251
|
Tucholski J, Johnson GVW. Tissue transglutaminase directly regulates adenylyl cyclase resulting in enhanced cAMP-response element-binding protein (CREB) activation. J Biol Chem 2003; 278:26838-43. [PMID: 12743114 DOI: 10.1074/jbc.m303683200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue transglutaminase (tTG) is present in the human nervous system and is predominantly localized to neurons. Treatment of human neuroblastoma SH-SY5Y cells with retinoic acid results in increased tTG expression, which is both necessary and sufficient for differentiation. The goal of the present study was to determine whether tTG modulates the activation of the cyclic AMP-response element (CRE)-binding protein, CREB, an event that likely plays a central role in the differentiation of SH-SY5Y cells. SH-SY5Y cells stably transfected with active wild type tTG, tTG without transamidating activity (C277S), an antisense tTG construct that depleted the endogenous levels of tTG, or vector only were used for the study. Treatment with forskolin, an adenylyl cyclase activator, increased that activation-associated phosphorylation of CREB, which was prolonged by tTG overexpression. CRE-reporter gene activity was also significantly elevated in the tTG cells compared with the other cells. The enhancement of CREB phosphorylation/activation in the tTG cells is likely due to the fact that tTG significantly potentiates cAMP production, and our findings indicate that tTG enhances adenylyl cyclase activity by modulating the conformation state of adenylyl cyclase. This is the first study to provide evidence of the mechanism by which tTG may contribute to neuronal differentiation.
Collapse
Affiliation(s)
- Janusz Tucholski
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | |
Collapse
|
252
|
Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 2003. [PMID: 12805292 DOI: 10.1523/jneurosci.23-11-04519.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Active CREB (cAMP responsive element-binding protein) transcription factor is crucial for neuronal survival. Several members of the CREM/ICER (cAMP responsive element modulator/inducible cAMP early repressor) protein family may act as endogenous CREB antagonists. However, their involvement in a process of programmed cell death remains unexplored. Here we report that ICER may play such a role in neuronal apoptosis because it is upregulated in apoptotic neurons in vitro, and overexpression of ICER, delivered in adenoviral vector, evokes programmed cell death of three different kinds of cultured neurons, namely those derived from hippocampal dentate gyrus, cerebral cortex, and superior cervical ganglion. Reporter gene assay with a promoter containing a CREB-responsive sequence revealed a decrease in both basal and induced CRE-dependent gene expression in neurons overexpressing ICER. Finally, the level of expression of the anti-apoptotic protein Bcl-2, a well known CREB target, was markedly diminished in ICER-treated neurons. We suggest that the naturally occurring CREB functional antagonist ICER may have a specific function in programmed cell death of neurons, probably by silencing the expression of anti-apoptotic genes.
Collapse
|
253
|
Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 2003; 17:1575-80. [PMID: 12842910 PMCID: PMC196130 DOI: 10.1101/gad.1097103] [Citation(s) in RCA: 433] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 05/13/2003] [Indexed: 12/17/2022]
Abstract
The incretin hormone GLP1 promotes islet-cell survival via the second messenger cAMP. Here we show that mice deficient in the activity of CREB, caused by expression of a dominant-negative A-CREB transgene in pancreatic beta-cells, develop diabetes secondary to beta-cell apoptosis. Remarkably, A-CREB severely disrupted expression of IRS2, an insulin signaling pathway component that is shown here to be a direct target for CREB action in vivo. As induction of IRS2by cAMP enhanced activation of the survival kinase Akt in response to insulin and IGF-1, our results demonstrate a novel mechanism by which opposing pathways cooperate in promoting cell survival.
