production, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Vernieri
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | | |
Collapse
|
285
|
Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H, Huang R. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:88-99. [PMID: 21645149 DOI: 10.1111/j.1365-313x.2011.04670.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormones abscisic acid (ABA) and ethylene are known to play multiple roles in plant development and stress responses. Ethylene biosynthesis is affected by several factors including drought, cold and the phytohormone auxin, although the role of ABA is unclear. In this work ABA-responsive mutants were screened and a bZIP transcription factor HY5 was identified as a negative regulator of ethylene biosynthesis via modulation of the expression of the ethylene biosynthesis genes ACS2 and ACS5. Members of the ethylene response factor (ERF) family of transcriptional repressors in Arabidopsis have been shown to modulate ABA responses and three ERF members were found to carry putative HY5-binding cis-acting elements. Analyses with biochemical and molecular approaches revealed that HY5 specifically binds to the G-box region of the AtERF11 promoter to activate its transcription. We further demonstrate that AtERF11, which contains a repressor motif at its C-terminal, interacts with the dehydration-responsive element in the ACS2/5 promoters, to repress its expression, resulting in decreased ethylene biosynthesis. Moreover, an AtERF11 knockout mutant showed increased levels of ACS2/5 expression and ethylene emission, while treatment with ABA greatly suppressed ACS5 transcripts but not ACS2 expression and the ethylene content, indicating that AtERF11 is a key negative regulator for ABA-mediated control of ethylene synthesis. In addition, in ethylene over-producer mutants, ABA treatment was shown to suppress ACS5 transcripts and ethylene content, thereby affecting growth and development. Based on these data, in this research we present a model suggesting that the HY5-AtERF11 regulon is a key factor modulating ABA-regulated ethylene biosynthesis.
Collapse
Affiliation(s)
- Zhuofu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
286
|
Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1678-92. [PMID: 21631530 DOI: 10.1111/j.1365-3040.2011.02363.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ethylene signalling regulates plant growth and development. However, its roles in salt stress response are less known. Here we studied functions of EIN2, a central membrane protein of ethylene signalling, and its interacting protein ECIP1 in salt stress responses. Mutation of EIN2 led to extreme salt sensitivity as revealed by phenotypic and physiological changes, and overexpression of C-terminus of EIN2 suppressed salt sensitivity in ein2-5, indicating that EIN2 is required for salt tolerance. Downstream components EIN3 and EIL1 are also essential for salt tolerance because ein3-1eil1-1 double mutant showed extreme salt-sensitive phenotype. A MA3 domain-containing protein ECIP1 was further identified to interact with EIN2 in yeast two-hybrid assay and GST pull-down assay. Loss-of-function of ECIP1 resulted in enhanced ethylene response but altered salt response during seed germination and plant growth. Double mutant analysis revealed that ein2-1 was epistatic to ecip1, and ecip1 mutation partially suppressed ethylene-insensitivity of etr2-1 and ein4-1. These studies strengthen that interactions between ECIP1 and EIN2 or ethylene receptors regulate ethylene response and stress response.
Collapse
Affiliation(s)
- Gang Lei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Zhu X, Wang A, Zhu S, Zhang L. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1634-1640. [PMID: 21511361 DOI: 10.1016/j.jplph.2011.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 03/20/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon.
Collapse
Affiliation(s)
- Xiangfei Zhu
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | |
Collapse
|
288
|
Ish-Shalom M, Dahan Y, Maayan I, Irihimovitch V. Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:931-6. [PMID: 21676621 DOI: 10.1016/j.plaphy.2011.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/23/2011] [Indexed: 05/08/2023]
Abstract
We isolated and characterized a mango (Mangifera indica L.) cDNA homolog of the ethylene receptor gene ERS1, designated MiERS1. Genomic Southern blot analysis suggested the existence of a second gene with homology to MiERS1. Spatial and temporal expression patterns of MiERS1 were first studied during fruitlet drop and compared with those of a previously identified MiETR1 gene that encodes an ETR1-type ethylene receptor. Experiments were conducted on developing fruitlet explants in which fruitlet abscission was induced by ethephon treatment. Northern analysis revealed a notable increase in MiERS1 mRNA levels in the fruitlet's activated abscission zone within 24 h of ethephon application, followed by a decreasing pattern 48 h post-treatment. A transient, albeit lesser, increase in MiERS1 mRNA levels was also observed in treated fruitlet seed and mesocarp tissues. In contrast, in the abscission zone, accumulation of MiETR1 transcript remained unchanged; a temporal increase in MiETR1 transcript level was observed in the fruitlet mesocarp, whereas in the seed, MiETR1 expression had already dropped by 24 h. Expression profiles of MiERS1 and MiETR1 were then studied during fruit ripening. In agreement with a previous study and coinciding with the climacteric rise in ethylene production, RNA blot analysis revealed that during fruit ripening, MiETR1 mRNA level increases in both mesocarp and seed tissues. Unexpectedly, however, in those same tissues, MiERS1 transcript accumulation was barely detected. Collectively, our data highlight MiERS1's possible specific function in regulating fruitlet abscission rather than fruit ripening.
