251
|
Dunzendorfer S, Kaneider N, Rabensteiner A, Meierhofer C, Reinisch C, Römisch J, Wiedermann CJ. Cell-surface heparan sulfate proteoglycan-mediated regulation of human neutrophil migration by the serpin antithrombin III. Blood 2001; 97:1079-85. [PMID: 11159540 DOI: 10.1182/blood.v97.4.1079] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The serpin antithrombin III (AT III) is reported to have hemostasis-regulating and anti-inflammatory properties. To determine its ability to influence thrombin-independent leukocyte responses, the direct effects of the AT III concentrate Kybernin P and a monoclonal antibody-purified AT III on neutrophil migration were studied. Chemotactic activity of human neutrophils isolated from the blood of healthy donors was determined in modified Boyden microchemotaxis chambers, and binding studies were performed according to standard experimental protocols. Preincubation in vitro of neutrophils with Kybernin P or immune-adsorbed AT III significantly deactivated migration toward fMet-Leu-Phe, or interleukin-8 (IL-8), in a concentration-dependent manner. In the absence of additional attractants, neutrophils exhibited a migratory response toward gradients of AT III preparations. True chemotaxis was confirmed in checkerboard assays. Analyses revealed that the AT III heparin-binding site interacts with neutrophil membrane-associated heparan sulfate proteoglycan receptors. Mechanisms of intracellular signaling differed; the deactivation of IL-8-induced chemotaxis resulted from tyrphostin-sensitive interactions of AT III-signaling with the IL-8 signal transduction pathway, whereas AT III-induced chemotaxis involved protein kinase C and phosphodiesterases. Signaling similarities between AT III and the proteoglycan syndecan-4 may suggest the binding of AT III to this novel type of membrane receptor. Under physiological conditions, AT III may prevent neutrophils from premature activation. Moreover, the systemic administration of AT III concentrate could have beneficial effects in combating systemic inflammation.
Collapse
Affiliation(s)
- S Dunzendorfer
- Department of Internal Medicine, Innsbruck University Hospital, Innsbruck, Austria, and Aventis Behring GmbH Research, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
252
|
Kim S, Woo J, Seo EJ, Yu M, Ryu S. A 2.1 A resolution structure of an uncleaved alpha(1)-antitrypsin shows variability of the reactive center and other loops. J Mol Biol 2001; 306:109-19. [PMID: 11178897 DOI: 10.1006/jmbi.2000.4357] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serpin (serine protease inhibitor) proteins are involved in diverse physiological processes including inflammation, coagulation, matrix remodeling, and cell differentiation. Deficiency of normal serpin functions leads to various hereditary diseases. Besides their clinical importance, serpin proteins draw much attention due to the large conformational changes that occur upon interaction with proteases. We present here the crystal structure of an uncleaved alpha(1)-antitrypsin determined by the multiple isomorphous replacement method and refined to 2.1 A resolution. The structure, which is the first active serpin structure based on experimental phases, reveals novel conformations in the flexible loops, including the proximal hinge region of the reactive center loop and the surface cavity region in the central beta-sheet, sheet A. The determined loop conformation explains the results of recent mutagenesis studies and provides detailed insights into the protease inhibition mechanism. The high-resolution structure of active alpha(1)-antitrypsin also provides evidence for the existence of localized van-der-Waals strain in the central hydrophobic core.
Collapse
Affiliation(s)
- S Kim
- Center for Cellular Switch Protein Structure, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, 305-600, Korea
| | | | | | | | | |
Collapse
|
253
|
Wind T, Jensen MA, Andreasen PA. Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1: implications for antibody-mediated PAI-1-neutralization and vitronectin-binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1095-106. [PMID: 11179976 DOI: 10.1046/j.1432-1327.2001.2680041095.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitory mechanism of serine proteinase inhibitors of the serpin family is based on their unique conformational flexibility. The formation of a stable proteinase-serpin complex implies insertion of the reactive centre loop of the serpin into the large central beta-sheet A and a shift in the relative positions of two groups of secondary structure elements, the smaller one including alpha-helix F. In order to elucidate this mechanism, we have used phage-display and alanine scanning mutagenesis to map the epitopes for four monoclonal antibodies against alpha-helix F and its flanking region in the serpin plasminogen activator inhibitor-1 (PAI-1). One of these is known to inhibit the reaction between PAI-1 and its target proteinases, an effect that is potentiated by vitronectin, a physiological carrier protein for PAI-1. When combined with the effects these antibodies have on PAI-1 activity, our epitope mapping points to the mobility of amino-acid residues in alpha-helix F and the loop connecting alpha-helix F and beta-strand 3A as being important for the inhibitory function of PAI-1. Although all antibodies reduced the affinity of PAI-1 for vitronectin, the potentiating effect of vitronectin on antibody-induced PAI-1 neutralization is based on formation of a ternary complex between antibody, PAI-1 and vitronectin, in which PAI-1 is maintained in a state behaving as a substrate for plasminogen activators. These results thus provide new details about serpin conformational changes and the regulation of PAI-1 by vitronectin and contribute to the necessary basis for rational design of drugs neutralizing PAI-1 in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- T Wind
- Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, University of Aarhus, Denmark.
| | | | | |
Collapse
|
254
|
Egelund R, Petersen TE, Andreasen PA. A serpin-induced extensive proteolytic susceptibility of urokinase-type plasminogen activator implicates distortion of the proteinase substrate-binding pocket and oxyanion hole in the serpin inhibitory mechanism. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:673-85. [PMID: 11168406 DOI: 10.1046/j.1432-1327.2001.01921.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formation of stable complexes between serpins and their target serine proteinases indicates formation of an ester bond between the proteinase active-site serine and the serpin P1 residue [Egelund, R., Rodenburg, K.W., Andreasen, P.A., Rasmussen, M.S., Guldberg, R.E. & Petersen, T.E. (1998) Biochemistry 37, 6375-6379]. An important question concerning serpin inhibition is the contrast between the stability of the ester bond in the complex and the rapid hydrolysis of the acyl-enzyme intermediate in general serine proteinase-catalysed peptide bond hydrolysis. To answer this question, we used limited proteolysis to detect conformational differences between free urokinase-type plasminogen activator (uPA) and uPA in complex with plasminogen activator inhibitor-1 (PAI-1). Whereas the catalytic domain of free uPA, pro-uPA, uPA in complex with non-serpin inhibitors and anhydro-uPA in a non-covalent complex with PAI-1 was resistant to proteolysis, the catalytic domain of PAI-1-complexed uPA was susceptible to proteolysis. The cleavage sites for four different proteinases were localized in specific areas of the C-terminal beta-barrel of the catalytic domain of uPA, providing evidence that the serpin inhibitory mechanism involves a serpin-induced massive rearrangement of the proteinase active site, including the specificity pocket, the oxyanion hole, and main-chain binding area, rendering the proteinase unable to complete the normal hydrolysis of the acyl-enzyme intermediate. The distorted region includes the so-called activation domain, also known to change conformation on zymogen activation.
Collapse
Affiliation(s)
- R Egelund
- The Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, Aarhus University, Denmark.
| | | | | |
Collapse
|
255
|
Lijnen HR, Arza B, Van Hoef B, Collen D, Declerck PJ. Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J Biol Chem 2000; 275:37645-50. [PMID: 10967118 DOI: 10.1074/jbc.m006475200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically hydrolyzes the Ser(337)-Ser(338) (P10-P9) and Val(341)-Ile(342) (P6-P5) peptide bonds in human plasminogen activator inhibitor-1 (PAI-1). Cleavage is completely abolished in the presence of the metal chelators EDTA or 1,10-phenanthroline. A stabilized active PAI-1 variant was also cleaved by MMP-3. At an enzyme/substrate ratio of 1/10 at 37 degrees C, PAI-1 protein cleavage occurred with half-lives of 27 or 14 min for active or stable PAI-1 and was associated with rapid loss of inhibitory activity toward tissue-type plasminogen activator with half-lives of 15 or 13 min, respectively. A substrate-like variant of PAI-1, lacking inhibitory activity but with exposed reactive site loop, was cleaved with a half-life of 23 min, whereas latent PAI-1 in which a major part of the reactive site loop is inserted into the molecule, was resistant to cleavage. Biospecific interaction analysis indicated comparable binding of active, stable, and substrate PAI-1 to both proMMP-3 and MMP-3 (K(A) of 12-22 x 10(6) m(-1)), whereas binding of latent PAI-1 occurred with lower affinity (1.7-2.3 x 10(6) m(-1)). Stable PAI-1 bound to vitronectin was cleaved and inactivated by MMP-3 in a manner comparable with that of free PAI-1; however, the cleaved protein did not bind to vitronectin. Cleavage and inactivation of PAI-1 by MMP-3 may thus constitute a mechanism decreasing the antiproteolytic activity of PAI-1 and impairing the potential inhibitory effect of vitronectin-bound PAI-1 on cell adhesion and/or migration.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology and Laboratory for Pharmaceutical Biology and Phytopharmacology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
256
|
Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Res 2000. [DOI: 10.1101/gr.147800] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present a comprehensive alignment and phylogenetic analysis of the serpins, a superfamily of proteins with known members in higher animals, nematodes, insects, plants, and viruses. We analyze, compare, and classify 219 proteins representative of eight major and eight minor subfamilies, using a novel technique of consensus analysis. Patterns of sequence conservation characterize the family as a whole, with a clear relationship to the mechanism of function. Variations of these patterns within phylogenetically distinct groups can be correlated with the divergence of structure and function. The goals of this work are to provide a carefully curated alignment of serpin sequences, to describe patterns of conservation and divergence, and to derive a phylogenetic tree expressing the relationships among the members of this family. We extend earlier studies by Huber and Carrell as well as by Marshall, after whose publication the serpin family has grown functionally, taxonomically, and structurally. We used gene and protein sequence data, crystal structures, and chromosomal location where available. The results illuminate structure–function relationships in serpins, suggesting roles for conserved residues in the mechanism of conformational change. The phylogeny provides a rational evolutionary framework to classify serpins and enables identification of conserved amino acids. Patterns of conservation also provide an initial point of comparison for genes identified by the various genome projects. New homologs emerging from sequencing projects can either take their place within the current classification or, if necessary, extend it.