Collapse
Affiliation(s)
- Ulupi S Jhala
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
An important milestone in brain development is the transition of neuroprogenitor cells to postmitotic neurons. We report that the bZIP transcription factor ATF5 plays a major regulatory role in this process. In developing brain ATF5 expression is high within ventricular zones containing neural stem and progenitor cells and is undetectable in postmitotic neurons. In attached clonal neurosphere cultures ATF5 is expressed by neural stem/progenitor cells and is undetectable in tau-positive neurons. In PC12 cell cultures nerve growth factor (NGF) dramatically downregulates endogenous ATF5 protein and transcripts, whereas exogenous ATF5 suppresses NGF-promoted neurite outgrowth. Such inhibition requires the repression of CRE sites. In contrast, loss of function conferred by dominant-negative ATF5 accelerates NGF-promoted neuritogenesis. Exogenous ATF5 also suppresses, and dominant-negative ATF5 and a small-interfering RNA targeted to ATF5 promote, neurogenesis by cultured nestin-positive telencephalic cells. These findings indicate that ATF5 blocks the differentiation of neuroprogenitor cells into neurons and must be downregulated to permit this process to occur.
Collapse
|
255
|
Abstract
The nerve growth factor (NGF) family of neurotrophins binds two classes of cell-surface receptors, trk receptor tyrosine kinases and the shared p75 receptor. Rapid internalization and retrograde trafficking of neurotrophin-trk complexes have been demonstrated in a number of systems and are thought to transmit trophic signals from terminals to neuronal cell bodies. In contrast, the internalization and trafficking of neurotrophin-p75 complexes are not well understood. In this study, we used biotinylated NGF and a fluorescent-labeled anti-p75 antibody to follow the kinetics and route of ligand-induced internalization of the p75 receptor in cycling and differentiated PC12 cells. Binding of neurotrophins to p75 induced internalization at a rate approximately three times slower than that of transferrin and NGF-TrkA complexes in the same cells. The ligand-p75 complex was internalized via clathrin-coated pits into early endosomes and eventually accumulated in recycling endosomes in the cell body and vesicles colabeled by the cholera toxin B-subunit in the growth cones. Both internalized ligand and p75 were protected from proteolytic degradation and accumulated in vesicles that did not undergo acidification. Finally, NGF induced endosomal association of p75 and its MAGE interactors, necdin and NRAGE. These data suggest that signaling endosomes containing activated p75 are involved in neurotrophin signaling, and that such endosomes may be temporally and spatially distinct from those containing trk receptors.
Collapse
|
256
|
Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A. MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol Cell Biol 2003; 23:2893-906. [PMID: 12665587 PMCID: PMC152540 DOI: 10.1128/mcb.23.8.2893-2906.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The induction of RB gene transcription by MyoD is a key event in the process of skeletal muscle differentiation, because elevated levels of the retinoblastoma protein are essential for myoblast cell cycle arrest as well as for the terminal differentiation and survival of postmitotic myocytes. We previously showed that MyoD stimulates transcription from the RB promoter independently of direct binding to promoter sequences. Here we demonstrate that stimulation by MyoD requires a cyclic AMP-responsive element (CRE) in the RB promoter, bound by the transcription factor CREB in differentiating myoblasts. We also show that both the CREB protein level and the level of phosphorylation of the CREB protein at Ser-133 rapidly increase at the onset of muscle differentiation and that both remain high throughout the myogenic process. Biochemical and functional evidence indicates that in differentiating myoblasts, MyoD becomes associated with CREB and is targeted to the RB promoter CRE in a complex also containing the p300 transcriptional coactivator. The resulting multiprotein complex stimulates transcription from the RB promoter. These and other observations strongly suggest that MyoD functions by promoting the efficient recruitment of p300 by promoter-bound, phosphorylated CREB.
