251
|
Vachtenheim J, Sestáková B, Tuhácková Z. Inhibition of MITF transcriptional activity independent of targeting p300/CBP coactivators. ACTA ACUST UNITED AC 2007; 20:41-51. [PMID: 17250547 DOI: 10.1111/j.1600-0749.2006.00354.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) activates the expression of melanocyte-specific markers and promotes the survival of embryonic, adult and malignant melanocytes. Although numerous MITF-dependent downstream genes have been identified, the mechanisms by which the MITF activity is coregulated remain elusive. Here we used a non-melanocytic cell line U2-OS as a model in which MITF evokes transcription of a paradigmatic MITF target tyrosinase and show that the adenoviral E1A protein represses the MITF-driven transcription in these cells. The E1A CR1 domain (which alone is insufficient to bind p300) was sufficient for repression, while the N-terminus, through which E1A binds the p300/CBP proteins and other coactivators, was unable to repress. Correspondingly, CR1 inhibited colony formation of MITF-positive, but not MITF-negative, melanoma cells. The repression by CR1 was largely independent of the PCAF-binding motif, previously recognized to be necessary for suppression of muscle-specific enhancer. Interestingly, CR1 conferred transcriptional competence to the MITF-CR1 chimera in which the MITF portion was rendered transcription-deficient. Moreover, MITF mutants defective in binding to p300/CBP in vivo still activated transcription, further supporting a p300/CBP-independent coactivation of MITF targets. MITF is amplified in a subset of melanomas and is thought to be required for sustained proliferation of malignant melanocytes. Our results suggest that understanding how CR1 represses Mitf activity may reveal a route to melanoma therapy.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Laboratory of Molecular Biology, University Hospital, Third Medical Faculty, Charles University Prague, Czech Republic.
| | | | | |
Collapse
|
252
|
Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2007; 20:3426-39. [PMID: 17182868 PMCID: PMC1698449 DOI: 10.1101/gad.406406] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is widely held that cells with metastatic properties such as invasiveness and expression of matrix metalloproteinases arise through the stepwise accumulation of genetic lesions arising from genetic instability and "clonal evolution." By contrast, we show here that in melanomas invasiveness can be regulated epigenetically by the microphthalmia-associated transcription factor, Mitf, via regulation of the DIAPH1 gene encoding the diaphanous-related formin Dia1 that promotes actin polymerization and coordinates the actin cytoskeleton and microtubule networks at the cell periphery. Low Mitf levels lead to down-regulation of Dia1, reorganization of the actin cytoskeleton, and increased ROCK-dependent invasiveness, whereas increased Mitf expression leads to decreased invasiveness. Significantly the regulation of Dia1 by Mitf also controls p27(Kip1)-degradation such that reduced Mitf levels lead to a p27(Kip1)-dependent G1 arrest. Thus Mitf, via regulation of Dia1, can both inhibit invasiveness and promote proliferation. The results imply variations in the repertoire of environmental cues that determine Mitf activity will dictate the differentiation, proliferative, and invasive/migratory potential of melanoma cells through a dynamic epigenetic mechanism.
Collapse
Affiliation(s)
- Suzanne Carreira
- Signalling and Development Laboratory, Marie Curie Research Institute, Oxted, Surrey, RH8 0TL, United Kingdom
| | - Jane Goodall
- Signalling and Development Laboratory, Marie Curie Research Institute, Oxted, Surrey, RH8 0TL, United Kingdom
| | - Laurence Denat
- Developmental Genetics of Melanocytes, UMR146 Centre national de la recherche scientifique (CNRS), Institut Curie, 91405 Orsay Cedex, France
| | - Mercedes Rodriguez
- Signalling and Development Laboratory, Marie Curie Research Institute, Oxted, Surrey, RH8 0TL, United Kingdom
| | - Paolo Nuciforo
- Instituto FIRC di Oncologia Molecolare-Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, 20139 Milano, Italy
| | - Keith S. Hoek
- Department of Dermatology, University Hospital of Zürich, 8091 Zürich, Switzerland
| | | | - Lionel Larue
- Developmental Genetics of Melanocytes, UMR146 Centre national de la recherche scientifique (CNRS), Institut Curie, 91405 Orsay Cedex, France
| | - Colin R. Goding
- Signalling and Development Laboratory, Marie Curie Research Institute, Oxted, Surrey, RH8 0TL, United Kingdom
- Corresponding author.E-MAIL ; FAX 44-1882-714375
| |
Collapse
|
253
|
Lekmine F, Chang CK, Sethakorn N, Das Gupta TK, Salti GI. Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. Biochem Biophys Res Commun 2007; 354:830-5. [PMID: 17266927 DOI: 10.1016/j.bbrc.2007.01.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 11/25/2022]
Abstract
We transfected the melanocyte-specific Mitf-M isoform into the aggressive melanoma UISO-Mel-6 cell lines. Our data show that Mitf decreases cell proliferation and results in cells which grow in clusters. By analyzing the expression of the markers of differentiation, we demonstrate that Mitf favored increased expression of tyrosinase and tyrosinase-related protein-1. In addition, Mitf induces Bcl-2 expression following transfection of UISO-Mel-6 cells. We also showed that Mitf gene affects cell-cycle distribution by resting cells preferentially in G2/G1 phase, and inducing the expression of p21 and p27. Moreover, we performed in vivo studies using subcutaneous injection of UISO-Mel-6 and UISO-Mel-6-Mitf in Balb/c nude mice. Our data show that Mitf inhibits tumor growth and decreases Ki67 expression. Tumors induced by UISO-Mel-6 cells were ulcerated and resulted in metastases to liver. None of the mice injected with UISO-Mel-6(Mitf+) cells harbored liver metastases. Our results suggest that Mitf is involved in melanoma differentiation and leads to a less aggressive phenotype.
Collapse
Affiliation(s)
- Fatima Lekmine
- Department of Surgical Oncology, University of Illinois at Chicago, 840 South Wood Street, M/C 820, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
254
|
Schwarzbraun T, Ofner L, Gillessen-Kaesbach G, Schaperdoth B, Preisegger KH, Windpassinger C, Wagner K, Petek E, Kroisel PM. A new 3p interstitial deletion including the entireMITF gene causes a variation of Tietz/Waardenburg type IIA syndromes. Am J Med Genet A 2007; 143A:619-24. [PMID: 17318840 DOI: 10.1002/ajmg.a.31627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas Schwarzbraun
- Institute of Medical Biology and Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Felsani A, Mileo AM, Maresca V, Picardo M, Paggi MG. New technologies used in the study of human melanoma. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:247-86. [PMID: 17560284 DOI: 10.1016/s0074-7696(07)61006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a "brute force" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Armando Felsani
- CNR, Istituto di Neurobiologia e Medicina Molecolare, 00143 Rome, Italy
| | | | | | | | | |
Collapse
|
256
|
Cobrinik D, Francis RO, Abramson DH, Lee TC. Rb induces a proliferative arrest and curtails Brn-2 expression in retinoblastoma cells. Mol Cancer 2006; 5:72. [PMID: 17163992 PMCID: PMC1764425 DOI: 10.1186/1476-4598-5-72] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Retinoblastoma is caused by loss of the Rb protein in early retinal cells. Although numerous Rb functions have been identified, Rb effects that specifically relate to the suppression of retinoblastoma have not been defined. RESULTS In this study, we examined the effects of restoring Rb to Y79 retinoblastoma cells, using novel retroviral and lentiviral vectors that co-express green fluorescent protein (GFP). The lentiviral vector permitted transduction with sufficient efficiency to perform biochemical analyses. Wild type Rb (RbWT) and to a lesser extent the low penetrance mutant Rb661W induced a G0/G1 arrest associated with induction of p27KIP1 and repression of cyclin E1 and cyclin E2. Microarray analyses revealed that in addition to down-regulating E2F-responsive genes, Rb repressed expression of Brn-2 (POU3F2), which is implicated as an important transcriptional regulator in retinal progenitor cells and other neuroendocrine cell types. The repression of Brn-2 was a specific Rb effect, as ectopic p27 induced a G0/G1 block, but enhanced, rather than repressed, Brn-2 expression. CONCLUSION In addition to Rb effects that occur in many cell types, Rb regulates a gene that selectively governs the behavior of late retinal progenitors and related cells.