Collapse
|
257
|
Holland CA, Henry AT, Whinna HC, Church FC. Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 2000; 484:87-91. [PMID: 11068038 DOI: 10.1016/s0014-5793(00)02131-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
'Thrombin aptamers' are based on the 15-nucleotide consensus sequence of d(GGTTGGTGTGGTTGG) that binds specifically to thrombin's anion-binding exosite-I. The effect of aptamer-thrombin interactions during inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) and antithrombin (AT) has not been described. Thrombin inhibition by HCII without glycosaminoglycan was decreased approximately two-fold by the aptamer. In contrast, the aptamer dramatically reduced thrombin inhibition by >200-fold and 30-fold for HCII-heparin and HCII-dermatan sulfate, respectively. The aptamer had essentially no effect on thrombin inhibition by AT with or without heparin. These results add to our understanding of thrombin aptamer activity for potential clinical application, and they further demonstrate the importance of thrombin exosite-I during inhibition by HCII-glycosaminoglycans.
Collapse
Affiliation(s)
- C A Holland
- Departments of Pathology and Laboratory Medicine, Pharmacology, and Medicine, and Center for Thrombosis and Hemostasis, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035, USA
| | | | | | | |
Collapse
|
258
|
Dong A, Meyer JD, Brown JL, Manning MC, Carpenter JF. Comparative fourier transform infrared and circular dichroism spectroscopic analysis of alpha1-proteinase inhibitor and ovalbumin in aqueous solution. Arch Biochem Biophys 2000; 383:148-55. [PMID: 11097188 DOI: 10.1006/abbi.2000.2054] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha1-proteinase inhibitor (alpha1Pi) and ovalbumin are both members of the serpin superfamily. They share about a 30% sequence identity and exhibit great similarity in their three-dimensional structures. However, no apparent functional relationship has been found between the two proteins. Unlike alpha1Pi, ovalbumin shows no inhibitory effect to serine proteases. To see whether or not a conformational factor(s) may contribute to the functional difference, we carried out comparative analysis of the two proteins' secondary structure, thermal stability, and H-D exchange using FT-IR and CD spectroscopy. FT-IR analysis reveals significant differences in the amide I spectral patterns of the two proteins. Upon thermal denaturation, both proteins exhibit a strong low-wavenumber beta-sheet band at 1624 cm(-1) and a weak high-wavenumber beta-sheet band at 1694 cm(-1), indicative of intermolecular aggregate formation. However, the midpoint of the thermal-induced transition of alpha1Pi (approximately 55 degrees C) is 18 degrees C lower than that of ovalbumin (approximately 73 degrees C). The thermal stability analysis provides new insight into the structural changes associated with denaturation. The result of H-D exchange explains some puzzling spectral differences between the two proteins in D2O reported previously.
Collapse
Affiliation(s)
- A Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley 80639, USA.
| | | | | | | | | |
Collapse
|
259
|
Green C, Levashina E, McKimmie C, Dafforn T, Reichhart JM, Gubb D. The necrotic gene in Drosophila corresponds to one of a cluster of three serpin transcripts mapping at 43A1.2. Genetics 2000; 156:1117-27. [PMID: 11063688 PMCID: PMC1461326 DOI: 10.1093/genetics/156.3.1117] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutants of the necrotic (nec) gene in Drosophila melanogaster die in the late pupal stage as pharate adults, or hatch as weak, but relatively normal-looking, flies. Adults develop black melanized spots on the body and leg joints, the abdomen swells with hemolymph, and flies die within 3 or 4 days of eclosion. The TOLL-mediated immune response to fungal infections is constitutively activated in nec mutants and pleiotropic phenotypes include melanization and cellular necrosis. These changes are consistent with activation of one or more proteolytic cascades. The nec gene corresponds to Spn43Ac, one of a cluster of three putative serine proteinase inhibitors at 43A1.2, on the right arm of chromosome 2. Although serpins have been implicated in the activation of many diverse pathways, lack of an individual serpin rarely causes a detectable phenotype. Absence of Spn43Ac, however, gives a clear phenotype, which will allow a mutational analysis of critical features of the molecular structure of serpins.
Collapse
Affiliation(s)
- C Green
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, England
| | | | | | | | | | | |
Collapse
|
260
|
Bost S, Silva F, Rudaz C, Belin D. Both transmembrane domains of SecG contribute to signal sequence recognition by the Escherichia coli protein export machinery. Mol Microbiol 2000; 38:575-87. [PMID: 11069681 DOI: 10.1046/j.1365-2958.2000.02153.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chimeric protein containing the uncleaved signal sequence of plasminogen activators inhibitor-2 (PAI2) fused to alkaline phosphatase (AP) interferes with Escherichia coli protein export and arrests growth. Suppressors of this toxicity include secG mutations that define the Thr-41-Leu-42-Phe-43 (TLF) domain of SecG. These mutations slow down the export of PAI2-AP. Another construct encoding a truncated PAI2 signal sequence (hB-AP) is also toxic. Most suppressors exert their effect on both chimeric proteins. We describe here five secG suppressors that only suppress the toxicity of hB-AP and selectively slow down its export. These mutations do not alter the TLF domain: three encode truncated SecG, whereas two introduce Arg residues in the transmembrane domains of SecG. The shortest truncated protein only contains 13 residues of SecG, suggesting that the mutation is equivalent to a null allele. Indeed, a secG disruption selectively suppresses the toxicity of hB-AP. However, the missense mutations are not null alleles. They allow SecG binding to SecYE, although with reduced affinity. Furthermore, these mutated SecG are functional, as they facilitate the export of endogenous proteins. Thus, SecG participates in signal sequence recognition, and both transmembrane domains of SecG contribute to ensure normal signal sequence recognition by the translocase.
Collapse
Affiliation(s)
- S Bost
- Department of Pathology, CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
261
|
Sivasothy P, Dafforn TR, Gettins PG, Lomas DA. Pathogenic alpha 1-antitrypsin polymers are formed by reactive loop-beta-sheet A linkage. J Biol Chem 2000; 275:33663-8. [PMID: 10924508 DOI: 10.1074/jbc.m004054200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha(1)-Antitrypsin is the most abundant circulating protease inhibitor and the archetype of the serine protease inhibitor or serpin superfamily. Members of this family may be inactivated by point mutations that favor transition to a polymeric conformation. This polymeric conformation underlies diseases as diverse as alpha(1)-antitrypsin deficiency-related cirrhosis, thrombosis, angio-edema, and dementia. The precise structural linkage within a polymer has been the subject of much debate with evidence for reactive loop insertion into beta-sheet A or C or as strand 7A. We have used site directed cysteine mutants and fluorescence resonance energy transfer (FRET) to measure a number of distances between monomeric units in polymeric alpha(1)-antitrypsin. We have then used a combinatorial approach to compare distances determined from FRET with distances obtained from 2.9 x 10(6) different possible orientations of the alpha(1)-antitrypsin polymer. The closest matches between experimental FRET measurements and theoretical structures show conclusively that polymers of alpha(1)-antitrypsin form by insertion of the reactive loop into beta-sheet A.
