251
|
Making Sense of the Biodiversity and Virulence of Listeria monocytogenes. Trends Microbiol 2021; 29:811-822. [PMID: 33583696 DOI: 10.1016/j.tim.2021.01.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/21/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for listeriosis, an infection that can manifest in humans as bacteremia, meningoencephalitis in immunocompromised patients and the elderly, and fetal-placental infection in pregnant women. Reference strains from this facultative intracellular bacterium have been instrumental in the investigation of basic mechanisms in microbiology, immunology, and cell biology. The integration of bacterial population genomics with environmental, epidemiological, and clinical data allowed the uncovering of new factors involved in the virulence of L. monocytogenes and its adaptation to different environments. This review illustrates how these investigations have led to a better understanding of the bacterium's virulence and the driving forces that shaped it.
Collapse
|
252
|
Lüth S, Halbedel S, Rosner B, Wilking H, Holzer A, Roedel A, Dieckmann R, Vincze S, Prager R, Flieger A, Al Dahouk S, Kleta S. Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer. Emerg Microbes Infect 2021; 9:1600-1608. [PMID: 32657219 PMCID: PMC7473094 DOI: 10.1080/22221751.2020.1784044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to its high case fatality rate, foodborne listeriosis is considered a major public health concern worldwide. We describe one of the largest listeriosis outbreaks in Germany with 83 cases of invasive listeriosis between 2013 and 2018. As part of the outbreak investigation, we identified a highly diverse Listeria monocytogenes population at a single producer of ready-to-eat meat products. Strikingly, the extensive sampling after identification of a first match between a cluster of clinical isolates and a food isolate allowed for a linkage between this producer and a second, previously unmatched cluster of clinical isolates. Bacterial persistence in the processing plant and indications of cross-contamination events explained long-term contamination of food that led to the protracted outbreak. Based on screening for virulence factors, a pathogenic phenotype could not be ruled out for other strains circulating in the plant, suggesting that the outbreak could have been even larger. As most isolates were sensitive to common biocides used in the plant, hard to clean niches in the production line may have played a major role in the consolidation of the contamination. Our study demonstrates how important it is to search for the origin of infection when cases of illness have occurred (backtracking), but also clearly highlights that it is equally important to check whether a contamination at food or production level has caused disease (forward checking). Only through this two-sided control strategy, foodborne disease outbreaks such as listeriosis can be minimized, which could be a real improvement for public health.
Collapse
Affiliation(s)
- Stefanie Lüth
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sven Halbedel
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany
| | - Bettina Rosner
- Department of Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Hendrik Wilking
- Department of Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Alexandra Holzer
- Department of Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Alice Roedel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Szilvia Vincze
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Rita Prager
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Department of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| | - Sylvia Kleta
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
253
|
Study of the transfer of Listeria monocytogenes during the slaughter of cattle using molecular typing. Meat Sci 2021; 175:108450. [PMID: 33550159 DOI: 10.1016/j.meatsci.2021.108450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The introduction, transmission, and persistence of Listeria monocytogenes in Belgian beef slaughterhouses was investigated using genetic characterization. During slaughter, samples were taken of the hide, carcass, and environment to detect the pathogen. Remarkably, L. monocytogenes was massively present on the hide of incoming animals (93%; 112/120), regardless of their visual cleanliness, which implies high contamination pressure levels entering the slaughterhouses. Pathogen transfer via cross-contamination was conclusively confirmed in this study, with the same pulsotypes isolated from the hide, carcass, and environmental samples. Despite the important bacterial presence on the hide of incoming animals, most slaughterhouses succeeded in limiting the transfer as cause of carcass contamination. Persistence along the slaughter line seemed to be a more significant problem, as it was clearly linked to most of the L. monocytogenes positive carcasses. In one slaughterhouse, whole genome sequencing (WGS) revealed that the carcass splitter had been contaminating carcasses with the same strain belonging to CC9 for more than one year.
Collapse
|
254
|
Alvarez-Molina A, Cobo-Díaz JF, López M, Prieto M, de Toro M, Alvarez-Ordóñez A. Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. Int J Food Microbiol 2021; 340:109043. [PMID: 33454520 DOI: 10.1016/j.ijfoodmicro.2021.109043] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
The food processing environments of a newly opened meat processing facility were sampled in ten visits carried out during its first 1.5 years of activity and analyzed for the presence of Listeria monocytogenes. A total of 18 L. monocytogenes isolates were obtained from 229 samples, and their genomes were sequenced to perform comparative genomic analyses. An increase in the frequency of isolation of L. monocytogenes and in the diversity of sequence types (STs) detected was observed along time. Although the strains isolated belonged to six different STs (ST8, ST9, ST14, ST37, ST121 and ST155), ST9 was the most abundant (8 out of 18 strains). Low (0 and 2) single nucleotide polymorphism (SNP) distances were found between two pairs of ST9 strains isolated in both cases 3 months apart from the same processing room (Lm-1267 and Lm-1705, with a 2 SNPs distance in the core genome; Lm-1265 and Lm-1706, with a 0 SNPs distance), which suggests that these strains may be persistent L. monocytogenes strains in the food processing environment. Most strains showed an in silico attenuated virulence potential either through the truncation of InlA (in 67% of the isolates) or the absence of other virulence factors involved in cell adhesion or invasion. Twelve of the eighteen L. monocytogenes isolates contained a plasmid, which ranged in size from 4 to 87 Kb and harbored stress survival, in addition to heavy metals and biocides resistance determinants. Identical or highly similar plasmids were identified for various sets of L. monocytogenes ST9 isolates, which suggests the clonal expansion and persistence of plasmid-containing ST9 strains in the processing environments of the meat facility. Finally, the analysis of the L. monocytogenes genomes available in the NCBI database, and their associated metadata, evidenced that strains from ST9 are more frequently reported in Europe, linked to foods, particularly to meat and pork products, and less represented among clinical isolates than other L. monocytogenes STs. It also showed that the ST9 strains here isolated were more closely related to the European isolates, which clustered together and separated from ST9 North American isolates.
Collapse
Affiliation(s)
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - María de Toro
- Genomics and Bioinformatics Core Facility, Biomedical Research Center of La Rioja (CIBIR), Logroño, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
255
|
Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) of Listeria monocytogenes and Listeria innocua. Methods Mol Biol 2021; 2220:89-103. [PMID: 32975768 DOI: 10.1007/978-1-0716-0982-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nucleotide sequence-based methods focusing on the single-nucleotide polymorphisms (SNPs) of Listeria monocytogenes and L. innocua housekeeping genes (multilocus sequence typing) and in the core genome (core genome MLST) facilitate the rapid and interlaboratory comparison in open accessible databases as provided by Institute Pasteur ( https://bigsdb.web.pasteur.fr/listeria/listeria.html ). Strains can be compared on a global level and help to track forward and trace backward pathogen contamination events in food processing facilities and in outbreak scenarios.
Collapse
|
256
|
Lüth S, Deneke C, Kleta S, Al Dahouk S. Translatability of WGS typing results can simplify data exchange for surveillance and control of Listeria monocytogenes. Microb Genom 2021; 7:mgen000491. [PMID: 33275089 PMCID: PMC8115905 DOI: 10.1099/mgen.0.000491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/21/2020] [Indexed: 12/26/2022] Open
Abstract
Where classical epidemiology has proven to be inadequate for surveillance and control of foodborne pathogens, molecular epidemiology, using genomic typing methods, can add value. However, the analysis of whole genome sequencing (WGS) data varies widely and is not yet fully harmonised. We used genomic data on 494 Listeria monocytogenes isolates from ready-to-eat food products and food processing environments deposited in the strain collection of the German National Reference Laboratory to compare various procedures for WGS data analysis and to evaluate compatibility of results. Two different core genome multilocus sequence typing (cgMLST) schemes, different reference genomes in single nucleotide polymorphism (SNP) analysis and commercial as well as open-source software were compared. Correlation of allele distances from the different cgMLST approaches was high, ranging from 0.97 to 1, and unified thresholds yielded higher clustering concordance than scheme-specific thresholds. The number of detected SNP differences could be increased up to a factor of 3.9 using a specific reference genome compared with a general one. Additionally, specific reference genomes improved comparability of SNP analysis results obtained using different software tools. The use of a closed or a draft specific reference genome did not make a difference. The harmonisation of WGS data analysis will finally guarantee seamless data exchange, but, in the meantime, knowledge on threshold values that lead to comparable clustering of isolates by different methods may improve communication between laboratories. We therefore established a translation code between commonly applied cgMLST and SNP methods based on optimised clustering concordances. This code can work as a first filter to identify WGS-based typing matches resulting from different methods, which opens up a new perspective for data exchange and thereby accelerates time-critical analyses, such as in outbreak investigations.
