251
|
Ono Y, Kono T. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells. Biol Reprod 2006; 75:210-6. [PMID: 16687651 DOI: 10.1095/biolreprod.105.049171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.
Collapse
Affiliation(s)
- Yukiko Ono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | |
Collapse
|
252
|
Malenko GP, Prokof’ev MI, Pinyugina MV, Antipova TA, Mezina MN, Bukreev YM. Production of cloned bovine embryos by somatic cell transfer into enucleated zona-free oocytes. BIOL BULL+ 2006. [DOI: 10.1134/s1062359006030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
253
|
Jouneau A, Zhou Q, Camus A, Brochard V, Maulny L, Collignon J, Renard JP. Developmental abnormalities of NT mouse embryos appear early after implantation. Development 2006; 133:1597-607. [PMID: 16556918 DOI: 10.1242/dev.02317] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, cloning by nuclear transfer (NT) into an enucleated oocyte is a very inefficient process, even if it can generate healthy adults. We show that blastocysts derived from embryonic stem (ES) donor cells develop at a high rate, correctly express the pluripotential marker gene Oct4 in ICM cells and display normal growth in vitro. Moreover, the majority of them implant in the uterus of recipient females. We combine embryological studies, gene expression analysis during gastrulation and generation of chimaeric embryos to identify the developmental origin (stage and tissue affected) of NT embryo mortality. The majority died before mid-gestation from defects arising early, either at peri-implantation stages or during the gastrulation period. The first type of defect is a non-cell autonomous defect of the epiblast cells and is rescued by complementation of NT blastocysts with normal ES or ICM cells. The second type of defect affects growth regulation and the shape of the embryo but does not directly impair the initial establishment of the patterning of the embryo. Only chimaeras formed by the aggregation of NT and tetraploid embryos reveal no growth abnormalities at gastrulation. These studies indicate that the trophoblast cell lineage is the primary source of these defects. These embryological studies provide a solid basis for understanding reprogramming errors in NT embryos. In addition, they unveil new aspects of growth regulation while increasing our knowledge on the role of crosstalk between the extra-embryonic and the embryonic regions of the conceptus in the control of growth and morphogenesis.
Collapse
Affiliation(s)
- Alice Jouneau
- Unité de Biologie du Développement et de la Reproduction, UMR INRA-ENVA, Institut National de la Recherche Agronomique (INRA 78352, France
| | | | | | | | | | | | | |
Collapse
|
254
|
Zhang Y, Pan D, Sun X, Sun G, Wang X, Liu X, Li Y, Dai Y, Li N. Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer. ACTA ACUST UNITED AC 2006; 49:164-71. [PMID: 16704120 DOI: 10.1007/s11427-006-0164-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (47.5% vs. 71.6%, p < 0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p > 0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36 to 42 h (83.6% vs. 96.7%, p < 0.05). However, no statistical difference was observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p > 0.05) and blastocyst formation (9.3% vs. 13.2%, p > 0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p > 0.05) and blastocyst rate (11.8% vs. 12.3%, p > 0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of M II oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.
Collapse
Affiliation(s)
- Yunhai Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. Limb regeneration in higher vertebrates: developing a roadmap. ACTA ACUST UNITED AC 2006; 287:14-24. [PMID: 16308860 DOI: 10.1002/ar.b.20082] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We review what is known about amphibian limb regeneration from the prospective of developing strategies for the induction of regeneration in adult mammals. Prominent in urodele amphibian limb regeneration is the formation of a blastema of undifferentiated cells that goes on to reform the limb. The blastema shares many properties with the developing limb bud; thus, the outgrowth phase of regeneration can be thought of as cells going through development again, i.e., redevelopment. Getting to a redevelopment phase in mammals would be a major breakthrough given our extensive understanding of limb development. The formation of the blastema itself represents a transition phase in which limb cells respond to injury by dedifferentiating to become embryonic limb progenitor cells that can undergo redevelopment. During this phase, rapid wound closure is followed by the dedifferentiation of limb cells to form the blastema. Thus, the regeneration process can be divided into a wound-healing/dedifferentiation phase and a redevelopment phase, and we propose that the interface between the wound-healing response and gaining access to developmentally regulated programs (dedifferentiation) lies at the heart of the regeneration problem in mammals. In urodele amphibians, dedifferentiation can occur in all of the tissues of the limb; however, numerous studies lead us to focus on the epidermis, the dermis, and muscle as key regulators of regeneration. Among higher vertebrates, the digit tip in mammals, including humans, is regeneration-competent and offers a unique mammalian model for regeneration. Recent genetic studies in mice identify the Msx1 gene as playing a critical role in the injury response leading to digit tip regeneration. The results from regeneration studies ranging from amphibians to mammals can be integrated to develop a roadmap for mammalian regeneration that has as its focus understanding the phenomenon of dedifferentiation.
Collapse
Affiliation(s)
- Manjong Han
- Developmental Biology Division of the Department of Cell and Molecular Biology at Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
256
|
Osada T, Tamamaki N, Song SY, Kakazu N, Yamazaki Y, Makino H, Sasaki A, Hirayama T, Hamada S, Nave KA, Yanagimachi R, Yagi T. Developmental pluripotency of the nuclei of neurons in the cerebral cortex of juvenile mice. J Neurosci 2006; 25:8368-74. [PMID: 16162918 PMCID: PMC6725666 DOI: 10.1523/jneurosci.1591-05.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nuclei isolated from green fluorescent protein-marked neurons in the cerebral cortex of juvenile mice (14-21 d after birth) were injected into enucleated oocytes that were allowed to develop into blastocysts. Embryonic stem (ES) cell lines were established from the inner cell mass of 76 cloned blastocysts after injecting 2026 neuronal nuclei. Some ES cells were injected individually into enucleated oocytes (nuclear transfer). Other ES cells were transferred into the blastocoeles of tetraploid blastocysts (tetraploid complementation). Two-cell embryos after nuclear transfer were transferred to the oviducts of surrogate mothers. Four (1.5%) of 272 nuclear-transferred two-cell embryos developed to term, and two (0.7%) developed into fertile adults. Nineteen (1.9%) of 992 tetraploid blastocysts receiving ES cells reached term, and 10 (1.0%) developed into adults. These findings demonstrate that some of the nuclei of differentiated neurons in the cerebral cortex of juvenile mice maintain developmental pluripotency.
Collapse
Affiliation(s)
- Tomoharu Osada
- Core Research for Evolutional Science and Technology Research Agency, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
McEvoy TG, Alink FM, Moreira VC, Watt RG, Powell KA. Embryo technologies and animal health – consequences for the animal following ovum pick-up, in vitro embryo production and somatic cell nuclear transfer. Theriogenology 2006; 65:926-42. [PMID: 16280157 DOI: 10.1016/j.theriogenology.2005.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mammalian reproductive technologies that aim either to complement or to transcend conventional livestock breeding options have contributed to some of the most remarkable achievements in the field of reproductive biology in recent decades. In so doing they have extended our horizons in two distinct dimensions, the first concerning what it is technically possible to achieve and the second relating to the time-frame within which an individual's life-long developmental capability is initially established and ultimately realized or undermined. Our impressions of the benefits and values, or otherwise, of technologies such as in vitro embryo production and nuclear transfer are rightly influenced by the extent to which they impinge on the health of animals either subjected to or derived from them. Here, we consider some of the health implications of oocyte/embryo-centric technologies applied to farm livestock.
