251
|
Ait Bamai Y, Shibata E, Saito I, Araki A, Kanazawa A, Morimoto K, Nakayama K, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:153-163. [PMID: 24704966 DOI: 10.1016/j.scitotenv.2014.03.059] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/15/2014] [Accepted: 03/15/2014] [Indexed: 05/23/2023]
Abstract
Although an association between exposure to phthalates in house dust and childhood asthma or allergies has been reported in recent years, there have been no reports of these associations focusing on both adults and children. We aimed to investigate the relationships between phthalate levels in Japanese dwellings and the prevalence of asthma and allergies in both children and adult inhabitants in a cross-sectional study. The levels of seven phthalates in floor dust and multi-surface dust in 156 single-family homes were measured. According to a self-reported questionnaire, the prevalence of bronchial asthma, allergic rhinitis, allergic conjunctivitis, and atopic dermatitis in the 2 years preceding the study was 4.7%, 18.6%, 7.6%, and 10.3%, respectively. After evaluating the interaction effects of age and exposure categories with generalized liner mixed models, interaction effects were obtained for DiNP and bronchial asthma in adults (Pinteraction=0.028) and for DMP and allergic rhinitis in children (Pinteraction=0.015). Although not statistically significant, children had higher ORs of allergic rhinitis for DiNP, allergic conjunctivitis for DEHP, and atopic dermatitis for DiBP and BBzP than adults, and liner associations were observed (Ptrend<0.05). On the other hand, adults had a higher OR for atopic dermatitis and DEHP compared to children. No significant associations were found in phthalates levels collected from multi-surfaces. This study suggests that the levels of DMP, DEHP, DiBP, and BBzP in floor dust were associated with the prevalence of allergic rhinitis, conjunctivitis, and atopic dermatitis in children, and children are more vulnerable to phthalate exposure via household floor dust than are adults. The results from this study were shown by cross-sectional nature of the analyses and elaborate assessments for metabolism of phthalates were not considered. Further studies are needed to advance our understanding of phthalate toxicity.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Graduate School of Medicine, Department of Public Health Sciences, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Eiji Shibata
- Aichi Medical University School of Medicine, 21 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Ikue Saito
- Department of Environmental Health and Toxicology, Division of Environment Health, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjyuku-ku, Tokyo 169-0073, Japan
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Kanazawa
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan
| | - Kanehisa Morimoto
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Kunio Nakayama
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Masatoshi Tanaka
- Fukushima Medical University, 80-6 Yagita-Shinnmei, Fukushima-City, 960-8164, Japan
| | - Tomoko Takigawa
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takesumi Yoshimura
- Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu 818-0135, Japan
| | - Hisao Chikara
- Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu 818-0135, Japan
| | - Yasuaki Saijo
- Asahikawa Medical University, 1-1-1 Midorigaoka Higashi 2 jo, Asahikawa 078-8510, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
252
|
Das MT, Ghosh P, Thakur IS. Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:118-125. [PMID: 24657605 DOI: 10.1016/j.envpol.2014.02.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
An indirect estimation method was followed to derive exposure levels of fifteen phthalate congeners in urban population of Delhi, India. The exposure media samples were collected from Jawaharlal Nehru University (JNU) campus and Okhla industrial area. GC-MS analysis of the samples indicated di(2-ethylhexyl) phthalate (DEHP) to be the most abundant congener and its estimated total daily intake level reached upto 70 μg kg(-1) d(-1). Out of the studied congeners, intake doses for di-n-butyl phthalate (DnBP) and DEHP, reached levels near or above the established exposure limit. In JNU, DEHP, dimethyl phthalate (DMP) and butyl benzyl phthalate (BBP) had 69% share in combined daily intake of Σ15 phthalates (CDI15); whereas, in Okhla, DEHP, diethyl phthalate (DEP), diisobutyl phthalate (DIBP), DnBP and DMP shared 64% of the CDI15. Food was found to be the major source of exposure contributing 67% and 74% of the estimated CDI15 at JNU and Okhla respectively.
Collapse
Affiliation(s)
- Mihir Tanay Das
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Pooja Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
253
|
Shu H, Jönsson BA, Larsson M, Nånberg E, Bornehag CG. PVC flooring at home and development of asthma among young children in Sweden, a 10-year follow-up. INDOOR AIR 2014; 24:227-35. [PMID: 24118287 DOI: 10.1111/ina.12074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/02/2013] [Indexed: 05/04/2023]
Abstract
UNLABELLED The incidence of asthma and allergy has increased throughout the developed world over the past decades. During the same period of time, the use of industrial chemicals such as phthalates, commonly used as plasticizers in polyvinylchloride (PVC) flooring material, has increased. The aim of this study was to investigate whether PVC flooring in the home of children in the age of 1-5 years is associated with the development of asthma in 5- and 10-year follow-up investigations (n = 3228). Dampness in Buildings and Health Study (DBH Study) commenced in 2000 in Värmland, Sweden. The current analyses included subjects who answered all baseline and follow-up questionnaires. Logistic regression analyses were applied to questionnaire results. Children who had PVC floorings in the bedroom at baseline were more likely to develop doctor-diagnosed asthma during the following 10-year period when compared with children living without. There were indications that PVC flooring in the parents' bedrooms was strongly associated with the new cases of doctor-diagnosed asthma when compared with child's bedroom. Our results suggest that PVC flooring exposure during pregnancy could be a critical period in the development of asthma in children at a later time; prenatal exposure and measurements of phthalate metabolites should be included in the future. PRACTICAL IMPLICATIONS This study has found that PVC flooring material in early life was related to incidence of asthma during the following 10 years when compared with other flooring materials and especially when comparing with wood flooring type.The study has further indicated that PVC flooring in the parents’ bedroom (proxy for prenatal exposure) was more associated with the development of asthma than PVC in the child’s bedroom was. Our results suggest that PVC flooring exposure during pregnancy could be a critical period in the development of asthma in children at a later time. In future prospective cohort study, prenatal exposure and measurements of phthalate metabolites should be included.