Collapse
Affiliation(s)
- David Cobrinik
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Richard O Francis
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - David H Abramson
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Thomas C Lee
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Division of Ophthalmology, Department of Surgery, Childrens Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
257
|
Liu W, Kelly JW, Trivett M, Murray WK, Dowling JP, Wolfe R, Mason G, Magee J, Angel C, Dobrovic A, McArthur GA. Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. J Invest Dermatol 2006; 127:900-5. [PMID: 17159915 DOI: 10.1038/sj.jid.5700632] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The BRAF(T1799A) mutation encodes BRAF(V600E) that leads to activation of the mitogen-activated protein kinase pathway. This study aimed to assess the clinico-pathological features of primary invasive melanomas containing the BRAF(T1799A) mutation. Patients (n=251) with invasive primary melanomas from Australia were interviewed and examined with respect to their melanoma characteristics and risk factors. Independent review of pathology, allele-specific PCR for the BRAF(T1799A) mutation, immunohistochemical staining with Ki67, and phospho-histone-H3 (PH3) were performed. The BRAF(T1799A) mutation was found in 112 (45%) of the primary melanomas. Associations with the BRAF(T1799A) mutation (P<0.05) were as follows: low tumor thickness (odds ratio (OR)=3.3); low mitotic rate (OR=2.0); low Ki67 score (OR=5.0); low PH3 score (OR=3.3); superficial spreading melanoma (OR=10.0); pigmented melanoma (OR=3.7); a lack of history of solar keratoses (OR=2.7); a location on the trunk (OR=3.4) or extremity (OR=2.0); a high level of self-reported childhood sun exposure (OR=2.0); < or =50 years of age (OR=2.5); and fewer freckles (OR=2.5). We conclude that the BRAF(T1799A) mutation has associations with host phenotype, tumor location, and pigmentation. Although implicated in the control of the cell cycle, the BRAF(T1799A) mutation is associated with a lower rate of tumor proliferation.
Collapse
Affiliation(s)
- Wendy Liu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Bharti K, Nguyen MTT, Skuntz S, Bertuzzi S, Arnheiter H. The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. ACTA ACUST UNITED AC 2006; 19:380-94. [PMID: 16965267 PMCID: PMC1564434 DOI: 10.1111/j.1600-0749.2006.00318.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vertebrate retinal pigment epithelium (RPE) cells are derived from the multipotent optic neuroepithelium, develop in close proximity to the retina, and are indispensible for eye organogenesis and vision. Recent advances in our understanding of RPE development provide evidence for how critical signaling factors operating in dorso-ventral and distal-proximal gradients interact with key transcription factors to specify three distinct domains in the budding optic neuroepithelium: the distal future retina, the proximal future optic stalk/optic nerve, and the dorsal future RPE. Concomitantly with domain specification, the eye primordium progresses from a vesicle to a cup, RPE pigmentation extends towards the ventral side, and the future ciliary body and iris form from the margin zone between RPE and retina. While much has been learned about the molecular networks controlling RPE cell specification, key questions concerning the cell proliferative parameters in RPE and the subsequent morphogenetic events still need to be addressed in greater detail.
Collapse
Affiliation(s)
- Kapil Bharti
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
259
|
Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 2006; 7:667-77. [PMID: 16921403 DOI: 10.1038/nrm1987] [Citation(s) in RCA: 627] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INK4b-ARF-INK4a locus encodes two members of the INK4 family of cyclin-dependent kinase inhibitors, p15(INK4b) and p16(INK4a), and a completely unrelated protein, known as ARF. All three products participate in major tumour suppressor networks that are disabled in human cancer and influence key physiological processes such as replicative senescence, apoptosis and stem-cell self-renewal. Transcription from the locus is therefore kept under strict control. Mounting evidence suggests that although the individual genes can respond independently to positive and negative signals in different contexts, the entire locus might be coordinately suppressed by a cis-acting regulatory domain or by the action of Polycomb group repressor complexes.
Collapse
Affiliation(s)
- Jesús Gil
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London W12 0NN, UK
| | | |
Collapse
|
260
|
Goding CR. Melanocytes: the new Black. Int J Biochem Cell Biol 2006; 39:275-9. [PMID: 17095283 DOI: 10.1016/j.biocel.2006.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/22/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
Melanocytes, pigment-producing cells residing primarily in the hair follicle, epidermis and eye, are responsible for skin hair and eye pigmentation. Pigmentation is achieved by the highly regulated manufacture of the pigment melanin in specialised organelles, melanosomes that are transported along dendritic processes before being transferred to growing hair, or keratinocytes where melanin protects from UV-induced DNA damage. Because loss of melanocytes gives a clear pigmentation phenotype yet is non-lethal, over 130 genes implicated in the development or function of this cell type have been identified to date, and in humans the loss of melanocytes or their ability to produce pigment, or transport or transfer melanosomes is associated with several diseases such as vitiligo, albinism and Hermansky-Pudlak syndrome. Importantly, the effective combination of genetics, cell and molecular biology possible with this cell type is attracting an increasing number of researchers focussed on understanding how cells coordinate survival, proliferation, differentiation and stem cell maintenance.
Collapse
Affiliation(s)
- Colin R Goding
- Signalling and Development Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom.
| |
Collapse
|
261
|
Nakai N, Kishida T, Shin-Ya M, Imanishi J, Ueda Y, Kishimoto S, Mazda O. Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther 2006; 14:357-65. [PMID: 17024102 DOI: 10.1038/sj.gt.3302868] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is critically involved in melanin synthesis as well as differentiation of cells of the melanocytic lineage. Some earlier studies suggested that Mitf is also essential in the survival of melanoma cells, but this notion remains controversial. We synthesized short interfering RNA (siRNA) duplexes corresponding to the mitf sequence and transfected them into B16 melanoma. Lipid-mediated transfection in vitro of Mitf-specific siRNA resulted in specific downregulation of Mitf and of the tyrosinase that is a transcriptional target of Mitf. This treatment also remarkably reduced the viability of melanoma cells by inducing apoptosis. To examine the potential feasibility of RNAi therapy against melanoma, B16 cells were subcutaneously injected into syngenic mice and siRNA was transfected into the pre-established tumor by means of electroporation. The Mitf-specific siRNA drastically reduced outgrowth of subcutaneous melanoma, while nonspecific siRNA failed to affect tumor progression. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-based analysis of tumor specimens demonstrated that the tumor cells transfected with Mitf-siRNA effectively underwent apoptosis in vivo. The present results indicate that Mitf plays important roles in melanoma survival. Intratumor electrotransfer of Mitf-specific siRNA may provide a powerful strategy for therapeutic intervention of malignant melanoma.
