251
|
Joshi NS, Kaech SM. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. THE JOURNAL OF IMMUNOLOGY 2008; 180:1309-15. [PMID: 18209024 DOI: 10.4049/jimmunol.180.3.1309] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune responses to infection are optimally designed to generate large numbers of effector T cells while simultaneously minimizing the collateral damage of their potentially lethal actions and generating memory T cells to protect against subsequent encounter with pathogens. Much remains to be discovered about how these equally essential processes are balanced to enhance health and longevity and, more specifically, what factors control effector T cell expansion, differentiation, and memory cell formation. The innate immune system plays a prominent role in the delicate balance of these decisions. Insights into these questions from recent work in the area of effector CD8 T cell differentiation will be discussed.
Collapse
Affiliation(s)
- Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | | |
Collapse
|
252
|
de Meis J, Ferreira LMS, Guillermo LVC, Silva EM, Dosreis GA, Lopes MF. Apoptosis differentially regulates mesenteric and subcutaneous lymph node immune responses to Trypanosoma cruzi. Eur J Immunol 2008; 38:139-46. [PMID: 18085669 DOI: 10.1002/eji.200737582] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infection with Trypanosoma cruzi causes expansion of subcutaneous (SLN) and atrophy of mesenteric (MLN) lymph nodes. Here we show that excision of MLN increased parasitemia in T. cruzi-infected mice. We then studied how apoptosis of MLN cells affects immune responses to infection. T cell apoptosis increased in the MLN compared to SLN in T. cruzi-infected mice. Absolute numbers of naïve T cells decreased, and activated T cells failed to accumulate in MLN during infection. In addition, activated T cells from MLN produced less IL-2, IFN-gamma, IL-4, and IL-10 than T cells from SLN. Treatment with IL-4 or with caspase-9 inhibitor increased the recovery of viable T cells in vitro. Treatment with caspase-9 inhibitor also increased the production of cytokines by MLN T cells from infected mice. Moreover, injection of a pan caspase inhibitor prevented MLN atrophy during T. cruzi infection. Caspase-9, but not caspase-8, inhibitor also reduced MLN atrophy and increased the recovery of naïve and activated T cells from MLN. These findings indicate that caspase-mediated apoptosis and defective cytokine production are implicated in MLN atrophy and affect immune responses to T. cruzi infection.
Collapse
Affiliation(s)
- Juliana de Meis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
253
|
Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH. 4-1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8252-63. [PMID: 18056369 DOI: 10.4049/jimmunol.179.12.8252] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During chronic infection, HIV-specific CD8 T cells exhibit progressive signs of functional impairment, attributed to persistent antigenic stimulation, up-regulation of the inhibitory receptor PD-1, and declining T cell help. Strategies that directly improve CD8 T cell function offer the potential of restoring immune control of HIV. Although PD-1 expression has been identified as a cause of functional impairment in HIV, in this study, PD-1 expression was observed on only a subfraction of HIV-specific CD8 T cells in a subfraction of donors, whereas HIV-specific CTL from all donors exhibited a limited repertoire of effector functions. CD137L (4-1BBL) is emerging as an important stimulator of antiviral CD8 T cell responses. Regardless of the PD-1 status of the donors, here we show that 4-1BBL, when combined with CD80 or CD70, expands a population of Ag-specific CD8 T cells expressing multiple markers of effector function, from the functionally impaired starting population. In contrast, CD70 in combination with CD80 was insufficient for these effects and the related TNF family ligand, LIGHT, had negligible activity. The unique contribution of 4-1BBL correlated with down-regulation of the proapoptotic molecule Bim in activated CD8 T cells. Decreasing the level of TNFR-associated factor 1 in T cells using small interfering RNA resulted in increased levels of Bim in the 4-1BBL-stimulated T cells. Thus, costimulation via 4-1BBL leads to TNFR-associated factor 1-dependent Bim down-modulation in T cells, resulting in increased T cell expansion. These studies identify 4-1BBL as a critical component in therapeutic strategies aimed at improving CD8 T cell function.
Collapse
Affiliation(s)
- Chao Wang
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
254
|
Abstract
The ability to develop and sustain populations of memory T cells after infection or immunization is a hallmark of the adaptive immune response and a basis for protective vaccination against infectious disease. Technical advances that allow direct ex vivo identification and characterization of antigen-specific CD8+ T cells at various stages of the response to infection or vaccination in mouse models have fuelled efforts to characterize the factors that control memory CD8+ T-cell generation. Here, we dissect the input signals that shape the characteristics of the memory CD8+ T-cell response and discuss how manipulation of these signals has the potential to reshape CD8+ T-cell memory and improve the efficacy of vaccination.
Collapse
|
255
|
BH3-only protein Puma contributes to death of antigen-specific T cells during shutdown of an immune response to acute viral infection. Proc Natl Acad Sci U S A 2008; 105:3035-40. [PMID: 18287039 DOI: 10.1073/pnas.0706913105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During acute T cell immune responses to viral infection, antigen-specific T cells first proliferate and differentiate into effector cells, but after pathogen clearance most are deleted by apoptosis. The developmentally programmed death of antigen-specific T cells during shutdown of a T cell response is mediated by the Bcl-2-regulated apoptotic pathway and partly depends on the proapoptotic BH3-only protein Bim. However, loss of Bim enhanced survival of antigen-activated T cells to a lesser extent than Bcl-2 overexpression, indicating that other proapoptotic factors must contribute to T cell killing. In this study, we investigated the contributions of several BH3-only proteins to the shutdown of an acute T cell immune response in vivo. After infection with human herpes simplex virus (HSV-1), mice lacking Noxa, Bid, or Bad had a normal increase and subsequent decline in the numbers of antigen-specific CD8(+) T cells. In contrast, Puma-deficient mice showed an abnormally prolonged persistence of antigen-specific CD8(+) T cells in the spleen, associated with enhanced in vitro survival of these cells in the absence of cytokines. Puma was dispensable for viral clearance and also did not play a role in proliferation or activation of HSV-1-specific CD8(+) T cells in vivo. Collectively, these findings show that Puma contributes to the death of antigen-specific T cells during shutdown of an immune response.
Collapse
|
256
|
Wang Z, Zhang B, Yang L, Ding J, Ding HF. Constitutive production of NF-kappaB2 p52 is not tumorigenic but predisposes mice to inflammatory autoimmune disease by repressing Bim expression. J Biol Chem 2008; 283:10698-706. [PMID: 18281283 DOI: 10.1074/jbc.m800806200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal development of the immune system requires regulated processing of NF-kappaB2 p100 to p52, which activates NF-kappaB2 signaling. Constitutive production of p52 has been suggested as a major mechanism underlying lymphomagenesis induced by NF-kappaB2 mutations, which occur recurrently in a variety of human lymphoid malignancies. To test the hypothesis, we generated transgenic mice with targeted expression of p52 in lymphocytes. In contrast to their counterparts expressing the tumor-derived NF-kappaB2 mutant p80HT, which develop predominantly B cell tumors, p52 transgenic mice are not prone to lymphomagenesis. However, they are predisposed to inflammatory autoimmune disease characterized by multiorgan infiltration of activated lymphocytes, high levels of autoantibodies in the serum, and immune complex glomerulonephritis. p52, but not p80HT, represses Bim expression, leading to defects in apoptotic processes critical for elimination of autoreactive lymphocytes and control of immune response. These findings reveal distinct signaling pathways for actions of NF-kappaB2 mutants and p52 and suggest a causal role for sustained NF-kappaB2 activation in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
257
|
|
258
|
Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008; 28:197-205. [PMID: 18275830 PMCID: PMC2270348 DOI: 10.1016/j.immuni.2007.12.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/09/2007] [Accepted: 12/10/2007] [Indexed: 12/31/2022]
Abstract
Apoptotic death of T lymphocytes is critical for shutdown of immune responses and hemopoietic cell homeostasis. Both death receptor (Fas) activation and mitochondrial apoptosis triggered by the BH3-only protein Bim have been implicated in the killing of antigen-stimulated T cells. We examined mice lacking the gene encoding Bim (Bcl2l11) and with the inactivating lpr mutation in the gene encoding Fas (Fas), designated Bcl2l11(-/-)Fas(lpr/lpr) mice. Shutdown of an acute T cell response to herpes simplex virus involved only Bim with no contribution by Fas, whereas both pathways synergized in killing antigen-stimulated T cells in chronic infection with murine gamma-herpesvirus. Bcl2l11(-/-)Fas(lpr/lpr) mice developed remarkably enhanced and accelerated fatal lymphadenopathy and autoimmunity compared to mice lacking only one of these apoptosis inducers. These results identify critical overlapping roles for Fas and Bim in T cell death in immune response shutdown and prevention of immunopathology and thereby resolve a long-standing controversy.