Collapse
Affiliation(s)
- H Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | | | | | | | | |
Collapse
|
254
|
Shin HM, McKone TE, Nishioka MG, Fallin MD, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Bennett DH. Determining source strength of semivolatile organic compounds using measured concentrations in indoor dust. INDOOR AIR 2014; 24:260-71. [PMID: 24118221 PMCID: PMC4018806 DOI: 10.1111/ina.12070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/21/2013] [Indexed: 05/02/2023]
Abstract
UNLABELLED Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 US homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity-based indoor mass balance model to estimate the whole-house emission rates of SVOCs that would account for the measured dust concentrations. Di-2-ethylhexyl phthalate (DEHP) and di-iso-nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust-assay modeling approach shows promise for estimating indoor emission rates for SVOCs. PRACTICAL IMPLICATIONS The combined dust-assay modeling approach in this study can be used to predict the source strength of indoor released compounds, integrating emissions from consumer products, building materials, and other home furnishings. Our findings show that estimated emission rates are closely related to not only the level of compounds on dust, but also the vapor pressure of the compound. Thus, a fugacity-based indoor mass balance model and measured dust concentrations can be used to estimate the whole-house emission rates from all sources in actual indoor settings, when individual sources of emissions are unknown.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Public Health Sciences, University of California, Davis, CA, USA
- Corresponding author: Hyeong-Moo Shin, PhD, University of California, Davis, One Shields Avenue, MS1-C, Davis, CA 95616, , Phone: 1.949.648.1614, Fax: 1.530.752.5300
| | - Thomas E. McKone
- School of Public Health, University of California, Berkeley, CA, USA
- Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - M. Daniele Fallin
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | | | - Craig J. Newschaffer
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| |
Collapse
|
255
|
Liang Y, Xu Y. Improved method for measuring and characterizing phthalate emissions from building materials and its application to exposure assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4475-4484. [PMID: 24654650 DOI: 10.1021/es405809r] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phthalate emission from vinyl floorings was measured in specially designed stainless steel chambers. Phthalate concentrations increased and reached steady state after 2 to 5 days for all experiments. By having a high ratio of emission surface to sorption surface, avoiding mass loss of phthalates onto sampling pathways, and improving air mixing inside the chamber, the time to reach steady state was significantly reduced, compared to previous studies (1 to 5 months). An innovative approach was developed to determine y0, the gas-phase concentration of phthalates in equilibrium with the material phase, which is the key parameter controlling phthalate emissions. Target phthalate material-phase concentration (C0) and vapor pressure (Vp) were explicitly measured and found to have great influences on the y0 value. For low phthalate concentrations in materials, a simple partitioning mechanism may linearly relate y0 and C0, but cannot be evoked for high-weight phthalate percentages. In addition, the sorption kinetics and adsorption isotherm of phthalates on stainless steel chamber surfaces were determined experimentally. Independently measured or calculated parameters were used to validate a semivolatile organic compounds (SVOCs) emission model, with excellent agreement between model predictions and the observed chamber concentrations in gas and stainless steel phases. With the knowledge of y0 and emission mechanisms, human exposure to phthalates from tested floorings was assessed; the levels were comparable to previous studies. This work developed a rapid, novel method to measure phthalate emissions; emission measurement results can be connected to exposure assessment and help health professionals estimate screening-level exposures associated with SVOCs and conduct risk-based prioritization for SVOC chemicals of concern.
Collapse
Affiliation(s)
- Yirui Liang
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin , Austin, Texas 78712-1094, United States
| | | |
Collapse
|
256
|
North ML, Takaro TK, Diamond ML, Ellis AK. Effects of phthalates on the development and expression of allergic disease and asthma. Ann Allergy Asthma Immunol 2014; 112:496-502. [PMID: 24726194 DOI: 10.1016/j.anai.2014.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/07/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review recent evidence relating phthalate exposures to allergies and asthma and to provide an overview for clinicians interested in the relevance of environmental health research to allergy and who may encounter patients with concerns about phthalates from media reports. DATA SOURCES PubMed, TOXLINE, and Web of Science were searched using the term phthalate(s) combined with the keywords allergy, asthma, atopy, and inflammation. STUDY SELECTIONS Articles were selected based on relevance to the goals of this review. Studies that involved humans were prioritized, including routes and levels of exposure, developmental and early-life exposures, immunotoxicity, and the development of allergic disease. RESULTS The general public and those with allergy are exposed to significant levels of phthalates via diet, pharmaceuticals, phthalate-containing products, and ambient indoor environment via air and dust. Intravenous exposures occur through medical equipment. Phthalates are metabolized and excreted quickly in the body with metabolites measured in urine. Phthalates, which are known endocrine disrupting compounds, have been associated with oxidative stress and alterations in cytokine expression. Metabolites in human urine, particularly of the higher-molecular-weight phthalates, have been associated with allergies and asthma in multiple studies. CONCLUSION Despite mounting evidence implicating phthalates, causation of allergic disease by these compounds cannot currently be established. In utero and early-life exposures and possible transgenerational effects are not well understood. However, considering the current evidence, reducing exposures to phthalates by avoiding processed and foods packaged and stored in plastics, personal care products with phthalates, polyvinyl chloride materials indoors, and reducing home dust is advised. Further longitudinal, molecular, and intervention studies are needed to understand the association between phthalates and allergic disease.