Collapse
Affiliation(s)
- Mazal Ish-Shalom
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan 50250, Israel
| | | | | | | |
Collapse
|
289
|
Zhao Q, Guo HW. Paradigms and paradox in the ethylene signaling pathway and interaction network. MOLECULAR PLANT 2011; 4:626-34. [PMID: 21690206 DOI: 10.1093/mp/ssr042] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, EIL1, EIN2, ETR2, EBF1/EBF2, and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/EIL1 act as a convergence point in the ethylene-initiated signaling network.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
290
|
Cools K, Chope GA, Hammond JP, Thompson AJ, Terry LA. Ethylene and 1-methylcyclopropene differentially regulate gene expression during onion sprout suppression. PLANT PHYSIOLOGY 2011; 156:1639-52. [PMID: 21593215 PMCID: PMC3135958 DOI: 10.1104/pp.111.174979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L(-1) ethylene or 1 μL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.
Collapse
|
291
|
Kim H, Helmbrecht EE, Stalans MB, Schmitt C, Patel N, Wen CK, Wang W, Binder BM. Ethylene receptor ETHYLENE RECEPTOR1 domain requirements for ethylene responses in Arabidopsis seedlings. PLANT PHYSIOLOGY 2011; 156:417-29. [PMID: 21386032 PMCID: PMC3091048 DOI: 10.1104/pp.110.170621] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/05/2011] [Indexed: 05/19/2023]
Abstract
Ethylene influences many processes in Arabidopsis (Arabidopsis thaliana) through the action of five receptor isoforms. We used high-resolution, time-lapse imaging of dark-grown Arabidopsis seedlings to better understand the roles of each isoform in the regulation of growth in air, ethylene-stimulated nutations, and growth recovery after ethylene removal. We found that ETHYLENE RECEPTOR1 (ETR1) is both necessary and sufficient for nutations. Transgene constructs in which the ETR1 promoter was used to drive expression of cDNAs for each of the five receptor isoforms were transferred into etr1-6;etr2-3;ein4-4 triple loss-of-function mutants that have constitutive growth inhibition in air, fail to nutate in ethylene, and take longer to recover a normal growth rate when ethylene is removed. The patterns of rescue show that ETR1, ETR2, and ETHYLENE INSENSITIVE4 (EIN4) have the prominent roles in rapid growth recovery after removal of ethylene whereas ETR1 was the sole isoform that rescued nutations. ETR1 histidine kinase activity and phosphotransfer through the receiver domain are not required to rescue nutations. However, REVERSION TO SENSITIVITY1 modulates ethylene-stimulated nutations but does not modulate the rate of growth recovery after ethylene removal. Several chimeric receptor transgene constructs where domains of EIN4 were swapped into ETR1 were also introduced into the triple mutant. The pattern of phenotype rescue by the chimeric receptors used in this study supports a model where a receptor with a receiver domain is required for normal growth recovery and that nutations specifically require the full-length ETR1 receptor.