Collapse
Affiliation(s)
- Peter D. Hughes
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Gabrielle T. Belz
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050, Australia
| | - Karen A. Fortner
- Immunobiology Program, The University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | - Ralph C. Budd
- Immunobiology Program, The University of Vermont College of Medicine, Burlington, VT 05405-0068, USA
| | - Andreas Strasser
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050, Australia
| | - Philippe Bouillet
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050, Australia
| |
Collapse
|
259
|
Primer: making sense of T-cell memory. ACTA ACUST UNITED AC 2008; 4:43-9. [PMID: 18172448 DOI: 10.1038/ncprheum0671] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/17/2007] [Indexed: 11/08/2022]
Abstract
Protective memory is a key property of the immune system. Pathogen-associated molecular patterns of invading organisms deliver signals to pattern-recognition receptors that activate the innate immune system. Ligation of the T-cell receptor by peptides bound to MHC antigens and presented by dendritic cells, together with signals produced by the activated innate immune system, initiate T-cell responses. The nature of the T-cell response, consisting of phases of clonal expansion and contraction, and differentiation to effector and memory cells, however, is determined both by the properties of the antigen and the co-stimuli produced by the innate immune system. Short-lived effector and longer-lived memory T cells are generated during primary responses; after the death of most of the effectors, memory cells remain. Memory cells are heterogeneous in phenotype and function; subsets include the relatively quiescent central and more activated effector memory cells, as well as cells able to promote inflammation, help antibody production or regulate other immune responses. Understanding the properties of memory cells will help in the rational design of vaccines for 'difficult' organisms or cancer, as well as immunotherapies for autoimmune diseases.
Collapse
|
260
|
Clybouw C, E L Mchichi B, Hadji A, Portier A, Auffredou MT, Arnoult D, Leca G, Vazquez A. TGFβ-mediated apoptosis of Burkitt's lymphoma BL41 cells is associated with the relocation of mitochondrial BimEL. Oncogene 2008; 27:3446-56. [DOI: 10.1038/sj.onc.1211009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
261
|
T-cell development. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
262
|
Scheel-Toellner D, Raza K, Assi L, Pilling D, Ross EJ, Lee WY, Curnow SJ, Buckley CD, Akbar AN, Lord JM, Salmon M. Differential regulation of nuclear and mitochondrial Bcl-2 in T cell apoptosis. Apoptosis 2008; 13:109-17. [PMID: 17957472 PMCID: PMC2668593 DOI: 10.1007/s10495-007-0143-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated T cells require anti-apoptotic cytokines for their survival. The anti-apoptotic effects of these factors are mediated by their influence on the balance of expression and localisation of pro- and anti-apoptotic members of the Bcl-2 family. Among the anti-apoptotic Bcl-2 family members, the expression level of Bcl-2 itself and its interaction with the pro-apoptotic protein Bim are now regarded as crucial for the regulation of survival in activated T cells. We studied the changes in Bcl-2 levels and its subcellular distribution in relation to mitochondrial depolarisation and caspase activation in survival factor deprived T cells. Intriguingly, the total Bcl-2 level appeared to remain stable, even after caspase 3 activation indicated entry into the execution phase of apoptosis. However, cell fractionation experiments showed that while the dominant nuclear pool of Bcl-2 remained stable during apoptosis, the level of the smaller mitochondrial pool was rapidly downregulated. Signals induced by anti-apoptotic cytokines continuously replenish the mitochondrial pool, but nuclear Bcl-2 is independent of such signals. Mitochondrial Bcl-2 is lost rapidly by a caspase independent mechanism in the absence of survival factors, in contrast only a small proportion of the nuclear pool of Bcl-2 is lost during the execution phase and this loss is a caspase dependent process. We conclude that these two intracellular pools of Bcl-2 are regulated through different mechanisms and only the cytokine-mediated regulation of the mitochondrial pool is relevant to the control of the initiation of apoptosis.
Collapse
Affiliation(s)
- Dagmar Scheel-Toellner
- MRC Centre of Immune Regulation, Division of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Proapoptotic Bcl-2 family member Bim promotes persistent infection and limits protective immunity. Infect Immun 2007; 76:1179-85. [PMID: 18086806 DOI: 10.1128/iai.01093-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the peak of the T-cell response, most of the activated effector T cells die by apoptosis driven by the proapoptotic Bcl-2 family member Bim (Bcl-2-interacting mediator of death). Whether the absence of Bim-mediated T-cell apoptosis can affect protective immunity remains unclear. Here, we used a mouse model of Leishmania major infection, in which parasite persistence and protective immunity are controlled by an equilibrium reached between parasite-specific gamma interferon (IFN-gamma)-producing effector T cells and interleukin-10 (IL-10)-producing CD4+ CD25+ T regulatory cells. To further understand the role of Bim-mediated apoptosis in persistent infection and protective immunity, we infected Bim-/- mice with L. major. We found that the initial parasite growth and lesion development were similar in Bim-/- and wild-type mice after primary L. major infection. However, at later times after infection, Bim-/- mice had significantly increased L. major-specific CD4+ T-cell responses and were resistant to persistent infection. Interestingly, despite their resistance to primary L. major infection, Bim-/- mice displayed significantly enhanced protection against challenge with L. major. Increased resistance to challenge in Bim-/- mice was associated with a significant increase in the number of L. major-specific IFN-gamma-producing CD4+ T cells and a lack of IL-10 production at the challenge site. Taken together, these data suggest that Bim limits protective immunity and that the absence of Bim allows the host to bypass antigen persistence for maintenance of immunity against reinfection.
Collapse
|
264
|
Laiosa MD, Eckles KG, Langdon M, Rosenspire AJ, McCabe MJ. Exposure to inorganic mercury in vivo attenuates extrinsic apoptotic signaling in Staphylococcal aureus enterotoxin B stimulated T-cells. Toxicol Appl Pharmacol 2007; 225:238-50. [PMID: 17950395 PMCID: PMC2195550 DOI: 10.1016/j.taap.2007.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 01/19/2023]
Abstract
The heavy metal mercury (Hg) is known to have immunomodulatory properties affecting lymphocyte signal transduction, death receptor signaling and autoimmunity. In this study we tested the hypothesis that Hg exposure would attenuate T-cell activation and caspase 8 and 3 activity in response to antigenic stimuli. To test this hypothesis, BALB/cJ mice were exposed to 10 mg/l mercuric chloride (HgCl(2)) in their drinking water for 2 weeks followed by injection with 20 microg of the Staphylococcal aureus enterotoxin B (SEB) superantigen. Eighteen hours after SEB challenge, there was a statistically significant reduction in caspase 8 and caspase 3 enzyme activity in the SEB reactive Vbeta8+ T-cells. The attenuated caspase activity in Hg-exposed mice persisted for 48 h after exposure. Moreover, activation of caspase 8 and caspase 3 was reduced by more than 60% in CD95 deficient MRL/MpJ-Fas(lpr) mice demonstrating that caspase 8 and 3 activation in response to SEB is CD95 dependent. In addition to the effects of Hg on caspase activity, expression of the T-cell activation marker CD69 was also attenuated in SEB reactive Vbeta8 T-cells in Hg-exposed mice. Moreover, CD69 expression in MRL/MpJ-Fas(lpr) mice was also reduced. Taken together the caspase and CD69 data support a role for CD95 in promoting a proapoptotic and activated state in SEB responsive T-lymphocytes and this state is attenuated by the autoimmune potentiating environmental agent mercury.