Collapse
Affiliation(s)
- Michelle L North
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada; Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada; Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
257
|
Meng XZ, Wang Y, Xiang N, Chen L, Liu Z, Wu B, Dai X, Zhang YH, Xie Z, Ebinghaus R. Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:242-9. [PMID: 24468498 DOI: 10.1016/j.scitotenv.2014.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 05/20/2023]
Abstract
The wide production and use of phthalate esters (PAEs) in both industry and commercial products lead to their ubiquitous existence in the environment. However, understanding flow and pathway of human exposure to PAEs from sources to receptors is necessary and challenging. In this study, we selected final sewage sludge, an inevitable byproduct of wastewater treatment plants (WWTP), as one type of important carrier/sources of PAEs to clarify the flow of PAEs between human and the environment, e.g. the release by human to sludge and in turn ingestion by human after these sludges were disposed as soil amendment. Twenty-five sludge samples were collected from 25 wastewater treatment plants (WWTPs) in Shanghai, East China. Of all 16 PAE congeners, di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DnBP) were predominant with mean concentrations of 97.4 and 22.4 μg/g dw, respectively, both locating at the high end of the global range. WWTP treating industrial waster generally contained higher PAEs compared to those treating domestic wastewater, but no positive relationship was found between PAE levels with the percentage of industrial wastewater. Principal component analysis (PCA) showed that similar PAE sources for all WWTPs in Shanghai with three exceptions, in which specific PAE products were made. The annual mass loadings via sludge of DEHP, DnBP, and Σ16PAEs were 31.4, 7.44, and 39.6 tons in Shanghai and 1042, 247, and 1314 tons in China, respectively, only accounting for 0.09% of the total consumption of PAEs in China. If this sludge is applied in soil, human will take 16.4 and 3.8 μg/kg bw for DEHP and DnBP every day, respectively, via dietary and soil ingestion, which were lower than the toxicological safety parameters. To the best of our knowledge, this is the first report to analyze the flow of sludge-borne PAEs from human release to human intake.
Collapse
Affiliation(s)
- Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Xiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhigang Liu
- National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Wu
- National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yun-Hui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiyong Xie
- Department for Environmental Chemistry, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht 21502, Germany
| | - Ralf Ebinghaus
- Department for Environmental Chemistry, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht 21502, Germany
| |
Collapse
|
258
|
Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, Mandin C, Bot BL. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:3959-69. [PMID: 24588211 DOI: 10.1021/es405269q] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) are ubiquitous contaminants in indoor environments, emanating from different sources and partitioning among several compartments, including the gas phase, airborne particles, and settled dust. Nevertheless, simultaneous measurements in the three compartments are rarely reported. In this study, we investigated indoor concentrations of a wide range of SVOCs in 30 French dwellings. In settled dust, 40 out of 57 target compounds were detected. The highest median concentrations were measured for phthalates and to a lesser extent for bisphenol A, synthetic musks, some pesticides, and PAHs. Di(2-ethylhexyl)phthalate (DEHP) and diisononyl phthalate (DINP) were the most abundant compounds. A total of 34 target compounds were detected both in the gas phase and airborne particles. The highest concentrations were measured for diisobutyl phthalate (DiBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and synthetic musks in the gas phase and for DEHP, DiBP, DBP, and DINP in the airborne particles. This is the first study on the indoor concentrations of a wide range of SVOCs in settled dust, gas phase, and airborne particles collected simultaneously in each dwelling.
Collapse
Affiliation(s)
- Olivier Blanchard
- EHESP-School of Public Health Sorbonne Paris Cité, 35043 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Weschler CJ, Nazaroff WW. Dermal uptake of organic vapors commonly found in indoor air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1230-7. [PMID: 24328315 DOI: 10.1021/es405490a] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many semivolatile organic compounds (SVOCs). Here, we extend that analysis to approximately eighty organic compounds that (a) occur commonly indoors and (b) are primarily in the gas-phase rather than being associated with particles. For some compounds, the modeled ratio of dermal-to-inhalation uptake is large. In this group are common parabens, lower molecular weight phthalates, o-phenylphenol, Texanol, ethylene glycol, and α-terpineol. For other compounds, estimated dermal uptakes are small compared to inhalation. Examples include aliphatic hydrocarbons, single ring aromatics, terpenes, chlorinated solvents, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
260
|
Ait Bamai Y, Araki A, Kawai T, Tsuboi T, Saito I, Yoshioka E, Kanazawa A, Tajima S, Shi C, Tamakoshi A, Kishi R. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:147-57. [PMID: 24012901 DOI: 10.1016/j.scitotenv.2013.07.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/27/2013] [Accepted: 07/28/2013] [Indexed: 05/22/2023]
Abstract
Phthalates are widely used as plasticizers in numerous products. However, there has been some concern about the various effects they may have on human health. Thus, household phthalate levels are an important public health issue. While many studies have assessed phthalate levels in house dust, the association of these levels with building characteristics has scarcely been examined. The present study investigated phthalate levels in house dust samples collected from the living areas of homes, and examined associations between these phthalate levels and the interior materials. Dust was collected from two portions of the living area: floor dust from the entire floor surface, and multi-surface dust from objects more than 35 cm above the floor. The levels of seven phthalates were measured using gas chromatography/mass spectrometry in selective ion monitoring mode. Phthalate levels were higher in multi-surface dust than in floor dust. Among floor dust samples, those from dwellings with compressed wooden flooring had significantly higher levels of di-iso-butyl phthalate compared to those with other floor materials, while polyvinyl chloride (PVC) flooring was associated with higher di-2-ethylhexyl phthalate (DEHP) levels. Among multi-surface dust samples, higher levels of DEHP and di-iso-nonyl phthalate (DINP) were found in samples from homes with PVC wallpaper than without. The number of PVC interior materials was significantly positively correlated with the levels of DEHP and DINP in multi-surface dust. The phthalate levels in multi-surface dust were associated with the interior surface materials, and those in floor dust were directly related to the flooring materials. Our findings show that when using house dust as an exposure assessment, it is very important to note where the samples were collected from. The present report provides useful information about the association between phthalates and dust inside dwellings, which will assist with establishing public health provisions.