Collapse
|
292
|
Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development. ACTA ACUST UNITED AC 2011; 23:301-13. [PMID: 20390430 DOI: 10.1007/s00497-010-0140-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/25/2010] [Indexed: 01/17/2023]
Abstract
Ethylene is an essential regulator of flower development in Cucurbita pepo, controlling the sexual expression, and the differentiation and maturation of floral organs. To study the action mechanism of ethylene during the male and female flower development, we have identified two CTR1 homologues from C. pepo, CpCTR1 and CpCTR2, and analysed their expressions during female and male flower development and in response to external treatments with ethylene. CpCTR1 and CpCTR2 share a high homology with plant CTR1-like kinases, but differ from other related kinases such as the Arabidopsis EDR1 and the tomato LeCTR2. The C-terminal ends of both CpCTR1 and CpCTR2 have all the conserved motifs of Ser/Thr kinase domains, including the ATP-binding signature and the protein kinase active site consensus sequence, which suggests that CpCTR1 and CpCTR2 could have the same function as CTR1 in ethylene signalling. The transcripts of both genes were detected in different organs of the plant, including roots, leaves and shoots, but were mostly accumulated in mature flowers. During the development of male and female flowers, CpCTR1 and CpCTR2 expressions were concomitant with ethylene production, which indicates that both genes could be upregulated by ethylene, at least in flowers. Moreover, external treatments with ethylene, although did not alter the expression of these two genes in seedlings and leaves, were able to upregulate their expression in flowers. In the earlier stages of flower development, when ethylene production is very low, the expression of CpCTR1 and CpCTR2 is higher in male floral organs, which agrees with the role of these genes as negative regulators of ethylene signalling, and explain the lower ethylene sensitivity of male flowers in comparison with female flowers. The function of the upregulation of these two genes in later stages of female flower development, when the production of ethylene is also increased, is discussed.
Collapse
|
293
|
Lei M, Zhu C, Liu Y, Karthikeyan AS, Bressan RA, Raghothama KG, Liu D. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:1084-1095. [PMID: 21118263 DOI: 10.1111/j.1469-8137.2010.03555.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. • The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. • hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. • These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses.
Collapse
Affiliation(s)
- Mingguang Lei
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuanmei Zhu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Stress Genomics, King Abdullah University for Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Division of Applied Life Sciences, WCU Program, Gyeongsang National University, Jinju, 660-701, Korea
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
294
|
The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. Journal of Food Science and Technology 2011; 49:1-21. [PMID: 23572821 DOI: 10.1007/s13197-011-0293-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
The process of fruit ripening is normally viewed distinctly in climacteric and non-climacteric fruits. But, many fruits such as guava, melon, Japanese plum, Asian pear and pepper show climacteric as well as non-climacteric behaviour depending on the cultivar or genotype. Investigations on in planta levels of CO2 and ethylene at various stages of fruits during ripening supported the role and involvement of changes in the rate of respiration and ethylene production in non-climacteric fruits such as strawberry, grapes and citrus. Non-climacteric fruits are also reported to respond to the exogenous application of ethylene. Comparative analysis of plant-attached and plant-detached fruits did not show similarity in their ripening behaviour. This disparity is being explained in view of 1. Hypothetical ripening inhibitor, 2. Differences in the production, release and endogenous levels of ethylene, 3. Sensitivity of fruits towards ethylene and 4. Variations in the gaseous microenvironment among fruits and their varieties. Detailed studies on genetic and inheritance patterns along with the application of '-omics' research indicated that ethylene-dependent and ethylene-independent pathways coexist in both climacteric and non-climacteric fruits. Auxin levels also interact with ethylene in regulating ripening. These findings therefore reveal that the classification of fruits based on climacteric rise and/or ethylene production status is not very distinct or perfect. However, presence of a characteristic rise in CO2 levels and a burst in ethylene production in some non-climacteric fruits as well as the presence of system 2 of ethylene production point to a ubiquitous role for ethylene in fruit ripening.
Collapse
|
295
|
Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:317-43. [PMID: 21663438 DOI: 10.1146/annurev-phyto-073009-114447] [Citation(s) in RCA: 1087] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.
Collapse
|
296
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
297
|
Mayerhofer H, Mueller-Dieckmann C, Mueller-Dieckmann J. Cloning, expression, purification and preliminary X-ray analysis of the protein kinase domain of constitutive triple response 1 (CTR1) from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:117-20. [PMID: 21206040 PMCID: PMC3079988 DOI: 10.1107/s1744309110047640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022]
Abstract
Ethylene, a gaseous plant hormone, is perceived by a group of membrane-bound receptors. Constitutive triple response 1 (CTR1) from Arabidopsis thaliana directly interacts with ethylene receptors and thus links signal reception to the intracellular signalling pathway. The C-terminal protein kinase domain of CTR1 has been crystallized in its wild-type form and as a kinase-dead mutant. The wild-type crystals diffracted X-ray radiation to 3 Å resolution and the crystals of the kinase-dead mutant diffacted to 2.5 Å resolution. The crystals belonged to space groups P4(1)2(1)2 and P4(2)2(1)2, respectively, with two molecules per asymmetric unit in both cases.