Collapse
Affiliation(s)
- Stefanie Lüth
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Carlus Deneke
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Sylvia Kleta
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Sascha Al Dahouk
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
- RWTH Aachen University Hospital, Department of Internal Medicine, Aachen, Germany
| |
Collapse
|
257
|
Quereda JJ, Leclercq A, Moura A, Vales G, Gómez-Martín Á, García-Muñoz Á, Thouvenot P, Tessaud-Rita N, Bracq-Dieye H, Lecuit M. Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep. Int J Syst Evol Microbiol 2020; 70:5868-5879. [PMID: 33016862 DOI: 10.1099/ijsem.0.004494] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the context of a study on the occurrence of Listeria species in an animal farm environment in Valencia, Spain, six Listeria-like isolates could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 231 Listeria core genes grouped these isolates in a monophyletic clade within the genus Listeria, with highest similarity to Listeria thailandensis. Whole-genome sequence analyses based on in silico DNA-DNA hybridization, the average nucleotide blast and the pairwise amino acid identities against all currently known Listeria species confirmed that these isolates constituted a new taxon within the genus Listeria. Phenotypically, these isolates differed from other Listeria species mainly by the production of acid from inositol, the absence of acidification in presence of methyl α-d-glucoside, and the absence of α-mannosidase and nitrate reductase activities. The name Listeria valentina sp. nov. is proposed for this novel species, and the type strain is CLIP 2019/00642T (=CIP 111799T=DSM 110544T).
Collapse
Affiliation(s)
- Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France.,Inserm U1117, Paris, France
| | - Guillaume Vales
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Ángel Gómez-Martín
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ángel García-Muñoz
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pierre Thouvenot
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Nathalie Tessaud-Rita
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Hélène Bracq-Dieye
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| |
Collapse
|
258
|
Payne M, Kaur S, Wang Q, Hennessy D, Luo L, Octavia S, Tanaka MM, Sintchenko V, Lan R. Multilevel genome typing: genomics-guided scalable resolution typing of microbial pathogens. ACTA ACUST UNITED AC 2020; 25. [PMID: 32458794 PMCID: PMC7262494 DOI: 10.2807/1560-7917.es.2020.25.20.1900519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Both long- and short-term epidemiology are fundamental to disease control and require accurate bacterial typing. Genomic data resulting from implementation of whole genome sequencing in many public health laboratories can potentially provide highly sensitive and accurate descriptions of strain relatedness. Previous typing efforts using these data have mainly focussed on outbreak detection. Aim We aimed to develop multilevel genome typing (MGT), using consecutive multilocus sequence typing (MLST) schemes of increasing sizes, stepping up from seven-gene MLST to core genome MLST, to allow examination of genetic relatedness at multiple resolution levels. Methods The system was applied to Salmonellaenterica serovar Typhimurium. The MLST scheme used at each step (MGT level), defined a given MGT-level specific sequence type (ST). The list of STs generated from all of these increasing MGT levels, was named a genome type (GT). Using MGT, we typed 9,096 previously characterised isolates with publicly available data. Results Our approach could identify previously described S. Typhimurium populations, such as the DT104 multidrug resistance lineage (GT 19-2-11) and two invasive lineages of African isolates (GT 313-2-3 and 313-2-752). Further, we showed that MGT-derived clusters can accurately distinguish five outbreaks from each other and five background isolates. Conclusion MGT provides a universal and stable nomenclature at multiple resolutions for S. Typhimurium strains and could be implemented as an internationally standardised strain identification system. While established so far only for S. Typhimurium, the results here suggest that MGT could form the basis for typing systems in other similar microorganisms.
Collapse
Affiliation(s)
- Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Westmead, Australia
| | - Daneeta Hennessy
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Westmead, Australia
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Westmead, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Westmead, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
259
|
An Open-Source Program (Haplo-ST) for Whole-Genome Sequence Typing Shows Extensive Diversity among Listeria monocytogenes Isolates in Outdoor Environments and Poultry Processing Plants. Appl Environ Microbiol 2020; 87:AEM.02248-20. [PMID: 33097499 DOI: 10.1128/aem.02248-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 12/28/2022] Open
Abstract
A reliable and standardized classification of Listeria monocytogenes is important for accurate strain identification during outbreak investigations. Current whole-genome sequencing (WGS)-based approaches for strain characterization are either difficult to standardize, rendering them less suitable for data exchange, or are not freely available. Thus, we developed a portable and open-source tool, Haplo-ST, to improve standardization and provide maximum discriminatory potential to WGS data tied to a multilocus sequence typing (MLST) framework. Haplo-ST performs whole-genome MLST (wgMLST) for L. monocytogenes while allowing for data exchangeability worldwide. This tool takes in (i) raw WGS reads as input, (ii) cleans the raw data according to user-specified parameters, (iii) assembles genes across loci by mapping to genes from reference strains, and (iv) assigns allelic profiles to assembled genes and provides a wgMLST subtyping for each isolate. Data exchangeability relies on the tool assigning allelic profiles based on a centralized nomenclature defined by the widely used BIGSdb-Lm database. Tests of Haplo-ST's performance with simulated reads from L. monocytogenes reference strains demonstrated high sensitivity (97.5%), and coverage depths of ≥20× were found to be sufficient for wgMLST profiling. We then used Haplo-ST to characterize and differentiate between two groups of L. monocytogenes isolates derived from the natural environment and poultry processing plants. Phylogenetic reconstruction identified lineages within each group, and no lineage specificity was observed with isolate phenotypes (transient versus persistent) or origins. Genetic differentiation analyses between isolate groups identified 21 significantly differentiated loci, potentially enriched for adaptation and persistence of L. monocytogenes within poultry processing plants.IMPORTANCE We have developed an open-source tool (https://github.com/swarnalilouha/Haplo-ST) that provides allele-based subtyping of L. monocytogenes isolates at the whole-genome level. Along with allelic profiles, this tool also generates allele sequences and identifies paralogs, which is useful for phylogenetic tree reconstruction and deciphering relationships between closely related isolates. More broadly, Haplo-ST is flexible and can be adapted to characterize the genome of any haploid organism simply by installing an organism-specific gene database. Haplo-ST also allows for scalable subtyping of isolates; fewer reference genes can be used for low-resolution typing, whereas higher resolution can be achieved by increasing the number of genes used in the analysis. Our tool enabled clustering of L. monocytogenes isolates into lineages and detection of potential loci for adaptation and persistence in food processing environments. Findings from these analyses highlight the effectiveness of Haplo-ST in subtyping and evaluating relationships among isolates in studies of bacterial population genetics.
Collapse
|
260
|
Why Are Some Listeria monocytogenes Genotypes More Likely To Cause Invasive (Brain, Placental) Infection? mBio 2020; 11:mBio.03126-20. [PMID: 33323519 PMCID: PMC7774001 DOI: 10.1128/mbio.03126-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen—the first target organs after intestinal translocation—may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.