Collapse
Affiliation(s)
- N Nakai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
262
|
Bloethner S, Hemminki K, Thirumaran RK, Chen B, Mueller-Berghaus J, Ugurel S, Schadendorf D, Kumar R. Differences in global gene expression in melanoma cell lines with and without homozygous deletion of the CDKN2A locus genes. Melanoma Res 2006; 16:297-307. [PMID: 16845325 DOI: 10.1097/01.cmr.0000222597.50309.05] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We studied differential global gene expression in four melanoma cell lines with three cell lines without homozygous deletion of the CDKN2A locus using HG-U133A microarrays with 22 277 transcripts. None of the cell lines carried mutations in the B-RAF and N-RAS genes. Data analysis using stringent criteria showed specific upregulation of 70 genes and downregulation of 86 genes in cell lines with homozygous deletion of the CDKN2A gene. A comparison with previous expression data showed overlapping of upregulation and downregulation of seven and 23 genes, respectively, in melanoma cell lines with homozygous deletion of the CDKN2A locus or mutations in the B-RAF and N-RAS genes. Microarray data for eight selected genes were validated with an extended number of cell lines using quantitative real-time polymerase chain reaction. The upregulated genes in cell lines with the deletion besides others included MAGE A2 [fold change 128, 95% confidence interval (CI) 82.8-172.2; t-test P=0.004], MAGE A6 (fold change 623, 95% CI 473.4-772.1; t-test P=0.001), MAGE A12 (fold change 90, 95% CI 65.1-115.5; t-test P=0.001) and dopachrome tautomerase (fold change 42, 95% CI 32.5-51.8; t-test P=0.001). Downregulated genes included interleukin 18 (fold change 489, 95% CI 146.4-831.2; t-test P=0.04), ID2 (fold change 3, 95% CI 2.2-4.9; t-test P=0.001), KLF4 (fold change 9, 95% CI 4.3-14.7; P=0.01) and CD24 antigen (fold change 1308, 95% CI 766.0-1850.8; t-test P=0.01). The upregulated genes common to cell lines with homozygous deletion of the CDKN2A gene and mutations in B-RAF and N-RAS gene included those that are involved in RAS/RAF/MEK/ERK pathways. Our results highlight effects of homozygous deletion of the CDKN2A locus on global gene expression.
Collapse
Affiliation(s)
- Sandra Bloethner
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
The retinoblastoma tumor-suppressor gene (Rb1) is centrally important in cancer research. Mutational inactivation of Rb1 causes the pediatric cancer retinoblastoma, while deregulation of the pathway in which it functions is common in most types of human cancer. The Rb1-encoded protein (pRb) is well known as a general cell cycle regulator, and this activity is critical for pRb-mediated tumor suppression. The main focus of this review, however, is on more recent evidence demonstrating the existence of additional, cell type-specific pRb functions in cellular differentiation and survival. These additional functions are relevant to carcinogenesis suggesting that the net effect of Rb1 loss on the behavior of resulting tumors is highly dependent on biological context. The molecular mechanisms underlying pRb functions are based on the cellular proteins it interacts with and the functional consequences of those interactions. Better insight into pRb-mediated tumor suppression and clinical exploitation of pRb as a therapeutic target will require a global view of the complex, interdependent network of pocket protein complexes that function simultaneously within given tissues.
Collapse
Affiliation(s)
- D W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
264
|
Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, Steingrimsson E, Hecht A. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol 2006; 26:8914-27. [PMID: 17000761 PMCID: PMC1636837 DOI: 10.1128/mcb.02299-05] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Commitment to the melanocyte lineage is characterized by the onset of expression of the microphthalmia-associated transcription factor (Mitf). This transcription factor plays a fundamental role in melanocyte development and maintenance and seems to be crucial for the survival of malignant melanocytes. Furthermore, Mitf has been shown to be involved in cell cycle regulation and to play important functions in self-renewal and maintenance of melanocyte stem cells. Although little is known about how Mitf regulates these various processes, one possibility is that Mitf interacts with other regulators. Here we show that Mitf can interact directly with beta-catenin, the key mediator of the canonical Wnt signaling pathway. The Wnt signaling pathway plays a critical role in melanocyte development and is intimately involved in triggering melanocyte stem cell proliferation. Significantly, constitutive activation of this pathway is a feature of a number of cancers including malignant melanoma. Here we show that Mitf can redirect beta-catenin transcriptional activity away from canonical Wnt signaling-regulated genes toward Mitf-specific target promoters to activate transcription. Thus, by a feedback mechanism, Mitf can diversify the output of canonical Wnt signaling to enhance the repertoire of genes regulated by beta-catenin. Our results reveal a novel mechanism by which Wnt signaling and beta-catenin activate gene expression, with significant implications for our understanding of both melanocyte development and melanoma.
Collapse
Affiliation(s)
- Alexander Schepsky
- Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Tshori S, Gilon D, Beeri R, Nechushtan H, Kaluzhny D, Pikarsky E, Razin E. Transcription factor MITF regulates cardiac growth and hypertrophy. J Clin Invest 2006; 116:2673-81. [PMID: 16998588 PMCID: PMC1570375 DOI: 10.1172/jci27643] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 08/08/2006] [Indexed: 12/19/2022] Open
Abstract
High levels of microphthalmia transcription factor (MITF) expression have been described in several cell types, including melanocytes, mast cells, and osteoclasts. MITF plays a pivotal role in the regulation of specific genes in these cells. Although its mRNA has been found to be present in relatively high levels in the heart, its cardiac role has never been explored. Here we show that a specific heart isoform of MITF is expressed in cardiomyocytes and can be induced by beta-adrenergic stimulation but not by paired box gene 3 (PAX3), the regulator of the melanocyte MITF isoform. In 2 mouse strains with different MITF mutations, heart weight/body weight ratio was decreased as was the hypertrophic response to beta-adrenergic stimulation. These mice also demonstrated a tendency to sudden death following beta-adrenergic stimulation. Most impressively, 15-month-old MITF-mutated mice had greatly decreased heart weight/body weight ratio, systolic function, and cardiac output. In contrast with normal mice, in the MITF-mutated mice, beta-adrenergic stimulation failed to induce B-type natriuretic peptide (BNP), an important modulator of cardiac hypertrophy, while atrial natriuretic peptide levels and phosphorylated Akt were increased, suggesting a cardiac stress response. In addition, cardiomyocytes cultured with siRNA against MITF showed a substantial decrease in BNP promoter activity. Thus, for what we believe is the first time, we have demonstrated that MITF plays an essential role in beta-adrenergic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Sagi Tshori
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dan Gilon
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Beeri
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hovav Nechushtan
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dmitry Kaluzhny
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ehud Razin
- Department of Biochemistry, Hebrew University Medical School, Jerusalem, Israel.
Heart Institute,
Department of Oncology, and
Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
266
|
Rojas-Gil AP, Ziros PG, Diaz L, Kletsas D, Basdra EK, Alexandrides TK, Zadik Z, Frank SJ, Papathanassopoulou V, Beratis NG, Papavassiliou AG, Spiliotis BE. Growth hormone/JAK-STAT axis signal-transduction defect. A novel treatable cause of growth failure. FEBS J 2006; 273:3454-66. [PMID: 16884491 DOI: 10.1111/j.1742-4658.2006.05347.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary cultured fibroblasts of four patients with idiopathic short stature and severe growth delay, which displayed normal growth hormone receptor expression presented a reduced ability for activation of signal transducer and activator of transcription-3 (STAT3). Impaired STAT3 activation was accompanied by cell-cycle arrest at the Go /G1 phase. Increased levels of the cyclin-dependent kinase inhibitor, p21(WAF/CIPI), and reduced levels of cyclins were also detected in these patients. High concentrations of human growth hormone (1000 ng x mL(-1)) added to the culture medium induced activation of STAT3 and reduced the levels of p21(WAF/CIPI) in the fibroblasts of the four idiopathic short stature children. Treatment of these children with exogenous human growth hormone significantly augmented their growth velocity. Overall, our study provides the first evidence linking the idiopathic short stature phenotype with a functional aberration in the growth hormone signal transduction cascade which can be successfully overcome by exposure to high doses of growth hormone.