Collapse
Affiliation(s)
- Michael D. Laiosa
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kevin G. Eckles
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Margaret Langdon
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Allen J. Rosenspire
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48202, USA
| | - Michael J. McCabe
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
265
|
Zhong J, Gilbertson B, Cheers C. Apoptosis of CD4+ and CD8+ T cells during experimental infection with Mycobacterium avium is controlled by Fas/FasL and Bcl-2-sensitive pathways, respectively. Immunol Cell Biol 2007; 81:480-6. [PMID: 14636245 DOI: 10.1046/j.1440-1711.2003.01193.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both CD4+ and CD8+ T cells from mice infected with Mycobacterium avium suffered a high rate of apoptosis, beginning with the onset of the immune response and culminating in the loss of T cells from the tissues and loss of IFN-gamma production. Fas expression increased over the course of infection on both T cell populations, as did their susceptibility to the induction of apoptosis in vitro by anti-Fas mAb. Nevertheless, although the rate of apoptosis among CD4+ T cells from infected mice was reduced to normal levels in lpr mice with a defective Fas, CD8+ T cells were unaffected, implying that Fas/FasL interaction was not important in these cells in vivo. Conversely, over-expression of B-cell lymphoma-2 (Bcl-2), which is known to protect T cells from apoptosis signalled through the TNF receptor or due to the withdrawal of cytokines, totally protected CD8+ T cells from infected mice but had no effect on CD4+. It is of interest that these two contrasting pathways of T-cell apoptosis operate at the same time during a single infection.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Microbiology & Immunology, University of Melbourne, Australia
| | | | | |
Collapse
|
266
|
What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain. Immunol Cell Biol 2007; 86:57-66. [PMID: 18026176 DOI: 10.1038/sj.icb.7100141] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tolerance to self-antigens within the adaptive immune system is safeguarded, at least in part, through deletion of autoreactive T and B lymphocytes. This deletion can occur during the development of these cells in primary lymphoid organs, the thymus or bone marrow, respectively, or at the mature stage in peripheral lymphoid tissues. Deletion of autoreactive lymphocytes is achieved to a large extent through apoptotic cell death. This review describes current understanding of the mechanisms that mediate apoptosis of autoreactive lymphocytes during their development in primary lymphoid organs and during their activation in the periphery. In particular, we discuss the roles of the proapoptotic Bcl-2 family member Bim and the small family of Nur77-related transcriptional regulators in lymphocyte negative selection. Finally, we speculate on the processes that may lead to the activation of Bim when antigen receptors are activated on autoreactive T or B cells.
Collapse
|
267
|
Abstract
Cancer patients mount adaptive immune responses against their tumors. However, tumor develops many mechanisms to evade effective immunosurveillance. T-cell death caused by tumor plays a critical role in establishing tumor immunotolerance. Chronic stimulation of T cells by tumors leads to activation-induced cell death. Abortive stimulation of T cells by tolerogenic antigen-presenting cells loaded with tumor antigens leads to autonomous death of tumor-specific T cells. Therapeutic approaches that prevent T-cell death in the tumor microenvironment and tumor draining lymph nodes, therefore, should boost adaptive immune responses against cancer.
Collapse
Affiliation(s)
- B Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
268
|
Koyanagi M, Fukada K, Uchiyama T, Yagi J, Arimura Y. Long-term exposure to superantigen induces p27Kip1 and Bcl-2 expression in effector memory CD4+ T cells. Cell Immunol 2007; 248:77-85. [PMID: 18001700 DOI: 10.1016/j.cellimm.2007.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 12/13/2022]
Abstract
The long-term exposure of mice to superantigen SEA using a mini-osmotic pump (SEA pump) induced a long-lasting expansion of Vbeta3+ CD4+ T cells with T helper (Th) 2 cell-type properties. Removal of the SEA pump 10 days after pump implantation did not significantly alter the level of Vbeta3+ CD4+ T cell expansion/maintenance. Furthermore, CFSE-labeled CD4+ T cells failed to divide when transferred to post-implantation day 15 mice. Thus, CD4+ T cells appeared to survive for at least 30 days in the absence of a sufficient amount of antigen to trigger cell division. STAT6 deficient mice, in which Th2 cell development is largely impaired, also exhibited a protracted cell expansion, similar to that observed in normal mice, suggesting that the Th2 cell property is dispensable for the maintenance of Vbeta3+ CD4+ T cell expansion. The expanded CD4+ T cells on post-implantation day 26 were arrested in the G0/G1 phase of the cell cycle and showed a lower level of cell division upon restimulation. The Cdk inhibitor p27(Kip1) was highly expressed, and Cdk2 was downregulated. Moreover, the CD4+ T cells were resistant to in vitro apoptosis induction in parallel with their level of Bcl-2 expression. Collectively, the Vbeta3+ CD4+ T cells appeared to develop into long-lived memory T cells with cell cycle arrest upon long-term exposure to SEA.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | |
Collapse
|
269
|
Jorgensen TN, McKee A, Wang M, Kushnir E, White J, Refaeli Y, Kappler JW, Marrack P. Bim and Bcl-2 mutually affect the expression of the other in T cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:3417-24. [PMID: 17785775 DOI: 10.4049/jimmunol.179.6.3417] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The life and death of T cells is controlled to a large extent by the relative amounts of Bcl-2-related proteins they contain. The antiapoptotic protein Bcl-2 and the proapoptotic protein Bim are particularly important in this process with the amount of Bcl-2 per cell dropping by about one-half when T cells prepare to die. In this study we show that Bcl-2 and Bim each control the expression of the other. Absence of Bim leads to a drop in the amount of intracellular Bcl-2 protein, while having no effect on the amounts of mRNA for Bcl-2. Conversely, high amounts of Bcl-2 per cell allow high amounts of Bim, although in this case the effect involves increases in Bim mRNA. These mutual effects occur even if Bcl-2 is induced acutely. Thus these two proteins control the expression of the other, at either the protein or mRNA level.
Collapse
Affiliation(s)
- Trine N Jorgensen
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
270
|
|
271
|
Pender MP. Treating autoimmune demyelination by augmenting lymphocyte apoptosis in the central nervous system. J Neuroimmunol 2007; 191:26-38. [PMID: 17931708 DOI: 10.1016/j.jneuroim.2007.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/07/2007] [Indexed: 01/06/2023]
Abstract
The elimination of autoreactive T cells from the central nervous system (CNS) by apoptosis plays an important role in switching off autoimmune attack. B-cell apoptosis in the CNS probably also has a key role in downregulating autoimmunity. Augmenting lymphocyte apoptosis in the CNS is a potential strategy for treating autoimmune CNS diseases such as multiple sclerosis. These strategies involve modulation of the physiological pro-apoptotic and anti-apoptotic pathways that control lymphocyte fate in the CNS. In the case of T cells, apoptosis can be augmented by enhancing activation-induced T-cell apoptosis through the CD95 (Fas) pathway and by inhibiting costimulation-induced anti-apoptotic pathways mediated through BCL-2 and BCL-X L.