Collapse
|
261
|
Zhang H, Chen W, Wang J, Xu B, Liu H, Dong Q, Zhang X. 10-Year Molecular Surveillance of Listeria monocytogenes Using Whole-Genome Sequencing in Shanghai, China, 2009-2019. Front Microbiol 2020; 11:551020. [PMID: 33384664 PMCID: PMC7769869 DOI: 10.3389/fmicb.2020.551020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is an etiologic agent of listeriosis, and has emerged as an important foodborne pathogen worldwide. In this study, the molecular characteristics of 155 L. monocytogenes isolates from seven food groups in Shanghai, the biggest city in China, were identified using whole-genome sequencing (WGS). Most L. monocytogenes isolates (79.3%) were obtained between May and October from 2009 to 2019. The serogroups and clonal complexes (CCs) of L. monocytogenes were found useful for identifying potential health risks linked to foods. Differences in distributions of serogroups and CCs among different food groups were analyzed using t-test. The results showed that the IIa and IVb serogroups were identified among most of food groups. However, the prevalence of serogroup IIb was significantly higher in ready-to-eat (RTE) food and raw seafood than in other food groups, similar to group IIc in raw meat and raw poultry than others. Meanwhile, the prevalence of CC9 in raw meat and raw poultry, CC8 in raw poultry, and CC87 in raw seafood significantly exceeded that of in other food groups. Specially, CC87 was the predominant CC in foodborne and clinical isolates in China, indicating that raw seafood may induce a high-risk to food safety. Also, hypervirulence pathogenicity islands LIPI-3 and LIPI-4 were found in CC3, CC1, and CC87, respectively. The clonal group CC619 carried LIPI-3 and LIPI-4, as previously reported in China. Core genome multilocus sequence typing (cgMLST) analysis suggested that CC87 isolates from the same food groups in different years had no allelic differences, indicating that L. monocytogenes could persist over years. These 10-year results in Shanghai underscore the significance of molecular epidemiological surveillance of L. monocytogenes in foodborne products in assessing the potential risk of this pathogen, and further address food safety issues in China.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Weijie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wang
- Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
262
|
Maćkiw E, Korsak D, Kowalska J, Felix B, Stasiak M, Kucharek K, Postupolski J. Incidence and genetic variability of Listeria monocytogenes isolated from vegetables in Poland. Int J Food Microbiol 2020; 339:109023. [PMID: 33341686 DOI: 10.1016/j.ijfoodmicro.2020.109023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The aim of the present study is to investigate the prevalence and genetic diversity of Listeria monocytogenes in various fresh and frozen vegetable products available in Poland. The samples were collected at retail market within the framework of national official control and monitoring program. In the years 2016-2019 a total of 49 samples out of 8712 collected vegetable samples were positive for L. monocytogenes. Our findings demonstrated that the occurrence of L. monocytogenes in various vegetable products was generally low, on average only 0.56% in the studied years. All isolates were susceptible to 11 antimicrobial agents: penicillin, ampicillin, meropenem, erythromycin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanic acid, ciprofloxacin, chloramphenicol, gentamicin, vancomycin, and tetracycline. All of them harbored virulence-associated genes (inlA, inlC, and lmo2672), 82% harbored inlJ gene and few of them (22%) also possessed the llsX gene. The majority of collected isolates (65%) belonged to molecular serogroup 1/2a-3a, followed by 4ab-4b-4d-4e (33%), and only one to serogroup 1/2b-3b-7 (2%). Isolates yielded 18 different restriction profiles, revealing a large cluster of contamination linked to frozen corn (21 strains) and distributed in 3 pulsotypes. MLST analysis classified selected isolates into nine clonal complexes (CCs). The obtained results contribute to characterizing the diversity of L. monocytogenes isolated from various vegetable products in Poland and their impact on food safety and public health.
Collapse
Affiliation(s)
- Elżbieta Maćkiw
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland.
| | - Dorota Korsak
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Joanna Kowalska
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Benjamin Felix
- European Union Reference Laboratory for L. monocytogenes, ANSES, Laboratory for Food Safety, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Monika Stasiak
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Katarzyna Kucharek
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
263
|
Precht C, Vermathen P, Henke D, Staudacher A, Lauper J, Seuberlich T, Oevermann A, Schweizer-Gorgas D. Correlative Magnetic Resonance Imaging and Histopathology in Small Ruminant Listeria Rhombencephalitis. Front Neurol 2020; 11:518697. [PMID: 33391140 PMCID: PMC7773005 DOI: 10.3389/fneur.2020.518697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Listeria rhombencephalitis, infection of the brainstem with Listeria monocytogenes, occurs mainly in humans and farmed ruminants and is associated with high fatality rates. Small ruminants (goats and sheep) are a large animal model due to neuropathological similarities. The purpose of this study was to define magnetic resonance imaging (MRI) features of listeria rhombencephalitis in naturally infected small ruminants and correlate them with histopathology. Secondly, the purpose of this study was to compare the results with MRI findings reported in humans. Methods: Twenty small ruminants (13 sheep and 7 goats) with listeria rhombencephalitis were prospectively enrolled and underwent in vivo MRI of the brain, including T2-weighted, fluid attenuation inversion recovery, and T1-weighted sequences pre- and post-contrast administration and postmortem histopathology. In MRI, lesions were characterized by location, extent, border definition, signal intensity, and contrast enhancement. In histopathology, the location, cell type, severity, and chronicity of inflammatory infiltrates and signs of vascular damage were recorded. In addition, histopathologic slides were matched to MRIs, and histopathologic and MRI features were compared. Results: Asymmetric T2-hyperintense lesions in the brainstem were observed in all animals and corresponded to the location and pattern of inflammatory infiltrates in histopathology. Contrast enhancement in the brainstem was observed in 10 animals and was associated with vessel wall damage and perivascular fibrin accumulation in 8 of 10 animals. MRI underestimated the extension into rostral brain parts and the involvement of trigeminal ganglia and meninges. Conclusion: Asymmetric T2-hyperintense lesions in the brainstem with or without contrast enhancement can be established as criteria for the diagnosis of listeria rhombencephalitis in small ruminants. Brainstem lesions were similar to human listeria rhombencephalitis in terms of signal intensity and location. Different from humans, contrast enhancement was a rare finding, and abscessation was not observed.
Collapse
Affiliation(s)
- Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Spectroscopy and Methodology, Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Diana Henke
- Division of Neurology, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Anne Staudacher
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Josiane Lauper
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| | - Daniela Schweizer-Gorgas
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse-Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
264
|
Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int J Mol Sci 2020; 21:ijms21249419. [PMID: 33321935 PMCID: PMC7764581 DOI: 10.3390/ijms21249419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes, an important foodborne pathogen, may be present in different kinds of food and in food processing environments where it can persist for a long time. In this study, 28 L. monocytogenes isolates from fish and fish manufactures were characterized by whole genome sequencing (WGS). Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with publicly available genomes of L. monocytogenes strains recovered worldwide from food and from humans with listeriosis. All but one (96.4%) of the examined isolates belonged to molecular serogroup IIa, and one isolate (3.6%) was classified to serogroup IVb. The isolates of group IIa were mainly of MLST sequence types ST121 (13 strains) and ST8 (four strains) whereas the isolate of serogroup IVb was classified to ST1. Strains of serogroup IIa were further subtyped into eight different sublineages with the most numerous being SL121 (13; 48.1% strains) which belonged to six cgMLST types. The majority of strains, irrespective of the genotypic subtype, had the same antimicrobial resistance profile. The cluster analysis identified several molecular clones typical for L. monocytogenes isolated from similar sources in other countries; however, novel molecular cgMLST types not present in the Listeria database were also identified.
Collapse
|
265
|
|
266
|
Zamudio R, Haigh RD, Ralph JD, De Ste Croix M, Tasara T, Zurfluh K, Kwun MJ, Millard AD, Bentley SD, Croucher NJ, Stephan R, Oggioni MR. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages. Environ Microbiol 2020; 22:5058-5072. [PMID: 32483914 PMCID: PMC7614921 DOI: 10.1111/1462-2920.15111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.
Collapse
Affiliation(s)
- Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Richard D Haigh
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
267
|
Charlier C, Disson O, Lecuit M. Maternal-neonatal listeriosis. Virulence 2020; 11:391-397. [PMID: 32363991 PMCID: PMC7199740 DOI: 10.1080/21505594.2020.1759287] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Listeriosis is a rare and severe foodborne infection caused by Listeria monocytogenes. It manifests as septicemia, neurolisteriosis, and maternal-fetal infection. In pregnancy, it may cause maternal fever, premature delivery, fetal loss, neonatal systemic and central nervous system infections. Maternal listeriosis is mostly reported during the 2nd and 3rd trimester of pregnancy, as sporadic cases or in the context of outbreaks. Strains belonging to clonal complexes 1, 4 and 6, referred to as hypervirulent, are the most associated to maternal-neonatal infections. Here we review the clinical, pathophysiological, and microbiological features of maternal-neonatal listeriosis.