Collapse
Affiliation(s)
- T G McEvoy
- Scottish Agricultural College, Ferguson Building, Sustainable Livestock Systems Group, Craibstone Estate, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | |
Collapse
|
258
|
Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. Respir Res 2006; 7:21. [PMID: 16460559 PMCID: PMC1382219 DOI: 10.1186/1465-9921-7-21] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/06/2006] [Indexed: 12/31/2022] Open
Abstract
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Paul Ford
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - P J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
259
|
Van Thuan N, Wakayama S, Kishigami S, Ohta H, Hikichi T, Mizutani E, Bui HT, Wakayama T. Injection of somatic cell cytoplasm into oocytes before intracytoplasmic sperm injection impairs full-term development and increases placental weight in mice. Biol Reprod 2006; 74:865-73. [PMID: 16436529 DOI: 10.1095/biolreprod.105.047803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 +/- 0.02 [n = 32] vs. 0.12 +/- 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.
Collapse
Affiliation(s)
- Nguyen Van Thuan
- RIKEN Kobe Institute, Center for Developmental Biology, Laboratory for Genomic Reprogramming, Kobe City, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Abstract
The management of clone-bearing recipients and neonatal clones is a critical component of successful cloning of mammals by nuclear transfer. The methodology discussed in this chapter is based largely on a double corticosteroid regime to induce parturition and fetal organ maturation in bovine clones. Lung maturation, particularly, is a major factor in clone calf viability. The animal health care involved in maximizing clone survival begins at embryo transfer and continues for the life of that animal.
Collapse
|
261
|
Simon L, Veerapandian C, Balasubramanian S, Subramanian A. Somatic cell nuclear transfer in buffalos: effect of the fusion and activation protocols and embryo culture system on preimplantation embryo development. Reprod Fertil Dev 2006; 18:439-45. [PMID: 16737637 DOI: 10.1071/rd05079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 01/15/2006] [Indexed: 11/23/2022] Open
Abstract
The present study was conducted primarily to evaluate several factors that affect the nuclear transfer programme in water buffalos, in which relatively few studies have been performed. Embryos reconstructed with quiescent fetal fibroblasts and metaphase II cytoplasts were matured for 24 h, and activation was found to be comparatively better than in those matured for 30 h. A significantly higher proportion of embryos fused (52.0 ± 1.9) and cleaved (51.2 ± 1.7) when the couplets were fused 4–6 h before activation than when fused and activated simultaneously (46.5 ± 1.6 and 44.5 ± 2.0, respectively). Development of nuclear transfer embryos to the blastocyst stage (4.8 ± 2.2) was supported by a commercially available sequential medium, and cleavage (76.5 ± 2.8) was significantly higher in this medium compared with cleavage in TCM-199 with oviduct epithelial cell coculture (45.6 ± 1.5) and synthetic oviduct fluid (21.8 ± 6.6). Of the 16 cloned embryos transferred, none resulted in pregnancy. The present study demonstrates that optimal numbers of cloned buffalo blastocysts can be obtained from oocytes matured for 24 h, fused 3–4 h before activation and cultured in a commercially available sequential media (G1/G2), thus providing further information to enable successful nuclear transfer in buffalos.
Collapse
Affiliation(s)
- Liz Simon
- Department of Animal Reproduction, Gynecology and Obstetrics, Madras Veterinary College, Chennai 600010, India.
| | | | | | | |
Collapse
|
262
|
Oishi M, Gohma H, Hashizume K, Taniguchi Y, Yasue H, Takahashi S, Yamada T, Sasaki Y. Early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear-derived cloned embryo. Mol Reprod Dev 2006; 73:404-9. [PMID: 16435373 DOI: 10.1002/mrd.20345] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful somatic nuclear transfer-derived cloning has been reported in cattle; however, the cloned embryo is highly susceptible to death around day 60 of gestation leading to early embryonic loss. The early embryonic death is postulated to possibly arise in part from an atypical placentation. We have performed cDNA macroarray analysis using 3,353 of the previously cataloged 4,165 genes, in order to characterize the early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. A more marked difference in the expression profiles was observed between the fetal placentas of the cows with the cloned immotile embryo (CD) and with the cloned motile embryo (CL) or artificial insemination-derived motile embryo (AI), as compared to between the CL and AI placentas, suggesting an aberration of the expression profile in the CD placenta among the three placentas. Further, 291 and 77 genes showed more than twofold elevation and less than 50% reduction, respectively, in either or both of two CD (CD1 and CD2) placentas in comparison with the CL placenta, but no differential expression between the CL and AI placentas. The expression patterns of six genes in the AI, CL, and CD placentas were confirmed in an experiment with an additional sample for each of the three placentas. Among the placental genes showing the early embryonic death-associated changes of expression in the cow with the cloned embryo, IGF2 (elevated gene), and HBA1, HBA2, SPTB, and SPTBN1 genes (reduced gene) are intriguing in that the changes of expression in these genes were observed in an additional sample of CD placenta as well as the CD1 and CD2 placentas, and in that overexpression (for IGF2) and dysfunction or deficiency (for HBA1, HBA2, SPTB, and SPTBN1) result in embryonic lethality.
Collapse
Affiliation(s)
- Masahito Oishi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Rodríguez CI, Simón C. Human embryonic stem cell derivation: from the IVF perspective to therapeutic applications. Regen Med 2006; 1:103-9. [PMID: 17465824 DOI: 10.2217/17460751.1.1.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human embryonic stem cells (hESC) are capable of proliferating indefinitely in an undifferentiated state and are pluripotent, being able to differentiate into most cell types under the correct conditions. Since the establishment of the first hESC line in 1998, the hope has existed that these cells could constitute an unlimited cell source for replacement therapy in the treatment of various diseases and disabilities. However, there is opposition and concern within society towards hESC derivation. The purpose of this article is to introduce the medical and scientific issues surrounding hESC derivation for clinical use concerning the source for this research (human embryos donated from in vitro fertilization procedures), and the methodologies implicated in feeder-free, xeno-free derivation that will allow potential clinical applications.
Collapse
Affiliation(s)
- Clara I Rodríguez
- Valencia Stem Cell Bank, Centro de Investigación Principe Felipe, Avda. Autopista del Saler, Valencia, Spain
| | | |
Collapse
|
264
|
Abstract
An exhaustive study of the fidelity of a clone to its parent is prohibitive because of cost and the necessary scope of experimental design. Therefore, these data must be gathered from existing observational evidence. This in itself cannot provide a definitive accounting of the abnormalities and variation found among clones or between clones and parents because there is no standardization in the data points collected between one study and another. This literature survey shows that clone developmental abnormalities, variation among clones, and variation between clone and parent are prevalent at most stages of development (cleavage, placental, fetal, neonatal, maturity), and that occasionally the observed variation greatly exceeds that which might be expected. Some variation can be explained by differences in protocols and procedures between studies. The choice of nuclear donor cell is particularly influential of variation observed between a clone and its parent. In general, however, it appears that there is an inherent stochastic response to nuclear transfer that results in clone infidelity and variation. The survey of characteristics of clone infidelity to parent and documentation of abnormalities provided here should not be viewed as exhaustive or limiting in the recording of such data from future studies. Because controlled hypothesis testing of clone fidelity or clone health may not be possible, meticulous documentation of such observational evidence is a valuable contribution to the field.