Collapse
Affiliation(s)
- Yu Ait Bamai
- Hokkaido University Graduate School of Medicine, Department of Public Health Sciences, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Zhang M, Huang J, Zeng J, Zhang C. Silicon dioxide–poly(dimethylsiloxane) with a bilayer structure, incorporating multi-walled carbon nanotubes, supported on stainless steel wire as a solid-phase microextraction fiber for the determination of trace phthalate esters in drinking water samples. RSC Adv 2014. [DOI: 10.1039/c3ra45374j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
262
|
Guo Y, Wang L, Kannan K. Phthalates and parabens in personal care products from China: concentrations and human exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:113-9. [PMID: 23880707 DOI: 10.1007/s00244-013-9937-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/02/2013] [Indexed: 05/23/2023]
Abstract
Our previous studies showed that populations in China are widely exposed to phthalates and parabens. Nevertheless, sources of Chinese exposure to phthalates and parabens are not well understood. In this study, we measured concentrations of nine phthalates and six parabens in five categories of personal care products (PCPs, N = 52) collected from Tianjin, China, and estimated human exposure doses to these compounds. The most frequently detected phthalates and parabens in PCPs were diethyl phthalate (DEP) (detection frequency 54 %), methyl paraben (MeP), and n-propyl paraben (PrP) (~75 %). The concentrations of DEP in PCPs ranged from not detected (ND; <0.1 μg/g) to 937 μg/g. The highest concentrations of MeP and PrP were 2,826 and 1,564 μg/g, respectively. Median exposure dose to parabens through dermal application of PCPs in China was estimated at 18,700 μg/d, which was two orders of magnitude greater than that calculated for phthalates (45.5 μg/d). Hand and body lotions were the major contributors to exposures, and the daily exposure doses for DEP, MeP, and PrP from these products were 38.4, 10,200 and 4,890 μg, respectively.
Collapse
Affiliation(s)
- Ying Guo
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY, 12201-0509, USA
| | | | | |
Collapse
|
263
|
Pan TL, Wang PW, Aljuffali IA, Hung YY, Lin CF, Fang JY. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics. Food Chem Toxicol 2013; 65:105-14. [PMID: 24384410 DOI: 10.1016/j.fct.2013.12.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yi-Yun Hung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
264
|
Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14442-9. [PMID: 24261694 DOI: 10.1021/es4042034] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the widespread usage of phthalates and parabens in personal care products (PCPs), little is known about concentrations and profiles as well as human exposure to these compounds through the use of PCPs. In this study, nine phthalates and six parabens were determined in 170 PCPs (41 rinse-off and 109 leave-on), including 20 baby care products collected from Albany, New York. Phthalates were less frequently found in rinse-off PCPs but were more frequently found in perfumes (detection frequency of 100% for diethyl phthalate [DEP], 67% for dibutyl phthalate [DBP]), skin toners (90% for DEP), and nail polishes (90% for DBP). Parabens were found in ∼40% of rinse-off products and ∼60% of leave-on products. The highest concentrations of DEP, DBP, methyl- (MeP), ethyl- (EtP), propyl- (PrP), and butyl parabens (BuP) were on the order of 1000 μg per gram of the product. On the basis of amount and frequency of use of PCPs and the measured median concentrations of target analytes, the total dermal intake doses (sum of all phthalates or parabens) were calculated to be 0.37 and 31.0 μg/kg-bw/day for phthalates and parabens, respectively, for adult females. The calculated dermal intake of phthalates from PCPs was lower for infants and toddlers than for adult females. In contrast, dermal intake of parabens from PCPs by infants and toddlers was higher than that for adult females. The calculated maximum daily exposure dose of MeP, EtP, and PrP from PCPs ranged between 58.6 and 766 μg/kg-bw/day for infants and toddlers, which was 3 times higher than that calculated for adult females. PCPs are an important source of human exposure to parabens; the contribution of PCPs to phthalate exposure is low, except for DEP.
Collapse
Affiliation(s)
- Ying Guo
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany , Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | | |
Collapse
|
265
|
Callesen M, Bekö G, Weschler CJ, Langer S, Brive L, Clausen G, Toftum J, Sigsgaard T, Høst A, Jensen TK. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health 2013; 217:645-52. [PMID: 24388279 DOI: 10.1016/j.ijheh.2013.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Phthalate esters are among the most ubiquitous of indoor pollutants and have been associated with various adverse health effects. In the present study we assessed the cross-sectional association between eight different phthalate metabolites in urine and allergic disease in young children. As part of the Danish Indoor Environment and Children's Health study, urine samples were collected from 440 children aged 3-5 years, of whom 222 were healthy controls, 68 were clinically diagnosed with asthma, 76 with rhinoconjunctivitis and 81 with atopic dermatitis (disease subgroups are not mutually exclusive; some children had more than one disease). There were no statistically significant differences in the urine concentrations of phthalate metabolites between cases and healthy controls with the exception of MnBP and MECPP, which were higher in healthy controls compared with the asthma case group. In the crude analysis MnBP and MiBP were negatively associated with asthma. In the analysis adjusted for multiple factors, only a weak positive association between MEP in urine and atopic dermatitis was found; there were no positive associations between any phthalate metabolites in urine and either asthma or rhinoconjunctivitis. These findings appear to contradict earlier studies. Differences may be due to higher exposures to certain phthalates (e.g., BBzP) via non-dietary pathways in earlier studies, phthalates serving as surrogates for an agent associated with asthma (e.g., PVC flooring) in previous studies but not the present study or altered cleaning habits and the use of "allergy friendly" products by parents of children with allergic disease in the current study in contrast to studies conducted earlier.
Collapse
Affiliation(s)
- Michael Callesen
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Denmark.