Collapse
Affiliation(s)
- P Sivasothy
- Respiratory Medicine Unit, Department of Medicine, University of Cambridge, The Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Cambridge, CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
262
|
Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407:923-6. [PMID: 11057674 DOI: 10.1038/35038119] [Citation(s) in RCA: 818] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The serpins have evolved to be the predominant family of serine-protease inhibitors in man. Their unique mechanism of inhibition involves a profound change in conformation, although the nature and significance of this change has been controversial. Here we report the crystallographic structure of a typical serpin-protease complex and show the mechanism of inhibition. The conformational change is initiated by reaction of the active serine of the protease with the reactive centre of the serpin. This cleaves the reactive centre, which then moves 71 A to the opposite pole of the serpin, taking the tethered protease with it. The tight linkage of the two molecules and resulting overlap of their structures does not affect the hyperstable serpin, but causes a surprising 37% loss of structure in the protease. This is induced by the plucking of the serine from its active site, together with breakage of interactions formed during zymogen activation. The disruption of the catalytic site prevents the release of the protease from the complex, and the structural disorder allows its proteolytic destruction. It is this ability of the conformational mechanism to crush as well as inhibit proteases that provides the serpins with their selective advantage.
Collapse
Affiliation(s)
- J A Huntington
- Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, UK.
| | | | | |
Collapse
|
263
|
Frazer JK, Jackson DG, Gaillard JP, Lutter M, Liu YJ, Banchereau J, Capra JD, Pascual V. Identification of centerin: a novel human germinal center B cell-restricted serpin. Eur J Immunol 2000; 30:3039-48. [PMID: 11069088 DOI: 10.1002/1521-4141(200010)30:10<3039::aid-immu3039>3.0.co;2-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For naive B cells to mature in response to antigen triggering and become either plasma cells or memory B cells, a complex array of events takes place within germinal centers (GC) of secondary lymphoid organs. With the long-term objective of defining and characterizing molecules that control the generation of GC, we have subtracted RNA messages derived from highly purified B cells at the follicular mantle stage of differentiation from GC B cells. Using this approach, we have identified a novel molecule, centerin, belonging to the family of serine-protease inhibitors or serpins. Transcription of centerin is highly restricted to GC B cells and their malignant counterparts, Burkitt's lymphoma lines. The putative centerin protein shares the highest sequence identity with thyroxine-binding globulin and possesses arginine/serine at its P1/P1' active site, suggesting that it interacts with a trypsin-like protease(s). In addition, several other sequence features of centerin also indicate that it serves as a bonafide protease inhibitor. Finally, we demonstrate differentially up-regulated transcription of this novel gene by resting, naive B cells stimulated in vitro via CD40 signaling, while Staphylococcus aureus Cowan strain-mediated B cell activation fails to generate this reponse. Because CD40 signaling is required for naive B cells to enter the GC reaction and for GC B cells to survive, it is likely that centerin plays a role in the development and/or sustaining of GC.
Collapse
Affiliation(s)
- J K Frazer
- UT Southwestern Medical Center at Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Miura Y, Hershkovitz E, Inagaki A, Parvari R, Oiso Y, Phillip M. A novel mutation causing complete thyroxine-binding globulin deficiency (TBG-CD-Negev) among the Bedouins in southern Israel. J Clin Endocrinol Metab 2000; 85:3687-9. [PMID: 11061524 DOI: 10.1210/jcem.85.10.6899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T4-binding globulin (TBG) is the major thyroid hormone transport protein in human serum. Inherited TBG abnormalities do not usually alter the metabolic status and are transmitted in X-linked inheritance. A high prevalence of complete TBG deficiency (TBG-CD) has been reported among the Bedouin population in the Negev (southern Israel). In this study we report a novel single mutation causing complete TBG deficiency due to a deletion of the last base of codon 38 (exon 1), which led to a frame shift resulting in a premature stop at codon 51 and a presumed truncated peptide of 50 residues. This new variant of TBG (TBG-CD-Negev) was found among all of the patients studied. We conclude that a single mutation may account for TBG deficiency among the Bedouins in the Negev. This report is the first to describe a mutation in a population with an unusually high prevalence of TBG-CD.
Collapse
Affiliation(s)
- Y Miura
- First Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
265
|
Stoop AA, Jespers L, Lasters I, Eldering E, Pannekoek H. High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J Mol Biol 2000; 301:1135-47. [PMID: 10966811 DOI: 10.1006/jmbi.2000.4035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of specific amino acid residues involved in protein-protein interaction is fundamental to understanding structure-function relationships. Supported by mathematical calculations, we designed a high-density mutagenesis procedure for the generation of a mutant library of which a limited number of random clones would suffice to exactly localize amino acid residues essential for a particular protein-protein interaction. This goal was achieved experimentally by consecutive cycles of DNA shuffling, under error prone conditions, each followed by exposure of the target protein on the surface of phages to screen and select for correctly folded, functional mutants. To validate the procedure, human plasminogen activator inhibitor 1 (PAI-1) was chosen, because its 3D structure is known, many experimental tools are available and it may serve as a model protein for structure-function studies of serine proteinases and their inhibitors (serpins). After five cycles of DNA shuffling and selection for t-PA binding, analysis of 27 randomly picked clones revealed that PAI-1 mutants contained an average of 9.1 amino acid substitutions distributed over 114 different positions, which were preferentially located at the surface of the protein. This limited collection of mutant PAI-1 preparations contained multiple mutants defective in binding to three out of four tested anti-PAI-1 monoclonal antibodies. Alignment of the nucleotide sequence of defective clones permitted assignment of single dominant amino acid residues for binding to each monoclonal antibody. The importance of these residues was confirmed by testing the properties of single point mutants. From the position of these amino acid residues in the 3D structure of PAI-1 and the effects of the corresponding monoclonal antibodies on t-PA-PAI-1 interaction, conclusions can be drawn with respect to this serpin-serine proteinase interaction.
Collapse
Affiliation(s)
- A A Stoop
- Department of Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
266
|
Lupi A, Viglio S, Luisetti M, Gorrini M, Coni P, Faa G, Cetta G, Iadarola P. Alpha1-antitrypsin in serum determined by capillary isoelectric focusing. Electrophoresis 2000; 21:3318-26. [PMID: 11001231 DOI: 10.1002/1522-2683(20000901)21:15<3318::aid-elps3318>3.0.co;2-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A capillary isoelectric focusing (CIEF) method using bare fused-silica capillaries filled with polyethylene oxide (PEO) and carrier ampholyte solutions in the pH 3.5-5.0 range has been developed for the identification of alpha1-antitrypsin (alpha1AT) phenotypes in human serum. This novel procedure was routinely applied to the study of serum samples of five controls whose alpha1AT phenotype was previously identified and of twelve subjects whose alpha1AT phenotype was unknown. The results obtained allowed us to confirm or identify the alpha1AT phenotype in all sera tested. This procedure seems particularly suitable for identification of alpha1AT variants associated with diseases of clinical relevance.
Collapse
Affiliation(s)
- A Lupi
- Dipartimento di Biochemica A. Castellani, Università di Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Picard V, Bura A, Emmerich J, Alhenc-Gelas M, Biron C, Houbouyan-Reveillard LL, Molho P, Labatide-Alanore A, Sié P, Toulon P, Verdy E, Aiach M. Molecular bases of antithrombin deficiency in French families: identification of seven novel mutations in the antithrombin gene. Br J Haematol 2000; 110:731-4. [PMID: 10997988 DOI: 10.1046/j.1365-2141.2000.02245.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the molecular bases of familial antithrombin deficiency in eight French families. Eight mutations in the antithrombin coding exons were identified, seven of which were novel mutations. In all cases, individuals were heterozygous for the mutation. We found two small frameshift deletions in exon 3a, leading to type I deficiency. Five missense mutations in exons 3b or 5 also caused type I deficiency and their potential consequences on the antithrombin three-dimensional structure were analysed. The last mutation in exon 4 was associated with a type II 'reactive site' deficiency: a dysfunctional antithrombin that is affected in its interaction with thrombin was present in circulation.
Collapse
Affiliation(s)
- V Picard
- Service d'Hématologie Biologique, Hôpital Broussais, and Unité INSERM 428, UFR de Pharmacie, Université Paris V, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Simonovic I, Patston PA. The native metastable fold of C1-inhibitor is stabilized by disulfide bonds. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:97-102. [PMID: 11004579 DOI: 10.1016/s0167-4838(00)00115-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C1-inhibitor is a member of the serpin family of proteinase inhibitors and is an important inhibitor of complement and contact system proteinases. The native protein has the characteristic serpin feature of being in a kinetically trapped metastable state rather than in the most stable state it could adopt. A consequence of this is that it readily forms loop-sheet dimers and polymers, by a mechanism believed to be the same as observed with other serpins. An unusual feature of C1-inhibitor is that it has a unique amino-terminal domain, of unknown function, held to the serpin domain by two disulfide bonds not found in other serpins. We report here that reduction of these bonds by DTT, causes a conformational change such that the reactive center loop inserts into beta-sheet A. This form of C1-inhibitor is less stable to heat and urea than the native protein, and is more susceptible to extensive degradation by trypsin. These data show that the disulfide bonds in C1-inhibitor are required for the protein to be stabilized in the metastable state with the reactive center loop expelled from beta-sheet A.