Collapse
Affiliation(s)
- Andrea P Rojas-Gil
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Patras School of Medicine, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
Cell for cell, probably no human cancer is as aggressive as melanoma. It is among a handful of cancers whose dimensions are reported in millimeters. Tumor thickness approaching 4 mm presents a high risk of metastasis, and a diagnosis of metastatic melanoma carries with it an abysmal median survival of 6-9 mo. What features of this malignancy account for such aggressive behavior? Is it the migratory history of its cell of origin or the programmed adaptation of its differentiated progeny to environmental stress, particularly ultraviolet radiation? While the answers to these questions are far from complete, major strides have been made in our understanding of the cellular, molecular, and genetic underpinnings of melanoma. More importantly, these discoveries carry profound implications for the development of therapies focused directly at the molecular engines driving melanoma, suggesting that we may have reached the brink of an unprecedented opportunity to translate basic science into clinical advances. In this review, we attempt to summarize our current understanding of the genetics and biology of this disease, drawing from expanding genomic information and lessons from development and genetically engineered mouse models. In addition, we look forward toward how these new insights will impact on therapeutic options for metastatic melanoma in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Melanoma Program, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
268
|
Anderson PO, Manzo BA, Sundstedt A, Minaee S, Symonds A, Khalid S, Rodriguez-Cabezas ME, Nicolson K, Li S, Wraith DC, Wang P. Persistent antigenic stimulation alters the transcription program in T cells, resulting in antigen-specific tolerance. Eur J Immunol 2006; 36:1374-85. [PMID: 16708405 PMCID: PMC2652694 DOI: 10.1002/eji.200635883] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Repetitive antigen stimulation induces peripheral T cell tolerance in vivo. It is not known, however, whether multiple stimulations merely suppress T cell activation or, alternatively, change the transcriptional program to a distinct, tolerant state. In this study, we have discovered that STAT3 and STAT5 were activated in response to antigen stimulation in vivo, in marked contrast to the suppression of AP-1, NF-kappaB and NFAT. In addition, a number of transcription factors were induced in tolerant T cells following antigen challenge in vivo, including T-bet, Irf-1 and Egr-2. The altered transcription program in tolerant cells associates closely with the suppression of cell cycle progression and IL-2 production, as well as with the induction of IL-10. Studies of T-bet and Egr-2 show that the function of T-bet in peptide treatment-induced regulatory T cells is not associated with Th1 differentiation, but correlates with the suppression of IL-2, whereas expression of Egr-2 led to an up-regulation of the cell cycle inhibitors p21(cip1) and p27(kip). Our results demonstrate a balanced transcription program regulated by different transcription factors for T cell activation and/or tolerance during antigen-induced T cell responses. Persistent antigen stimulation can induce T cell tolerance by changing the balance of transcription factors.
Collapse
Affiliation(s)
- Per O. Anderson
- Institute of Cell and Molecular Science, Barts and London School of Medicine, London, UK
| | - Barbara A. Manzo
- Institute of Cell and Molecular Science, Barts and London School of Medicine, London, UK
| | - Anette Sundstedt
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Sophie Minaee
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Alistair Symonds
- Institute of Cell and Molecular Science, Barts and London School of Medicine, London, UK
| | - Sabah Khalid
- Microarray Group, Department of Biological Sciences, Brunel University, Uxbridge, London, UK
| | | | - Kirsty Nicolson
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Suling Li
- Microarray Group, Department of Biological Sciences, Brunel University, Uxbridge, London, UK
| | - David C. Wraith
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Ping Wang
- Institute of Cell and Molecular Science, Barts and London School of Medicine, London, UK
| |
Collapse
|
269
|
Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12:406-14. [PMID: 16899407 DOI: 10.1016/j.molmed.2006.07.008] [Citation(s) in RCA: 805] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/06/2006] [Accepted: 07/28/2006] [Indexed: 01/11/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the state of melanocyte differentiation. Several closely related transcription factors also function as translocated oncogenes in various human malignancies. These data place MITF between instructing melanocytes towards terminal differentiation and/or pigmentation and, alternatively, promoting malignant behavior. In this review, we survey the roles of MITF as a master lineage regulator in melanocyte development and its emerging activities in malignancy. Understanding the molecular function of MITF and its associated pathways will hopefully shed light on strategies for improving therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Carmit Levy
- Melanoma Program and Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
270
|
Abstract
Although cell-lineage and differentiation models dominate tumour classification and treatment, the recognition that cancer is also a genomic disease has prompted a reconfiguration of cancer taxonomies according to molecular criteria. Recent evidence indicates that a synthesis of lineage-based and genetic paradigms might offer new insights into crucial and therapeutically pliable tumour dependencies. For example, MITF (microphthalmia-associated transcription factor), which is a master regulator of the melanocyte lineage, might become a melanoma oncogene when deregulated in certain genetic contexts. MITF and other lineage-survival genes therefore implicate lineage dependency (or lineage addiction) as a newly recognized mechanism that is affected by tumour genetic alterations.
Collapse
Affiliation(s)
- Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
271
|
Bronisz A, Sharma SM, Hu R, Godlewski J, Tzivion G, Mansky KC, Ostrowski MC. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol Biol Cell 2006; 17:3897-906. [PMID: 16822840 PMCID: PMC1593166 DOI: 10.1091/mbc.e06-05-0470] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is required for terminal osteoclast differentiation and is a target for signaling pathways engaged by colony stimulating factor (CSF)-1 and receptor-activator of nuclear factor-kappaB ligand (RANKL). Work presented here demonstrates that MITF can shuttle from cytoplasm to nucleus dependent upon RANKL/CSF-1 action. 14-3-3 was identified as a binding partner of MITF in osteoclast precursors, and overexpression of 14-3-3 in a transgenic model resulted in increased cytosolic localization of MITF and decreased expression of MITF target genes. MITF/14-3-3 interaction was phosphorylation dependent, and Ser173 residue, within the minimal interaction region of amino acid residues 141-191, was required. The Cdc25C-associated kinase (C-TAK)1 interacted with an overlapping region of MITF. C-TAK1 increased MITF/14-3-3 complex formation and thus promoted cytoplasmic localization of MITF. C-TAK1 interaction was disrupted by RANKL/CSF-1 treatment. The results indicate that 14-3-3 regulates MITF activity by promoting the cytosolic localization of MITF in the absence of signals required for osteoclast differentiation. This work identifies a mechanism that regulates MITF activity in monocytic precursors that are capable of undergoing different terminal differentiation programs, and it provides a mechanism that allows committed precursors to rapidly respond to signals in the bone microenvironment to promote specifically osteoclast differentiation.