Collapse
|
257
|
An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP. J Neurosci 2003. [PMID: 12574406 DOI: 10.1523/jneurosci.23-03-00777.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We showed previously that cAMP is a survival-promoting stimulus for cultured postnatal rat spiral ganglion neurons (SGNs) and that depolarization promotes SGN survival in part via recruitment of cAMP signaling. We here investigate the subcellular locus of cAMP prosurvival signaling. Transfection of GPKI, a green fluorescent protein (GFP)-tagged cAMP-dependent protein kinase (PKA) inhibitor, inhibits the ability of the permeant cAMP analog cpt-cAMP [8-(4-chlorophenylthio)-cAMP] to promote survival, indicating that PKA activity is necessary. Transfection of GFP-tagged PKA (GPKA) is sufficient to promote SGN survival, but restriction of GPKA to the nucleus by addition of a nuclear localization signal (GPKAnls) almost completely abrogates its prosurvival effect. In contrast, GPKA targeted to the extranuclear cytoplasm by addition of a nuclear export signal (GPKAnes) promotes SGN survival as effectively as does GPKA. Moreover, GPKI targeted to the nucleus lacks inhibitory effect on SGN survival attributable to cpt-cAMP or depolarization. These data indicate an extranuclear target of PKA for promotion of neuronal survival. Consistent with this, we find that dominant-inhibitory CREB mutants inhibit the prosurvival effect of depolarization but not that of cpt-cAMP. SGN survival is compromised by overexpression of the proapoptotic regulator Bad, previously shown to be phosphorylated in the cytoplasm by PKA. This Bad-induced apoptosis is prevented by cpt-cAMP or by cotransfection of GPKA or of GPKAnes but not of GPKAnls. Thus, cAMP prevents SGN death through a cytoplasmic as opposed to nuclear action, and inactivation of Bad proapoptotic function is a mechanism by which PKA can prevent neuronal death.
Collapse
|
258
|
Abstract
Ca(2+) entry through the NMDA subtype of glutamate receptors has the power to determine whether neurons survive or die. Too much NMDA receptor activity is harmful to neurons - but so is too little. Is it a case of too much or too little Ca(2+) influx causing cell death or do other factors, such as receptor location or receptor-associated proteins, play a role? Understanding the mechanisms behind this dichotomous signalling is an important area of molecular neuroscience with direct clinical implications.
Collapse
Affiliation(s)
- Giles E Hardingham
- Department of Preclinical Veterinary Sciences, Royal School of Veterinary Studies, Edinburgh University, Summerhall, UK.
| | | |
Collapse
|
259
|
Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK. Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 2003; 5:118-25. [PMID: 12545171 DOI: 10.1038/ncb916] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 11/14/2002] [Accepted: 12/09/2002] [Indexed: 11/09/2022]
Abstract
Fas (also known as CD95), a member of the tumour-necrosis receptor factor family of 'death receptors', can induce apoptosis or, conversely, can deliver growth stimulatory signals. Here we report that crosslinking Fas on primary sensory neurons induces neurite growth through sustained activation of the extracellular-signal regulated kinase (ERK) pathway and the consequent upregulation of p35, a mediator of neurite outgrowth. In addition, functional recovery after sciatic nerve injury is delayed in Fas-deficient lpr mice and accelerated by local administration of antibodies against Fas, which indicates that Fas engagement may contribute to nerve regeneration in vivo. Our findings define a role for Fas as an inducer of both neurite growth in vitro and accelerated recovery after nerve injury in vivo.
Collapse
Affiliation(s)
- Julie Desbarats
- Department of Physiology, McGill University, Montréal, Quebec, Canada, H3G 1Y6.
| | | | | | | | | | | |
Collapse
|
260
|
Barco A, Pittenger C, Kandel ER. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 2003; 7:101-14. [PMID: 12556206 DOI: 10.1517/14728222.7.1.101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The treatment of memory disorders, such as the gradual weakening of memory with age, the ravages of Alzheimer's disease and the cognitive deficits in various forms of mental retardation, may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. There is increasing interest in the possibility of pharmacologically enhancing learning and memory even in the absence of specific anatomically evident pathology. Substantial evidence in experimental systems ranging from molluscs to humans indicates that the cAMP response element binding protein (CREB) is a core component of the molecular switch that converts short- to long-term memory. Recent studies have greatly strengthened and refined our understanding of the role of CREB in learning and memory in mammals, in addition to providing greater insight into the molecular mechanisms of CREB regulation and function. This involvement of CREB and the upstream signalling pathways leading to its activation in learning-associated plasticity makes them attractive targets for drugs aimed at improving memory function, in both diseased and healthy individuals. However, CREB and its close relatives cAMP response element modulator and activating transcription factor-1 are ubiquitous proteins with several critical functions. This creates hurdles that the authors believe may limit the usefulness of CREB per se as a target for the development of memory-enhancing drugs, and focus on components of the upstream signalling pathways or on specific downstream targets will be required.