Collapse
Affiliation(s)
- I Simonovic
- Department of Oral Medicine and Diagnostic Sciences (MC 838), College of Dentistry, University of Illinois at Chicago, 60612, USA
| | | |
Collapse
|
269
|
Perani P, Zeggai S, Torriglia A, Courtois Y. Mutations on the hinge region of leukocyte elastase inhibitor determine the loss of inhibitory function. Biochem Biophys Res Commun 2000; 274:841-4. [PMID: 10924364 DOI: 10.1006/bbrc.2000.3191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukocyte elastase inhibitor (LEI) is a cytosolic component of lung macrophages and blood leukocytes that inhibits neutrophil elastase. LEI is a member of the serpin superfamily, these proteins, mostly protease inhibitors, are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the hinge region of the reactive centre loop into a beta-sheet of the inhibitor. In this work three mutations were produced in the hinge region of elastase inhibitor that abolish the inhibition activity of LEI and transform the protein in a substrate of the elastase. This result demonstrates that the inhibitory mechanism of serpin is common to LEI.
Collapse
Affiliation(s)
- P Perani
- Vieillissement et Pathologie de la Retine, INSERM, Unité U450 Developpement, 29, rue Wilhem, Paris, 75016, France.
| | | | | | | |
Collapse
|
270
|
Simonovic M, Volz K. Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition. Protein Sci 2000; 9:1423-7. [PMID: 10975564 PMCID: PMC2144729 DOI: 10.1110/ps.9.8.1423] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CrmA is an unusual viral serpin that inhibits both cysteine and serine proteinases involved in the regulation of host inflammatory and apoptosis processes. It differs from other members of the serpin superfamily by having a reactive center loop that is one residue shorter, and by its apparent inability to form SDS-stable covalent complexes with cysteine proteinases. To obtain insight into the inhibitory mechanism of crmA, we determined the crystal structure of reactive center loop-cleaved crmA to 2.9 A resolution. The structure, which is the first of a viral serpin, suggests that crmA can inhibit cysteine proteinases by a mechanism analogous to that used by other serpins against serine proteinases. However, one striking difference from other serpins, which may be significant for in vivo function, is an additional highly charged antiparallel strand for b sheet A, whose sequence and length are unique to crmA.
Collapse
Affiliation(s)
- M Simonovic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois at Chicago, 60612-7334, USA
| | | |
Collapse
|
271
|
Abstract
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.
Collapse
Affiliation(s)
- H Im
- Protein Strain Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul
| | | | | |
Collapse
|
272
|
Nakashima T, Pak SC, Silverman GA, Spring PM, Frederick MJ, Clayman GL. Genomic cloning, mapping, structure and promoter analysis of HEADPIN, a serpin which is down-regulated in head and neck cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:441-6. [PMID: 11004515 DOI: 10.1016/s0167-4781(00)00100-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Headpin is a novel serine proteinase inhibitor (serpin) that is down-regulated in squamous cell carcinoma of the oral cavity and in squamous cell carcinoma cell lines of the head and neck. Using a panel of 18q21.3 YAC clones, we mapped and cloned the HEADPIN gene. The gene spans 10 kb and is composed of eight exons and seven introns. The genomic structure is identical with some other ovalbumin serpins (ov-serpins) in terms of the numbers, position and phasing of the intron/exon boundaries. HEADPIN was mapped within the serpin cluster in 18q21.3 between MASPIN and SCCA2 as follows: cen-MASPIN-HEADPIN-SCCA2-SCCA1-tel. The transcription start site was determined and the promoter activity of the 5'-flanking region was analyzed. Luciferase promoter assays in HaCaT cells showed that the -432 to -144 nucleotide region has functional promoter activity. The activity of the promoter/enhancer was not observed in head and neck cancer cell lines TU167 and UMSCC1 which lack headpin expression. These data suggest that the differential expression of headpin in normal and carcinoma-derived cells is regulated at the transcriptional level. Understanding the genomic organization and transcriptional regulation of the ov-serpins clustered within 18q21. 3 provides a critical framework for assessing their potential role in cancer.
Collapse
Affiliation(s)
- T Nakashima
- Department of Head and Neck Surgery, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
273
|
Renatus M, Zhou Q, Stennicke HR, Snipas SJ, Turk D, Bankston LA, Liddington RC, Salvesen GS. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure 2000; 8:789-97. [PMID: 10903953 DOI: 10.1016/s0969-2126(00)00165-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cowpox virus expresses the serpin CrmA (cytokine response modifier A) in order to avoid inflammatory and apoptotic responses of infected host cells. The targets of CrmA are members of the caspase family of proteases that either initiate the extrinsic pathway of apoptosis (caspases 8 and 10) or trigger activation of the pro-inflammatory cytokines interleukin-1beta and interleukin-18 (caspase 1). RESULTS We have determined the structure of a cleaved form of CrmA to 2.26 A resolution. CrmA has the typical fold of a cleaved serpin, even though it lacks the N-terminal half of the A helix, the entire D helix, and a portion of the E helix that are present in all other known serpins. The reactive-site loop of CrmA was mutated to contain the optimal substrate recognition sequence for caspase 3; however, the mutation only marginally increased the ability of CrmA to inhibit caspase 3. Superposition of the reactive-site loop of alpha1-proteinase inhibitor on the cleaved CrmA structure provides a model for virgin CrmA that can be docked to caspase 1, but not to caspase 3. CONCLUSIONS CrmA exemplifies viral economy, selective pressure having resulted in a 'minimal' serpin that lacks the regions not needed for structural integrity or inhibitory activity. The docking model provides an explanation for the selectivity of CrmA. Our demonstration that engineering optimal substrate recognition sequences into the CrmA reactive-site loop fails to generate a good caspase 3 inhibitor is consistent with the docking model.
Collapse
Affiliation(s)
- M Renatus
- Program in Apoptosis and Cell Death Research, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Lee C, Park SH, Lee MY, Yu MH. Regulation of protein function by native metastability. Proc Natl Acad Sci U S A 2000; 97:7727-31. [PMID: 10884404 PMCID: PMC16612 DOI: 10.1073/pnas.97.14.7727] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In common globular proteins, the native form is in its most stable state. In contrast, each native form exists in a metastable state in inhibitory serpins (serine protease inhibitors) and some viral membrane fusion proteins. Metastability in these proteins is critical to their biological functions. Mutational analyses and structural examination have previously revealed unusual interactions, such as side-chain overpacking, buried polar groups, and cavities as the structural basis of the native metastability. However, the mechanism by which these structural defects regulate protein functions has not been elucidated. We report here characterization of cavity-filling mutations of alpha(1)-antitrypsin, a prototype serpin. Conformational stability of the molecule increased linearly with the van der Waals volume of the side chains. Increasing conformational stability is correlated with decreasing inhibitory activity. Moreover, the activity loss appears to correlate with the decrease in the rate of the conformational switch during complex formation with a target protease. These results strongly suggest that the native metastability of proteins is indeed a structural design that regulates protein functions.
Collapse
Affiliation(s)
- C Lee
- National Creative Research Initiative Center, Korea Research Institute of Bioscience and Biotechnology, 52 Oun-dong, Yusong, Taejon 305-333, Korea
| | | | | | | |
Collapse
|
275
|
Masuda T, Koseki SY, Yasumoto K, Kitabatake N. Characterization of anti-irradiation-denatured ovalbumin monoclonal antibodies. Immunochemical and structural analysis of irradiation-denatured ovalbumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:2670-2674. [PMID: 10898605 DOI: 10.1021/jf990999d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five monoclonal antibodies (OVA-01, -02, -03, -04, -06) produced against irradiated ovalbumin were investigated in relation to the conformational change in the ovalbumin molecule induced by irradiation with Cobalt-60 gamma-rays. Four antibodies (OVA-01, -02, -04, -06) recognized both native and irradiated ovalbumin, but OVA-03 reacted only with irradiated ovalbumin. These antibodies were classified by modified competitive ELISA, and their K(d) values were determined by the Klotz equation. Epitope analyses were also performed on OVA-03 using CNBr-cleaved peptide fragments from ovalbumin, and it was confirmed that OVA-03 bound to the fragment corresponding to residues Val173-Met196 of the ovalbumin molecule that consists of internal beta-sheet strand 3A and helix F1 containing one open turn. These results demonstrate that dramatic conformational changes in proteins can be induced or that some tertiary or secondary structures can be broken down by gamma-ray irradiation, producing new antigenic sites.