Collapse
Affiliation(s)
- Agnieszka Bronisz
- *Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, and
| | - Sudarshana M. Sharma
- *Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, and
| | - Rong Hu
- *Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, and
| | - Jakub Godlewski
- Department of Neurological Surgery, The Dardinger Family Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, OH 43210
| | - Guri Tzivion
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, MI 48201; and
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455
| | - Michael C. Ostrowski
- *Department of Molecular and Cellular Biochemistry and the Comprehensive Cancer Center, and
| |
Collapse
|
272
|
Petti C, Molla A, Vegetti C, Ferrone S, Anichini A, Sensi M. Coexpression of NRASQ61Rand BRAFV600Ein Human Melanoma Cells Activates Senescence and Increases Susceptibility to Cell-Mediated Cytotoxicity. Cancer Res 2006; 66:6503-11. [PMID: 16818621 DOI: 10.1158/0008-5472.can-05-4671] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating mutations in BRAF and NRAS oncogenes in human melanomas are mutually exclusive. This finding has suggested an epistatic relationship but is consistent even with synthetic lethality. To evaluate the latter possibility, a mutated NRAS(Q61R) oncogene was expressed, under a constitutive or a doxycycline-regulated promoter, in a metastatic melanoma clone (clone 21) harboring an activated BRAF(V600E) oncogene. After the first 10 to 12 in vitro passages, the constitutive NRAS(Q61R) transfectant displayed progressive accumulation in G(0)-G(1) phase of the cell cycle and stained for the senescence-associated beta-galactosidase activity (SA-beta-Gal). Inducible expression of NRAS(Q61R), by the Tet-Off system, in clone 21 cells (21NRAS(61ON)) led to overactivation of the RAS/RAF/mitogen-activated protein kinase signaling pathway and, after the 10th in vitro passage, led to promotion of senescence. This was documented by reduced proliferation, flattened cell morphology, reduced growth in Matrigel, positive staining for SA-beta-Gal, and expression of AMP-activated protein kinase and of the cell cycle inhibitor p21(waf1/Cip1). These effects were detected neither in 21 cells with silenced NRAS(Q61R) (21NRAS(61OFF)) nor in cells transfected with an inducible wild-type NRAS gene (21NRAS(WTON)). In addition, when compared with parental 21 cells, or with 21NRAS(61OFF), 21NRAS(61ON) and constitutive NRAS(Q61R) transfectants cells showed increased susceptibility to cytotoxicity by both HLA class I antigen-restricted and nonspecific T cells and up-regulation of several MHC class I antigen processing machinery components. These results suggest a relationship of synthetic lethality between NRAS and BRAF oncogenes, leading to selection against "double-mutant" cells.
Collapse
Affiliation(s)
- Carlotta Petti
- Unit of Immunobiology of Human Tumors, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
273
|
Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. ACTA ACUST UNITED AC 2006; 19:290-302. [PMID: 16827748 DOI: 10.1111/j.1600-0749.2006.00322.x] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular biology of metastatic potential in melanoma has been studied many times previously and changes in the expression of many genes have been linked to metastatic behaviour. What is lacking is a systematic characterization of the regulatory relationships between genes whose expression is related to metastatic potential. Such a characterization would produce a molecular taxonomy for melanoma which could feasibly be used to identify epigenetic mechanisms behind changes in metastatic behaviour. To achieve this we carried out three separate DNA microarray analyses on a total of 86 cultures of melanoma. Significantly, multiple testing correction revealed that previous reports describing correlations of gene expression with activating mutations in BRAF or NRAS were incorrect and that no gene expression patterns correlate with the mutation status of these MAPK pathway components. Instead, we identified three different sample cohorts (A, B and C) and found that these cohorts represent melanoma groups of differing metastatic potential. Cohorts A and B were susceptible to transforming growth factor-beta (TGFbeta)-mediated inhibition of proliferation and had low motility. Cohort C was resistant to TGFbeta and demonstrated high motility. Meta-analysis of the data against previous studies linking gene expression and phenotype confirmed that cohorts A and C represent transcription signatures of weakly and strongly metastatic melanomas, respectively. Gene expression co-regulation suggested that signalling via TGFbeta-type and Wnt/beta-catenin pathways underwent considerable change between cohorts. These results suggest a model for the transition from weakly to strongly metastatic melanomas in which TGFbeta-type signalling upregulates genes expressing vasculogenic/extracellular matrix remodelling factors and Wnt signal inhibitors, coinciding with a downregulation of genes downstream of Wnt signalling.
Collapse
Affiliation(s)
- Keith S Hoek
- Department of Dermatology, University Hospital of Zürich, 8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
275
|
Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, Du J, Fletcher JA, Denny CT, Lessnick SL, Linehan WM, Kung AL, Fisher DE. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 2006; 9:473-84. [PMID: 16766266 DOI: 10.1016/j.ccr.2006.04.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/07/2006] [Accepted: 04/25/2006] [Indexed: 12/26/2022]
Abstract
Clear cell sarcoma (CCS) harbors a pathognomonic chromosomal translocation fusing the Ewing's sarcoma gene (EWS) to the CREB family transcription factor ATF1 and exhibits melanocytic features. We show that EWS-ATF1 occupies the MITF promoter, mimicking melanocyte-stimulating hormone (MSH) signaling to induce expression of MITF, the melanocytic master transcription factor and an amplified oncogene in melanoma. Knockdown/rescue studies revealed that MITF mediates the requirement of EWS-ATF1 for CCS survival in vitro and in vivo as well as for melanocytic differentiation. Moreover, MITF and TFE3 reciprocally rescue one another in lines derived from CCS or pediatric renal carcinoma. Seemingly unrelated tumors thus employ distinct strategies to oncogenically dysregulate the MiT family, collectively broadening the definition of MiT-associated human cancers.
Collapse
Affiliation(s)
- Ian J Davis
- Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
de la Serna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula N, Tachibana T, Imbalzano AN. The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem 2006; 281:20233-41. [PMID: 16648630 DOI: 10.1074/jbc.m512052200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microphthalmia transcription factor (Mitf) activates melanocyte-specific gene expression, is critical for survival and proliferation of melanocytes during development, and has been described as an oncogene in malignant melanoma. SWI/SNF complexes are ATP-dependent chromatin-remodeling enzymes that play a role in many developmental processes. To determine the requirement for SWI/SNF enzymes in melanocyte differentiation, we introduced Mitf into fibroblasts that inducibly express dominant negative versions of the SWI/SNF ATPases, Brahma or Brahma-related gene 1 (BRG1). These dominant negative SWI/SNF components have been shown to inhibit gene activation events that normally require SWI/SNF enzymes. We found that Mitf-mediated activation of a subset of endogenous melanocyte-specific genes required SWI/SNF enzymes but that cell-cycle regulation occurred independently of SWI/SNF function. Activation of tyrosinase-related protein 1, a melanocyte-specific gene, correlated with SWI/SNF-dependent changes in chromatin accessibility at the endogenous locus. Both BRG1 and Mitf could be localized to the tyrosinase-related protein 1 and tyrosinase promoters by chromatin immunoprecipitation, whereas immunofluorescence and immunoprecipitation experiments indicate that Mitf and BRG1 co-localized in the nucleus and physically interacted. Together these results suggest that Mitf can recruit SWI/SNF enzymes to melanocyte-specific promoters for the activation of gene expression via induced changes in chromatin structure at endogenous loci.