Collapse
Affiliation(s)
- Ian Wilmut
- Department of Gene Function and Development, Roslin Institute, Roslin, Midlothian, UK
| |
Collapse
|
265
|
Abstract
The birth of viable offspring from somatic cell nuclear transfer (SCNT) in mammals caused a major re-examination of the understanding of the commitment of cells to specific tissue lineages during differentiation. The questions of whether cells undergo dedifferentiation or transdifferentiation during the development of offspring and how these changes are controlled is a source of ongoing debate that is yet to be resolved. Irrespective of the outcome of this debate, it is clear that cloning using SCNT has a place and purpose in the future of research and animal breeding. The future uses of SCNT could include the production of transgenic mice, the production of transgenic livestock and assisting with the re-establishment of endangered species. Human medicine also would benefit from future use of SCNT because it would allow the production of patient-specific embryonic stem cells.
Collapse
Affiliation(s)
- Alan O Trounson
- Monash Immunology and Stem Cell Laboratories, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
266
|
Tomii R, Kurome M, Ochiai T, Wako N, Ueda H, Hirakawa K, Kano K, Nagashima H. Production of Cloned Pigs by Nuclear Transfer of Preadipocytes Established from Adult Mature Adipocytes. CLONING AND STEM CELLS 2005; 7:279-88. [PMID: 16390264 DOI: 10.1089/clo.2005.7.279] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to determine whether porcine preadipocytes can be efficient donor cells for somatic cell nuclear transfer (SCNT) in pigs. Primary culture of porcine preadipocytes was established by de-differentiating mature fat cells taken from an adult pig. The cell cycle of the preadipocytes could be synchronized by serum starvation for 1 day, with a higher efficiency than control fetal fibroblasts. Incidence of premature chromosome condensation following nuclear transfer (NT) of preadipocytes was as high as that observed after NT with fetal fibroblasts. In vitro developmental rate of the NT embryos reconstructed with preadipocyte was equivalent to that of the fetal fibroblast derived embryos. Transfer of 732 NT embryos with preadipocytes to five recipients gave rise to five cloned piglets. These data demonstrate that preadipocyites collected from an adult pig are promising nuclear donor cells for pig cloning.
Collapse
Affiliation(s)
- Ryo Tomii
- Laboratory of Developmental Engineering, Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
During normal fertilization, plasma membranes of a spermatozoon and an oocyte mingle to form a mosaic plasma membrane of a zygote. This may contribute to the polyspermy block of the zygote. Sperm tail components (mitochondria, axonema, and accessory fibers) that enter the oocyte are "digested" without playing major roles in embryo development. The proximal centrosome adjacent to the sperm nucleus may become the center of the sperm aster that brings the male and female pronuclei to the center of the zygote, but it may not be essential for embryonic development per se. Whether sperm RNAs contribute to embryonic development is the subject of controversy. The nucleus is the most important sperm component that enters the oocyte. It is known that 7-15% of the spermatozoa of fertile men are chromosomally abnormal. The proportion of the spermatozoa with subchromosomal abnormalities (including damage at the DNA level) is expected to be even higher. The majority of embryos and fetuses with genomic abnormalities are aborted before reaching term. Structurally abnormal spermatozoa are not necessarily genomically abnormal, even though the incidence of genomically abnormal spermatozoa is higher among structurally abnormal than normal spermatozoa. In mammals, certain genes (estimated to be about 100) in the spermatozoon and oocyte must be "imprinted" in a gender-specific manner to warrant normal embryonic development.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, University of Hawaii Medical School, 1960 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
268
|
Lagutina I, Lazzari G, Duchi R, Colleoni S, Ponderato N, Turini P, Crotti G, Galli C. Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 2005; 130:559-67. [PMID: 16183874 DOI: 10.1530/rep.1.00772] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the present work was to investigate and clarify the factors affecting the efficiency of somatic cell nuclear transfer (NT) in the horse, including embryo reconstruction, in vitro culture to the blastocyst stage, embryo transfer, pregnancy monitoring and production of offspring. Matured oocytes, with zona pellucida or after zona removal, were fused to cumulus cells, granulosa cells, and fetal and adult fibroblasts, and fused couplets were cultured in vitro. Blastocyst development to Day 8 varied significantly among donor cells (from 1.3% to 16%, P < 0.05). In total, 137 nuclear transfer-embryos were transferred nonsurgically to 58 recipient mares. Pregnancy rate after transfer of NT-embryos derived from adult fibroblasts from three donor animals was 24.3% (9/37 mares transferred corresponding to 9/101 blastocysts transferred), while only 1/18 (5.6%) of NT-blastocysts derived from one fetal cell line gave rise to a pregnancy (corresponding to 1/33 blastocysts transferred). Overall, seven pregnancies were confirmed at 35 days, and two went to term delivering two live foals. One foal died 40 h after birth of acute septicemia while the other foal was healthy and is currently 2 months old. These results indicate that (a) the zona-free method allows high fusion rate and optimal use of equine oocytes, (b) different donor cell cultures have different abilities to support blastocyst development, (c) blastocyst formation rate does not correlate with pregnancy fate and (d) healthy offspring can be obtained by somatic cell nuclear transfer in the horse.
Collapse
Affiliation(s)
- Irina Lagutina
- Laboratorio di Tecnologie della Riproduzione, Istituto Sperimentale Italiano Lazzaro Spallanzani, CIZ srl, via Porcellasco 7/f, 26100 Cremona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Miles JR, Farin CE, Rodriguez KF, Alexander JE, Farin PW. Effects of Embryo Culture on Angiogenesis and Morphometry of Bovine Placentas During Early Gestation1. Biol Reprod 2005; 73:663-71. [PMID: 15901637 DOI: 10.1095/biolreprod.105.040808] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The objective of this study was to determine the effects of undefined and semidefined culture systems for in vitro embryo production on angiogenesis and morphometry of bovine placentas during early gestation. Blastocysts produced in vivo were recovered from superovulated Holstein cows and served as controls. Blastocysts produced in vitro were exposed to either serum-supplemented medium with cumulus cell coculture (in vitro-produced with serum; IVPS) or modified synthetic oviductal fluid medium without serum or coculture (mSOF). Single blastocysts from each production system were transferred into heifers. Fetuses and placentas were recovered on Day 70 of gestation. Cotyledonary tissues were obtained for quantification of vascular endothelial growth factor (VEGF) and peroxisome proliferator-activated receptor-gamma (PPARG) mRNA and protein. Samples of placentomes were prepared for immunocytochemistry and histological analysis. Placentas from the mSOF group were heavier and had the fewest placentomes, least placental fluid, and lowest placental efficiency (fetal weight/placental weight) compared with the in vivo and IVPS groups. There was no effect of embryo culture system on volume densities of fetal villi or maternal endometrium within placentomes. The volume density of fetal pyknotic cells was increased in placentomes in the mSOF group compared with the in vivo and IVPS groups. Placentomes in the mSOF group had decreased densities of blood vessels and decreased levels of VEGF mRNA in cotyledonary tissue. In conclusion, compared with placentas from embryos produced in vivo or in vitro using an undefined culture system, placentas from embryos produced in vitro using a semidefined culture system exhibited a greater degree of aberrant development of the placenta during early gestation.