Collapse
Affiliation(s)
- T Masuda
- Research Institute for Food Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
276
|
Crisp RJ, Knauer DJ, Knauer MF. Roles of the heparin and low density lipid receptor-related protein-binding sites of protease nexin 1 (PN1) in urokinase-PN1 complex catabolism. The PN1 heparin-binding site mediates complex retention and degradation but not cell surface binding or internalization. J Biol Chem 2000; 275:19628-37. [PMID: 10867020 DOI: 10.1074/jbc.m909172199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described thrombin (Th)-protease nexin 1 (PN1) inhibitory complex binding to cell surface heparins and subsequent low density lipid receptor-related protein (LRP)-mediated internalization. Our present studies examine the catabolism of urinary plasminogen activator (uPA)-PN1 inhibitory complexes, which, unlike Th.PN1 complexes, bind almost exclusively through the uPA receptor. In addition, the binding site in PN1 required for the LRP-mediated internalization of Th.PN1 complexes is not required for the LRP-mediated internalization of uPA.PN1 complexes. Thus, the protease moiety of the complex partially determines the mechanistic route of entry. Because cell surface heparins are only minimally involved in the binding and internalization of uPA.PN1 complexes, we then predicted that complexes between uPA and the heparin binding-deficient PN1 variant, PN1(K7E), should be catabolized at the same rate as complexes formed with native PN1. Surprisingly, the uPA.PN1(K7E) complexes were degraded at only a fraction of the rate of native complexes. Internalization studies revealed that both uPA. PN1(K7E) and native uPA.PN1 complexes were initially internalized at the same rate, but uPA.PN1(K7E) complexes were rapidly retro-endocytosed in an intact form. By examining the pH dependence of complex binding in the range of 4.0-7.0, it was determined that the uPA.PN1 inhibitory complexes must specifically bind to endosomal heparins at pH 5.5 to be retained and sorted to lysosomes. These studies are the first to document a role for heparins in the catabolism of SERPIN-protease complexes at a point further in the pathway than cell surface binding, and this role may extend to other heparin-binding LRP-internalized ligands.
Collapse
Affiliation(s)
- R J Crisp
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92627, USA
| | | | | |
Collapse
|
277
|
Abstract
The role of the 13 histidine residues in plasminogen activator inhibitor 1 (PAI-1) for the stability of the molecule was studied by replacing these residues by threonine, using site-directed mutagenesis. The generated mutants were expressed in Escherichia coli, purified and characterized. All variants had a normal activity and formed stable complexes with tissue-type plasminogen activator. Most of these PAI-1 variants displayed a similar pH-dependency in stability as wild-type PAI-1, with increased half-lives at lower pH. However, the variant His364Thr had a half-life of about 50 min at 37 degrees C and had almost completely lost its pH-dependency. Therefore, our data suggest that His(364), in the COOH-terminal end of the molecule might be responsible for the pH-dependent stability of PAI-1.
Collapse
Affiliation(s)
- H Mångs
- Department of Clinical Chemistry and Blood Coagulation, Karolinska Hospital, Karolinska Institute, S-171 76, Stockholm, Sweden
| | | | | |
Collapse
|
278
|
Abstract
A large number of potent and selective therapeutic agents, useful for the treatment of several diseases, have been isolated from natural sources. For example, the most active thrombin inhibitors are those secreted by the salivary glands of leeches. One peculiar feature of these agents is the lack of any significant inhibitory cross-reaction with other serine proteinases. Hence, the knowledge of the exact mechanism of action of these molecules provides the basis for the development of new and efficient synthetic drugs. For this reason, many studies have been undertaken on the structure-activity relationships of natural thrombin inhibitors, and a large amount of detailed information has been obtained by the crystal structures of these inhibitors when complexed with thrombin. In this paper, we review natural and synthetic multisite thrombin inhibitors, whose structural aspects have been determined in detail. We also report here the approach used by us to develop a new class of synthetic, multisite directed thrombin inhibitors, named hirunorms, designed to mimic the distinctive binding mode of hirudin.
Collapse
Affiliation(s)
- A Lombardi
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Napoli Federico II, Italy
| | | | | | | | | | | |
Collapse
|
279
|
Shirk RA, Parthasarathy N, San Antonio JD, Church FC, Wagner WD. Altered dermatan sulfate structure and reduced heparin cofactor II-stimulating activity of biglycan and decorin from human atherosclerotic plaque. J Biol Chem 2000; 275:18085-92. [PMID: 10749870 DOI: 10.1074/jbc.m001659200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease.
Collapse
Affiliation(s)
- R A Shirk
- Department of Pathology, The Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | |
Collapse
|
280
|
Chen VC, Chao L, Chao J. Reactive-site specificity of human kallistatin toward tissue kallikrein probed by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:237-46. [PMID: 10862973 DOI: 10.1016/s0167-4838(00)00044-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Kallistatin is a serine proteinase inhibitor that forms complexes with tissue kallikrein and inhibits its activity. In this study, we compared the inhibitory activity of recombinant human kallistatin and two mutants, Phe388Arg (P1) and Phe387Gly (P2), toward human tissue kallikrein. Recombinant kallistatins were expressed in Escherichia coli and purified to apparent homogeneity using metal-affinity and heparin-affinity chromatography. The complexes formed between recombinant kallistatins and tissue kallikrein were stable for at least 150 h. Wild-type kallistatin as well as both Phe388Arg and Phe387Gly mutants act as inhibitors and substrates to tissue kallikrein as analyzed by complex formation. Kinetic analyses showed that the inhibitory activity of Phe388Arg variant toward tissue kallikrein is two-fold higher than that of wild type (P1Phe), whereas Phe387Gly had only 7% of the inhibitory activity toward tissue kallikrein as compared to wild type. The Phe388Arg variant but not wild type inhibited plasma kallikrein's activity. These results indicate that P1Arg variant exhibits more potent inhibitory activity toward tissue kallikrein while wild type (P1Phe) is a more selective inhibitor of tissue kallikrein. The P2 phenylalanine is essential for retaining the hydrophobic environment for the interaction of kallistatin and kallikrein.
Collapse
Affiliation(s)
- V C Chen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425-2211, USA
| | | | | |
Collapse
|
281
|
Peltier MR, Grant TR, Hansen PJ. Distinct physical and structural properties of the ovine uterine serpin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:37-51. [PMID: 11004528 DOI: 10.1016/s0167-4838(00)00063-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experiments were performed to examine the relationship between the structure and function of ovine uterine serpin (OvUS). Limited proteolytic digestion of OvUS caused cleavage of the 55-57 kDa OvUS to a 42 kDa product nearly identical in molecular weight to a naturally-occurring breakdown product of OvUS. N-terminal amino acid sequencing and MALDI-MS revealed that, unlike other serpins, OvUS was preferentially cleaved at about 70 amino acids upstream of the putative reactive center loop. Analysis of the partially-digested protein by gel filtration chromatography suggested that the C-terminal fragment of the protein was still associated under nondenaturing conditions. Partial digestion of OvUS had no effect on the protein's secondary structure, thermal stability, ability to bind lymphocytes or pepsin, or inhibitory activity towards pepsin or mitogen-induced lymphocyte proliferation. In contrast, mild denaturation of OvUS with 0.5 M guanidine HCl increased thermal stability. Unlike for other serpins, the increase in thermal stability was lost upon removal of the denaturant. Incubation of OvUS with 100 fold molar excess of a peptide corresponding to the putative P(14)-P(2) region of the RCL for 24 h at 37 degrees C to induce binary complex formation had no effect on its secondary structure and did not alter the biological activity of the protein. Synthetic peptides corresponding to the putative P(14)-P(2) region and the P(7)-P(15') region of the RCL were not inhibitory to pepsin activity or lymphocyte proliferation. Taken together, these results indicate that the conformation of OvUS is distinct from the prototypical serpin because conditions that lead to the large-scale conformational change in other serpins such as antithrombin III and alpha(1)-antitrypsin do not cause similar changes in OvUS. Moreover, the putative RCL does not seem to contain the activity required to inhibit lymphocyte proliferation or pepsin activity.
Collapse
Affiliation(s)
- M R Peltier
- Department of Animal Sciences, University of Florida, Gainesville 32610-0920, USA
| | | | | |
Collapse
|
282
|
Seo EJ, Im H, Maeng JS, Kim KE, Yu MH. Distribution of the native strain in human alpha 1-antitrypsin and its association with protease inhibitor function. J Biol Chem 2000; 275:16904-9. [PMID: 10747976 DOI: 10.1074/jbc.m001006200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine protease inhibitors (serpins) are metastable in their native state. This strain, which is released upon binding to target proteases, is essential for the inhibitory activity of serpins. To understand the structural basis of the native strain, we previously characterized stabilizing mutations of alpha(1)-antitrypsin, a prototypical inhibitory serpin, in regions such as the hydrophobic core. The present study evaluates the effects of single point mutations throughout the molecule on stability and protease inhibitory activity. We identified stabilizing mutations in most secondary structures, suggesting that the native strain is distributed throughout the molecule. Examination of the substitution patterns and the structures of the mutation sites revealed surface hydrophobic pockets as a component of the native strain in alpha(1)-antitrypsin, in addition to the previously identified unusual interactions such as side chain overpacking and cavities. Interestingly, many of the stabilizing substitutions did not affect the inhibitory activity significantly. Those that affected the activity were confined in the regions that are mobilized during the complex formation with a target enzyme. The results of our study should be useful for designing proteins with strain and for regulating the stability and functions of serpins.