Collapse
Affiliation(s)
- Michael P Pender
- Neuroimmunology Research Centre, School of Medicine, The University of Queensland, Australia.
| |
Collapse
|
272
|
Brenner D, Golks A, Becker M, Müller W, Frey CR, Novak R, Melamed D, Kiefer F, Krammer PH, Arnold R. Caspase-cleaved HPK1 induces CD95L-independent activation-induced cell death in T and B lymphocytes. Blood 2007; 110:3968-77. [PMID: 17712048 DOI: 10.1182/blood-2007-01-071167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Life and death of peripheral lymphocytes is strictly controlled to maintain physiologic levels of T and B cells. Activation-induced cell death (AICD) is one mechanism to delete superfluous lymphocytes by restimulation of their immunoreceptors and it depends partially on the CD95/CD95L system. Recently, we have shown that hematopoietic progenitor kinase 1 (HPK1) determines T-cell fate. While full-length HPK1 is essential for NF-kappaB activation in T cells, the C-terminal fragment of HPK1, HPK1-C, suppresses NF-kappaB and sensitizes toward AICD by a yet undefined cell death pathway. Here we show that upon IL-2-driven expansion of primary T cells, HPK1 is converted to HPK1-C by a caspase-3 activity below the threshold of apoptosis induction. HPK1-C selectively blocks induction of NF-kappaB-dependent antiapoptotic Bcl-2 family members but not of the proapoptotic Bcl-2 family member Bim. Interestingly, T and B lymphocytes from HPK1-C transgenic mice undergo AICD independently of the CD95/CD95L system but involving caspase-9. Knock down of HPK1/HPK1-C or Bim by small interfering RNA shows that CD95L-dependent and HPK1/HPK1-C-dependent cell death pathways complement each other in AICD of primary T cells. Our results define HPK1-C as a suppressor of antiapoptotic Bcl-2 proteins and provide a molecular basis for our understanding of CD95L-independent AICD of lymphocytes.
Collapse
Affiliation(s)
- Dirk Brenner
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Singh A, Suresh M. A role for TNF in limiting the duration of CTL effector phase and magnitude of CD8 T cell memory. J Leukoc Biol 2007; 82:1201-11. [PMID: 17704295 DOI: 10.1189/jlb.0407240] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that TNF-alpha (TNF) exerts distinct tissue-protective or -destructive effects in the pathogenesis of T cell-dependent immunopathology, depending on the context and amount of cytokine produced. To better understand the cellular mechanisms underlying the regulation of T cells by TNF, we have analyzed the role of TNF in regulating various facets of the antigen-specific CD8 T cell response to lymphocytic choriomeningitis virus (LCMV) in mice. We show that expansion and differentiation of virus-specific effector CD8 T cells and LCMV clearance are not dependent on TNF. Instead, we demonstrate that TNF limits the duration of the effector phase of the CD8 T cell response by regulating apoptosis and not proliferation of effector cells in vivo. We further show that attenuation of effector cell apoptosis induced by TNF deficiency led to a substantial increase in the number of virus-specific memory CD8 T cells without affecting their function. The enhancement in the number of memory CD8 T cells in TNF-deficient (TNF-/-) mice was not associated with up-regulation of IL-7Ralpha or Bcl-2 in effector cells, which indicated that TNF might limit differentiation of memory cells from IL-7R(lo) effector cells. Collectively, these data are strongly suggestive of a role for TNF in down-regulating CD8 T cell responses and the establishment of CD8 T cell memory during an acute viral infection. These findings further our understanding of the regulation of CD8 T cell homeostasis and have implications in vaccine development and clinical use of anti-TNF therapies to treat T cell-dependent, inflammatory disorders.
Collapse
Affiliation(s)
- Anju Singh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
274
|
Abstract
During the course of an immune response, antigen-reactive T cells clonally expand and then are removed by apoptosis to maintain immune homeostasis. Life and death of T cells is determined by multiple factors, such as T-cell receptor triggering, co-stimulation or cytokine signalling, and by molecules, such as caspase-8 (FLICE)-like inhibitory protein (FLIP) and haematopoietic progenitor kinase 1 (HPK1), which regulate the nuclear factor-kappaB (NF-kappaB) pathway. Here, we discuss the concepts of activation-induced cell death (AICD) and activated cell-autonomous death (ACAD) in the regulation of life and death in T cells.
Collapse
Affiliation(s)
- Peter H Krammer
- Tumour Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
275
|
Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007; 129:1337-49. [PMID: 17604722 DOI: 10.1016/j.cell.2007.04.027] [Citation(s) in RCA: 1127] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/23/2007] [Accepted: 04/10/2007] [Indexed: 01/13/2023]
Abstract
Endoplasmic reticulum (ER) stress caused by misfolded proteins or cytotoxic drugs can kill cells and although activation of this pathway has been implicated in the etiology of certain degenerative disorders its mechanism remains unresolved. Bim, a proapoptotic BH3-only member of the Bcl-2 family is required for initiation of apoptosis induced by cytokine deprivation or certain stress stimuli. Its proapoptotic activity can be regulated by several transcriptional or posttranslational mechanisms, such as ERK-mediated phosphorylation, promoting its ubiquitination and proteasomal degradation. We found that Bim is essential for ER stress-induced apoptosis in a diverse range of cell types both in culture and within the whole animal. ER stress activates Bim through two novel pathways, involving protein phosphatase 2A-mediated dephosphorylation, which prevents its ubiquitination and proteasomal degradation and CHOP-C/EBPalpha-mediated direct transcriptional induction. These results define the molecular mechanisms of ER stress-induced apoptosis and identify targets for therapeutic intervention in ER stress-related diseases.
Collapse
Affiliation(s)
- Hamsa Puthalakath
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Hildeman D, Jorgensen T, Kappler J, Marrack P. Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 2007; 19:516-21. [PMID: 17644328 PMCID: PMC4127626 DOI: 10.1016/j.coi.2007.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 12/26/2022]
Abstract
Normal homeostasis of the immune system is controlled by a balance of production and death. During an immune response, homeostasis is disturbed as antigen-presenting cells become activated and promote the clonal expansion of antigen-specific lymphocytes. Shortly after the peak of the response, controlled induction of apoptosis, of both antigen-presenting cells and lymphocytes, restores homeostasis. This process is critical to ensure protective immunity and avoid lymphoid neoplasia and autoimmunity. Here, we will discuss recent developments in the molecular players underlying apoptotic control of immune system homeostasis.
Collapse
Affiliation(s)
- David Hildeman
- Division of Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, NRB 1563, Cincinnati, Ohio 45229-3039
| | - Trine Jorgensen
- Integrated Department of Immunology, National Jewish Medical and Research Center and UCHSCD
| | - John Kappler
- Integrated Department of Immunology, National Jewish Medical and Research Center and UCHSCD
- Howard Hughes Medical Institute, 1400, Jackson St., Denver, CO 80207
| | - Philippa Marrack
- Integrated Department of Immunology, National Jewish Medical and Research Center and UCHSCD
- Howard Hughes Medical Institute, 1400, Jackson St., Denver, CO 80207
| |
Collapse
|
277
|
Li X, McKinstry KK, Swain SL, Dalton DK. IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:939-49. [PMID: 17617585 PMCID: PMC2532516 DOI: 10.4049/jimmunol.179.2.939] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite many studies, the regulation of CD4(+) T cell apoptosis during the shutdown of immune responses is not fully understood. We have investigated the molecular mechanisms of IFN-gamma in regulating apoptosis of CD4(+) T cells during bacillus Calmette-Guérin (BCG) infection of mice. Our data provide new insight into the regulation of CD4(+) T cell apoptosis by IFN-gamma. As CD4(+) T cells responded to BCG infection, there was a coordinated increase in IFN-gamma production by effector CD4(+) T cells and a coordinated IFN-gamma-dependent up-regulation of many diverse apoptosis-pathway genes in effector CD4(+) T cells. Unexpectedly, IFN-gamma up-regulated transcripts and protein expression of Bcl-2, Bax, Bim, Bid, Apaf-1, and caspase-9 in activated CD4(+) T cells--components of the apoptosis machinery that are involved in promoting mitochondrial damage-mediated apoptosis. Wild-type, but not IFN-gamma knockout, CD4(+) T cells underwent apoptosis that was associated with damaged mitochondrial membranes. IFN-gamma also up-regulated expression of cell-extrinsic signals of apoptosis, including TRAIL, DR5, and TNFR1. Cell-extrinsic apoptosis signals from TNF-alpha, TRAIL, and NO were capable of damaging the mitochondrial membranes in activated CD4(+) T cells. Moreover, activated CD4(+) T cells from BCG-infected DR5, TNFR1, and inducible NO synthase knockout mice had impaired caspase-9 activity, suggesting impaired mitochondria-pathway apoptosis. We propose that IFN-gamma promotes apoptosis of CD4(+) T cells during BCG infection as follows: 1) by sensitizing CD4(+) T cells to apoptosis by inducing intracellular apoptosis molecules and 2) by inducing cell-extrinsic apoptosis signals that kill CD4(+) effector T cells.