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, NJ, United States
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, Göteborg, Sweden
| | - Lena Brive
- SP Technical Research Institute of Sweden, Borås, Sweden
| | - Geo Clausen
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Jørn Toftum
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Torben Sigsgaard
- Department of Environmental and Occupational Medicine, University of Aarhus, Denmark
| | - Arne Høst
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
266
|
Kubwabo C, Rasmussen PE, Fan X, Kosarac I, Wu F, Zidek A, Kuchta SL. Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques. INDOOR AIR 2013; 23:506-14. [PMID: 23621316 DOI: 10.1111/ina.12048] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/12/2013] [Indexed: 05/12/2023]
Abstract
Phthalates have been used extensively as plasticizers to improve the flexibility of polymers, and they also have found many industrial applications. They are ubiquitous in the environment and have been detected in a variety of environmental and biological matrices. The goal of this study was to develop a method for the determination of 17 phthalate esters in house dust. This method involved sonication extraction, sample cleanup using solid phase extraction, and isotope dilution GC/MS/MS analysis. Method detection limits (MDLs) and recoveries ranged from 0.04 to 2.93 μg/g and from 84 to 117%, respectively. The method was applied to the analysis of phthalates in 38 paired household vacuum samples (HD) and fresh dust (FD) samples. HD and FD samples compared well for the majority of phthalates detected in house dust. Data obtained from 126 household dust samples confirmed the historical widespread use of bis(2-ethylhexyl) phthalate (DEHP), with a concentration range of 36 μg/g to 3840 μg/g. Dibutyl phthalate (DBP), benzyl butyl phthalate (BzBP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) were also found in most samples at relatively high concentrations. Another important phthalate, diisobutyl phthalate (DIBP), was detected at a frequency of 98.4% with concentrations ranging from below its MDL of 0.51 μg/g to 69 μg/g.
Collapse
Affiliation(s)
- C Kubwabo
- Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Science and Research Bureau, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
267
|
Saillenfait AM, Sabaté JP, Robert A, Cossec B, Roudot AC, Denis F, Burgart M. Adverse effects of diisooctyl phthalate on the male rat reproductive development following prenatal exposure. Reprod Toxicol 2013; 42:192-202. [DOI: 10.1016/j.reprotox.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022]
|
268
|
Identification of thyroid receptor ant/agonists in water sources using mass balance analysis and monte carlo simulation. PLoS One 2013; 8:e73883. [PMID: 24204563 PMCID: PMC3808374 DOI: 10.1371/journal.pone.0073883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening.
Collapse
|
269
|
Wang W, Wu FY, Huang MJ, Kang Y, Cheung KC, Wong MH. Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:753-762. [PMID: 23755845 DOI: 10.1016/j.jhazmat.2013.04.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Indoor and outdoor dusts from two urban centers in the Pearl River Delta, China, were analyzed and phthalate esters varied from 4.95 to 2,220 μg g(-1) in indoor dust, significantly higher than outdoor dust (1.70-869 μg g(-1)). Di-2-ethylhexyl phthalate (DEHP) was the dominant phthalate found and the highest distribution factor (DF) (1.56 ± 0.41) was noted in the <63 μm fraction (p<0.05). In vitro cytotoxicity of dust extract on human T cell lymphoblast leukemic cell line (CCRF-CEM) indicated by Lethal Concentration 50 (LC50) decreased with particle size. The power model was found as a better fit for explaining the relationship between LC50 and phthalates (R(2)=0.46, p<0.01). Bioaccessibility of phthalates in dust varied with different particle sizes, with the greatest bioaccessible fraction (2.49-38.6%) obtained in <63 μm. Risk assessment indicated that indoor dust ingestion accounted for the major source for DEHP exposure (81.4-96.4% of non-dietary exposure and 36.5% of total exposure), especially for toddlers. The cancer risks associated with DEHP via home dust were high (10(-6)-10(-4)), with 10% of houses estimated with unacceptable risks (>10(-4)). After corrected with the bioaccessibility of phthalates, the cancer risks of dust exposure were moderate (10(-7)-10(-5)).
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
270
|
Xiong Y, Zhao Z, Zhu L, Chen Y, Ji H, Yang D. Removal of three kinds of phthalates from sweet orange oil by molecular distillation. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
271
|
Hu X, Shi W, Wei S, Zhang X, Feng J, Hu G, Chen S, Giesy JP, Yu H. Occurrence and potential causes of androgenic activities in source and drinking water in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10591-10600. [PMID: 23895735 DOI: 10.1021/es401464p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increased incidences of disorders of male reproductive tract as well as testicular and prostate cancers have been attributed to androgenic pollutants in the environment. Drinking water is one pathway of exposure through which humans can be exposed. In this study, both potencies of androgen receptor (AR) agonists and antagonists were determined in organic extracts of raw source water as well as finished water from waterworks, tap water, boiled water, and poured boiled water in eastern China. Ten of 13 samples of source water exhibited detectable AR antagonistic potencies with AR antagonist equivalents (Ant-AR-EQs) ranging from <15.3 (detection limit) to 140 μg flutamide/L. However, no AR agonistic activity was detected in any source water. All finished water from waterworks, tap water, boiled water, and poured boiled water exhibited neither AR agonistic nor antagonistic activity. Although potential risks are posed by source water, water treatment processes effectively removed AR antagonists. Boiling and pouring of water further removed these pollutants. Phthalate esters (PAEs) including diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP) were identified as major contributors to AR antagonistic potencies in source waters. Metabolites of PAEs exhibited no AR antagonistic activity and did not increase potencies of PAEs when they coexist.
Collapse
Affiliation(s)
- Xinxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Zhang Y, Mo J, Weschler CJ. Reducing health risks from indoor exposures in rapidly developing urban China. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:751-5. [PMID: 23665813 PMCID: PMC3701998 DOI: 10.1289/ehp.1205983] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/23/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Over the past two decades there has been a large migration of China's population from rural to urban regions. At the same time, residences in cities have changed in character from single-story or low-rise buildings to high-rise structures constructed and furnished with many synthetic materials. As a consequence, indoor exposures (to pollutants with outdoor and indoor sources) have changed significantly. OBJECTIVES We briefly discuss the inferred impact that urbanization and modernization have had on indoor exposures and public health in China. We argue that growing adverse health costs associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. DISCUSSION As documented by China's Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years. Evidence suggests that the population's exposure to air pollutants has contributed to increases in lung cancer, cardiovascular disease, pulmonary disease, and birth defects. Whether a pollutant has an outdoor or an indoor source, most exposure to the pollutant occurs indoors. Going forward, indoor exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building's initial design. CONCLUSIONS Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health.