Collapse
Affiliation(s)
- E J Seo
- National Creative Research Initiative Center, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon 305-600, Korea
| | | | | | | | | |
Collapse
|
283
|
Fa M, Bergström F, Karolin J, Johansson LB, Ny T. Conformational studies of plasminogen activator inhibitor type 1 by fluorescence spectroscopy. Analysis of the reactive centre of inhibitory and substrate forms, and of their respective reactive-centre cleaved forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3729-34. [PMID: 10848991 DOI: 10.1046/j.1432-1327.2000.01406.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitors that belong to the serpin family are suicide inhibitors that control the major proteolytic cascades in eucaryotes. Recent data suggest that serpin inhibition involves reactive centre cleavage followed by loop insertion, whereby the covalently linked protease is translocated away from the initial docking site. However under certain circumstances, serpins can also be cleaved like a substrate by target proteases. In this report we have studied the conformation of the reactive centre of plasminogen activator inhibitor type 1 (PAI-1) mutants with inhibitory and substrate properties. The polarized steady-state and time-resolved fluorescence anisotropies were determined for BODIPY(R) probes attached to the P1' and P3 positions of the substrate and active forms of PAI-1. The fluorescence data suggest an extended orientational freedom of the probe in the reactive centre of the substrate form as compared to the active form, revealing that the conformation of the reactive centres differ. The intramolecular distance between the P1' and P3 residues in reactive centre cleaved inhibitory and substrate mutants of PAI-1, were determined by using the donor-donor energy migration (DDEM) method. The distances found were 57+/-4 A and 63+/-3 A, respectively, which is comparable to the distance obtained between the same residues when PAI-1 is in complex with urokinase-type plasminogen activator (uPA). Following reactive centre cleavage, our data suggest that the core of the inhibitory and substrate forms possesses an inherited ability of fully inserting the reactive centre loop into beta-sheet A. In the inhibitory forms of PAI-1 forming serpin-protease complexes, this ability leads to a translocation of the cognate protease from one pole of the inhibitor to the opposite one.
Collapse
Affiliation(s)
- M Fa
- Department of Medical Biosciences, Medical Biochemistry, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
284
|
Abstract
Corticosteroid binding globulin, a member of the serpin family, was previously shown to be secreted mainly apically from MDCK cells in an N-glycan independent manner [Larsen et al. (1999) FEBS Lett. 451, 19-22]. Apart from N-glycosylation, serpins are not known to carry any other posttranslational modifications, suggesting the presence of a proteinaceous apical sorting signal. In the present study we have expressed four other members of the serpin family: alpha1-antitrypsin, C1 inhibitor, plasminogen activator inhibitor-1 and antithrombin in MDCK cells. Tight monolayers of transfected cells were grown on filters and the amounts of recombinantly expressed serpins in the apical and the basolateral media were determined. alpha1-Antitrypsin and C1 inhibitor were found mainly in the apical medium whereas plasminogen activator inhibitor-1 and antithrombin were found in roughly equal amounts in the apical and basolateral media. Control experiments showed that all four serpins are transported along the exocytotic pathway in an uncomplicated way that does not involve transcytosis or differences in stability on the two sides of the cells. We conclude that some members of the serpin family including corticosteroid binding globulin, alpha1-antitrypsin and C1 inhibitor are secreted mainly apically from MDCK cells whereas plasminogen activator inhibitor-1 and antithrombin are secreted in a non-polarized manner.
Collapse
Affiliation(s)
- L K Vogel
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory C, University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | |
Collapse
|
285
|
Stief TW, Stüber W. Antibodies against the synthetic reactive site (SER338-ILE353) of human PAI-1 neutralize PAI-1 activity. Thromb Res 2000; 98:347-9. [PMID: 10823984 DOI: 10.1016/s0049-3848(99)00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T W Stief
- Institute of Clinical Chemistry, University Hospital of Philipps University, Marburg, Germany.
| | | |
Collapse
|
286
|
Abstract
The native form of inhibitory serpins (serine protease inhibitors) is not in the thermodynamically most stable state but in a metastable state, which is critical to inhibitory functions. To understand structural basis and functional roles of the native metastability of inhibitory serpins, we have been characterizing stabilizing mutations of human alpha1-antitrypsin, a prototype inhibitory serpin. One of the sites that has been shown to be critical in stability and inhibitory activity of alpha1-antitrypsin is Lys335. In the present study, detailed roles of this lysine were analyzed by assessing the effects of 13 different amino acid substitutions. Results suggest that size and architect of the side chains at the 335 site determine the metastability of alpha1-antitrypsin. Moreover, factors such as polarity and flexibility of the side chain at this site, in addition to the metastability, seem to be critical for the inhibitory activity. Substitutions of the lysine at equivalent positions in two other inhibitory serpins, human alpha1-antichymotrypsin and human antithrombin III, also increased stability and decreased inhibitory activity toward alpha-chymotrypsin and thrombin, respectively. These results and characteristics of lysine side chain, such as flexibility, polarity, and the energetic cost upon burial, suggest that this lysine is one of the structural designs in regulating metastability and function of inhibitory serpins in general.
Collapse
Affiliation(s)
- H Im
- National Creative Research Initiative Center, Korea Research Institute of Bioscience and Biotechnology, Taejon
| | | |
Collapse
|
287
|
Abstract
Alpha 1-antitrypsin deficiency is the most common genetic cause of liver disease in children. It is also associated with chronic liver disease, hepatocellular carcinoma, and pulmonary emphysema in adults. Liver injury is caused by hepatotoxic effects of retention of the mutant alpha 1-antitrypsin molecule within the endoplasmic reticulum of liver cells, and emphysema is caused by uninhibited proteolytic damage to elastic tissue in the lung parenchyma. Recent studies of the biochemistry and cell biology of the mutant alpha 1-antitrypsin molecule have led to advances in understanding susceptibility to liver injury and in developing new strategies for prevention of both liver and lung disease.
Collapse
Affiliation(s)
- D H Perlmutter
- Departments of Pediatrics, Biology, and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
288
|
Fa M, Bergström F, Hägglöf P, Wilczynska M, Johansson LB, Ny T. The structure of a serpin-protease complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure 2000; 8:397-405. [PMID: 10801484 DOI: 10.1016/s0969-2126(00)00121-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The inhibitors that belong to the serpin family are widely distributed regulatory molecules that include most protease inhibitors found in blood. It is generally thought that serpin inhibition involves reactive-centre cleavage, loop insertion and protease translocation, but different models of the serpin-protease complex have been proposed. In the absence of a spatial structure of a serpin-protease complex, a detailed understanding of serpin inhibition and the character of the virtually irreversible complex have remained controversial. RESULTS We used a recently developed method for making precise distance measurements, based on donor-donor energy migration (DDEM), to accurately triangulate the position of the protease urokinase-type plasminogen activator (uPA) in complex with the serpin plasminogen activator inhibitor type 1 (PAI-1). The distances from residue 344 (P3) in the reactive-centre loop of PAI-1 to residues 185, 266, 313 and 347 (P1') were determined. Modelling of the complex using this distance information unequivocally placed residue 344 in a position at the distal end from the initial docking site with the reactive-centre loop fully inserted into beta sheet A. To validate the model, seven single cysteine substitution mutants of PAI-1 were used to map sites of protease-inhibitor interaction by fluorescence depolarisation measurements of fluorophores attached to these residues and cross-linking using a sulphydryl-specific cross-linker. CONCLUSIONS The data clearly demonstrate that serpin inhibition involves reactive-centre cleavage followed by full-loop insertion whereby the covalently linked protease is translocated from one pole of the inhibitor to the opposite one.
Collapse
Affiliation(s)
- M Fa
- Department of Medical Biosciences, Medical Biochemistry, Umeâ University, Umeâ, S-90187, Sweden
| | | | | | | | | | | |
Collapse
|
289
|
Stoop AA, Lupu F, Pannekoek H. Colocalization of thrombin, PAI-1, and vitronectin in the atherosclerotic vessel wall: A potential regulatory mechanism of thrombin activity by PAI-1/vitronectin complexes. Arterioscler Thromb Vasc Biol 2000; 20:1143-9. [PMID: 10764685 DOI: 10.1161/01.atv.20.4.1143] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serine protease thrombin is a mitogen for vascular smooth muscle cells. To that end, thrombin cleaves the surface-exposed, protease-activated receptor type 1 (PAR-1), resulting in signal transduction and ultimately, proliferation of these cells. Regulation of thrombin activity in the human atherosclerotic vessel wall has not been studied in great detail, conceivably because the traditional plasma thrombin inhibitor, anti-thrombin III, is not encountered at this location. By using immunofluorescence confocal microscopy, we demonstrate that the antigens of thrombin, plasminogen activator inhibitor 1 (PAI-1), and vitronectin (Vn) colocalize in human neointimal atherosclerotic arterial tissue. Furthermore, it is shown by in situ reverse zymography that these specimens harbor the active form of PAI-1, which is the only configuration of PAI-1 capable of complexing with Vn and inhibiting serine proteases, eg, thrombin. Two different criteria were used to establish that neointimal atherosclerotic material contains active alpha-thrombin, namely, its ability to bind to the thrombin inhibitor hirudin and to convert the thrombin-specific chromogenic substrate S2238. The latter activity could be fully prevented by preincubation with the thrombin-specific inhibitor, phenyl-prolyl-arginyl-chloromethyl ketone. The thrombin concentration measured by conversion of the chromogenic substrate was 7 to 12 nmol/L in the vascular specimens studied. This concentration range suffices to activate the PAR-1 receptor on vascular smooth muscle cells and to cause neointimal proliferation. It is concluded that the human atherosclerotic arterial vessel wall provides conditions that favor a regulatory mechanism of thrombin activity by PAI-1/Vn complexes.