Collapse
Affiliation(s)
- Xujian Li
- Trudeau Institute, Saranac Lake, NY 12983
| | | | | | | |
Collapse
|
278
|
Lopes MF, Guillermo LVC, Silva EM. Decoding caspase signaling in host immunity to the protozoan Trypanosoma cruzi. Trends Immunol 2007; 28:366-72. [PMID: 17625971 DOI: 10.1016/j.it.2007.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 05/29/2007] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
Abstract
Caspases, a family of cysteinyl-aspartate-specific proteases, induce apoptosis but are also involved in signal transduction in live cells. Caspase activation and apoptosis in T lymphocytes occur following infection with parasites and might affect immune responses. Rapid progress has occurred in the development and testing of caspase inhibitors and other apoptosis blockers, which are potentially useful for treating diseases associated with the pathogenic effects of apoptosis. Pharmacological approaches and the use of genetically modified hosts can be combined in research strategies to understand how apoptosis and caspase signaling affect the immune system.
Collapse
Affiliation(s)
- Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | | | | |
Collapse
|
279
|
Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, Cao W, Qiu J, Guo Z, Bi E, Zang L, Lu C, Zhang JZ, Pei G. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol 2007; 8:817-24. [PMID: 17618287 DOI: 10.1038/ni1489] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/15/2007] [Indexed: 01/24/2023]
Abstract
CD4+ T cells are important in adaptive immunity, but their dysregulation can cause autoimmunity. Here we demonstrate that the multifunctional adaptor protein beta-arrestin 1 positively regulated naive and activated CD4+ T cell survival. We found enhanced expression of the proto-oncogene Bcl2 through beta-arrestin 1-dependent regulation of acetylation of histone H4 at the Bcl2 promoter. Mice deficient in the gene encoding beta-arrestin 1 (Arrb1) were much more resistant to experimental autoimmune encephalomyelitis, whereas overexpression of Arrb1 increased susceptibility to this disease. CD4+ T cells from patients with multiple sclerosis had much higher Arrb1 expression, and 'knockdown' of Arrb1 by RNA-mediated interference in those cells increased apoptosis induced by cytokine withdrawal. Our data demonstrate that beta-arrestin 1 is critical for CD4+ T cell survival and is a factor in susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Yufeng Shi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Hand TW, Morre M, Kaech SM. Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc Natl Acad Sci U S A 2007; 104:11730-5. [PMID: 17609371 PMCID: PMC1913873 DOI: 10.1073/pnas.0705007104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During many acute viral and bacterial infections, IL-7 receptor alpha-chain (IL-7Ralpha) is expressed on a subset of effector CD8 T cells that preferentially develop into long-lived memory CD8 T cells. These cells functionally require IL-7Ralpha, but it is unclear whether IL-7Ralpha acts mainly to induce their differentiation into memory cells or to sustain their long-term survival. To examine this question, IL-7Ralpha was constitutively overexpressed on all antigen-specific effector CD8 T cells during viral infection. Constitutive IL-7Ralpha expression had minimal effects on the numbers or function of effector and memory CD8 T cells formed. This indicated that IL-7Ralpha expression is not sufficient to drive memory cell development. In particular, the forced IL-7Ralpha expression did not rescue the killer cell lectin-like receptor G1 (KLRG1)(hi) short-lived effector CD8 T cells from death, showing that the majority of effector CD8 T cells die in an IL-7Ralpha-independent manner. Moreover, we found that, regardless of the ectopic expression of IL-7Ralpha, the KLRG1(hi), but not the KLRG1(lo) effector CD8 T cells, were unable to proliferate well to IL-7, which may be due to increased amounts of p27(kip) in KLRG1(hi) cells. Because IL-7 can destabilize p27(kip), this result suggested that KLRG1(hi) and KLRG1(lo) effector CD8 T cells naturally differ in their ability to transmit IL-7 signals. Altogether, these results reveal that IL-7Ralpha expression is permissive, but not instructive, to the creation of memory CD8 T cells.
Collapse
Affiliation(s)
- Timothy W. Hand
- *Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Michel Morre
- Cytheris, Inc., 92130 Issy-les-Moulineaux, France
| | - Susan M. Kaech
- *Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
281
|
Wojciechowski S, Tripathi P, Bourdeau T, Acero L, Grimes HL, Katz JD, Finkelman FD, Hildeman DA. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. ACTA ACUST UNITED AC 2007; 204:1665-75. [PMID: 17591857 PMCID: PMC2118628 DOI: 10.1084/jem.20070618] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the role of the antiapoptotic molecule Bcl-2 in combating the proapoptotic molecule Bim in control of naive and memory T cell homeostasis using Bcl-2−/− mice that were additionally deficient in one or both alleles of Bim. Naive T cells were significantly decreased in Bim+/−Bcl-2−/− mice, but were largely restored in Bim−/−Bcl-2−/− mice. Similarly, a synthetic Bcl-2 inhibitor killed wild-type, but not Bim−/−, T cells. Further, T cells from Bim+/−Bcl-2−/− mice died rapidly ex vivo and were refractory to cytokine-driven survival in vitro. In vivo, naive CD8+ T cells required Bcl-2 to combat Bim to maintain peripheral survival, whereas naive CD4+ T cells did not. In contrast, Bim+/−Bcl-2−/− mice generated relatively normal numbers of memory T cells after lymphocytic choriomeningitis virus infection. Accumulation of memory T cells in Bim+/−Bcl-2−/− mice was likely caused by their increased proliferative renewal because of the lymphopenic environment of the mice. Collectively, these data demonstrate a critical role for a balance between Bim and Bcl-2 in controlling homeostasis of naive and memory T cells.
Collapse
Affiliation(s)
- Sara Wojciechowski
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Bauer A, Kirschnek S, Häcker G. Inhibition of apoptosis can be accompanied by increased Bim levels in T lymphocytes and neutrophil granulocytes. Cell Death Differ 2007; 14:1714-6. [PMID: 17585338 DOI: 10.1038/sj.cdd.4402185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
283
|
Tripathi P, Mitchell TC, Finkelman F, Hildeman DA. Cutting Edge: Limiting amounts of IL-7 do not control contraction of CD4+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:4027-31. [PMID: 17371956 PMCID: PMC4127633 DOI: 10.4049/jimmunol.178.7.4027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the acute T cell response most effector T cells die while some survive and become memory T cells. Selective expression of CD127 (IL-7Ralpha) on effector T cells has been proposed to engender their survival into the memory pool. We assessed the role of IL-7 in effector T cell survival using MHC class II tetramers to track a CD4+ T cell response following infection with a recombinant vaccinia virus (rVV-2W1S). Exogenous IL-7 prevented the contraction of the 2W1S-specific CD4+ T cell response after rVV-2W1S infection. IL-7 increased proliferation of, and Bcl-2 expression within, 2W1S-specific T cells; the latter was required for IL-7-driven prevention of contraction. Conversely, in vivo neutralization of IL-7 or Bcl-2 did not exacerbate the contraction of 2W1S-specific CD4+ T cells. These data suggest that IL-7 administration may enhance the survival of effector T cells but that IL-7 is not the limiting factor during normal contraction of the response.