Collapse
Affiliation(s)
- Jeremy R Miles
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, 27606, USA
| | | | | | | | | |
Collapse
|
270
|
Hou YP, Dai YP, Zhu SE, Zhu HB, Wu TY, Gong GC, Wang HP, Wang LL, Liu Y, Li R, Wan R, Li N. Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology 2005; 64:1381-91. [PMID: 16139614 DOI: 10.1016/j.theriogenology.2005.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Indexed: 10/25/2022]
Abstract
The objective of the present study was to determine if oocytes vitrified by the open pulled straw (OPS) method could subsequently be used to produce somatic cell cloned cattle. Post-thaw survival rates were 77.0, 79.1, 97.2 and 97.5% for oocytes vitrified with EDFS30 (15% ethylene glycol, 15% dimethyl sulfoxide, ficoll and sucrose), EDFS40 (20% ethylene glycol, 20% dimethyl sulfoxide, ficoll and sucrose), EDFSF30 (15% ethylene glycol, 15% dimethyl sulfoxide, ficoll, sucrose and FBS) and EDFSF40 (20% ethylene glycol, 20% dimethyl sulfoxide, ficoll, sucrose and FBS), respectively. The parthenogenetic blastocyst rates of the vitrified-thawed oocytes activated with 5 microM of the calcium ionophore A23187 for 5 min and 2 microM of 6-dimethylaminopurin (6-DMAP) for 4h ranged from 10.3 to 23.0%, with the highest group not significantly differing from that of the controls (33.2%). In total, 722 vitrified-thawed oocytes were used as recipients for nuclear transfer, of which 343 fused (47.6%). Fifty-six (16.3%) of the reconstructed embryos reached the blastocyst stage after 7d of in vitro culture. Twenty-four blastocysts derived from vitrified-thawed oocytes were transferred to six Luxi yellow cattle recipients. Two recipients (33%) were diagnosed pregnant; one aborted 97 d after transfer, whereas the other delivered a cloned calf after 263 d. As a control, 28 synchronous Luxi yellow cattle recipients each received a single blastocyst produced using a fresh oocyte as a nuclear recipient; 10 recipients were diagnosed pregnant, of which 6 (21.4% of the original 28) delivered cloned calves. In conclusion, bovine oocytes vitrified by the OPS method and subsequently thawed supported development (to term) of somatic cell cloned embryos.
Collapse
Affiliation(s)
- Yun-Peng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16:5719-35. [PMID: 16195347 PMCID: PMC1289416 DOI: 10.1091/mbc.e05-06-0572] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture. Microarray and quantitative analyses of gene expression reveal that the transition from a 293T to a pluripotent cell phenotype involves a dynamic up-regulation of hundreds of NCCIT genes, concomitant with down-regulation of 293T genes and of indicators of differentiation such as A-type lamins. Up-regulated genes encompass embryonic and stem cell markers, including OCT4, SOX2, NANOG, and Oct4-responsive genes. OCT4 activation is associated with DNA demethylation in the OCT4 promoter and nuclear targeting of Oct4 protein. In fibroblasts exposed to extract of mouse embryonic stem cells, Oct4 activation is biphasic and RNA-PolII dependent, with the first transient rise of Oct4 up-regulation being necessary for the second, long-term activation of Oct4. Genes characteristic of multilineage differentiation potential are also up-regulated in NCCIT extract-treated cells, suggesting the establishment of "multilineage priming." Retinoic acid triggers Oct4 down-regulation, de novo activation of A-type lamins, and nestin. Furthermore, the cells can be induced to differentiate toward neurogenic, adipogenic, osteogenic, and endothelial lineages. The data provide a proof-of-concept that an extract of undifferentiated carcinoma cells can elicit differentiation plasticity in an otherwise more developmentally restricted cell type.
Collapse
Affiliation(s)
- Christel K Taranger
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
272
|
Hunter CV, Tiley LS, Sang HM. Developments in transgenic technology: applications for medicine. Trends Mol Med 2005; 11:293-8. [PMID: 15949771 DOI: 10.1016/j.molmed.2005.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/22/2005] [Accepted: 04/25/2005] [Indexed: 02/05/2023]
Abstract
Recent advances in the efficiency of transgenic technology have important implications for medicine. The production of therapeutic proteins from animal bioreactors is well established and the first products are close to market. The genetic modification of pigs to improve their suitability as organ donors for xenotransplantation has been initiated, but many challenges remain. The use of transgenesis, in combination with the method of RNA interference to knock down gene expression, has been proposed as a method for making animals resistant to viral diseases, which could reduce the likelihood of transmission to humans. Here, the latest developments in transgenic technology and their applications relevant to medicine and human health will be discussed.
Collapse
|
273
|
Vats A, Tolley NS, Bishop AE, Polak JM. Embryonic stem cells and tissue engineering: delivering stem cells to the clinic. J R Soc Med 2005. [PMID: 16055897 DOI: 10.1258/jrsm.98.8.346] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A Vats
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | |
Collapse
|
274
|
Abstract
Current and emerging technologies in reproductive biology, including assisted reproductive technologies and animal cloning, are discussed in the context of the impact of genomics era biology. The discussion focuses on the endocrinology associated with establishment and maintenance of pregnancy, fetal-placental development, lactation, and neonatal survival. Various aspects of uterine biology, including development during the neonatal period and function in adult females, are discussed with respect to reproductive efficiency. It is clear that combining strategies for use of conventional animal models for studying the reproductive system with new genomics technologies will provide exceptional opportunities in discovery research involving data integration and application of functional genomics to benefit animal agriculture and the biomedical community. New and emerging biotechnologies and comparative genomics approaches will greatly advance our understanding of genes that are critical to development of the reproductive system and to key events at each stage of the reproductive cycle of females and males.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471, USA.
| | | |
Collapse
|
275
|
Miyazaki K, Tomii R, Kurome M, Ueda H, Hirakawa K, Ueno S, Hiruma K, Nagashima H. Evaluation of the quality of porcine somatic cell nuclear transfer embryo by gene transcription profiles. J Reprod Dev 2005; 51:123-31. [PMID: 15750304 DOI: 10.1262/jrd.51.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to evaluate the quality of porcine somatic cell nuclear transfer (SCNT) embryos by examining its gene transcription patterns. Embryos were produced by SCNT, intracytoplasmic sperm injection (ICSI) or under different conditions, and transcripts of genes for fibroblast growth factor receptor (FGFr) 2IIIc, FGFr72IIIb, X inactive-specific transcript (Xist), interleukin 6 (IL6), IL6 receptor (IL6r) alpha and c-kit ligand, were detected by real-time RT-PCR. The percentages of embryos in which these transcripts were detected were similar in SCNT and ICSI embryos. On the other hand, the transcriptional levels of the FGFr72IIIb and IL6ralpha genes were 0.5 times less and 2 times more, respectively, in SCNT blastocysts than those of ICSI blastocysts (p<0.05). When nuclear transfer was performed before or after activation of oocytes, embryos in the latter case showed significantly lower frequencies of having FGFr72IIIb (74% vs. 90%) and Xist (3% vs. 33%) transcripts compared to the former case embryos (p<0.05). When two lines of nuclear donor cells with different developmental potencies were used, the transcriptional profiles in the reconstructed embryos did not show any significant differences. Our study suggests that expression profiles of FGFr72IIIb, IL6ralpha, and Xist can be used as markers for the diagnosis of the developmental potency of porcine nuclear transfer embryos.