Collapse
Affiliation(s)
- Caroline Charlier
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, Paris, France
- Hôpital Universitaire Necker-Enfants Malades, Service des Maladies Infectieuses et Tropicales, Institut Imagine, APHP, Paris, France
- Université de Paris, Paris, France
| | - Olivier Disson
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, Paris, France
- Hôpital Universitaire Necker-Enfants Malades, Service des Maladies Infectieuses et Tropicales, Institut Imagine, APHP, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
268
|
Baquero F, F Lanza V, Duval M, Coque TM. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Mol Microbiol 2020; 113:570-579. [PMID: 32185838 DOI: 10.1111/mmi.14454] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/25/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
The acquisition process of antibiotic resistance in an otherwise susceptible organism is shaped by the ecology of the species. Unlike other relevant human pathogens, Listeria monocytogenes has maintained a high rate of susceptibility to the antibiotics used for decades to treat human and animal infections. However, L. monocytogenes can acquire antibiotic resistance genes from other organisms' plasmids and conjugative transposons. Ecological factors could account for its susceptibility. L. monocytogenes is ubiquitous in nature, most frequently including reservoirs unexposed to antibiotics, including intracellular sanctuaries. L. monocytogenes has a remarkably closed genome, reflecting limited community interactions, small population sizes and high niche specialization. The L. monocytogenes species is divided into variants that are specialized in small specific niches, which reduces the possibility of coexistence with potential donors of antibiotic resistance. Interactions with potential donors are also hampered by interspecies antagonism. However, occasional increases in population sizes (and thus the possibility of acquiring antibiotic resistance) can derive from selection of the species based on intrinsic or acquired resistance to antibiotics, biocides, heavy metals or by a natural tolerance to extreme conditions. High-quality surveillance of the emergence of resistance to the key drugs used in primary therapy is mandatory.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain.,Bioinformatics Unit, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Unité des interactions Bactéries-Cellules, Institut Pasteur, and Inserm, Paris, France
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Ramón y Cajal University Hospital, Madrid, Spain
| |
Collapse
|
269
|
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF. A Vibrio cholerae Core Genome Multilocus Sequence Typing Scheme To Facilitate the Epidemiological Study of Cholera. J Bacteriol 2020; 202:e00086-20. [PMID: 32540931 PMCID: PMC7685551 DOI: 10.1128/jb.00086-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022] Open
Abstract
Core genome multilocus sequence typing (cgMLST) has gained popularity in recent years in epidemiological research and subspecies-level classification. cgMLST retains the intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly larger portions of the genome. Here, we introduce a cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical and environmental strains collected from 52 countries, including 65 newly sequenced genomes in this study. We established a sublineage threshold based on 133 allelic differences that creates clusters nearly identical to traditional MLST types, providing backwards compatibility to new cgMLST classifications. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying strains from the same outbreak and closely related isolates that could give clues on outbreak origin. Using cgMLST, we confirmed the South Asian origin of modern epidemics and identified clustering affinity among sublineages of environmental isolates from the same geographic origin. Advantages of this method are highlighted by direct comparison with existing classification methods, such as MLST and single-nucleotide polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, standardization, and ease of use. We anticipate this scheme will serve as a basis for a universally applicable and standardized classification system for V. cholerae research and epidemiological surveillance in the future. This cgMLST scheme is publicly available on PubMLST (https://pubmlst.org/vcholerae/).IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are the causative agents of cholera, an acute diarrheal disease that plagued the world for centuries, if not millennia. Here, we introduce a core genome multilocus sequence typing scheme for V. cholerae Using this scheme, we have standardized the definition for subspecies-level classification, facilitating global collaboration in the surveillance of V. cholerae In addition, this typing scheme allows for quick identification of outbreak-related isolates that can guide subsequent analyses, serving as an important first step in epidemiological research. This scheme is also easily scalable to analyze thousands of isolates at various levels of resolution, making it an invaluable tool for large-scale ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
270
|
Tirloni E, Bernardi C, Pomilio F, Torresi M, De Santis EPL, Scarano C, Stella S. Occurrence of Listeria spp. and Listeria monocytogenes Isolated from PDO Taleggio Production Plants. Foods 2020; 9:foods9111636. [PMID: 33182585 PMCID: PMC7696599 DOI: 10.3390/foods9111636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
The present study evaluated the presence of Listeria spp. and L. monocytogenes in four plants producing PDO Taleggio cheese. A total of 360 environmental samples were collected from different areas during production. The sampling points were identified as Food Contact Surfaces (FCS), transfer-Non Food Contact Surfaces (tr-NFCS), and non-transfer-NFCS (non-tr-NFCS). Fifty-nine ingredients/products were also analyzed. Listeria spp. was found in all the plants with a mean prevalence of 23.1%; plants that included a ripening area showed significantly higher prevalence if compared to the other plants. The positivity rate detected on FCS was moderate (~12%), but significantly lower if compared to NFCS (about 1/4 of the samples, p < 0.01). Among the FCS, higher prevalence was revealed on ripening equipment. Listeria spp. was never detected in the ingredients or products. A total of 125 Listeria spp. isolates were identified, mostly as L. innocua (almost 80%). L. monocytogenes was detected only from two FCS samples, in an area dedicated to the cutting of ripened blue cheeses; strain characterization by whole genome sequencing (WGS) evidenced a low virulence of the isolates. The results of the present study stress the importance of Listeria spp. management in the dairy plants producing PDO Taleggio and similar cheeses, mainly by the application of strict hygienic practices.
Collapse
Affiliation(s)
- Erica Tirloni
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (C.B.); (S.S.)
- Correspondence: ; Tel.: +39-02-50317855; Fax: +39-02-50317870
| | - Cristian Bernardi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (C.B.); (S.S.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.P.); (M.T.)
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.P.); (M.T.)
| | - Enrico P. L. De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.P.L.D.S.); (C.S.)
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.P.L.D.S.); (C.S.)
| | - Simone Stella
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (C.B.); (S.S.)
| |
Collapse
|
271
|
Parcell BJ, Gillespie SH, Pettigrew KA, Holden MTG. Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks - hype or help? J Hosp Infect 2020; 109:1-9. [PMID: 33181280 PMCID: PMC7927979 DOI: 10.1016/j.jhin.2020.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Outbreaks pose a significant risk to patient safety as well as being costly and time consuming to investigate. The implementation of targeted infection prevention and control measures relies on infection prevention and control teams having access to rapid results that detect resistance accurately, and typing results that give clinically useful information on the relatedness of isolates. At present, determining whether transmission has occurred can be a major challenge. Conventional typing results do not always have sufficient granularity or robustness to define strains unequivocally, and sufficient epidemiological data are not always available to establish links between patients and the environment. Whole-genome sequencing (WGS) has emerged as the ultimate genotyping tool, but has not yet fully crossed the divide between research method and routine clinical diagnostic microbiological technique. A clinical WGS service was officially established in 2014 as part of the Scottish Healthcare Associated Infection Prevention Institute to confirm or refute outbreaks in hospital settings from across Scotland. This article describes the authors' experiences with the aim of providing new insights into practical application of the use of WGS to investigate healthcare and public health outbreaks. Solutions to overcome barriers to implementation of this technology in a clinical environment are proposed.