Collapse
Affiliation(s)
- A A Stoop
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
290
|
Muehlenweg B, Guthaus E, de Prada NA, Schmitt M, Schmiedeberg N, Kotzsch M, Creutzburg S, Kramer MD, Kessler H, Wilhelm OG, Magdolen V. Epitope mapping of monoclonal antibodies directed to PAI-1 using PAI-1/PAI-2 chimera and PAI-1-derived synthetic peptides. Thromb Res 2000; 98:73-81. [PMID: 10706935 DOI: 10.1016/s0049-3848(99)00238-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasminogen activator inhibitor type-1 is a key regulatory protein of the fibrinolytic system that is involved in a variety of physiological and pathophysiological processes. A panel of 14 monoclonal antibodies directed against plasminogen activator inhibitor type-1 was analyzed regarding epitope specificity on plasminogen activator inhibitor type-1. For this purpose, chimera consisting of plasminogen activator inhibitor type-1 and another plasminogen activator inhibitor, plasminogen activator inhibitor type-2, with different portions of the respective wild-type proteins, were generated and plasminogen activator inhibitor type-1-derived 20-mer and 10-mer linear peptides were synthesized. Nine of the 14 monoclonal antibodies recognized an epitope located in the region between amino acid 76-188 of plasminogen activator inhibitor type-1, which encompasses the binding sites for vitronectin, heparin, and part of the fibrin binding region. Of these nine monoclonal antibodies, six reacted with a quadruple plasminogen activator inhibitor type-1 mutant (N152H, K156T, Q321L, M356I), and seven detected a plasminogen activator inhibitor type-1 deletion mutant (DeltaF111-H114). Two of the remaining five monoclonal antibodies recognized epitopes located between amino acid 209-227 and amino acid 352-371, respectively, while the other three antibodies reacted with wild-type plasminogen activator inhibitor type-1, only. Additional experiments revealed that two of the 14 mAbs neutralized and one monoclonal antibodies increased plasminogen activator inhibitor type-1 activity toward urokinase-type plasminogen activator, one of its target proteases.
Collapse
|
291
|
Nar H, Bauer M, Stassen JM, Lang D, Gils A, Declerck PJ. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297:683-95. [PMID: 10731421 DOI: 10.1006/jmbi.2000.3604] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a constitutively active multiple site mutant of plasminogen activator inhibitor 1 (PAI-1) was determined and refined at a resolution of 2.7 A. The present structure comprises a dimer of two crystallographically independent PAI-1 molecules that pack by association of the residues P6 to P3 of the reactive centre loop of one molecule (A) with the edge of the main beta-sheet A of the other molecule (B).Thus, the reactive centre loop is ordered for molecule A by crystal packing forces, while for molecule B it is unconstrained by crystal packing contacts and is disordered. The overall structure of active PAI-1 is similar to the structures of other active inhibitory serpins exhibiting as the major secondary structural feature a five-stranded beta-sheet A and an intact proteinase-binding loop protruding from the one end of the elongated molecule. No preinsertion of the reactive centre loop is observed in this structure.A comparison of the present structure with the previously determined crystal structures of PAI-1 in its alternative conformations reveals that, upon cleavage of an intact form of PAI-1 or formation of latent PAI-1, the well-characterised rearrangements of the serpin secondary structural elements are accompanied by dramatic and partly unexpected conformational changes of helical and loop structures proximal to beta-sheet A. The present structure explains the stabilising effects of the mutated residues, reveals the structural cause for the observed spectroscopic differences between active and latent PAI-1, and provides new insights into possible mechanisms of stabilisation by its natural binding partner, vitronectin.
Collapse
Affiliation(s)
- H Nar
- Department of Chemistry, Boehringer Ingelheim Pharma KG, Biberach, Germany.
| | | | | | | | | | | |
Collapse
|
292
|
Zuraw BL, Herschbach J. Detection of C1 inhibitor mutations in patients with hereditary angioedema. J Allergy Clin Immunol 2000; 105:541-6. [PMID: 10719305 DOI: 10.1067/mai.2000.104780] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) results from a deficiency in the functional level of C1 inhibitor caused by mutations in the C1 inhibitor gene. The mutations responsible for HAE have been shown to be heterogeneous. OBJECTIVE Because the identification of C1 inhibitor mutations may depend, in part, on the technique used to screen for mutations, we screened the entire C1 inhibitor coding region to identify mutations in a cohort of patients with HAE. METHODS By using single-stranded conformational polymorphism analysis, 24 subjects with HAE from 16 different kindreds were screened for C1 inhibitor polymorphisms. C1 inhibitor mutations were identified by sequencing the exons containing identified polymorphisms. RESULTS All 24 subjects with HAE had identifiable polymorphisms, involving exons 2, 3, 4, 5, or 8. Fourteen different C1 inhibitor mutations were identified: 8 missense, 1 nonsense, 4 frameshift, and 1 small deletion mutations. No large deletions or duplications were found. Nine of the 14 mutations represent newly recognized C1 inhibitor mutations, 6 of which involve exon 4. CONCLUSIONS Single-stranded conformational polymorphism is an effective approach for identifying new mutations in HAE. Elucidation of the range of C1 inhibitor mutations causing HAE is important for both defining which residues are required for C1 inhibitor secretion or function and providing the basis for future studies to define the relationship between the C1 inhibitor genotype and disease severity.
Collapse
Affiliation(s)
- B L Zuraw
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | | |
Collapse
|
293
|
Lawrence DA, Olson ST, Muhammad S, Day DE, Kvassman JO, Ginsburg D, Shore JD. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. J Biol Chem 2000; 275:5839-44. [PMID: 10681574 DOI: 10.1074/jbc.275.8.5839] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serpin family of serine proteinase inhibitors is a mechanistically unique class of naturally occurring proteinase inhibitors that trap target enzymes as stable covalent acyl-enzyme complexes. This mechanism appears to require both cleavage of the serpin reactive center loop (RCL) by the proteinase and a significant conformational change in the serpin structure involving rapid insertion of the RCL into the center of an existing beta-sheet, serpin beta-sheet A. The present study demonstrates that partitioning between inhibitor and substrate modes of reaction can be altered by varying either the rates of RCL insertion or deacylation using a library of serpin RCL mutants substituted in the critical P(14) hinge residue and three different proteinases. We further correlate the changes in partitioning with the actual rates of RCL insertion for several of the variants upon reaction with the different proteinases as determined by fluorescence spectroscopy of specific RCL-labeled inhibitor mutants. These data demonstrate that the serpin mechanism follows a branched pathway, and that the formation of a stable inhibited complex is dependent upon both the rate of the RCL conformational change and the rate of enzyme deacylation.
Collapse
Affiliation(s)
- D A Lawrence
- American Red Cross Holland Laboratory, Rockville, Maryland 20855, USA.
| | | | | | | | | | | | | |
Collapse
|
294
|
Grishkovskaya I, Avvakumov GV, Sklenar G, Dales D, Hammond GL, Muller YA. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain. EMBO J 2000; 19:504-12. [PMID: 10675319 PMCID: PMC305588 DOI: 10.1093/emboj/19.4.504] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/1999] [Revised: 12/10/1999] [Accepted: 12/10/1999] [Indexed: 11/14/2022] Open
Abstract
Human sex hormone-binding globulin (SHBG) transports sex steroids in blood and regulates their access to target tissues. In biological fluids, SHBG exists as a homodimer and each monomer comprises two laminin G-like domains (G domains). The crystal structure of the N-terminal G domain of SHBG in complex with 5alpha-dihydrotestosterone at 1.55 A resolution reveals both the architecture of the steroid-binding site and the quaternary structure of the dimer. We also show that G domains have jellyroll topology and are structurally related to pentraxin. In each SHBG monomer, the steroid intercalates into a hydrophobic pocket within the beta-sheet sandwich. The steroid and a 20 A distant calcium ion are not located at the dimer interface. Instead, two separate steroid-binding pockets and calcium-binding sites exist per dimer. The structure displays intriguing disorder for loop segment Pro130-Arg135. In all other jellyroll proteins, this loop is well ordered. If modelled accordingly, it covers the steroid-binding site and could thereby regulate access of ligands to the binding pocket.