Collapse
|
276
|
Silvestre MA, Sánchez JP, Gómez EA. Vitrification of goat, sheep, and cattle skin samples from whole ear extirpated after death and maintained at different storage times and temperatures. Cryobiology 2005; 49:221-9. [PMID: 15615608 DOI: 10.1016/j.cryobiol.2004.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 08/18/2004] [Indexed: 11/19/2022]
Abstract
Proper tissue preservation from a wide range of animals of different species is of paramount importance, as these tissue samples could be used to reintroduce lost genes back into the breeding pool by somatic cloning. We aim to study the temporal and thermal post-mortem limits, tested in rabbits and pigs, within which there will be guarantees of obtaining living skin cells in goat, sheep, and cattle. We also intend to study the effect of vitrification on the ability of ear skin cells, stored at different times and temperatures, to attach to the substratum and grow in vitro after warming. Ears were stored either at 4 degrees C for 12, 252, and 348 h post-mortem (hpm), or at room temperature (22-25 degrees C) for 60 and 96 hpm. In all cases, skin samples from these ears were sorted into two groups: one group was in vitro cultured immediately after storage, and the other group was vitrified after storage and further in vitro cultured. In goat and sheep, no differences in attachment (100%: goat; 90-100%: sheep) or subconfluence (75-100%: goat; 70-100%: sheep) rates were observed between experimental groups. However, in days of culture to reach subconfluence, significant differences between non-vitrified and vitrified groups were observed when ears were stored at 4 degrees C for 12 and 252 hpm. In cattle, with respect to attachment rate, vitrified samples from ears stored at 22-25 degrees C for 60 hpm were different from non-vitrified control group (60 vs. 100%, respectively; P < 0.05). Also, days of culture to reach subconfluence were analysed by a non-parametric Cox Survival Analysis. In general, results from ANOVA and Survival Analysis were similar, because the proportion of censored data was quite low (9%), so the bias when using ANOVA is not too high. In spite of all the above, the lowest survival rates (75%: goat; 70%: sheep; and 40%: cattle) were sufficiently high to enable collection of skin samples from the majority of dead animals and their cryopreservation.
Collapse
Affiliation(s)
- Miguel A Silvestre
- Centro de Investigación y Tecnología Animal, Departamento de Ganadería, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Moncada, 46113 Valencia, Spain.
| | | | | |
Collapse
|
277
|
Nolen LD, Gao S, Han Z, Mann MRW, Gie Chung Y, Otte AP, Bartolomei MS, Latham KE. X chromosome reactivation and regulation in cloned embryos. Dev Biol 2005; 279:525-40. [PMID: 15733677 DOI: 10.1016/j.ydbio.2005.01.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
Somatic cell nuclear transfer embryos exhibit extensive epigenetic abnormalities, including aberrant methylation and abnormal imprinted gene expression. In this study, a thorough analysis of X chromosome inactivation (XCI) was performed in both preimplantation and postimplantation nuclear transfer embryos. Cloned blastocysts reactivated the inactive somatic X chromosome, possibly in a gradient fashion. Analysis of XCI by Xist RNA and Eed protein localization revealed heterogeneity within cloned embryos, with some cells successfully inactivating an X chromosome and others failing to do so. Additionally, a significant proportion of cells contained more than two X chromosomes, which correlated with an increased incidence of tetraploidy. Imprinted XCI, normally found in preimplantation embryos and extraembryonic tissues, was not observed in blastocysts or placentae from later stage clones, although fetuses recapitulated the Xce effect. We conclude that, although SCNT embryos can reactivate, count, and inactivate X chromosomes, they are not able to regulate XCI consistently. These results illustrate the heterogeneity of epigenetic changes found in cloned embryos.
Collapse
MESH Headings
- Animals
- Biomarkers
- Blastocyst/physiology
- Cell Lineage
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Organism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dosage Compensation, Genetic
- Embryo Implantation
- Embryo, Mammalian/physiology
- Epigenesis, Genetic
- Female
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Male
- Methyl-CpG-Binding Protein 2
- Mice
- Mice, Inbred C57BL
- Nuclear Transfer Techniques
- Polycomb-Group Proteins
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- X Chromosome/genetics
- X Chromosome/metabolism
Collapse
Affiliation(s)
- Leisha D Nolen
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Gjørret JO, Wengle J, Maddox-Hyttel P, King WA. Chronological Appearance of Apoptosis in Bovine Embryos Reconstructed by Somatic Cell Nuclear Transfer from Quiescent Granulosa Cells. Reprod Domest Anim 2005; 40:210-6. [PMID: 15943694 DOI: 10.1111/j.1439-0531.2005.00578.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficiency of cloning has remained low and in spite of attempts to improve this technology, many reconstructed embryos do not implant or are lost during early pregnancy. Chromosomal aberrations, deviant gene expression patterns and abnormal regulation of cell death may be involved in this increased early embryonic loss. Here, we investigate the chronological onset of both apoptotic changes in nuclear morphology and DNA degradation [detected by transferase-mediated dUTP nick-end labelling (TUNEL) reaction] in bovine two-cell- to blastocyst-stage embryos. Such embryos were generated either by reconstruction with nuclear transfer from quiescent granulosa cells or by regular in vitro embryo production. Nuclear condensation was observed from the two-cell stage and TUNEL labelling was observed from the six-cell stage in reconstructed embryos, whereas nuclear condensation was evident from the eight-cell stage and TUNEL labelling from the 13-cell stage in embryos derived in vitro. Furthermore, reconstructed embryos displayed elevated ratios of embryos containing apoptotic nuclei at pre-compaction stages and higher indices of apoptotic nuclei in morula and blastocyst stages when compared with in vitro-produced embryos.
Collapse
Affiliation(s)
- J O Gjørret
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
279
|
Bodó S, Gócza E, Révay T, Hiripi L, Carstea B, Kovács A, Bodrogi L, Bösze Z. Production of transgenic chimeric rabbits and transmission of the transgene through the germline. Mol Reprod Dev 2005; 68:435-40. [PMID: 15236327 DOI: 10.1002/mrd.20109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we report that improved reproductive technologies combined with an efficient microinjection method and in vitro cultivation medium enabled us to create germ line chimeric rabbits. To follow the fate of the chimeric embryo a blastomere marked with the human blood coagulation factor VIII (hFVIII) transgene was microinjected into a morula stage wild type embryo. The degree of chimerism in different tissues was estimated by real-time PCR and was found to be in the range of 0.1-42%. Among the four chimeric animals, one was identified as a chromosomal intersex and two were germline chimeras.