Collapse
Affiliation(s)
- B J Parcell
- Ninewells Hospital and Medical School, Dundee, UK.
| | - S H Gillespie
- School of Medicine, University of St Andrews, St Andrews, UK
| | - K A Pettigrew
- School of Medicine, University of St Andrews, St Andrews, UK
| | - M T G Holden
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
272
|
Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN. Genome Res 2020; 30:1667-1679. [PMID: 33055096 PMCID: PMC7605250 DOI: 10.1101/gr.260828.120] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Bacterial genomes can contain traces of a complex evolutionary history, including extensive homologous recombination, gene loss, gene duplications, and horizontal gene transfer. To reconstruct the phylogenetic and population history of a set of multiple bacteria, it is necessary to examine their pangenome, the composite of all the genes in the set. Here we introduce PEPPAN, a novel pipeline that can reliably construct pangenomes from thousands of genetically diverse bacterial genomes that represent the diversity of an entire genus. PEPPAN outperforms existing pangenome methods by providing consistent gene and pseudogene annotations extended by similarity-based gene predictions, and identifying and excluding paralogs by combining tree- and synteny-based approaches. The PEPPAN package additionally includes PEPPAN_parser, which implements additional downstream analyses, including the calculation of trees based on accessory gene content or allelic differences between core genes. To test the accuracy of PEPPAN, we implemented SimPan, a novel pipeline for simulating the evolution of bacterial pangenomes. We compared the accuracy and speed of PEPPAN with four state-of-the-art pangenome pipelines using both empirical and simulated data sets. PEPPAN was more accurate and more specific than any of the other pipelines and was almost as fast as any of them. As a case study, we used PEPPAN to construct a pangenome of approximately 40,000 genes from 3052 representative genomes spanning at least 80 species of Streptococcus The resulting gene and allelic trees provide an unprecedented overview of the genomic diversity of the entire Streptococcus genus.
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jane Charlesworth
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
273
|
Bustamante F, Maury-Sintjago E, Leal FC, Acuña S, Aguirre J, Troncoso M, Figueroa G, Parra-Flores J. Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods. Microorganisms 2020; 8:microorganisms8111669. [PMID: 33121209 PMCID: PMC7694154 DOI: 10.3390/microorganisms8111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them.
Collapse
Affiliation(s)
- Fernanda Bustamante
- Environmental and Public Health Laboratory, Universidad del Bío-Bío, Regional Secreatariat of the Ministry of Health in Maule, Talca 3461637, Chile;
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Fabiola Cerda Leal
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago 8820808, Chile;
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
- Correspondence:
| |
Collapse
|
274
|
Bahrami A, Davis S, Mousavi Khaneghah A, Williams L. The efficiency of technologies used for epidemiological characterization of Listeria monocytogenes isolates : an update. Crit Rev Food Sci Nutr 2020; 62:1079-1091. [PMID: 33092402 DOI: 10.1080/10408398.2020.1835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characterization of pathogenic bacteria by providing information regarding the identification and source-tracking of the causes of outbreaks is vital for the epidemiological investigations of foodborne diseases. The knowledge of transmission of Listeria monocytogenes (L. monocytogenes) strains from the environment, directly or indirectly (through food processing facilities) to the final food products, due to the complexity of evaluating numerous, affecting parameters is quite limited. The food trade globalization also adds difficulties in tracking the association between the infection occurrence and causative pathogens, aiming to prevent their spread. The occurrence of listeriosis, a notifiable disease throughout the world, can either be sporadic or outbreak-related. Due to the importance of foodborne outbreaks from a public health aspect and its correspondence enormous economic losses, cross-linked surveillance studies regarding the contamination of foods by L. monocytogenes, besides identifying clusters and tracing the sources of infections on an international-scale to prevent and control L. monocytogenes outbreaks sounds very crucial. Contrary to the conventional typing methods, molecular-based techniques, such as whole-genome sequencing, owing to the capacity to discriminate L. monocytogenes strains down to single nucleotide differences, provide an accurate characterization of strains and tracking the causes of outbreaks. However, routinely using molecular-based methods depends on the required improvements in the affordability, proper timing, and preparing reliable, standardized bioinformatics facilities. This work was conducted to critically review the practical potential of diverse typing methods have been used for the characterization of L. monocytogenes and discuss how they might change the future of efforts for control of listeriosis.
Collapse
Affiliation(s)
- Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Shurrita Davis
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
275
|
Scaltriti E, Bolzoni L, Vocale C, Morganti M, Menozzi I, Re MC, Pongolini S. Population Structure of Listeria monocytogenes in Emilia-Romagna (Italy) and Implications on Whole Genome Sequencing Surveillance of Listeriosis. Front Public Health 2020; 8:519293. [PMID: 33072691 PMCID: PMC7531028 DOI: 10.3389/fpubh.2020.519293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/13/2020] [Indexed: 11/25/2022] Open
Abstract
The population structure of human isolates of Listeria monocytogenes in Emilia-Romagna, Italy, from 2012 to 2018 was investigated with the aim of evaluating the presence of genomic clusters indicative of possible outbreaks, the proportion of cluster-associated vs. sporadic isolates and different methods and metrics of genomic analysis for use in routine surveillance. In the 2012–2018 period the notification rate of confirmed invasive cases in Emilia-Romagna was 0.91 per 100,000 population per year, more than twice the average rate of EU countries. Out of the total 283 cases, 268 (about 95%) isolates were typed through whole genome sequencing (WGS) for cluster detection with methods based on core-genome multi-locus sequence typing and single nucleotide polymorphisms. Between 66 and 72% of listeriosis cases belonged to genomic clusters which included up to 27 cases and lasted up to 5 years. This proportion of cluster-associated cases is higher than previously estimated in other European studies. Rarefaction analysis, performed by reducing both the number of consecutive years of surveillance considered and the proportion of isolates included in the analysis, suggested that the observed high proportion of cluster-associated cases can be ascribed to the long surveillance duration (7 years) and the high notification and typing rates of this study. Our findings show that a long temporal perspective and high surveillance intensity, intended as both exhaustiveness of the system to report cases and high WGS-typing rate, are critical for sensitive detection of possible outbreaks within a WGS-based surveillance of listeriosis. Furthermore, the power and complexity of WGS interpretation emerged from the integration of genomic and epidemiological information in the investigation of few past outbreaks within the study, indicating that the use of multiple approaches, including the analysis of the accessory genome, is needed to accurately elucidate the population dynamics of Listeria monocytogenes.
Collapse
Affiliation(s)
- Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Luca Bolzoni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Caterina Vocale
- Operating Unit of Clinical Microbiology, Regional Reference Center for Microbiological Emergencies, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Marina Morganti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Ilaria Menozzi
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| | - Maria Carla Re
- Operating Unit of Clinical Microbiology, Regional Reference Center for Microbiological Emergencies, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Parma, Italy
| |
Collapse
|
276
|
Characterization of Mobile Genetic Elements Using Long-Read Sequencing for Tracking Listeria monocytogenes from Food Processing Environments. Pathogens 2020; 9:pathogens9100822. [PMID: 33036450 PMCID: PMC7599586 DOI: 10.3390/pathogens9100822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 02/02/2023] Open
Abstract
Recently developed nanopore sequencing technologies offer a unique opportunity to rapidly close the genome and to identify complete sequences of mobile genetic elements (MGEs). In this study, 17 isolates of Listeria monocytogenes (Lm) epidemic clone II (ECII) from seven ready-to-eat meat or poultry processing facilities, not known to be associated with outbreaks, were shotgun sequenced, and among them, five isolates were further subjected to long-read sequencing. Additionally, 26 genomes of Lm ECII isolates associated with three listeriosis outbreaks in the U.S. and South Africa were obtained from the National Center for Biotechnology Information (NCBI) database and analyzed to evaluate if MGEs may be used as a high-resolution genetic marker for identifying and sourcing the origin of Lm. The analyses identified four comK prophages in 11 non-outbreak isolates from four facilities and three comK prophages in 20 isolates associated with two outbreaks that occurred in the U.S. In addition, three different plasmids were identified among 10 non-outbreak isolates and 14 outbreak isolates. Each comK prophage and plasmid was conserved among the isolates sharing it. Different prophages from different facilities or outbreaks had significant genetic variations, possibly due to horizontal gene transfer. Phylogenetic analysis showed that isolates from the same facility or the same outbreak always closely clustered. The time of most recent common ancestor of the Lm ECII isolates was estimated to be in March 1816 with the average nucleotide substitution rate of 3.1 × 10−7 substitutions per site per year. This study showed that complete MGE sequences provide a good signal to determine the genetic relatedness of Lm isolates, to identify persistence or repeated contamination that occurred within food processing environment, and to study the evolutionary history among closely related isolates.