Collapse
Affiliation(s)
- Pulak Tripathi
- Division of Immunobiology Cincinnati Children’s Hospital, Department of Pediatrics at the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Thomas C. Mitchell
- Institute for Cellular Therapeutics and the University of Louisville Department of Microbiology and Immunology, Louisville, KY 40202
| | - Fred Finkelman
- Division of Immunobiology Cincinnati Children’s Hospital, Department of Pediatrics at the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - David A. Hildeman
- Division of Immunobiology Cincinnati Children’s Hospital, Department of Pediatrics at the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Address correspondence and reprint requests to Dr. David A. Hildeman, Department of Pediatrics, Division of Immunobiology, Mail Location Code 7038, Children’s Hospital, Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229.
| |
Collapse
|
284
|
Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. THE JOURNAL OF IMMUNOLOGY 2007; 178:6083-91. [PMID: 17475833 DOI: 10.4049/jimmunol.178.10.6083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | |
Collapse
|
285
|
Hamrouni A, Olsson A, Wiegers GJ, Villunger A. Impact of cellular lifespan on the T cell receptor repertoire. Eur J Immunol 2007; 37:1978-85. [PMID: 17559169 DOI: 10.1002/eji.200636632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pro-survival members of the Bcl-2 family are potent inhibitors of cell death and determine the lifespan of immature thymocytes by counteracting the intrinsically active apoptotic program in these cells. BH3-only proteins are potent antagonists of Bcl-2-like molecules and regulate death and survival of lymphocytes during their development and homeostasis. The intrinsic lifespan of CD4(+)8(+) double-positive thymocytes was reported to actively shape the diversity of the immune repertoire, since mice overexpressing Bcl-x(L) were reported to show a bias towards the usage of distal 3' Jalpha elements 1. To gain support for this concept, we analyzed TCRalpha rearrangements in T lymphocytes that show an extended lifespan due to either loss of the BH3-only protein Bim or overexpression of Bcl-2. A minor but reproducible skewing towards the usage of the more distal 3' Jalpha elements was observed in developing thymocytes and mature T cells from bim(-/-) and vav-bcl-2 transgenic mice, indicating that prolonged survival of double-positive thymocytes does have a significant impact on the selected TCRalpha repertoire. However, the changes that we observed were less pronounced than those found in lck-bcl-x(L) transgenic mice, pointing towards qualitative differences between Bcl-2- and Bcl-x(L)-mediated cell death inhibition during T cell development.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/biosynthesis
- Bcl-2-Like Protein 11
- Blotting, Southern
- Cell Differentiation/immunology
- Cell Survival/immunology
- Flow Cytometry
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Membrane Proteins/biosynthesis
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- Abdelbasset Hamrouni
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
286
|
Kimura MY, Iwamura C, Suzuki A, Miki T, Hasegawa A, Sugaya K, Yamashita M, Ishii S, Nakayama T. Schnurri-2 controls memory Th1 and Th2 cell numbers in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:4926-36. [PMID: 17404274 DOI: 10.4049/jimmunol.178.8.4926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Schnurri-2 (Shn-2) is a large zinc-finger containing protein, and it plays a critical role in cell growth, signal transduction and lymphocyte development. In Shn-2-deficient CD4 T cells, the activation of NF-kappaB was up-regulated and their ability to differentiate into Th2 cells was enhanced. We herein demonstrate that Th1 and Th2 memory cells are not properly generated from Shn-2-deficient effector Th1/Th2 cells. Even a week after the transfer of effector Th1/Th2 cells into syngeneic mice, a dramatic decrease in the number of Shn-2-deficient donor T cells was detected particularly in the lymphoid organs. The transferred Shn-2-deficient Th1/Th2 cells express higher levels of the activation marker CD69. No significant defect in the BrdU incorporation in the Shn-2-deficient transferred CD4 T cells was observed. The numbers of apoptotic cells were selectively higher in Shn-2-deficient donor Th1/Th2 cell population. Moreover, Shn-2-deficient effector Th1 and Th2 cells showed an increased susceptibility to cell death in in vitro cultures with increased expression of FasL. Transfer of Th2 effector cells over-expressing the p65 subunit of NF-kappaB resulted in a decreased number of p65-expressing cells in the lymphoid organs. As expected, T cell-dependent Ab responses after in vivo immunization of Shn-2-deficient mice were significantly reduced. Thus, Shn-2 appears to control the generation of memory Th1/Th2 cells through a change in their susceptibility to cell death.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Lin YT, Wang CT, Lee JH, Chu CY, Tsao WC, Yang YH, Chiang BL. Higher Bcl-2 levels decrease staphylococcal superantigen-induced apoptosis of CD4+ T cells in atopic dermatitis. Allergy 2007; 62:520-6. [PMID: 17313401 DOI: 10.1111/j.1398-9995.2006.01297.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Staphylococcal superantigens (SsAgs) contribute to the persistence of allergic skin inflammation in atopic dermatitis (AD). The aims of this study were to (1) determine whether there are differences between AD patients and healthy subjects in SsAg-induced caspase-3 activation and SsAg-induced changes of anti-apoptotic protein Bcl-2 and Bcl-2 mRNA levels of CD4+ T cells; (2) investigate the effect of interleukin (IL)-4 on SsAg-induced caspase-3 activation and SsAg-induced changes of Bcl-2 and Bcl-2 mRNA levels of CD4+ T cells. METHODS Using immunofluorescence staining followed by flow cytometric analysis and real-time PCR, we analyzed peripheral blood mononuclear cells with or without staphylococcal enterotoxin B (SEB) stimulation in the presence or absence of recombinant IL-4 or anti-IL-4 neutralizing antibodies in 16 AD patients and 14 healthy subjects. RESULTS SEB-reactive (TCRVbeta3+, Vbeta12+, and Vbeta17+) CD4+ T cells from AD patients were more resistant to SEB-induced caspase-3 activation and SEB-induced decrease of Bcl-2 and Bcl-2 mRNA than those from healthy subjects. Exogenously added IL-4 inhibited SEB-induced caspase-3 activation and SEB-induced decrease of Bcl-2 and Bcl-2 mRNA in SEB-reactive CD4+ T cells from healthy subjects. Inhibition of endogenous IL-4 by using anti-IL-4 neutralizing antibodies up-regulated SEB-induced caspase-3 activation and SEB-induced decrease of Bcl-2 and Bcl-2 mRNA in SEB-reactive CD4+ T cells from AD patients. CONCLUSIONS Following SsAg stimulation, IL-4 produced by T cells in AD patients down-regulates SsAg-induced caspase-3 activation and apoptosis of CD4+ T cells through inhibiting the decrease of Bcl-2. This may impair deletion of SsAg-activated T cells and resolution of allergic skin inflammation.
Collapse
Affiliation(s)
- Y T Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
288
|
Stranges PB, Watson J, Cooper CJ, Choisy-Rossi CM, Stonebraker AC, Beighton RA, Hartig H, Sundberg JP, Servick S, Kaufmann G, Fink PJ, Chervonsky AV. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 2007; 26:629-41. [PMID: 17509906 PMCID: PMC2575811 DOI: 10.1016/j.immuni.2007.03.016] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/18/2007] [Accepted: 03/16/2007] [Indexed: 12/14/2022]
Abstract
Fas (also known as Apo-1 and CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen-presenting cells (APCs) was sufficient to cause systemic autoimmunity, implying that normally APCs are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APCs was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APCs is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells.
Collapse
Affiliation(s)
- Peter B Stranges
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Kasler HG, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol 2007; 27:5184-200. [PMID: 17470548 PMCID: PMC1951960 DOI: 10.1128/mcb.02091-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase 7 (HDAC7) is highly expressed in CD4(+)/CD8(+) thymocytes and functions as a signal-dependent repressor of gene transcription during T-cell development. In this study, we expressed HDAC7 mutant proteins in a T-cell line and use DNA microarrays to identify transcriptional targets of HDAC7 in T cells. The changes in gene expression levels were compared to differential gene expression profiles associated with positive and negative thymic selection. This analysis reveals that HDAC7 regulates an extensive set of genes that are differentially expressed during both positive and negative thymic selection. Many of these genes play important functional roles in thymic selection, primarily via modulating the coupling between antigen receptor engagement and downstream signaling events. Consistent with the model that HDAC7 may play an important role in both positive and negative thymic selection, the expression of distinct HDAC7 mutants or the abrogation of HDAC7 expression can either enhance or inhibit the signal-dependent differentiation of a CD4(+)/CD8(+) cell line.