Collapse
Affiliation(s)
- Ivana L de la Serna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Roesch A, Becker B, Schneider-Brachert W, Hagen I, Landthaler M, Vogt T. Re-expression of the retinoblastoma-binding protein 2-homolog 1 reveals tumor-suppressive functions in highly metastatic melanoma cells. J Invest Dermatol 2006; 126:1850-9. [PMID: 16645588 DOI: 10.1038/sj.jid.5700324] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The loss of cell cycle control in malignant melanomas is thought to be due to a lack of retinoblastoma protein (pRb) activity. We have recently reported a progressive deficiency of the retinoblastoma-binding protein 2-homolog 1 (RBP2-H1) in advanced and metastatic melanomas in vivo, suggesting a role of RBP2-H1 in loss of pRb-mediated control. Therefore, in this study, we re-established the pRb-modulating function of RBP2-H1 in highly metastatic A375-SM melanoma cells by re-expressing its C-term (cRBP2-H1). As previously shown, the corresponding domains comprise the pRb-binding region of the RBP2-H1 protein (non-T/E1A-pRb-binding domain (NTE1A)). As a result, we detected pRb-hypophosphorylation selectively at Ser795, but not at Ser780 and Ser807/811 throughout the G1 phase of the cell cycle. As a further consequence, a block in G1/S transition was observed accompanied by a significant decrease of DNA replication and cellular proliferation. As demonstrated by cDNA microarrays of cRBP2-H1-transduced cells and confirmed by quantitative TaqMan reverse transcriptase-PCR, differential expression of melanoma-progression-related genes was observed, among them bone morphogenetic protein 2, follistatin, transforming growth factor alpha, hepatocyte growth factor, transcription factor 4 and microphthalmia-associated transcription factor. Conclusively, these data suggest that RBP2-H1 exerts a broad tumor-suppressive function partially mediated by pRb modulation. Therefore, re-establishing of RBP2-H1 could evolve as an interesting novel approach in developing experimental treatments for metastatic melanomas.
Collapse
Affiliation(s)
- Alexander Roesch
- Department of Dermatology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
278
|
Koyanagi K, O’Day SJ, Gonzalez R, Lewis K, Robinson WA, Amatruda TT, Kuo C, Wang HJ, Milford R, Morton DL, Hoon DS. Microphthalmia transcription factor as a molecular marker for circulating tumor cell detection in blood of melanoma patients. Clin Cancer Res 2006; 12:1137-43. [PMID: 16489066 PMCID: PMC2856464 DOI: 10.1158/1078-0432.ccr-05-1847] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Microphthalmia transcription factor (Mitf), which is important in melanocyte development and melanoma growth, was assessed using real-time quantitative reverse transcription-PCR assay to investigate its expression as a marker for circulating melanoma cells in blood and determine the correlation with disease stage and survival in melanoma patients. EXPERIMENTAL DESIGN In optimization studies for Mitf, we tested 15 melanoma cell lines, 41 peripheral blood lymphocytes from healthy volunteers, and 21 metastatic melanoma tissues. Blood specimens were procured from 90 patients with stage I (n = 20), stage II (n = 20), stage III (n = 28), and stage IV (n = 22) melanoma. Blood specimens were also obtained at four bleed intervals from 58 patients enrolled in a prospective multicenter trial of biochemotherapy before and after surgical treatment of American Joint Committee on Cancer stage III melanoma. RESULTS Under the optimized conditions, Mitf was negative in healthy peripheral blood lymphocytes and positive in all melanoma cell lines and 18 (86%) melanoma tissues. In the 90 patients, the rate of Mitf detection was higher with increasing American Joint Committee on Cancer stage (P < 0.0001). In the 58 patients treated with biochemotherapy and surgery, Mitf detection decreased with treatment (P = 0.019). Mitf detection after treatment was associated with a significantly lower relapse-free (P < 0.0001) and overall (P = 0.001) survival and was a significant independent prognostic factor for relapse-free (risk ratio, 5.63; P = 0.0004) and overall (risk ratio, 5.36; P = 0.005) survival. CONCLUSIONS Mitf detection in blood can indicate subclinical metastatic disease and predict treatment outcome in melanoma patients.
Collapse
Affiliation(s)
- Kazuo Koyanagi
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center
| | - Steven J. O’Day
- The Angeles Clinic and Research Institute, Santa Monica, California
| | - Rene Gonzalez
- University of Colorado Cancer Center, Aurora, Colorado
| | - Karl Lewis
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Thomas T. Amatruda
- North Memorial Health Care, Hubert H. Humphrey Cancer Center, Robbinsdale, Minnesota
| | - Christine Kuo
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center
| | - He-Jing Wang
- Department of Biostatistics, University of California at Los Angeles School of Medicine, Los Angeles, California
| | - Robert Milford
- The Angeles Clinic and Research Institute, Santa Monica, California
| | - Donald L. Morton
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center
| | - Dave S.B. Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center
| |
Collapse
|
279
|
Hoogduijn MJ, Hitchcock IS, Smit NPM, Gillbro JM, Schallreuter KU, Genever PG. Glutamate receptors on human melanocytes regulate the expression of MiTF. ACTA ACUST UNITED AC 2006; 19:58-67. [PMID: 16420247 DOI: 10.1111/j.1600-0749.2005.00284.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system but has also important functions in the epidermis. It is involved in keratinocyte barrier function and in re-epithelialization processes after wounding. Recently, glutamate signalling has been suggested to be implicated in the development of melanoma. The present study examined the expression and functionality of metabotropic and ionotropic glutamate receptors on normal human melanocytes. We found that cultured melanocytes expressed the ionotropic glutamate receptors GluR2 and 4 [alpha-amino-3-hydroxy-5-methyl-4-isoxsazolepropionic acid (AMPA) receptors] and N-methyl-d-aspartate (NMDA) receptors 2A and 2C and possibly the metabotropic glutamate receptor 1. Melanocytes were also found to express specific glutamate transporters and decarboxylases, but appeared neither to produce nor to release l-glutamate. Stimulation with 10 or 100 microM AMPA or NMDA elevated intracellular calcium concentrations in melanocytes, and thus demonstrated the functionality of the glutamate receptors. Millimolar concentrations of l-glutamate did not induce melanocyte toxicity and had no stimulating effect on melanin production. However, blockage of AMPA and NMDA receptors with CFM-2, memantine or MK801 caused a rapid and reversible change in melanocyte morphology, which was associated with disorganisation of actin and tubulin microfilaments. After 24 h of treatment with the AMPA receptor inhibitor CFM-2, there was a sharp reduction in the expression of the crucial melanocyte differentiation and proliferation factor MiTF. The results of this study demonstrate a role for glutamate in melanocyte regulation that may have implications in melanocyte associated disorders.
Collapse
Affiliation(s)
- M J Hoogduijn
- Biomedical Tissue Research Group, Department of Biology, University of York, York YO10 5YW, UK.
| | | | | | | | | | | |
Collapse
|
280
|
Tonks ID, Hacker E, Irwin N, Muller HK, Keith P, Mould A, Zournazi A, Pavey S, Hayward NK, Walker G, Kay GF. Melanocytes in conditional Rb-/- mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro. ACTA ACUST UNITED AC 2006; 18:252-64. [PMID: 16029419 DOI: 10.1111/j.1600-0749.2005.00245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of the retinoblastoma tumour suppressor (Rb1), and the pocket protein family in general, has been implicated as an important focal point for deregulation in many of the molecular pathways mutated in melanoma. We have focused on the role of Rb1 in mouse melanocyte homeostasis using gene targeting and Cre/loxP mediated tissue-specific deletion. We show that constitutive Cre-mediated ablation of Rb1 exon 2 prevents the production of Rb1 and recapitulates the phenotype encountered in other Rb1 knockout mouse models. Mice with conditional melanocyte-specific ablation of Rb1 manifest overtly normal pigmentation and are bereft of melanocytic hyperproliferative defects or apoptosis-induced depigmentation. Histologically, these mice have melanocyte morphology and distribution comparable with control littermates. In contrast, Rb1-null melanocytes removed from their in vivo micro-environment and cultured in vitro display some of the characteristics associated with a transformed phenotype. They proliferate at a heightened rate when compared with control melanocytes and have a decreased requirement for mitogens. With progressive culture the cells depigment at relatively early passage and display a gross morphology which, whilst reminiscent of early passage melanocytes, is generally different to equivalent passage control cells. These results indicate that Rb1 is dispensable for in vivo melanocyte homeostasis when its ablation is targeted from the melanoblast stage onwards, however, when cultured in vitro, Rb1 loss increases melanocyte growth but the cells are not fully transformed.