Collapse
|
277
|
Baba H, Kanamori H, Kakuta R, Sakurai H, Oshima K, Aoyagi T, Kaku M. Genomic characteristics of listeria monocytogenes causing invasive listeriosis in Japan. Diagn Microbiol Infect Dis 2020; 99:115233. [PMID: 33340935 DOI: 10.1016/j.diagmicrobio.2020.115233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
We reviewed 18 listeriosis cases in Japan and performed molecular analysis of causative Listeria monocytogenes (LM) isolates. Strains genetically related to those from other countries caused various types of listeriosis, including vascular listeriosis in immunocompetent elderly people. Our results highlight the importance of integrated clinical and genomic analysis of LM.
Collapse
Affiliation(s)
- Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi,Japan.
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi,Japan
| | - Risako Kakuta
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Sakurai
- Department of Rheumatics and Infectious Disease, Sendai, Miyagi, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi,Japan
| | - Tetsuji Aoyagi
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi,Japan
| | - Mitsuo Kaku
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi,Japan; Department of infection control and prevention, Tohoku Medical Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
278
|
Joseph LA, Francois Watkins LK, Chen J, Tagg KA, Bennett C, Caidi H, Folster JP, Laughlin ME, Koski L, Silver R, Stevenson L, Robertson S, Pruckler J, Nichols M, Pouseele H, Carleton HA, Basler C, Friedman CR, Geissler A, Hise KB, Aubert RD. Comparison of Molecular Subtyping and Antimicrobial Resistance Detection Methods Used in a Large Multistate Outbreak of Extensively Drug-Resistant Campylobacter jejuni Infections Linked to Pet Store Puppies. J Clin Microbiol 2020; 58:e00771-20. [PMID: 32719029 PMCID: PMC7512158 DOI: 10.1128/jcm.00771-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is a leading cause of enteric bacterial illness in the United States. Traditional molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE) and 7-gene multilocus sequence typing (MLST), provided limited resolution to adequately identify C. jejuni outbreaks and separate out sporadic isolates during outbreak investigations. Whole-genome sequencing (WGS) has emerged as a powerful tool for C. jejuni outbreak detection. In this investigation, 45 human and 11 puppy isolates obtained during a 2016-2018 outbreak linked to pet store puppies were sequenced. Core genome multilocus sequence typing (cgMLST) and high-quality single nucleotide polymorphism (hqSNP) analysis of the sequence data separated the isolates into the same two clades containing minor within-clade differences; however, cgMLST analysis does not require selection of an appropriate reference genome, making the method preferable to hqSNP analysis for Campylobacter surveillance and cluster detection. The isolates were classified as sequence type 2109 (ST2109)-a rarely seen MLST sequence type. PFGE was performed on 38 human and 10 puppy isolates; PFGE patterns did not reliably predict clustering by cgMLST analysis. Genetic detection of antimicrobial resistance determinants predicted that all outbreak-associated isolates would be resistant to six drug classes. Traditional antimicrobial susceptibility testing (AST) confirmed a high correlation between genotypic and phenotypic antimicrobial resistance determinations. WGS analysis linked C. jejuni isolates in humans and pet store puppies even when canine exposure information was unknown, aiding the epidemiological investigation during the outbreak. WGS data were also used to quickly identify the highly drug-resistant profile of these outbreak-associated C. jejuni isolates.
Collapse
Affiliation(s)
- Lavin A Joseph
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Louise K Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica Chen
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaitlin A Tagg
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Weems Design Studio, Inc., Suwanee, Georgia, USA
| | - Christy Bennett
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- IHRC, Inc., Atlanta, Georgia, USA
| | - Hayat Caidi
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jason P Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark E Laughlin
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lia Koski
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Rachel Silver
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Lauren Stevenson
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- CAITTA, Inc., Herndon, Virginia, USA
| | - Scott Robertson
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet Pruckler
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Megin Nichols
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Heather A Carleton
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Colin Basler
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cindy R Friedman
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Aimee Geissler
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kelley B Hise
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rachael D Aubert
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
279
|
Yan S, Li M, Luque-Sastre L, Wang W, Hu Y, Peng Z, Dong Y, Gan X, Nguyen S, Anes J, Bai Y, Xu J, Fanning S, Li F. Susceptibility (re)-testing of a large collection of Listeria monocytogenes from foods in China from 2012 to 2015 and WGS characterization of resistant isolates. J Antimicrob Chemother 2020; 74:1786-1794. [PMID: 30989181 DOI: 10.1093/jac/dkz126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Our aim was to determine the antimicrobial susceptibilities of 2862 Listeria monocytogenes cultured from various foods in China and to use WGS to characterize the antimicrobial resistance and virulence genotypes of those expressing a resistance phenotype. METHODS The susceptibilities of 2862 L. monocytogenes were determined by broth microdilution. Twenty-eight L. monocytogenes were found to be resistant to one to four antibiotics. All 28 resistant isolates were subsequently sequenced using short-read high accuracy protocols. The corresponding genomes were assembled and further analysis was carried out using appropriate bioinformatics pipelines. RESULTS All 28 resistant L. monocytogenes were classified into five STs (ST3, ST8, ST9, ST155 and ST515). Both ST9 and ST155 were dominant and their genotypes correlated with their resistance phenotypes. All ST9 isolates were MDR and could be phylogenetically classified into two clusters. One was relatively close to clinical origins and one to food. Downstream analysis of the genetic contexts in which these resistance genotypes were found suggested that these may have been acquired from other bacteria by horizontal transfer or insertion into the chromosome. All isolates harboured Listeria pathogenicity island (LIPI)-1 and LIPI-2, and only two harboured LIPI-3. CONCLUSIONS This study reported on the antimicrobial susceptibilities of 2862 foodborne L. monocytogenes along with the genomic characterization of 28 resistant isolates, 11 of which expressed an MDR phenotype. These data showed that this bacterium can acquire resistance by horizontal gene transfer in and between species. This study may necessitate a re-evaluation of risk to public health, associated with this bacterial species.