Collapse
Affiliation(s)
- Angel Barco
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | |
Collapse
|
261
|
Ciani E, Guidi S, Della Valle G, Perini G, Bartesaghi R, Contestabile A. Nitric oxide protects neuroblastoma cells from apoptosis induced by serum deprivation through cAMP-response element-binding protein (CREB) activation. J Biol Chem 2002; 277:49896-902. [PMID: 12368293 DOI: 10.1074/jbc.m206177200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells.
Collapse
Affiliation(s)
- Elisabetta Ciani
- Department of Biology, Luigi Galvani Interdepartmental Center, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
262
|
West AE, Griffith EC, Greenberg ME. Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 2002; 3:921-31. [PMID: 12461549 DOI: 10.1038/nrn987] [Citation(s) in RCA: 454] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anne E West
- Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
263
|
Hardingham GE, Bading H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:148-53. [PMID: 12445470 DOI: 10.1016/s1570-9639(02)00455-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electrical activation of hippocampal neurons can cause calcium influx through different entry sites which may specify nuclear signalling and induction of gene transcription and downstream physiological outputs. Genomic responses initiated by NMDA receptors (NMDARs) are critically dependent on whether synaptically or extrasynaptically located receptors are stimulated; calcium flux through synaptic NMDARs activates CREB whereas flux through extrasynaptic NMDARs triggers a CREB shut-off signal. Here we investigated the possibility that the coupling of extrasynaptic NMDARs to the CREB shut-off pathway is regulated during in vitro development. Cultured hippocampal neurons were analyzed after 7 or 12 days of in vitro culturing. We found that synaptic NMDAR activity induced CREB phosphorylation at day in vitro (DIV) 7 and DIV 12. In contrast, the extrasynaptic NMDAR-dependent CREB shut-off signal is developmentally regulated. At DIV 12 extrasynaptic NMDAR activation shuts down CREB and overrides the CREB-activating signal triggered by synaptic NMDAR activation. In contrast, at DIV 7 this shut off signal is absent; both synaptic and extrasynaptic NMDARs activate CREB function. Developmental changes in NMDAR signaling have been proposed to contribute to the emergence of glutamate excitotoxicity, which causes apoptosis or necrosis depending on the severity of the insult. Since CREB regulates a number of pro-survival genes, the emergence of this shut-off around DIV 7 may contribute to the increase in susceptibility of neurons to glutamate-induced neuropathology in vitro and in vivo during post-natal development.
Collapse
Affiliation(s)
- Giles E Hardingham
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, Edinburgh University, Summerhall, EH9 1QH, Edinburgh, UK
| | | |
Collapse
|
264
|
Wong RWC, Setou M, Teng J, Takei Y, Hirokawa N. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci U S A 2002; 99:14500-5. [PMID: 12391294 PMCID: PMC137912 DOI: 10.1073/pnas.222371099] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The kinesin superfamily proteins (KIFs) play essential roles in receptor transportation along the microtubules. KIF17 transports the N-methyl-d-aspartate receptor NR2B subunit in vitro, but its role in vivo is unknown. To clarify this role, we generated transgenic mice overexpressing KIF17 tagged with GFP. The KIF17 transgenic mice exhibited enhanced learning and memory in a series of behavioral tasks, up-regulated NR2B expression with the potential involvement of a transcriptional factor, the cAMP-dependent response element-binding protein, and increased phosphorylation of the cAMP-dependent response element-binding protein. Our results suggest that the motor protein KIF17 contributes to neuronal events required for learning and memory by trafficking fundamental N-methyl-d-aspartate-type glutamate receptors.