Collapse
Affiliation(s)
- Ian D Tonks
- Division of Cancer and Cell Biology, Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 2006; 15:520-7. [PMID: 16081278 DOI: 10.1016/j.gde.2005.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/21/2005] [Indexed: 01/22/2023]
Abstract
Inactivation of the retinoblastoma tumour suppressor protein (pRb) is a hallmark of most human cancers. Accordingly, pRb is serving as a paradigm in our quest to understand tumour suppressor function. The role played by pRb and the related 'pocket proteins', p107 and p130, in regulating cell cycle progression has been extensively studied over the past two decades. The function of pRb in regulating transcriptional programmes in differentiating cells is less well understood. Recently, the use of a variety of different cell, animal and plant model systems has allowed us a first glimpse at some of the molecular mechanisms underlying pRb-mediated transcriptional regulation during differentiation and development.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 München, Germany
| | | |
Collapse
|
282
|
Kumasaka M, Sato S, Yajima I, Goding CR, Yamamoto H. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf. Dev Dyn 2006; 234:523-34. [PMID: 16028277 DOI: 10.1002/dvdy.20505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitf is a central regulator of pigment cell development that is essential for the normal development of the melanocyte and retinal pigment epithelium (RPE) lineages. To understand better the role of Mitf, we have used the Xenopus laevis experimental system to allow a rapid examination of the role of Mitf in vivo. Here, we report the function of XlMitfalpha-M on melanophore development and melanization compared with that of Slug that is expressed in neural crest cells. Overexpression of XlMitfalpha-M led to an increase in melanophores that was partly contributed by an increase in Slug-positive cells, indicating that XlMitfalpha-M is a key regulator of melanocyte/melanophore development and melanization. Moreover, overexpression of a dominant-negative form of XlMitfalpha led to a decrease in the number of melanophores and induced abnormal melanoblast migration. We also observed an induction of ectopic RPE and extended RPE by overexpression of XlMitfalpha-M and possible interactions between XlMitfalpha and several eye-related genes essential for normal eye development.
Collapse
Affiliation(s)
- Mayuko Kumasaka
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
283
|
Levy C, Lee YN, Nechushtan H, Schueler-Furman O, Sonnenblick A, Hacohen S, Razin E. Identifying a common molecular mechanism for inhibition of MITF and STAT3 by PIAS3. Blood 2005; 107:2839-45. [PMID: 16368885 DOI: 10.1182/blood-2005-08-3325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein inhibitor of activated STAT3 (PIAS3) functions in vivo as a key molecule in suppressing the transcriptional activity of both microphthalmia transcription factor (MITF) and signal transducer and activator of transcription 3 (STAT3), 2 transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. Previously, we have demonstrated binding of PIAS3 to MITF leading to the inhibition of MITF transcriptional activity. Following cellular activation, PIAS3 is released from MITF and binds to STAT3. Now we have localized a common binding motif in PIAS3 for MITF and STAT3. This motif (PIAS82-132), which contains 50 amino acids, is sufficient for the inhibition of both MITF and STAT3. Three-dimensional protein modeling demonstrated that this motif contains 2 alpha helices. Disruption of one of the helices led to the loss of PIAS3 inhibitory activity. In addition to contributing to our understanding of the mechanisms of PIAS3 activity, these results could pave the way toward the formulation of an antioncogenic agent for the inhibition of both STAT3 and MITF.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Biochemistry, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
284
|
Wellbrock C, Marais R. Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. ACTA ACUST UNITED AC 2005; 170:703-8. [PMID: 16129781 PMCID: PMC2171350 DOI: 10.1083/jcb.200505059] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein kinase B-RAF is a human oncogene that is mutated in ∼70% of human melanomas and transforms mouse melanocytes. Microphthalmia-associated transcription factor (MITF) is an important melanocyte differentiation and survival factor, but its role in melanoma is unclear. In this study, we show that MITF expression is suppressed by oncogenic B-RAF in immortalized mouse and primary human melanocytes. However, low levels of MITF persist in human melanoma cells harboring oncogenic B-RAF, suggesting that additional mechanisms regulate its expression. MITF reexpression in B-RAF–transformed melanocytes inhibits their proliferation. Furthermore, differentiation-inducing factors that elevate MITF expression in melanoma cells inhibit their proliferation, but when MITF up-regulation is prevented by RNA interference, proliferation is not inhibited. These data suggest that MITF is an antiproliferation factor that is down-regulated by B-RAF signaling and that this is a crucial event for the progression of melanomas that harbor oncogenic B-RAF.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, London SW3 6JB, England, UK
| | | |
Collapse
|
285
|
Abstract
Recent studies show that the melanocyte transcription factor MITF not only activates differentiation genes but also genes involved in the regulation of the cell cycle, suggesting that it provides a link between cell proliferation and differentiation. MITF, however, comes in a variety of splice isoforms with potentially distinct biological activities. In particular, there are two isoforms, (-) and (+) MITF, that differ in six residues located upstream of the DNA binding basic domain and show slight differences in the efficiency with which they bind to target DNA. Using in vitro BrdU incorporation assays and FACS analysis in transiently transfected cells, we show that (+) MITF has a strong inhibitory effect on DNA synthesis while (-) MITF has none or only a mild one. The strong inhibitory activity of (+) MITF is not influenced by a number of mutations that modulate MITF's transcriptional activities and is independent of the protein's carboxyl terminus but dependent on its aminoterminus. A further dissection of the molecule points to the importance of an aminoterminal serine, serine-73, which in both isoforms is phosphorylated to comparable degrees. The results suggest that one or several aminoterminal domains cooperate with the alternatively spliced hexapeptide to render MITF anti-proliferative in a way that does not depend on direct E box binding.
Collapse
Affiliation(s)
- Keren Bismuth
- Mammalian Development Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
286
|
Molina DM, Grewal S, Bardwell L. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem 2005; 280:42051-60. [PMID: 16246839 PMCID: PMC3017498 DOI: 10.1074/jbc.m510590200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient and specific signaling by mitogen-activated protein kinases (MAPKs) is enhanced by docking sites found on many MAPK substrates and regulators. Here we show that the MAPKs ERK1 and ERK2 form a stable complex (Kd approximately 6 microm) with their substrate the microphthalmia-associated transcription factor (MITF). Complex formation requires a domain of MITF of approximately 100 residues that is nearby, but C-terminal to, the MAPK phosphorylation site at Ser73. MITF derivatives lacking this ERK-binding domain do not bind ERK2 and are phosphorylated less efficiently by ERK2. The ERK-binding domain of MITF bears no obvious resemblance to previously characterized MAPK docking motifs; in particular, it does not contain a consensus D-site. Consistent with this, ERK2-MITF binding does not require the integrity of the CD/sevenmaker region of ERK2. Furthermore, D-site peptides, which are able to potently inhibit ERK2-mediated phosphorylation of the Elk-1 transcription factor (IC50= 3 microm), are relatively poor inhibitors of ERK2-mediated phosphorylation of MITF, exhibiting >15-fold selectivity for inhibition of Elk-1 versus MITF. These observations demonstrate substrate-selective kinase inhibition: the possibility that small molecules that target docking interactions may be used to selectively inhibit the phosphorylation of a subset of the substrates of a kinase.