Collapse
Affiliation(s)
- Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Menghan Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Laura Luque-Sastre
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Xin Gan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Scott Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - João Anes
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Séamus Fanning
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| |
Collapse
|
280
|
Nouws S, Bogaerts B, Verhaegen B, Denayer S, Crombé F, De Rauw K, Piérard D, Marchal K, Vanneste K, Roosens NHC, De Keersmaecker SCJ. The Benefits of Whole Genome Sequencing for Foodborne Outbreak Investigation from the Perspective of a National Reference Laboratory in a Smaller Country. Foods 2020; 9:E1030. [PMID: 32752159 PMCID: PMC7466227 DOI: 10.3390/foods9081030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Gradually, conventional methods for foodborne pathogen typing are replaced by whole genome sequencing (WGS). Despite studies describing the overall benefits, National Reference Laboratories of smaller countries often show slower uptake of WGS, mainly because of significant investments required to generate and analyze data of a limited amount of samples. To facilitate this process and incite policy makers to support its implementation, a Shiga toxin-producing Escherichia coli (STEC) O157:H7 (stx1+, stx2+, eae+) outbreak (2012) and a STEC O157:H7 (stx2+, eae+) outbreak (2013) were retrospectively analyzed using WGS and compared with their conventional investigations. The corresponding results were obtained, with WGS delivering even more information, e.g., on virulence and antimicrobial resistance genotypes. Besides a universal, all-in-one workflow with less hands-on-time (five versus seven actual working days for WGS versus conventional), WGS-based cgMLST-typing demonstrated increased resolution. This enabled an accurate cluster definition, which remained unsolved for the 2013 outbreak, partly due to scarce epidemiological linking with the suspect source. Moreover, it allowed detecting two and one earlier circulating STEC O157:H7 (stx1+, stx2+, eae+) and STEC O157:H7 (stx2+, eae+) strains as closely related to the 2012 and 2013 outbreaks, respectively, which might have further directed epidemiological investigation initially. Although some bottlenecks concerning centralized data-sharing, sampling strategies, and perceived costs should be considered, we delivered a proof-of-concept that even in smaller countries, WGS offers benefits for outbreak investigation, if a sufficient budget is available to ensure its implementation in surveillance. Indeed, applying a database with background isolates is critical in interpreting isolate relationships to outbreaks, and leveraging the true benefit of WGS in outbreak investigation and/or prevention.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bert Bogaerts
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Florence Crombé
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Klara De Rauw
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Denis Piérard
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Kathleen Marchal
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Genetics, University of Pretoria, Pretoria 0083, South Africa
| | - Kevin Vanneste
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| |
Collapse
|
281
|
Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R. Population Structure of Non-ST6 Listeria monocytogenes Isolated in the Red Meat and Poultry Value Chain in South Africa. Microorganisms 2020; 8:microorganisms8081152. [PMID: 32751410 PMCID: PMC7464360 DOI: 10.3390/microorganisms8081152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Meat products have been implicated in many listeriosis outbreaks globally, however there is a dearth of information on the diversity of L. monocytogenes isolates circulating in food products in South Africa. The aim of this study was to investigate the population structure of L. monocytogenes isolated in the meat value chain within the South African market. Based on whole-genome sequence analysis, a total of 217 isolates were classified into two main lineage groupings namely lineages I (n = 97; 44.7%) and II (n = 120; 55.3%). The lineage groups were further differentiated into IIa (n = 95, 43.8%), IVb (n = 69, 31.8%), IIb (n = 28, 12.9%), and IIc (n = 25, 11.5%) sero-groups. The most abundant sequence types (STs) were ST204 (n = 32, 14.7%), ST2 (n = 30, 13.8%), ST1 (n = 25, 11.5%), ST9 (n = 24, 11.1%), and ST321 (n = 21, 9.7%). In addition, 14 clonal complex (CCs) were identified with over-representation of CC1, CC3, and CC121 in "Processed Meat-Beef", "RTE-Poultry", and "Raw-Lamb" meat categories, respectively. Listeria pathogenic islands were present in 7.4% (LIPI-1), 21.7% (LIPI-3), and 1.8% (LIPI-4) of the isolates. Mutation leading to premature stop codons was detected in inlA virulence genes across isolates identified as ST121 and ST321. The findings of this study demonstrated a high-level of genomic diversity among L. monocytogenes isolates recovered across the meat value chain control points in South Africa.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa;
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Thendo Mafuna
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Khanyisile R. Mbatha
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
- Correspondence: ; Tel.: +27-12-5299-356
| |
Collapse
|
282
|
Muchaamba F, Eshwar AK, von Ah U, Stevens MJA, Tasara T. Evolution of Listeria monocytogenes During a Persistent Human Prosthetic Hip Joint Infection. Front Microbiol 2020; 11:1726. [PMID: 32849369 PMCID: PMC7399150 DOI: 10.3389/fmicb.2020.01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Listeria monocytogenes associated prosthetic joint infections (PJI) are a rare but increasing clinical problem of listeriosis. We characterized two isolates of the same L. monocytogenes strain isolated within five years of each other from a recurrent human prosthetic joint infection. The two isolates although clonally identical were phenotypically distinct confirming that the original infection strain had evolved within the human host PJI environment giving rise to a phenotypically distinct variant. The recurrent PJI isolate displayed various phenotypic differences compared to the parental original PJI isolate including diminished growth and carbon source metabolism, as well as altered morphology and increased stress sensitivity. The PJI isolates were both diminished in virulence due to an identical truncation mutation in the major virulence regulator PrfA. Genome wide sequence comparison provided conclusive evidence that the two isolates were identical clonal descendants of the same L. monocytogenes strain that had evolved through acquisition of various single nucleotide polymorphisms (SNPs) as well as insertion and deletion events (InDels) during a persistent human PJI. Acquired genetic changes included a specific mutation causing premature stop codon (PMSC) and truncation of RNAse J1 protein. Based on analysis of this naturally truncated as well as other complete RNAse J1 deletion mutants we show that the long-term survival of this specific L. monocytogenes strain within the prosthetic joint might in part be explained by the rnjA PMSC mutation that diminishes virulence and activation of the host immune system in a zebrafish embryo localized infection model. Overall our analysis of this special natural case provides insights into random mutation events and molecular mechanisms that might be associated with the adaptation and short-term evolution of this specific L. monocytogenes strain within a persistent human PJI environment.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Marc J. A. Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
283
|
Blanchard AM, Billenness R, Warren J, Glanvill A, Roden W, Drinkall E, Maboni G, Robinson RS, Rees CED, Pfarrer C, Tötemeyer S. Characterisation of Listeria monocytogenes isolates from cattle using a bovine caruncular epithelial cell model. Heliyon 2020; 6:e04476. [PMID: 32743095 PMCID: PMC7385464 DOI: 10.1016/j.heliyon.2020.e04476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen in human and veterinary health, causing significant morbidity and mortality including abortion. It has a particular tropism for the gravid uterus, however, the route of infection in reproductive tissues of ruminants (i.e. placentome), is much less clear. In this study, we aimed to investigate a bovine caruncular epithelial cell (BCEC) line as a model for L. monocytogenes infection of the bovine reproductive tract. The BCEC infection model was used to assess the ability of 14 different L. monocytogenes isolates to infect these cells. Lysozyme sensitivity and bacterial survival in 580 μg lysozyme/ml correlated with attenuated ability to proliferate in BCEC (p = 0.004 and p = 0.02, respectively). Four isolates were significantly attenuated compared to the control strain 10403S. One of these strains (AR008) showed evidence of compromised cell wall leading to increased sensitivity to ß-lactam antibiotics, and another (7644) had compromised cell membrane integrity leading to increased sensitivity to cationic peptides. Whole genome sequencing followed by Multi Locus Sequence Type analysis identified that five invasive isolates had the same sequence type, ST59, despite originating from three different clinical conditions. Virulence gene analysis showed that the attenuated isolate LM4 was lacking two virulence genes (uhpT, virR) known to be involved in intracellular growth and virulence. In conclusion, the BCEC model was able to differentiate between the infective potential of different isolates. Moreover, resistance to lysozyme correlated with the ability to invade and replicate within BCEC, suggesting co-selection for surviving challenging environments as the abomasum.
Collapse
Affiliation(s)
- Adam M Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rosemarie Billenness
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jessica Warren
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Amy Glanvill
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - William Roden
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Emma Drinkall
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine, Hannover, Germany
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
284
|
The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS One 2020; 15:e0233945. [PMID: 32701964 PMCID: PMC7377500 DOI: 10.1371/journal.pone.0233945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.
Collapse
|
285
|
Chen R, Skeens J, Orsi RH, Wiedmann M, Guariglia-Oropeza V. Pre-growth conditions and strain diversity affect nisin treatment efficacy against Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 2020; 333:108793. [PMID: 32763758 DOI: 10.1016/j.ijfoodmicro.2020.108793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes is a human pathogen that is commonly found in environments associated with cold-smoked salmon. Nisin is a natural antimicrobial that can be used as a food preservative. While nisin is active against a number of Gram-positive bacteria, including L. monocytogenes, environmental stresses encountered in cold-smoked salmon processing facilities might affect L. monocytogenes' nisin susceptibility. The objective of this study was to investigate the effect of seafood-relevant pre-growth conditions and L. monocytogenes strain diversity on nisin treatment efficacy on cold-smoked salmon. Six L. monocytogenes strains representing serotypes most commonly associated with cold-smoked salmon (1/2a, 1/2b, and 4b) were initially pre-grown under a number of seafood-relevant conditions and challenged with nisin in growth media modified to represent the characteristics of cold-smoked salmon. The pre-growth conditions with the lowest mean log reduction due to nisin and the highest strain-to-strain variability were selected for experiments on cold-smoked salmon; these included: (i) 4.65% w.p. NaCl ("NaCl"); (ii) pH = 6.1 ("pH"); (iii) 0.5 μg/ml benzalkonium chloride ("Quat"); and a control ("BHI"). Cold-smoked salmon slices with or without nisin were inoculated with L. monocytogenes pre-grown in one of the conditions above, vacuum-packed, and incubated at 7 °C. L. monocytogenes were enumerated on days 1, 15, and 30. A linear mixed effects model was constructed to investigate the effect of pre-growth condition, day in storage, serotype, source of isolation as well as their interactions on nisin efficacy against L. monocytogenes. Compared to pre-growth in "BHI", significant reduction (P < 0.05) in nisin efficacy was induced by pre-growth in "pH" and "Quat" on both days 15 and 30, and by pre-growth in "NaCl" on day 30, indicating a time-dependent cross-protection effect. Additionally, an effect of L. monocytogenes' serotype on the cross-protection to nisin was observed; pre-growth in "pH" significantly reduced nisin efficacy against serotype 1/2a and 4b strains, but not against 1/2b strains. In conclusion, pre-exposure to mildly acidic environment, high salt content, and sublethal concentrations of quaternary ammonium compounds, is likely to provide cross-protection against a subsequent nisin treatment of L. monocytogenes on cold-smoked salmon. Therefore, challenge studies that use pre-growth in "BHI", as well as more susceptible L. monocytogenes strains, may overestimate the efficacy of nisin as a control strategy for cold-smoked salmon.