Collapse
Affiliation(s)
- I Grishkovskaya
- Forschungsgruppe Kristallographie, Max-Delbrück-Center for Molecular Medicine, Robert-Roessle-Strasse 10, D-13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
295
|
Meagher JL, Olson ST, Gettins PG. Critical role of the linker region between helix D and strand 2A in heparin activation of antithrombin. J Biol Chem 2000; 275:2698-704. [PMID: 10644732 DOI: 10.1074/jbc.275.4.2698] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of pentasaccharide heparin to antithrombin induces a conformational change that is transmitted to the reactive center loop and increases the rate of inhibition of factor Xa by approximately 300-fold. The mechanism of such transmission is not known. To test the role of residues 134-137, which link helix D to beta-sheet A, in this signal transduction, we created variant antithrombins in which we removed amino acids 134-137 stepwise and cumulatively. Although the deletions did not compromise the fundamental ability of antithrombin to bind to heparin or to inhibit target proteinases thrombin and factor Xa, they did largely decouple conformational changes in the heparin-binding site from conformational activation of the reactive center loop. Because the variant with only Ala(134) removed was as compromised as variants with larger deletions, yet the variant with Ser(137) removed was normal, we concluded that the length of the linker is less important than the precise interrelationship between residues in this region and other residues involved in conformational activation of antithrombin.
Collapse
Affiliation(s)
- J L Meagher
- Department of Biochemistry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
296
|
Gooptu B, Hazes B, Chang WS, Dafforn TR, Carrell RW, Read RJ, Lomas DA. Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci U S A 2000; 97:67-72. [PMID: 10618372 PMCID: PMC26617 DOI: 10.1073/pnas.97.1.67] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1999] [Indexed: 01/17/2023] Open
Abstract
The serpins are a family of proteinase inhibitors that play a central role in the control of proteolytic cascades. Their inhibitory mechanism depends on the intramolecular insertion of the reactive loop into beta-sheet A after cleavage by the target proteinase. Point mutations within the protein can allow aberrant conformational transitions characterized by beta-strand exchange between the reactive loop of one molecule and beta-sheet A of another. These loop-sheet polymers result in diseases as varied as cirrhosis, emphysema, angio-oedema, and thrombosis, and we recently have shown that they underlie an early-onset dementia. We report here the biochemical characteristics and crystal structure of a naturally occurring variant (Leu-55-Pro) of the plasma serpin alpha(1)-antichymotrypsin trapped as an inactive intermediate. The structure demonstrates a serpin configuration with partial insertion of the reactive loop into beta-sheet A. The lower part of the sheet is filled by the last turn of F-helix and the loop that links it to s3A. This conformation matches that of proposed intermediates on the pathway to complex and polymer formation in the serpins. In particular, this intermediate, along with the latent and polymerized conformations, explains the loss of activity of plasma alpha(1)-antichymotrypsin associated with chronic obstructive pulmonary disease in patients with the Leu-55-Pro mutation.
Collapse
Affiliation(s)
- B Gooptu
- Respiratory Medicine Unit, Department of Medicine University of Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
297
|
Janssen OE, Astner ST, Grasberger H, Gunn SK, Refetoff S. Identification of thyroxine-binding globulin-San Diego in a family from Houston and its characterization by in vitro expression using Xenopus oocytes. J Clin Endocrinol Metab 2000; 85:368-72. [PMID: 10634412 DOI: 10.1210/jcem.85.1.6317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
T4-binding globulin (TBG) is a liver glycoprotein that transports iodothyronines in serum. Several TBG variants with reduced T4 binding affinity have been described, all of which are also characterized by reduced serum TBG concentrations and reduced heat stability. Their loss of binding thus appears to be due to a general defect of the molecule. We now report the occurrence of a variant TBG, detected in a family from Houston, TX, with half the normal T4 binding affinity and heat stability but normal serum concentration and isoelectric focussing pattern. The propositus was identified by reduced total T4 and T3 serum levels. All family members were euthyroid, and inheritance followed an X-linked pattern. Sequence analysis of the TBG gene of the propositus and his heterozygous mother revealed two amino acid substitutions: serine 23 with threonine (S23T), and the known polymorphism leucine 283 with phenylalanine (L283F). These substitutions are identical to those of TBG-San Diego (TBG-SD), a variant with similar properties except for a reduced serum concentration. Expression of recombinant TBG-SD/H with the S23T substitution in Xenopus oocytes reproduced the binding defect and heat lability. The amount of TBG-SD/H synthesized and secreted by the oocytes was not different from that of normal TBG. The difference in serum TBG concentrations in affected members of the San Diego and Houston families thus does not appear to be due to an error in the measurement of TBG, but may be related to differences in the rates of degradation.
Collapse
Affiliation(s)
- O E Janssen
- Department of Medicine, Klinikum Innenstadt, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | |
Collapse
|
298
|
Scott FL, Eyre HJ, Lioumi M, Ragoussis J, Irving JA, Sutherland GA, Bird PI. Human ovalbumin serpin evolution: phylogenic analysis, gene organization, and identification of new PI8-related genes suggest that two interchromosomal and several intrachromosomal duplications generated the gene clusters at 18q21-q23 and 6p25. Genomics 1999; 62:490-9. [PMID: 10644448 DOI: 10.1006/geno.1999.6021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human ovalbumin (ov) serpins are associated with tumorigenesis, inflammation, and protection from autolysis by granule proteinases. Their genes are located at 18q21 or 6p25, falling into two structurally very similar but distinct categories depending on the presence or absence of a particular exon. Analysis of ov-serpin gene structure provides an opportunity to elucidate the mechanisms contributing to the formation of the larger serpin gene superfamily. Here we have identified a new gene (PI8L1) at 6p25 that is 72% identical to the 18q21 gene PI8. FISH analysis using the 3' untranslated region of PI8 yielded an additional signal at 18q23, separable from the known 18q21.3 signal by the t(1;18)(p32;q23) chromosomal translocation. The presence of more than one PI8-related gene was confirmed by analysis of human genomic DNA using the same probe. Cloning and analysis of PI8 showed that its intron number and phasing are identical to those of the 6p25 genes PI6, PI9, and ELANH2, and it lacks the interhelical variable loop exon found in other 18q21 genes. PCR analysis demonstrated that PI5 at 18q21 also lacks this exon, indicating that it is organized identically to the 6p25 genes. By contrast, PI10 and megsin have this exon and resemble the other 18q21 genes, PLANH2, SCCA-1, and SCCA-2, in structure. Using these data with an ov-serpin phylogenic tree we have constructed, we propose that the ov-serpin gene clusters arose via interchromosomal duplication of PI5 (or a precursor) to 6p25, followed by duplication at 6p25, and a more recent interchromosomal duplication from 6p25 to 18q to yield PI8.
Collapse
Affiliation(s)
- F L Scott
- Department of Medicine, Monash University Medical School, Box Hill, 3128, Australia
| | | | | | | | | | | | | |
Collapse
|
299
|
Abstract
Heparin cofactor II (HCII) is a serpin whose thrombin inhibition activity is accelerated by glycosaminoglycans. We describe the novel properties of a carboxyl-terminal histidine-tagged recombinant HCII (rHCII-CHis(6)). Thrombin inhibition by rHCII-CHis(6) was increased >2-fold at approximately 5 microgram/ml heparin compared with wild-type recombinant HCII (wt-rHCII) at 50-100 microgram/ml heparin. Enhanced activity of rHCII-CHis(6) was reversed by treatment with carboxypeptidase A. We assessed the role of the HCII acidic domain by constructing amino-terminal deletion mutants (Delta1-52, Delta1-68, and Delta1-75) in wt-rHCII and rHCII-CHis(6). Without glycosaminoglycan, unlike wt-rHCII deletion mutants, the rHCII-CHis(6) deletion mutants were less active compared with full-length rHCII-CHis(6). With glycosaminoglycans, Delta1-68 and Delta1-75 rHCIIs were all less active. We assessed the character of the tag by comparing rHCII-CHis(6), rHCII-CAla(6), and rHCII-CLys(6) to wt-rHCII. Only rHCII-CHis(6) had increased activity with heparin, whereas all three mutants have increased heparin binding. We generated a carboxyl-terminal histidine-tagged recombinant antithrombin III to study the tag on another serpin. Interestingly, this mutant antithrombin III had reduced heparin cofactor activity compared with wild-type protein. In a plasma-based assay, the glycosaminoglycan-dependent inhibition of thrombin by rHCII-CHis(6) was significantly greater compared with wt-rHCII. Thus, HCII variants with increased function, such as rHCII-CHis(6), may offer novel reagents for clinical application.
Collapse
Affiliation(s)
- S J Bauman
- Department of Pathology, Center for Thrombosis and Hemostasis, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7035, USA
| | | |
Collapse
|
300
|
Soluble thrombomodulin quenches thrombin-mediated neutralization of PAI-1 activity and inhibits fibrinolysis through a TAFI independent mechanism. ACTA ACUST UNITED AC 1999. [DOI: 10.1054/fipr.2000.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|