Collapse
Affiliation(s)
- Richard Wing-Chuen Wong
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
265
|
Abstract
Neuronal morphological differentiation is regulated by numerous polypeptide growth factors (neurotrophic factors). Recently, significant progress has been achieved in clarifying the roles of neurotrophins as well as glial cell line-derived neurotrophic factor family members in peripheral axon elongation during development. Additionally, advances have been made in defining the signal transduction mechanisms employed by these factors in mediating axon morphological responses. Several studies addressed the role of neurotrophic factors in regenerative axon growth and suggest that signaling mechanisms in addition to those triggered by receptor tyrosine kinases may be required for successful peripheral nervous system regeneration. Finally, recent investigations demonstrate that neurotrophic factors can enhance axon growth after spinal cord injuries.
Collapse
Affiliation(s)
- Annette Markus
- Neuroscience Center, Neuroscience Research Building, 103 Mason Farm Road Campus, Box 7250, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
266
|
Monti B, Marri L, Contestabile A. NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development. Eur J Neurosci 2002; 16:1490-8. [PMID: 12405962 DOI: 10.1046/j.1460-9568.2002.02232.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During both in vivo and in vitro development, cerebellar granule cells depend on the activity of the NMDA glutamate receptor subtype for survival and full differentiation. With the present results, we demonstrate that CREB activation, downstream of the NMDA receptor, is a necessary step to ensure survival of these neurons. The levels of CREB expression and activity increase progressively during the second week of postnatal cerebellar development and the phosphorylated form of CREB is localized selectively to cerebellar granule cells during the critical developmental stages examined. Chronically blocking the NMDA receptor through systemic administration of the competitive antagonist, CGP 39551, during the in vivo critical developmental period, between 7-11 postnatal days, results in increased apoptotic elimination of differentiating granule neurons in the cerebellum [Monti & Contestabile, Eur. J. Neurosci., 12, 3117-3123 (2000)]. We report here that this event is accompanied by a significant decrease of CREB phosphorylation in the cerebellum of treated rat pups. When cerebellar granule neurons are explanted and maintained in dissociated cultures, the levels of CREB phosphorylation increase with differentiation, similar to that which happens during in vivo development. When granule cells are kept in non-trophic conditions, their viability is affected and both CREB phosphorylation and transcriptional activity are decreased significantly. The neuronal viability and the deficiency of CREB activity, are both rescued by the pharmacological activation of the NMDA receptor. These results provide good circumstantial evidence for a functional link between the NMDA receptor and CREB activity in promoting neuronal survival during development.
Collapse
Affiliation(s)
- Barbara Monti
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | |
Collapse
|
267
|
Vyas S, Biguet NF, Michel PP, Monaco L, Foulkes NS, Evan GI, Sassone-Corsi P, Agid Y. Molecular mechanisms of neuronal cell death: implications for nuclear factors responding to cAMP and phorbol esters. Mol Cell Neurosci 2002; 21:1-14. [PMID: 12359147 DOI: 10.1006/mcne.2002.1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic treatment with calcium ionophore A23187 in NGF-differentiated cells results in cell death that is time- and concentration-dependent. Additionally, PC12 cells codifferentiated with NGF and dBcAMP become dependent on these factors for survival and undergo apoptosis when both factors are withdrawn. We show that in both cases there is a prolonged induction of c-Fos which correlates with cell death. Its continual activation in PC12 cells overexpressing c-FosER results in caspase-3 cleavage and rapid cell death. Specific phosphorylation of CREB/CREM(tau) transactivators or their binding to CRE of c-fos was observed. Our results indicate that prolonged c-Fos induction activates p53. There is increased nuclear localization of p53, p21 and Bax levels are induced in NGF/dBcAMP-deprived c-FosER cells, and dominant negative p53 inhibits cell death induced either by serum deprivation or by c-Fos. Overall these data implicate AP-1 as a nuclear target of signal transduction pathways which plays a role in the activation of apoptosis.
Collapse
Affiliation(s)
- Sheela Vyas
- INSERM U497, ENS, 46, Rue d'Ulm, Paris 75005, France.
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
Collapse
Affiliation(s)
- Bonnie E Lonze
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
269
|
Stebbins M. CREB, the cell-death solution. Nat Rev Neurosci 2002. [DOI: 10.1038/nrn868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
270
|
|