Collapse
Affiliation(s)
- Yinping Zhang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
273
|
Bekö G, Weschler CJ, Langer S, Callesen M, Toftum J, Clausen G. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS One 2013; 8:e62442. [PMID: 23626820 PMCID: PMC3633888 DOI: 10.1371/journal.pone.0062442] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022] Open
Abstract
Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw) and BBzP the lowest (median: 0.49 µg/d/kg-bw). For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI) for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDI(cum)), which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDI(cum). Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child's total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values.
Collapse
Affiliation(s)
- Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
274
|
Gevao B, Al-Ghadban AN, Bahloul M, Uddin S, Zafar J. Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure. INDOOR AIR 2013; 23:126-133. [PMID: 22862295 DOI: 10.1111/ina.12001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Phthalates are semivolatile organic compounds with a ubiquitous environmental distribution. Their presence in indoor environments is linked to their use in a variety of consumer products such as children's toys, cosmetics, food packaging, flexible PVC flooring among others. The goal of this study was to investigate the occurrence and concentration of phthalates in dust from homes in Kuwait and to assess non-dietary human exposure to these phthalates. Dust samples were randomly collected from 21 homes and analyzed for eight phthalates. The concentrations of total phthalates were log normally distributed and ranged from 470 to 7800 μg/g. Five phthalates [Di(2-ethylhexyl) phthalate (DEHP), Di-n-octyl phthalate (DnOP), Di-n-butyl phthalate (DBP), Benzyl butyl phthalate (BzBP), and Dicyclohexyl phthalate (DcHP)] were routinely detected. The major phthalate compound was DEHP at a geometric mean concentration of 1704 μg/g (median, 2256 μg/g) accounting for 92% of the total phthalates measured. Using the measured concentrations and estimates of dust ingestion rates for children and adults, estimated human non-dietary exposure based on median phthalate concentrations ranged from 938 ng/kg-bd/day for adults to 13362 ng/kg-bd/day for toddlers. The difference in exposure estimates between children and adults in this study supports previous reports that children are at greater risk from pollutants that accumulate indoors.
Collapse
Affiliation(s)
- B Gevao
- Department of Environmental Science, Kuwait Institute for Scientific Research, Safat, Kuwait.
| | | | | | | | | |
Collapse
|
275
|
Sun J, Huang J, Zhang A, Liu W, Cheng W. Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. JOURNAL OF HAZARDOUS MATERIALS 2013; 248-249:142-149. [PMID: 23339883 DOI: 10.1016/j.jhazmat.2012.12.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/03/2012] [Accepted: 12/30/2012] [Indexed: 06/01/2023]
Abstract
Phthalate esters (PAEs), a group of emerging organic contaminants, have become a serious issue arousing much attention for their ubiquitous presence and hazardous impact on the environment. This study provides the first data on distribution of PAEs in the sediments in the Qiantang River, Zhejiang Province, China, and the inference with urbanization and river flow regime. PAEs were detected in all 23 sediment samples analyzed, and the total concentrations of their 16 congeners in sediments ranged from 0.59 to 6.74μg/g dry weight (dw), with the geometric mean value of 2.03μg/g dw. Of the 16 PAE congeners, di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP) were present in all sediment samples. The PAEs concentrations in urban regions were higher than those in rural regions because of higher discharge of PAEs from plastic materials in urbanized areas. Concentrations of PAEs were positively correlated with sediment organic matter (fOM) and negatively correlated with logistic value of annual average flow volume at sample sites. River flow regime modified by man-made dams significantly affected the distribution of PAEs. Analysis of congener composition of PAEs indicated that the DEHP was predominant congener in the Qiantang River. The normalized concentration of DEHP exceeded recommended environmental risk limit (ERL).
Collapse
Affiliation(s)
- Jianqiang Sun
- International Joint Research Center for Persistent Toxic Substances, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | |
Collapse
|
276
|
Saravanabhavan G, Guay M, Langlois É, Giroux S, Murray J, Haines D. Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009). Int J Hyg Environ Health 2013; 216:652-61. [PMID: 23419587 DOI: 10.1016/j.ijheh.2012.12.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022]
Abstract
Human exposure to phthalates occurs through multiple sources and pathways. In the Canadian Health Measures Survey 2007-2009, 11 phthalate metabolites, namely, MMP, MEP, MnBP, MBzP, MCHP, MCPP, MEHP, MEOHP, MEHHP, MnOP, and MiNP were measured in urine samples of 6-49 year old survey respondents (n=3236). The phthalate metabolites biomonitoring data from this nationally-representative Canadian survey are presented here. The metabolites MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP were detected in >90% of Canadians while MMP, MCHP, MnOP and MiNP were detected in <20% of the Canadian population. Step-wise regression analyses were carried out to identify important predictors of volumetric concentrations (μg/L) of the metabolites in the general population. Individual multiple regression models with covariates age, sex, creatinine, fasting status, and the interaction terms age×creatinine, age×sex and fasting status×creatinine were constructed for MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP. The least square geometric mean (LSGM) estimates for volumetric concentration (μg/L) of the metabolites derived from respective regression models were used to assess the patterns in the metabolite concentrations among population sub-groups. The results indicate that children had significantly higher urinary concentrations of MnBP, MBzP, MEHP, MEHHP, MEOHP and MCPP than adolescents and adults. Moreover, MEP, MBzP, MnBP and MEOHP concentrations in females were significantly higher than in males. We observed that fasting status significantly affects the concentrations of MEHP, MEHHP, MEOHP, and MCPP metabolites analyzed in this study. Moreover, our results indicate that the sampling time could affect the DEHP metabolite concentrations in the general Canadian population.