Collapse
Affiliation(s)
- Szilárd Bodó
- Department of Animal Biology, Agricultural Biotechnology Center, Gödöllö, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Fulka H, Mrazek M, Tepla O, Fulka J. DNA methylation pattern in human zygotes and developing embryos. Reproduction 2005; 128:703-8. [PMID: 15579587 DOI: 10.1530/rep.1.00217] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report on observations of the global methylation/demethylation pattern of both pronuclei in human zygotes and in early embryos up to the blastocyst stage. Our results demonstrate that in about half of the zygotes examined the paternal chromatin was less methylated than the maternal chromatin. In the other half, both pronuclei exhibited the same intensity of labeling. The nuclei in developing embryos were intensively labeled for up to the four-cell stage; thereafter, a decline of labeling intensity was detected. Remethylation in some nuclei starts in late morulae. Surprisingly, and unlike the mouse, at the blastocyst stage the inner cell mass showed a weaker intensity of labeling than the trophectodermal cells.
Collapse
Affiliation(s)
- Helena Fulka
- Center for Cell Therapy and Tissue Repair, VUZV Labs., Prague 10, Czech Republic and ISCARE IVF, Prague 9, Czech Republic
| | | | | | | |
Collapse
|
281
|
Abstract
Abstract In vitro fertilization (IVF), in which preimplantation-stage embryos are produced after ovarian stimulation and retrieval of preovulatory oocytes, now accounts for almost 2% of all births in Australia. For clinics performing in the top quartile of national results, the chance of a live birth for a woman under 35 years from one round of egg retrieval and IVF treatment is greater than 50%, albeit still with a greater than 20% risk of twins or higher order multiple pregnancy. Similar or better live birth rates are now obtainable with the elective transfer of a single embryo at the stage of blastocyst (5-6 days in culture), a policy that if adopted for younger women can reduce the risk of twins in a clinic to less than 15%. Current developments centre around improvements to embryo culture and the testing of embryos for chromosomal normality and other genetic and epigenetic variables before transfer, made possible by licences for embryo research protocols now being issued under the Commonwealth's Research Involving Human Embryos Act 2002.
Collapse
Affiliation(s)
- R P S Jansen
- Sydney IVF and Department of Obstetrics and Gynaecology and Central Clinical School, University of Sydney, New South Wales, Australia.
| |
Collapse
|
282
|
Ranganath RM. Harnessing the developmental potential of nucellar cells: barriers and opportunities. Trends Biotechnol 2005; 22:504-10. [PMID: 15450743 DOI: 10.1016/j.tibtech.2004.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Angiosperm nucellar cells can either use or avoid meiosis in vivo, depending on the developmental context. This unique ability contrasts with the conditions required in vitro, either for a reconstituted oocyte to avoid meiosis and produce clones by somatic cell nuclear transfer (SCNT), or for mammalian stem cells to undergo meiosis and produce synthetic sex cells (gametes). Current biotechnological initiatives to harness the potential of nucellar cells are based on the transfer of apomixis genes to sexual crop plants with the aim of producing clones through seeds. The elusive genetic basis of apomixis compels us to examine whether this process involves epigenetic factors. The elegant and versatile developmental platform available in nucellar cells should be explored as a genome-scale science and compared with mammalian stem cell biology for a holistic understanding of developmental programming and reprogramming in eukaryotes.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, Jnanabharathi Campus, Bangalore 560056, India.
| |
Collapse
|
283
|
Ng RK, Gurdon JB. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc Natl Acad Sci U S A 2005; 102:1957-62. [PMID: 15684086 PMCID: PMC548545 DOI: 10.1073/pnas.0409813102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transplantation of somatic cell nuclei to enucleated eggs has shown that genes can be reprogrammed to an embryonic pattern of expression, thereby indicating a reversal of their epigenetic state. However, in Xenopus nuclear transfer experiments using both endoderm and neuroectoderm donor cells, we have observed substantial overexpression of donor cell type-specific genes, both spatially and temporally, in the wrong cell type in some nuclear transplant embryos. For example, more than half of the embryos prepared from transplanted neuroectoderm nuclei overexpressed the neuroectodermal marker gene Sox2 to an excessive level in their endoderm cells. Because, in Xenopus, there is no transcription for the first 12 cell cycles, some somatic cell nuclei must remember a developmentally activated gene state and transmit this to their mitotic progeny in the absence of the conditions that induced that state. We also find that donor cell-specific genes are transcribed at an earlier stage than normal in an inappropriate cell type. This phenomenon of epigenetic memory applies to genes that are transcribed in donor nuclei; it does not influence those genes that are competent to be transcribed in nuclear transplant embryo tissue, but were not actually transcribed in donor nuclei at the time of nuclear transfer. We conclude that an epigenetic memory is established in differentiating somatic cells and applies to genes that are in a transcriptionally active state.
Collapse
Affiliation(s)
- Ray K Ng
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
284
|
Li S, Li Y, Du W, Zhang L, Yu S, Dai Y, Zhao C, Li N. Aberrant Gene Expression in Organs of Bovine Clones That Die Within Two Days after Birth1. Biol Reprod 2005; 72:258-65. [PMID: 15240423 DOI: 10.1095/biolreprod.104.029462] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cloning by somatic nuclear transfer is an inefficient process in which some of the cloned animals die shortly after birth and display organ abnormalities. In an effort to determine the possible genetic causes of neonatal death and organ abnormalities, we used real-time quantitative reverse transcription-polymerase chain reaction to examine expression patterns of eight developmentally important genes (PCAF, Xist, FGFR2, PDGFRa, FGF10, BMP4, Hsp70.1, and VEGF) in six organs (heart, liver, spleen, lung, kidney, and brain) of both cloned bovines that died soon after birth (n=9) and normal control calves produced by artificial insemination. In somatic cloning of cattle, fibroblasts have often been used for doner nuclei, and the effect of the age of the fibroblast donor cells on gene expression profiles was investigated. Aberrant expressions of seven genes were found in these clones. The majority of aberrantly expressed genes were common in clones derived from adult fibroblast (AF) and in clones derived from fetal fibroblast (FF) compared to controls, whereas some genes were dysregulated either in AF cell-derived or in FF cell-derived clones. For the studied genes, kidney was the organ least affected by gene dysregulation, and heart was the organ most affected, in which five genes were aberrant. Most dysregulations (12 of 19) were up-regulation, but PDGFRa only showed down-regulation. VEGF, BMP-4, PCAF, and Hsp70.1 were extremely dysregulated, whereas the other four genes had a low level of gene dysregulation. Our results suggest that the aberrant gene expression occurred in most tissues of cloned bovines that died soon after birth. For each specific gene, aberrant expression resulting from nuclear transfer was tissue-specific. Because these genes play important roles in embryo development and organogenesis, the aberrant transcription patterns detected in these clones may contribute to the defects of organs reported in neonatal death of clones.
Collapse
Affiliation(s)
- Shijie Li
- The State Key Laboratory for Agrobiotechnology in Livestock and Poultry, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from "surplus" embryos left from in vitro fertilization, evoked immediately ideas on the possibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue-specific (multipotent) stem cells are capable, under suitable conditions, of producing a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names - "non-orthodox differentiation" or "transdifferentiation". In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one-type tissue to look and act as cells of another tissue? Are these changes natural? Could these transformations be used to treat diseases? What about the bioethic issue? However, the most serious task "still remains to be solved - how to detect, harvest and culture stem cells for therapy of certain diseases".