Collapse
Affiliation(s)
- Herbert G Kasler
- Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
290
|
Goodyear CS, Corr M, Sugiyama F, Boyle DL, Silverman GJ. Cutting Edge: Bim is required for superantigen-mediated B cell death. THE JOURNAL OF IMMUNOLOGY 2007; 178:2636-40. [PMID: 17312102 DOI: 10.4049/jimmunol.178.5.2636] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To impair B cell clonal regulation, the microbial virulence factor, protein A of Staphylococcus aureus, can interact with evolutionarily conserved BCR-binding sites to induce a form of Fas-independent activation-associated B cell death that results in selective immune tolerance. We now show that this in vivo death pathway is associated with induction of increased transcript and protein levels of Bim, a BH3-only proapoptotic Bcl-2 family protein, which is inhibited by excess B cell-activating factor. An absolute requirement for Bim was documented, since Bim-deficient B cells were protected from in vivo superantigen-induced death and instead underwent persistent massive supraclonal expansion without functional impairment. These studies characterize a BCR-dependent negative clonal selection pathway that has been co-opted by a common bacterial pathogen to induce selective defects in host immune defenses.
Collapse
Affiliation(s)
- Carl S Goodyear
- Rheumatic Diseases Core Center, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
291
|
González J, Tamayo E, Santiuste I, Marquina R, Buelta L, González-Gay MA, Izui S, López-Hoyos M, Merino J, Merino R. CD4+CD25+ T cell-dependent inhibition of autoimmunity in transgenic mice overexpressing human Bcl-2 in T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:2778-86. [PMID: 17312121 DOI: 10.4049/jimmunol.178.5.2778] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulation of lymphocyte survival is essential for the maintenance of lymphoid homeostasis preventing the development of autoimmune diseases. Recently, we described a systemic lupus erythematosus associated with an IgA nephropathy in autoimmune-prone (NZW x C57BL/6)F(1) overexpressing human Bcl-2 (hBcl-2) in B cells (transgenic (Tg) 1). In the present study, we analyze in detail a second line of hBcl-2 Tg mice overexpressing the transgene in all B cells and in a fraction of CD4(+) and CD8(+) T cells (Tg2). We demonstrate here that the overexpression of hBcl-2 in T cells observed in Tg2 mice is associated with a resistance to the development of lupus disease and collagen type II-induced arthritis in both (NZW x C57BL/6)F(1) and (DBA/1 x C57BL/6)F(1) Tg2 mice, respectively. The disease-protective effect observed in autoimmune-prone Tg2 mice is accompanied by an increase of peripheral CD4(+)CD25(+) hBcl-2(+) regulatory T cells (T(regs)), expressing glucocorticoid-induced TNFR, CTLA-4, and FoxP3. Furthermore, the in vivo depletion of CD4(+)CD25(+) T(regs) in (DBA/1 x C57BL/6)F(1) Tg2 mice promotes the development of a severe collagen type II-induced arthritis. Taken together, our results indicate that the overexpression of hBcl-2 in CD4(+) T cells alters the homeostatic mechanisms controlling the number of CD4(+)CD25(+) T(regs) resulting in the inhibition of autoimmune diseases.
Collapse
Affiliation(s)
- Jovanna González
- Departamento de Biología Molecular (Unidad asociada al Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas), Universidad de Cantabria, Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Rogers JV, Choi YW, Giannunzio LF, Sabourin PJ, Bornman DM, Blosser EG, Sabourin CLK. Transcriptional responses in spleens from mice exposed to Yersinia pestis CO92. Microb Pathog 2007; 43:67-77. [PMID: 17531433 DOI: 10.1016/j.micpath.2007.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2007] [Indexed: 12/11/2022]
Abstract
Yersinia pestis is one of the most threatening biological agents due to the associated high mortality and history of plague pandemics. Identifying molecular players in the host response to infection may enable the development of medical countermeasures against Y. pestis. In this study, microarrays were used to identify the host splenic response mechanisms to Y. pestis infection. Groups of Balb/c mice were injected intraperitoneally with 2-257CFU of Y. pestis strain CO92 or vehicle. One group was assessed for mortality rates and another group for transcriptional analysis. The time to death at the 8 and 257CFU challenge doses were 5.0+/-2.3 and 3.8+/-0.4 days, respectively. Gene profiling using Affymetrix Mouse Genome 430 2.0 Arrays revealed no probe sets were significantly altered for all five mice in the low-dose group when compared to the vehicle controls. However, 534 probe sets were significantly altered in the high dose versus vehicle controls; 384 probe sets were down-regulated and 150 probe sets were up-regulated. The predominant biological processes identified were immune function, cytoskeletal, apoptosis, cell cycle, and protein degradation. This study provides new information on the underlying transcriptional mechanisms in mice to Y. pestis infection.
Collapse
Affiliation(s)
- James V Rogers
- Battelle Memorial Institute, 505 King Avenue, JM-7, Columbus, OH 43201, USA.
| | | | | | | | | | | | | |
Collapse
|
293
|
Kaufmann T, Tai L, Ekert PG, Huang DCS, Norris F, Lindemann RK, Johnstone RW, Dixit VM, Strasser A. The BH3-Only Protein Bid Is Dispensable for DNA Damage- and Replicative Stress-Induced Apoptosis or Cell-Cycle Arrest. Cell 2007; 129:423-33. [PMID: 17448999 DOI: 10.1016/j.cell.2007.03.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 01/22/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Bid, a caspase-activated proapoptotic BH3-only protein, is essential for Fas-induced hepatocyte destruction. Recent studies published in Cell produced conflicting results, indicating that loss of Bid either protects or enhances apoptosis induced by DNA damage or replicative stress. To resolve this controversy, we generated novel Bid-deficient mice on an inbred C57BL/6 background and removed the drug-selection cassette from the targeted locus. Nine distinct cell types from these Bid-deficient mice underwent cell-cycle arrest and apoptosis in a manner indistinguishable from control WT cells in response to DNA damage or replicative stress. Moreover, we found that even cells from the original Bid-deficient mice responded normally to these stimuli, indicating that differences in genetic background or the presence of a strong promoter within the targeted locus are unlikely to explain the differences between our results and those reported previously. We conclude that Bid has no role in DNA damage- or replicative stress-induced apoptosis or cell-cycle arrest.
Collapse
Affiliation(s)
- Thomas Kaufmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Belz GT, Zhang L, Lay MDH, Kupresanin F, Davenport MP. Killer T cells regulate antigen presentation for early expansion of memory, but not naive, CD8+ T cell. Proc Natl Acad Sci U S A 2007; 104:6341-6. [PMID: 17400753 PMCID: PMC1840050 DOI: 10.1073/pnas.0609990104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antigen presentation within the lymph node draining a site of infection is crucial for initiation of cytotoxic T cell responses. Precisely how this antigen presentation regulates T cell expansion in vivo is unclear. Here, we show that, in primary infection, antigen presentation peaks approximately 3 days postinfection and then slowly decays until day 12. This prolonged antigen presentation is required for optimal expansion of naive CD8(+) T cells, because early ablation of dendritic cells reduces the later CD8(+) T cell response. Antigen presentation during secondary infection was 10-fold lower in magnitude and largely terminated by day 4 postinfection. Expansion of memory, but not naive, antigen-specific T cells was tightly controlled by perforin-dependent cytolysis of antigen-presenting cells. The ability of the memory T cells to remove antigen-presenting cells provides a negative-feedback loop to directly limit the duration of antigen presentation in vivo.