Collapse
Affiliation(s)
- Hubert Mayerhofer
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | |
Collapse
|
298
|
Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 2010; 285:40706-13. [PMID: 20952388 PMCID: PMC3003370 DOI: 10.1074/jbc.m110.146605] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/11/2010] [Indexed: 11/06/2022] Open
Abstract
The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1-349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (K(d), 117 nM) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (K(d), 1.38 μM). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.
Collapse
Affiliation(s)
- Chun-Hai Dong
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mihue Jang
- the Division of Integrative Biosciences and Biotechnology and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Korea, and
| | - Benjamin Scharein
- the Department of Plant Biochemistry, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Anuschka Malach
- the Department of Plant Biochemistry, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Maximo Rivarola
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Jeff Liesch
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Georg Groth
- the Department of Plant Biochemistry, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Inhwan Hwang
- the Division of Integrative Biosciences and Biotechnology and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Korea, and
| | - Caren Chang
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
299
|
Chen JF, Gallie DR. Analysis of the functional conservation of ethylene receptors between maize and Arabidopsis. PLANT MOLECULAR BIOLOGY 2010; 74:405-21. [PMID: 20835883 PMCID: PMC2952764 DOI: 10.1007/s11103-010-9686-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 08/23/2010] [Indexed: 05/20/2023]
Abstract
Ethylene, a regulator of plant growth and development, is perceived by specific receptors that act as negative regulators of the ethylene response. Five ethylene receptors, i.e., ETR1, ERS1, EIN4, ETR2, and ERS2, are present in Arabidopsis and dominant negative mutants of each that confer ethylene insensitivity have been reported. In contrast, maize contains just two types of ethylene receptors: ZmERS1, encoded by ZmERS1a and ZmERS1b, and ZmETR2, encoded by ZmETR2a and ZmETR2b. In this study, we introduced a Cys to Tyr mutation in the transmembrane domain of ZmERS1b and ZmETR2b that is present in the etr1-1 dominant negative mutant and expressed each protein in Arabidopsis. Mutant Zmers1b and Zmetr2b receptors conferred ethylene insensitivity and Arabidopsis expressing Zmers1b or Zmetr2b were larger and exhibited a delay in leaf senescence characteristic of ethylene insensitive Arabidopsis mutants. Zmers1b and Zmetr2b were dominant and functioned equally well in a hemizygous or homozygous state. Expression of the Zmers1b N-terminal transmembrane domain was sufficient to exert dominance over endogenous Arabidopsis ethylene receptors whereas the Zmetr2b N-terminal domain failed to do so. Neither Zmers1b nor Zmetr2b functioned in the absence of subfamily 1 ethylene receptors, i.e., ETR1 and ERS1. These results suggest that Cys65 in maize ZmERS1b and ZmETR2b plays the same role that it does in Arabidopsis receptors. Moreover, the results demonstrate that the mutant maize ethylene receptors are functionally dependent on subfamily 1 ethylene receptors in Arabidopsis, indicating substantial functional conservation between maize and Arabidopsis ethylene receptors despite their sequence divergence.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| | - Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| |
Collapse
|
300
|
Adams E, Turner J. COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4373-86. [PMID: 20699268 PMCID: PMC2955748 DOI: 10.1093/jxb/erq240] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/25/2010] [Accepted: 07/13/2010] [Indexed: 05/17/2023]
Abstract
Plant response to stress is orchestrated by hormone signalling pathways including those activated by jasmonates (JAs) and by ethylene, both of which stunt root growth. COI1 is a JA receptor and is required for the known responses to this hormone. It was observed that the coi1 mutant, which is largely unresponsive to growth inhibition by JAs, was also partially unresponsive to growth inhibition by ethylene and by its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the light but not in the dark. Although COI1 was required for this response to ACC, other components of the JA signal perception pathway were not. Mutants selected for insensitivity to ethylene, including etr1, ein2, and ein3, showed greater ACC-induced root growth inhibition in the light than in the dark. However, the double mutants etr1;coi1, ein2;coi1, and ein3;coi1, and coi1 seedlings treated with silver ions to block the ethylene receptors showed almost complete unresponsiveness to ACC-induced root growth inhibition in the light. The light requirement for the COI1-mediated growth inhibition by ACC was for long photoperiods, and the ACC response was not abolished by mutations in the known photoreceptors. The complementation assay indicated that SCF complex assembly was not required for COI1 function in the ACC response, in contrast to the JA response. It is concluded that COI1 is required for the light-dependent, JA-independent, root growth inhibition by ethylene.
Collapse
Affiliation(s)
- Eri Adams
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|