Collapse
Affiliation(s)
- S Filip
- Department of Oncology and Radiotherapy, Charles University Hospital, Sokolska Street 480, 500 05 Hradec Králové, Czech Republic.
| | | | | |
Collapse
|
286
|
Sinibaldi-Vallebona P, Lavia P, Garaci E, Spadafora C. A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosomes Cancer 2005; 45:1-10. [PMID: 16175572 DOI: 10.1002/gcc.20266] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An unexpected result emerging from completion of the genome sequencing project is that a large portion of mammalian genomes is constituted by retrotransposons. A large body of published data supports the conclusion that retrotransposons are biologically active elements and indicates that retrotransposition is an ongoing process in mammalian genomes. Retroelements can act as insertional mutagens altering the coding integrity of genes and, recently, have been found to also affect the expression of cellular genes at the epigenetic level: in this light, they are a potential threat in that these events can trigger the onset of several pathologies including cancer. Retroelement genes, and particularly the gene coding for reverse transcriptase (RT), are typically expressed at high levels in transformed cells and tumors. In recent work, we have found that drug-mediated inhibition of the endogenous RT activity, or silencing of expression of active retrotransposons of the LINE-1 family by RNA interference, down-regulate cell growth and induce the activation of differentiating functions in several cancer cell lines. Moreover, the inhibition of endogenous RT activity in vivo antagonizes the growth of human tumors in animal models. In this review, we discuss newly emerging concepts on the role of retrotransposons and suggest that an abnormally high level of the RT activity that they encode may contribute to the loss of control in the proliferation and differentiation programs typical of transformed cells. In this light, RT-coding elements may be regarded as promising targets in the development of novel, differentiation-inducing approaches to cancer therapy.
Collapse
|
287
|
Lavoir MC, Weier J, Conaghan J, Pedersen RA. Poor development of human nuclear transfer embryos using failed fertilized oocytes. Reprod Biomed Online 2005; 11:740-4. [PMID: 16417739 DOI: 10.1016/s1472-6483(10)61693-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Failed fertilized human oocytes from IVF were enucleated and used as recipients for somatic cell nuclear transfer. The reconstructed embryos frequently formed an expanded nucleus from the injected genome after activation. However, subsequent development beyond the 1-cell stage was poor, and the resulting embryos showed chromosomal abnormalities. Poor development of oocytes after nuclear transfer contrasted with that of control, sperm-injected oocytes, which often progressed to cleavage stages. These results suggest that failed fertilized oocytes are not effective recipients for somatic cell nuclear transfer.
Collapse
|
288
|
Abstract
Fertile offspring have been produced by nuclear transfer from adult somatic cells in several mammalian species (Wilmut et al., 1997; Kato et al., 1998; Wakayama et al., 1998; Polejaeva et al., 2000; Chesne et al., 2002; Shin et al., 2002; Zhou et al., 2003). Various possible causes have been suggested for the overall low efficiency (Perry and Wakayama, 2002). Notably, however, it has not yet been clearly demonstrated whether reprogramming after nuclear transfer is necessary for successful cloning. Here we show that reprogramming is essential in nuclear transfer, by comparing the developmental efficiency after the transfer of cumulus cell nuclei with that for zygote nuclei. Nuclear transfers from blastomeres of a series of pre-implantation stages showed further that, as development proceeds, the nuclei progressively lose their potency and become more difficult to reprogram upon their transfer into enucleated MII oocytes. We also found that naturally ovulated oocytes are much better recipients of a nucleus than are superovulated oocytes, which have been used in all the nuclear transfer experiments reported so far. This indicates that cloning efficiency can also be increased to some extent by technical improvements. All these results enable us to distinguish more clearly between the inherent problem of reprogramming and technical problems associated with materials, manipulation, and in vitro culture.
Collapse
Affiliation(s)
- Takashi Hiiragi
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | |
Collapse
|
289
|
Gjørret JO, Maddox-Hyttel P. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev 2005; 17:113-24. [PMID: 15745636 DOI: 10.1071/rd04117] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022] Open
Abstract
Current knowledge on the biology of mammalian embryonic stem cells (ESC) is stunningly sparse in light of their potential value in studies of development, functional genomics, generation of transgenic animals and human medicine. Despite many efforts to derive ESC from other mammalian species, ESC that retain their capacity for germ line transmission have only been verified in the mouse. However, the criterion of germ line transmission may not need to be fulfilled for exploitation of other abilities of these cells. Promising results with human ESC-like cells and adult stem cells have nourished great expectations for their potential use in regenerative medicine. However, such an application is far from reality and substantial research is required to elucidate aspects of the basic biology of pluripotent cells, as well as safety issues associated with the use of such cells in therapy. In this context, methods for the derivation, propagation and differentiation of ESC-like cultures from domestic animals would be highly desirable as biologically relevant models. Here, we review previously published efforts to establish bovine ESC-like cells and describe a procedure used in attempts to derive similar cells from bovine Day 12 embryos.
Collapse
Affiliation(s)
- Jakob O Gjørret
- Department of Animal and Veterinary Sciences, Royal Veterinary and Agricultural University, Denmark.
| | | |
Collapse
|
290
|
An Attempt at Fusing Primordial Germ Cell with Embryonic Blood Cell in Chickens Using Inactivated Sendai Virus or Electrical Stimulation. J Poult Sci 2005. [DOI: 10.2141/jpsa.42.369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
291
|
Abstract
Currently, behavioral development is thought to result from the interplay among genetic inheritance, congenital characteristics, cultural contexts, and parental practices as they directly impact the individual. Evolutionary ecology points to another contributor, epigenetic inheritance, the transmission to offspring of parental phenotypic responses to environmental challenges-even when the young do not experience the challenges themselves. Genetic inheritance is not altered, gene expression is. Organismic pathways for such transmission exist. Maternal stress during the latter half of a daughter's gestation may affect not only the daughter's but also grand-offspring's physical growth. The author argues that temperamental variation may be influenced in the same way. Implications for theory and research design are presented along with testable predictions.
Collapse
Affiliation(s)
- Lawrence V Harper
- Department of Human and Community Development, University of California, Davis, CA 95616, USA.
| |
Collapse
|
292
|
Adams AM, Pratt SL, Stice SL. Knockdown of the Dnmt1s transcript using small interfering RNA in primary murine and bovine fibroblast cells. Mol Reprod Dev 2005; 72:311-9. [PMID: 16078273 DOI: 10.1002/mrd.20357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RNA interference (RNAi) has rapidly developed into one of the most widely applied technologies in molecular and cellular research, and although young, is now an essential experimental tool. The versatility of RNAi, especially in mammalian species, lends to its potential applications in a wide array of fields. Without having to genetically manipulate the genome, the ability to selectively reduce the level of a specific transcript using small interfering RNA (siRNA) molecules has great appeal in studying reprogramming issues in somatic cell nuclear transfer (SCNT) embryos. In such embryos, the aberrant expression of the somatic isoform of Dnmt1 (Dnmt1s), the enzyme responsible for maintaining DNA methylation in all somatic cells, has been implicated as one factor in the improper reprogramming of the donor genome. In the present study, the ability to develop a method allowing for the knockdown, or reduction, of Dnmt1s in primary fibroblast cells, like those commonly used as karyoplast donors in SCNT studies, was investigated in primary murine and bovine fibroblast cells as well as in a compromised cell line (NIH/3T3). Two Dnmt1s-specific siRNA candidates were designed and tested. Using optimized conditions, these siRNAs were transiently transfected into the cells with total RNA and nuclear protein being collected. A 56.5% knockdown in Dnmt1s was achieved in the compromised and primary murine cells whereas Dnmt1s was reduced by 15.4% in the primary bovine cells. A reduction in Dnmt1s mRNA did not correspond to a reduction in protein as determined by immunodetection of Western blots. Overall, this study demonstrated the ability of siRNA to knockdown Dnmt1s mRNA in primary fibroblast donor cells. In order to substantially increase the efficiency while decreasing the anomalies seen in SCNT, novel techniques, like the one proposed, are needed to assist the oocyte's ability to reprogram a differentiated genome.