Collapse
Affiliation(s)
- Gurusankar Saravanabhavan
- Chemicals Surveillance Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada.
| | | | | | | | | | | |
Collapse
|
277
|
Mohammed FS. Characterization of Indoor/Outdoor Settled Dust and Air Pollutants in Damaturu, Nigeria. ACTA ACUST UNITED AC 2013. [DOI: 10.7763/ijet.2013.v5.521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
278
|
Kim W, Choi I, Jung Y, Lee J, Min S, Yoon C. Phthalate levels in nursery schools and related factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12459-68. [PMID: 24073890 DOI: 10.1021/es4025996] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phthalate esters, which are known endocrine disruptors, are ubiquitously present throughout indoor environments. Leaching from building materials may be a major source of phthalate esters. In this study, we evaluated phthalate ester concentrations in dust samples from 64 classrooms located in 50 nursery schools and explored the critical factors affecting phthalate concentrations, especially with regard to building materials. Dust was sampled by a modified vacuuming method, and building materials were assessed using a portable X-ray fluorescence (XRF) analyzer to determine whether they contained polyvinyl chloride. Di-n-butyl phthalate (DBP), di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate (DINP) were the most frequently detected phthalates. Of these, DEHP was the most abundant phthalate, with a geometric mean of 3170 μg/g dust, and concentrations were significantly correlated with the area of polyvinyl chloride (PVC)-verified flooring. DINP, which has not been well-reported in other studies, was the second-most abundant phthalate, with a geometric mean of 688 μg/g dust, and showed a critical relationship with the number of children in the institution and the agency operating the nursery school. This is the first study to verify the sources of phthalates with an XRF analyzer and to evaluate the relationship between phthalate concentrations and PVC-verified materials.
Collapse
Affiliation(s)
- Won Kim
- Department of Environmental Health, School of Public Health, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
279
|
Latham KE, Sapienza C, Engel N. The epigenetic lorax: gene-environment interactions in human health. Epigenomics 2012; 4:383-402. [PMID: 22920179 DOI: 10.2217/epi.12.31] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This 'human genomics' information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene-environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures.
Collapse
Affiliation(s)
- Keith E Latham
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
280
|
Wang L, Liao C, Liu F, Wu Q, Guo Y, Moon HB, Nakata H, Kannan K. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11584-93. [PMID: 23025715 DOI: 10.1021/es303516u] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
p-Hydroxybenzoic acid esters (parabens) and bisphenol A diglycidyl ether (BADGE) are widely present in personal care products, food packages, and material coatings. Nevertheless, little is known about the occurrence of these compounds in indoor dust. In this study, we collected 158 indoor dust samples from the U.S., China, Korea, and Japan and determined the concentrations of 11 target chemicals, viz., six parabens and their common hydrolysis product, 4-hydroxybenzoic acid (4-HB), as well as BADGE and its three hydrolysis products (BADGE·H(2)O, BADGE·2H(2)O, and BADGE·HCl·H(2)O). All of the target compounds were found in dust samples from four countries. Concentrations of sum of six parabens in dust were on the order of several hundred to several thousands of nanogram per gram. Geometric mean concentrations of BADGEs in dust ranged from 1300 to 2890 ng/g among four countries. Methyl paraben (MeP), propyl paraben (PrP), BADGE·2H(2)O, and BADGE·HCl·H(2)O were the predominant compounds found in dust samples. This is the first report of BADGE and its hydrolysis products (BADGEs) in indoor dust samples and of parabens in indoor dust from Asian countries. On the basis of the measured concentrations of target chemicals, we estimated the daily intake (EDI) via dust ingestion. The EDIs of parabens via dust ingestion were 5-10 times higher in children than in adults. Among the four countries studied, the EDIs of parabens (5.4 ng/kg-bw/day) and BADGEs (6.5 ng/kg-bw/day) through dust ingestion were the highest for children in Korea and Japan.
Collapse
Affiliation(s)
- Lei Wang
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12210-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Peng H, Yang Y, Liu M, Zhou JL. PAHs in indoor dust samples in Shanghai's universities: levels, sources and human exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2012; 34:587-96. [PMID: 22527117 DOI: 10.1007/s10653-012-9456-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/26/2012] [Indexed: 05/04/2023]
Abstract
Given the significant amount of time people spend indoors, the occurrence of polycyclic aromatic hydrocarbons (PAHs) in indoor dust and their potential risks are of great concern. In the present study, ten dust samples from lecture theatres and twelve samples from dining halls were collected from university campuses in Shanghai to investigate the PAH levels, possible sources and human exposure. The total concentrations of 18 PAHs ranged from 9.84 to 21.44 μg/g for dust samples from lecture theatres, and 9.63-44.13 μg/g for samples from dining halls. Total PAH concentrations in indoor dust samples showed a better correlation to black carbon compared to total organic carbon contents. PAHs in dining halls samples showed a similar distribution pattern with that of commercial kitchen air, which indicated that cooking activities could contribute most of the PAHs found in dining halls. Principal component analysis revealed both petrogenic and pyrogenic sources. The potential health risk for PAHs was assessed in terms of BaP equivalent carcinogenic power and estimated daily intake (EDI). Relatively high EDI values compared to other studies suggested that PAHs posed a potential threat to human health in indoor environments at Shanghai's universities.