Collapse
Affiliation(s)
- Gabrielle T. Belz
- *Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria 3050, Australia; and
- To whom correspondence may be addressed. E-mail: or
| | - Lei Zhang
- Department of Haematology, Prince of Wales Hospital and Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Matthew D. H. Lay
- Department of Haematology, Prince of Wales Hospital and Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Fiona Kupresanin
- *Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria 3050, Australia; and
| | - Miles P. Davenport
- Department of Haematology, Prince of Wales Hospital and Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
295
|
Li W, Yamada H, Yajima T, Nakagawa R, Shimoda K, Nakayama K, Yoshikai Y. Tyk2 Signaling in Host Environment Plays an Important Role in Contraction of Antigen-Specific CD8+T Cells following a Microbial Infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:4482-8. [PMID: 17372006 DOI: 10.4049/jimmunol.178.7.4482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tyrosine kinase 2 (Tyk2), a member of JAK signal transducer family contributes to the signals triggered by IL-12 for IFN-gamma production. To elucidate potential roles of Tyk2 in generation and maintenance of Ag-specific CD8+ T cells, we followed the fate of OVA-specific CD8+ T cells in Tyk2-deficient (-/-) mice after infection with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). Results showed that the numbers of OVA(257-264)/K(b) tetramer-positive CD8+ T cells in Tyk2(-/-) mice were almost the same as those in Tyk2(+/+) mice at the expansion phase on day 7 but were significantly larger in Tyk2(-/-) mice than those in Tyk2(+/+) mice at the contraction phase on day 10 and at the memory phase on day 60 after infection. The intracellular expression level of active caspase-3 was significantly decreased in the OVA-specific CD8+ T cells of Tyk2(-/-) mice on day 7 compared with those of Tyk2(+/+) mice. Adaptive transfer experiments revealed that Tyk2 signaling in other factors rather than CD8+ T cells played a regulatory role in CD8+ T cell contraction following infection. Administration of exogenous IFN-gamma from day 6 to day 9 restored the CD8+ T cell contraction in Tyk2(-/-) mice after infection with rLM-OVA. These results suggest that Tyk2 signaling for IFN-gamma production in host environment plays an important role in contraction of effector CD8+ T cells following a microbial infection.
Collapse
Affiliation(s)
- Wei Li
- Division of Host Defense and Digital Medicine Initiative, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
296
|
Abstract
Impaired apoptosis is both critical in cancer development and a major barrier to effective treatment. In response to diverse intracellular damage signals, including those evoked by cancer therapy, the cell's decision to undergo apoptosis is determined by interactions between three factions of the Bcl-2 protein family. The damage signals are transduced by the diverse 'BH3-only' proteins, distinguished by the BH3 domain used to engage their pro-survival relatives: Bcl-2, Bcl-x(L), Bcl-w, Mcl-1 and A1. This interaction ablates pro-survival function and allows activation of Bax and Bak, which commit the cell to apoptosis by permeabilizing the outer membrane of the mitochondrion. Certain BH3-only proteins (e.g. Bim, Puma) can engage all the pro-survival proteins, but others (e.g. Bad, Noxa) engage only subsets. Activation of Bax and Bak appears to require that the BH3-only proteins engage the multiple pro-survival proteins guarding Bax and Bak, rather than binding to the latter. The balance between the pro-survival proteins and their BH3 ligands regulates tissue homeostasis, and either overexpression of a pro-survival family member or loss of a proapoptotic relative can be oncogenic. Better understanding of the Bcl-2 family is clarifying its role in cancer development, revealing how conventional therapy works and stimulating the search for "BH3 mimetics" as a novel class of anticancer drugs.
Collapse
Affiliation(s)
- J M Adams
- Department of Molecular Genetics of Cancer, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
297
|
Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, Hotchkiss RS. Multiple triggers of cell death in sepsis: death receptor and mitochondrial‐mediated apoptosis. FASEB J 2007; 21:708-19. [PMID: 17307841 DOI: 10.1096/fj.06-6805com] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymphocyte apoptosis plays a central role in the pathophysiology of sepsis. Lymphocyte apoptosis was examined in mice with defective death receptor pathways due to transgenic expression of a dominant negative mutant of Fas-associated death domain (FADD-DN) or Bid-/- and in mice with defective mitochondrial-mediated pathways due to loss of Bim-/-, Puma-/-, or Noxa-/-. FADD-DN transgenic and Bid-/- mice had significant albeit incomplete protection, and this protection was associated with increased survival. Surprisingly, splenic B cells were also protected in FADD-DN mice although transgene expression was confined to T cells, providing evidence for an indirect protective mechanism. Bim-/- provided virtually complete protection against lymphocyte apoptosis whereas Puma-/- and Noxa-/- mice had modest or no protection, respectively. Bim-/- mice had improved survival, and adoptive transfer of splenocytes from Bim-/- mice into Rag 1-/- mice demonstrated that this was a lymphocyte intrinsic effect. The improved survival was associated with decreased interleukin (IL) -10 and IL-6 cytokines. Collectively, these data indicate that numerous death stimuli are generated during sepsis, and it therefore appears unlikely that blocking a single "trigger" can inhibit apoptosis. If siRNA becomes practical therapeutically, proapoptotic proteins would be potential targets.
Collapse
Affiliation(s)
- Katherine C Chang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
298
|
Guillermo LVC, Silva EM, Ribeiro-Gomes FL, De Meis J, Pereira WF, Yagita H, DosReis GA, Lopes MF. The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells in Trypanosoma cruzi infection. J Leukoc Biol 2007; 81:942-51. [PMID: 17261545 DOI: 10.1189/jlb.1006643] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the role of the Fas ligand (FasL)/Fas death pathway on apoptosis and cytokine production by T cells in Trypanosoma cruzi infection. Anti-FasL, but not anti-TNF-alpha or anti-TRAIL, blocked activation-induced cell death of CD8 T cells and increased secretion of IL-10 and IL-4 by CD4 T cells from T. cruzi-infected mice. CD4 and CD8 T cells up-regulated Fas/FasL expression during T. cruzi infection. However, Fas expression increased earlier in CD8 T cells, and a higher proportion of CD8 T cells was activated and expressed IFN-gamma compared with CD4 T cells. Injection of anti-FasL in infected mice reduced parasitemia and CD8 T cell apoptosis and increased the ratio of CD8:CD4 T cells recovered from spleen and peritoneum. FasL blockade increased the number of activated T cells, enhanced NO production, and reduced parasite loads in peritoneal macrophages. Injection of anti-FasL increased IFN-gamma secretion by splenocytes responding to T. cruzi antigens but also exacerbated production of type 2 cytokines IL-10 and IL-4 at a late stage of acute infection. These results indicate that the FasL/Fas death pathway regulates apoptosis and coordinated cytokine responses by type 1 CD8 and type 2 CD4 T cells in T. cruzi infection.
Collapse
Affiliation(s)
- Landi V Costilla Guillermo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Lapinski PE, MacGregor JN, Marti F, King PD. The T cell-specific adapter protein functions as a regulator of peripheral but not central immunological tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:73-87. [PMID: 16802600 DOI: 10.1007/0-387-34132-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
300
|
Uhlin M, Masucci M, Levitsky V. Is the activity of partially agonistic MHC:peptide ligands dependent on the quality of immunological help? Scand J Immunol 2007; 64:581-7. [PMID: 17083613 DOI: 10.1111/j.1365-3083.2006.01850.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) are important for the immunological control of infections and tumours. Engagement of the T-cell receptor (TCR) with major histocompatibility complex (MHC) class I/peptide complexes on antigen-presenting cells (APC) is the key interaction, which initiates the process of T-cell activation. Depending on the affinity of this interaction, different arrays of signalling pathways and functional outcomes can be activated in the specific T cells. Molecular alterations in the peptide bound to the MHC class I can lead to a lower affinity of the MHC:TCR interaction resulting in incomplete or qualitatively different T-cell responses. Altered peptide ligands (APL) exhibiting such activity are referred to as partial agonists and often occur naturally through genetic instability, which affects T-cell epitopes derived from rapidly mutating viruses or tumour-associated cellular antigens. Partial agonists are usually viewed as peptide variants, which escape efficient CTL recognition. Our recent data suggest that APL can not only trigger incomplete activation but also induce and modulate intrinsic T-cell programmes leading to the shut-off of specific CTL responses. This APL-induced suppression appears to be more prominent in the absence of immunological help, suggesting that under conditions of immune deregulation APL may actively inhibit CTL responses against infectious agents or tumours. In this review, we discuss experimental data supporting this model and possible role of APL-induced immunosuppression in different pathological conditions.
Collapse
Affiliation(s)
- M Uhlin
- Department of Microbiology, Tumor and Cell Biology Center and, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|