Collapse
Affiliation(s)
| | | | - Lee Bardwell
- To whom correspondence should be addressed: Tel.: 949-824-6902; Fax: 949-824-4709;
| |
Collapse
|
287
|
Larribere L, Hilmi C, Khaled M, Gaggioli C, Bille K, Auberger P, Ortonne JP, Ballotti R, Bertolotto C. The cleavage of microphthalmia-associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis. Genes Dev 2005; 19:1980-5. [PMID: 16140982 PMCID: PMC1199569 DOI: 10.1101/gad.335905] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) M-form is a melanocyte-specific transcription factor that plays a key role in melanocyte development, survival, and differentiation. Here, we identified MITF as a new substrate of caspases and we characterized the cleavage site after Asp 345 in the C-terminal domain. We show that expression of a noncleavable form of MITF renders melanoma cells resistant to apoptotic stimuli, and we found that the C-terminal fragment generated upon caspase cleavage is endowed with a proapoptotic activity that sensitizes melanoma cells to death signals. The proapoptotic function gained by MITF following its processing by caspases provides a tissue-restricted means to modulate death in melanocyte and melanoma cells.
Collapse
Affiliation(s)
- Lionel Larribere
- INSERM U597, Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée aux mélanomes, Ligue Nationale contre le Cancer, Equipe labellisée 2001, 06107 NICE Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Abstract
Rb was the first tumour suppressor identified through human genetic studies. The most significant achievement after almost twenty years since its cloning is the revelation that Rb possesses functions of a transcription regulator. Rb serves as a transducer between the cell cycle machinery and promoter-specific transcription factors. In this capacity, Rb is best known as a repressor of the E2F/DP family of transcription factors, which regulate expression of genes involved in cell proliferation and survival. An equally important aspect of Rb as a transcription regulator is that Rb also activates certain differentiation transcription factors to promote cellular differentiation. The molecular mechanisms behind the repressive effects of Rb on E2Fs have come to light in significant details, while those relating to Rb activation of differentiation transcription factors are much less understood. Finally, it has become clear that there are other aspects to Rb function that are not immediately related to transcription regulation.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Developmental and Molecular Biology, and Medicine, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
289
|
Schwahn DJ, Timchenko NA, Shibahara S, Medrano EE. Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. ACTA ACUST UNITED AC 2005; 18:203-13. [PMID: 15892717 DOI: 10.1111/j.1600-0749.2005.00229.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Senescent cells are known to display altered gene expression of differentiation-associated genes. We have previously demonstrated that the melanocyte transcriptional regulator microphthalmia-associated protein (MITF) is down-regulated in senescent melanocytes. Since virtually nothing is known regarding the differentiated function of senescent melanocytes, we analyzed the transcriptional regulation of Dopachrome tautomerase (DCT), a member of the tyrosinase gene family, in proliferating and in senescent human melanocytes. Computational analysis of the region containing the M-box that includes the MITF CATGTG binding motif demonstrated that this sequence overlaps with the estrogen receptor alpha (ER-alpha), USF-1, TFE-3, Isl-1 and AP-1 binding elements. Electrophoresis gel-shift analysis using an oligonucleotide containing MITF and ERE elements identified MITF and ER-alpha complexes in proliferating melanocytes, whereas only ER-alpha complexes were detected in senescent cells. Importantly, a promoter-reporter analysis demonstrated that the coactivator p300/CBP switched MITF from a repressor to an activator of DCT transcription. p300/CBP was also required by ER-alpha and MITF to induce high, synergistic activation of the DCT promoter. We have also found that transcription of the DCT gene is differentially regulated by major melanocyte mitogens. In contrast to the activating effect of cAMP inducers, 12-O-tetradecanoylphorbolacetate (TPA) was a potent repressor of DCT transcription, suggesting that this gene can be differentially regulated by multiple environmental signals and promoter context. In support of this conclusion, trichostatin A, a histone deacetylase inhibitor, counteracted the TPA-mediated repression, and restored high levels of DCT protein in cultured melanocytes. We conclude that senescent melanocytes display dramatic changes in the expression of differentiation-related proteins; such changes may in turn result in altered melanocyte function and survival to environmental stresses.
Collapse
Affiliation(s)
- Denise J Schwahn
- Departmentsof Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
290
|
|
291
|
Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436:117-22. [PMID: 16001072 DOI: 10.1038/nature03664] [Citation(s) in RCA: 1103] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/19/2005] [Indexed: 11/09/2022]
Abstract
Systematic analyses of cancer genomes promise to unveil patterns of genetic alterations linked to the genesis and spread of human cancers. High-density single-nucleotide polymorphism (SNP) arrays enable detailed and genome-wide identification of both loss-of-heterozygosity events and copy-number alterations in cancer. Here, by integrating SNP array-based genetic maps with gene expression signatures derived from NCI60 cell lines, we identified the melanocyte master regulator MITF (microphthalmia-associated transcription factor) as the target of a novel melanoma amplification. We found that MITF amplification was more prevalent in metastatic disease and correlated with decreased overall patient survival. BRAF mutation and p16 inactivation accompanied MITF amplification in melanoma cell lines. Ectopic MITF expression in conjunction with the BRAF(V600E) mutant transformed primary human melanocytes, and thus MITF can function as a melanoma oncogene. Reduction of MITF activity sensitizes melanoma cells to chemotherapeutic agents. Targeting MITF in combination with BRAF or cyclin-dependent kinase inhibitors may offer a rational therapeutic avenue into melanoma, a highly chemotherapy-resistant neoplasm. Together, these data suggest that MITF represents a distinct class of 'lineage survival' or 'lineage addiction' oncogenes required for both tissue-specific cancer development and tumour progression.
Collapse
Affiliation(s)
- Levi A Garraway
- Department of Medical Oncology, and Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Buscà R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, Thyss R, Fitsialos G, Larribère L, Bertolotto C, Virolle T, Barbry P, Pouysségur J, Ponzio G, Ballotti R. Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. ACTA ACUST UNITED AC 2005; 170:49-59. [PMID: 15983061 PMCID: PMC2171372 DOI: 10.1083/jcb.200501067] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In melanocytes and melanoma cells α-melanocyte stimulating hormone (α-MSH), via the cAMP pathway, elicits a large array of biological responses that control melanocyte differentiation and influence melanoma development or susceptibility. In this work, we show that cAMP transcriptionally activates Hif1a gene in a melanocyte cell–specific manner and increases the expression of a functional hypoxia-inducible factor 1α (HIF1α) protein resulting in a stimulation of Vegf expression. Interestingly, we report that the melanocyte-specific transcription factor, microphthalmia-associated transcription factor (MITF), binds to the Hif1a promoter and strongly stimulates its transcriptional activity. Further, MITF “silencing” abrogates the cAMP effect on Hif1a expression, and overexpression of MITF in human melanoma cells is sufficient to stimulate HIF1A mRNA. Our data demonstrate that Hif1a is a new MITF target gene and that MITF mediates the cAMP stimulation of Hif1a in melanocytes and melanoma cells. Importantly, we provide results demonstrating that HIF1 plays a pro-survival role in this cell system. We therefore conclude that the α-MSH/cAMP pathway, using MITF as a signal transducer and HIF1α as a target, might contribute to melanoma progression.
Collapse
Affiliation(s)
- Roser Buscà
- INSERM U597, Biologie et physiopathologie des cellules mélanocytaires, Faculty of Medicine, 06107 Nice cedex 2, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Abstract
Hair graying is an obvious sign of human aging, yet little was known about its causes. Two recent papers provide compelling evidence that hair graying is due to incomplete melanocyte stem cell maintenance and identify Pax3 and Mitf as key molecules that help regulate the balance between melanocyte stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | |
Collapse
|