Collapse
Affiliation(s)
- Huan Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resource and Environmental Sciences, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
| | | | | | | |
Collapse
|
282
|
Sun Y, Guo Z, Iku S, Saito T, Kurasaki M. Diethyl phthalate enhances expression of SIRT1 and DNMT3a during apoptosis in PC12 cells. J Appl Toxicol 2012; 33:1484-92. [DOI: 10.1002/jat.2816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Yongkun Sun
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
| | - Zhikun Guo
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
| | - Shouhei Iku
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
- Beijing Academy of Science and Technology; 100089 Beijing China
- Jiangsu Alphay Biological Technology Co., Ltd; 226009 Nantong China
| | - Takeshi Saito
- Division of Health Sciences, Faculty of Health Sciences; Hokkaido University; 060-0812 Sapporo Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science; Hokkaido University; 060-0810 Sapporo Japan
| |
Collapse
|
283
|
Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9138-45. [PMID: 22784190 DOI: 10.1021/es302004w] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bisphenol A has been reported to be a ubiquitous contaminant in indoor dust, and human exposure to this compound is well documented. Information on the occurrence of and human exposure to other bisphenol analogues is limited. In this study, eight bisphenol analogues, namely 2,2-bis(4-hydroxyphenyl)propane (BPA), 4,4'-(hexafluoroisopropylidene)diphenol (BPAF), 4,4'-(1-phenylethylidene)bisphenol (BPAP), 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4'-dihydroxydiphenylmethane (BPF), 4,4'-(1,4-phenylenediisopropylidene)bisphenol (BPP), 4,4'- sulfonyldiphenol (BPS), and 4,4'-cyclohexylidenebisphenol (BPZ), were determined in indoor dust samples (n = 156) collected from the United States (U.S.), China, Japan, and Korea. Samples were extracted by solid-liquid extraction, purified by automated solid phase extraction methods, and determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total concentrations of bisphenols (∑BPs; sum of eight bisphenols) in dust were in the range of 0.026-111 μg/g (geometric mean: 2.29 μg/g). BPA, BPS, and BPF were the three major bisphenols, accounting for >98% of the total concentrations. Other bisphenol analogues were rare or not detected, with the exception of BPAF, which was found in 76% of the 41 samples collected in Korea (geometric mean: 0.0039 μg/g). The indoor dust samples from Korea contained the highest concentrations of both individual and total bisphenols. BPA concentrations in dust were compared among three microenvironments (house, office, and laboratory). The estimated median daily intake (EDI) of ∑BPs through dust ingestion in the U.S., China, Japan, and Korea was 12.6, 4.61, 15.8, and 18.6 ng/kg body weight (bw)/day, respectively, for toddlers and 1.72, 0.78, 2.65, and 3.13 ng/kg bw/day, respectively, for adults. This is the first report on the occurrence of bisphenols, other than BPA, in indoor dust.
Collapse
Affiliation(s)
- Chunyang Liao
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | | | | | | | | | | | | |
Collapse
|
284
|
Kang Y, Man YB, Cheung KC, Wong MH. Risk assessment of human exposure to bioaccessible phthalate esters via indoor dust around the Pearl River Delta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8422-8430. [PMID: 22794303 DOI: 10.1021/es300379v] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
There is limited information on the bioaccessible fractions of phthalate esters in indoor dust in order to estimate human exposure. In the present study, workplace dust and settled house dust samples from Hong Kong, Shenzhen, and Guangzhou, the three major cities scattered around the Pearl River Delta (PRD) were collected. Chemical analyses showed that the phthalates in workplace dust ranged from 144 to 1810 μg/g, with dust from shopping malls containing the highest level, and in home dust ranged from 181 to 9240 μg/g. The most abundant phthalate ester found was bis(2-ethylhexyl) phthalate (DEHP) in both workplace dust and home dust, followed by di-n-butyl phthalate (DBP) and di-iso-butyl phthalate (DIBP). Principal Components Analysis (PCA) indicated that indoor dust around PRD showed similar phthalate esters patterns of composition. A significant correlation was observed between total phthalate esters concentrations in home dust and the number of year of house construction (p < 0.05). The oral bioaccessibility of phthalate esters in indoor dust ranged from 10.2% (DEHP) to 32% (DMP). Risk assessment indicated that the dominant exposure routes varied in different phthalate esters exposure profiles and the dermal contact exposure pathway was identified as an important route for indoor DEHP exposure.
Collapse
Affiliation(s)
- Yuan Kang
- School of Chemistry & Environment, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Higher Education Mega Center, Guangzhou 510006, People's Republic of China.
| | | | | | | |
Collapse
|
285
|
Guo Y, Zhang Z, Liu L, Li Y, Ren N, Kannan K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6913-6919. [PMID: 22703192 DOI: 10.1021/jf3021128] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of humans to phthalates are limited. In this study, nine phthalate esters were analyzed in eight categories of foodstuffs (n = 78) collected from Harbin and Shanghai, China, in 2011. Dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BzBP), and diethylhexyl phthalate (DEHP) were frequently detected in food samples. DEHP was the major compound found in most of the food samples, with concentrations that ranged from below the limit of quantification (LOQ) to 762 ng/g wet weight (wt). The concentrations of phthalates in food samples from China were comparable to concentrations reported for several other countries, but the profiles were different; DMP was found more frequently in Chinese foods than in foods from other countries. The estimated daily dietary intake of phthalates (EDIdiet) was calculated based on the concentrations measured and the daily ingestion rates of food items. The EDIdiet values for DMP, DEP, DIBP, DBP, BzBP, and DEHP (based on mean concentrations) were 0.092, 0.051, 0.505, 0.703, 0.022, and 1.60 μg/kg-bw/d, respectively, for Chinese adults. The EDIdiet values calculated for phthalates were below the reference doses suggested by the United States Environmental Protection Agency (EPA). Comparison of total daily intakes, reported previously based on a biomonitoring study, with the current dietary intake estimates suggests that diet is the main source of DEHP exposure in China. Nevertheless, diet accounted for only <10% of the total exposure to DMP, DEP, DBP, and DIBP, which suggested the existence of other sources of exposure to these phthalates.
Collapse
Affiliation(s)
- Ying Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | | | |
Collapse
|
286
|
Di-(2-ethylhexyl)-phthalate migration from irradiated poly(vinyl chloride) blood bags for graft-vs-host disease prevention. Int J Pharm 2012; 430:86-8. [DOI: 10.1016/j.ijpharm.2012.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/23/2012] [Indexed: 01/20/2023]
|
287
|
Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem 2012; 404:2539-54. [DOI: 10.1007/s00216-012-5999-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
288
|
Zhang L, Dong L, Ren L, Shi S, Zhou L, Zhang T, Huang Y. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. J Environ Sci (China) 2012; 24:335-342. [PMID: 22655397 DOI: 10.1016/s1001-0742(11)60782-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.
Collapse
Affiliation(s)
- Lifei Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China.
| | | | | | | | | | | | | |
Collapse
|
289
|
|
290
|
Okamoto Y, Ueda K, Kojima N. Potential Risks of Phthalate Esters: Acquisition of Endocrine-disrupting Activity during Environmental and Metabolic Processing. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.497] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koji Ueda
- Faculty of Pharmacy, Meijo University
| | | |
Collapse
|