Collapse
Affiliation(s)
- A M Adams
- Animal and Dairy Science Department, University of Georgia, 425 River Road, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
293
|
Yamagata K, Yamazaki T, Yamashita M, Hara Y, Ogonuki N, Ogura A. Noninvasive visualization of molecular events in the mammalian zygote. Genesis 2005; 43:71-9. [PMID: 16100711 DOI: 10.1002/gene.20158] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following fertilization, a number of molecular events are triggered in the mammalian zygote. As biochemical studies using mammalian gametes and zygotes have inherent difficulties, the molecular nature of these processes is currently unclear. We have developed a method to visualize these events. In vitro transcribed mRNAs encoding for proteins fused with green fluorescent protein were microinjected into oocytes or embryos and fluorescence signals were observed. Using this technique we succeeded in obtaining images of the DNA methylation status in living mouse and rabbit embryos. Moreover, time-lapse images were acquired of spindle and nuclear formation during second meiosis and first mitosis. Importantly, the microinjected embryos developed to the normal offspring even after observation, suggesting that the technique is relatively noninvasive. Thus, our method may help elucidate the molecular aspects of fertilization and preimplantation development and, based on the real-time genetic and epigenetic status, could become a tool to select "good quality" embryos before implantation.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Graduate School of Life and Environmental Science, and Institute of Applied Biochemistry, University of Tsukuba,Tsukuba Science City, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
294
|
Reyftmann L, Dechaud H, Hamamah S, Pucéat M, Hédon B. [Fetal and umbilical blood cord stem cells: a room for the obstetrician and gynaecologist. Part two]. ACTA ACUST UNITED AC 2004; 32:969-75. [PMID: 15567687 DOI: 10.1016/j.gyobfe.2004.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stem cells are undifferentiated cells, with the ability to self renew and to differentiate into specialised cells. Besides embryonic stem cells, adult, fetal and umbilical cord blood (UB) stem cells are to be distinguished. These cells are multipotent. Embryonic germ cells (EG) that also are fetal stem cells have proven to be truly pluripotent, since they are able to give derivatives of the three primitive embryonic layers. EG cells have a normal karyotype, and exhibit remarkable long-term proliferative potential. Fetal stem cells and UB cells have already been used in cell therapy trials (e.g., Parkinson's disease, congenital immunodeficiencies and hemopathies). The applications in the field of reproductive biology will lead to a better understanding of genomic imprinting with EG cells. The obstetrician and gynaecologist could act a central part in the production and study of fetal stem cells, using tissues from aborted fetuses or collecting cord blood stem cells.
Collapse
Affiliation(s)
- L Reyftmann
- Service de gynécologie-obstétrique B et médecine de la reproduction, faculté de médecine, université Montpellier-I, hôpital universitaire Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier 5, France.
| | | | | | | | | |
Collapse
|
295
|
|
296
|
Abstract
Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate.
Collapse
Affiliation(s)
- Gerald D Fischbach
- Faculty of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
297
|
Abstract
We report here the first successful use of embryonic nuclear transfer to create viable adult Drosophila melanogaster clones. Given the generation time, cost effectiveness, and relative ease of embryonic nuclear transplant in Drosophila, this method can provide an opportunity to further study the constraints on development imposed by transplanting determined or differentiated nuclei.
Collapse
Affiliation(s)
- Andrew J Haigh
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B4H 4J1, Canada
| | | | | |
Collapse
|
298
|
Young LE, Beaujean N. DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod Sci 2004; 82-83:61-78. [PMID: 15271444 DOI: 10.1016/j.anireprosci.2004.05.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals, active demethylation of cytosine methylation in the sperm genome prior to forming a functional zygotic nucleus is thought to be a function of the oocyte cytoplasm important for subsequent normal development. Furthermore, a stepwise passive loss of DNA methylation in the embryonic nucleus has been observed as DNA replicates between two-cell and morula stages, with somatic cell levels of methylation being re-established by, or after the blastocyst stage when differentiated lineages are formed. The ability of oocyte cytoplasm to also reprogram the genome of a somatic cell by nuclear transfer (SCNT) has raised the possibility of directing reprogramming of a somatic nucleus ex ovo by mimicking the epigenetic events normally induced by maternal factors from the oocyte. Whilst examining DNA methylation changes in normal sheep fertilization, we were surprised to observe no demethylation of the sheep male pronucleus at any point in the first cell cycle. Furthermore, using quantitative image analysis, we observed limited demethylation of the sheep embryonic genome only between the two- and eight-cell stages and no evidence of remethylation by the blastocyst stage. We suggest that the dramatic differences in DNA methylation between the sheep and other mammalian species examined call in to question the requirement and role of DNA methylation in early mammalian embryonic development.
Collapse
Affiliation(s)
- L E Young
- Division of Obstetrics and Gynaecology and Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
299
|
Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004; 6:984-90. [PMID: 15448701 DOI: 10.1038/ncb1176] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 08/20/2004] [Indexed: 11/09/2022]
Abstract
Nuclear transplantation experiments in amphibia and mammals have shown that oocyte and egg cytoplasm can extensively reprogram somatic cell nuclei with new patterns of gene expression and new pathways of cell differentiation; however, very little is known about the molecular mechanism of nuclear reprogramming. Here we have used nuclear and DNA transfer from mammalian somatic cells to analyse the mechanism of activation of the stem cell marker gene oct4 by Xenopus oocytes. We find that the removal of nuclear protein accelerates the rate of reprogramming, but even more important is the demethylation of somatic cell DNA. DNA demethylation seems to precede gene reprogramming, and is absolutely necessary for oct4 transcription. Reprogramming by oocytes occurs in the absence of DNA replication and RNA/protein synthesis. It is also selective, operating only on the promoter, but not enhancers, of oct4; both a putative Sp1/Sp3 and a GGGAGGG binding site are required for demethylation and transcription. We conclude that the demethylation of promoter DNA may be a necessary step in the epigenetic reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Stina Simonsson
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK
| | | |
Collapse
|
300
|
Dadi TD, Li MW, Lloyd KCK. Expression Levels of EGF, TGF-α, and EGF-R Are Significantly Reduced in Pre-Implantation Cloned Mouse Embryos. CLONING AND STEM CELLS 2004; 6:267-83. [PMID: 15671673 DOI: 10.1089/clo.2004.6.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tedla D Dadi
- Center for Comparative Medicine, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|