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Jordan Skeens
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States of America.
| | | |
Collapse
|
286
|
Duru IC, Andreevskaya M, Laine P, Rode TM, Ylinen A, Løvdal T, Bar N, Crauwels P, Riedel CU, Bucur FI, Nicolau AI, Auvinen P. Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing. BMC Genomics 2020; 21:455. [PMID: 32615922 PMCID: PMC7331262 DOI: 10.1186/s12864-020-06819-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background High pressure processing (HPP; i.e. 100–600 MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600 MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance. Results None of the tested strains were tolerant to 600 MPa. A reduction of more than 5 log10 was observed for all strains after 1 min 600 MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400 MPa for 1 min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains. Conclusions L. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tone Mari Rode
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
287
|
In-Depth Longitudinal Study of Listeria monocytogenes ST9 Isolates from the Meat Processing Industry: Resolving Diversity and Transmission Patterns Using Whole-Genome Sequencing. Appl Environ Microbiol 2020; 86:AEM.00579-20. [PMID: 32414794 PMCID: PMC7357480 DOI: 10.1128/aem.00579-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment, and certain types can be established in food factories. The sequence type ST9 dominates in meat processing environments, and this work was undertaken to obtain data needed for the tracking of this subtype. By using whole-genome sequencing (WGS), we revealed the presence of cross-contamination routes between meat factories as well as within a single factory, including the spread from different reservoirs within the same room. It was also possible to estimate the time frame of persistence in the factory, as well as when and how new clones had entered. The present work contributes valuable information about the diversity of ST9 and exemplifies the potential power of WGS in food safety management, allowing the determination of relationships between strains both in an international context and locally between and within factories. Listeria monocytogenes is a pathogen mostly associated with the consumption of ready-to-eat foods and can cause severe disease and death. It can be introduced into food chains from raw materials, but often the contamination source is the food production environment, where certain clones can persist for years. In the meat chain, ST9 is one of the most commonly encountered L. monocytogenes sequence types, and for effective source tracking, the divergence and spread of ST9 must be understood. In this study, whole-genome sequencing (WGS) was used to characterize and track 252 L. monocytogenes ST9 isolates collected from four Norwegian meat processing plants between 2009 and 2017. The isolates formed distinct clusters relative to genomes found in public databases, and all but three isolates clustered into two major clonal populations. Different contamination patterns were revealed, e.g., evidence of contamination of two factories with a clone that diverged from its ancestor in the late 1990s through a common source of raw materials; breach of hygienic barriers within a factory, leading to repeated detection of two clones in the high-risk zone during a 4- to 6-year period; entry through the purchase and installation of second-hand equipment harboring a previously established clonal population; and spreading and diversification of two clones from two reservoirs within the same production room over a 9-year period. The present work provides data on the diversity of ST9, which is crucial for epidemiological investigations and highlights how WGS can be used for source tracking within food processing factories. IMPORTANCEListeria monocytogenes is a deadly foodborne pathogen that is widespread in the environment, and certain types can be established in food factories. The sequence type ST9 dominates in meat processing environments, and this work was undertaken to obtain data needed for the tracking of this subtype. By using whole-genome sequencing (WGS), we revealed the presence of cross-contamination routes between meat factories as well as within a single factory, including the spread from different reservoirs within the same room. It was also possible to estimate the time frame of persistence in the factory, as well as when and how new clones had entered. The present work contributes valuable information about the diversity of ST9 and exemplifies the potential power of WGS in food safety management, allowing the determination of relationships between strains both in an international context and locally between and within factories.
Collapse
|
288
|
Listeria monocytogenes is prevalent in retail produce environments but Salmonella enterica is rare. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
289
|
Kurpas M, Osek J, Moura A, Leclercq A, Lecuit M, Wieczorek K. Genomic Characterization of Listeria monocytogenes Isolated From Ready-to-Eat Meat and Meat Processing Environments in Poland. Front Microbiol 2020; 11:1412. [PMID: 32670248 PMCID: PMC7331111 DOI: 10.3389/fmicb.2020.01412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is one of the major foodborne pathogens. Isolates of PCR-serogroups IIb (n = 17) and IVb (n = 31) recovered from food (n = 33) and food processing environment (n = 15) in Poland were characterized using whole genome sequencing. Most isolates belonged to Multi-Locus Sequence Type (MLST) ST2 (31.3%) and ST5 (22.9%). Core genome MLST (cgMLST) analysis classified isolates into seven sublineages (SL) and 25 different cgMLST types (CT). Consistent with the MLST results, most sublineages were SL2 and SL5. Eleven isolates harbored aacA4 encoding resistance to aminoglycosides, three isolates harbored emrC (n = 3) and one brcABC (n = 1) encoding tolerance to benzalkonium chloride. Isolates belonging to SL5 CT2323 carried a so far unreported inlB allele with a deletion of 141 nucleotides encoding the β-repeat sheet and partially the GW1 domain of InlB. Comparison with publicly available genome sequences from L. monocytogenes isolated from human listeriosis cases in Poland from 2004 to 2013 revealed five common CTs, suggesting a possible epidemiological link with these strains. The present study contributes to characterize the diversity of L. monocytogenes in ready-to-eat (RTE) meat and meat processing environments in Poland and unravels previously unnoticed links with clinical cases in Europe.
Collapse
Affiliation(s)
- Monika Kurpas
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Inserm U1117, Paris, France
- Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, Paris, France
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
290
|
Yang H, Hoffmann M, Allard MW, Brown EW, Chen Y. Microevolution and Gain or Loss of Mobile Genetic Elements of Outbreak-Related Listeria monocytogenes in Food Processing Environments Identified by Whole Genome Sequencing Analysis. Front Microbiol 2020; 11:866. [PMID: 32547499 PMCID: PMC7272582 DOI: 10.3389/fmicb.2020.00866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Whole genome sequencing (WGS) analyses have been instrumental in traceback investigations of Listeria monocytogenes (Lm). To demonstrate how long-read sequencing analysis can capture and describe relationships among isolates from clinical, food, and environmental sources, we analyzed 366 long-read- and shotgun-sequenced isolates from 16 Lm outbreak strains associated with cantaloupe, leafy green, stone fruit, caramel apple, mung bean sprout, multiple cheese products, multiple ice cream products, and their production environments. The analyses demonstrated that outbreak strains could be distributed in different areas and zones of food production environments through persistent or repeated contamination. Multi-strain and multi-clone contamination were common. Further, WGS could differentiate among isolates collected at different time points or from different production lines in the same facility, revealing microevolution events in processing environments. Our comparison between complete and shotgun genomes showed that isolates of the same outbreak strain diversified mostly by gain/loss of plasmids and chromosome-borne prophages that constitute 2 to 5% of the chromosome. In contrast, other genes missing in the shotgun genomes were randomly scattered, constituting ~0.5% of the chromosome. Among different outbreak strains of the same CC, most gene-scale differences were due to gain/loss of mobile genetic elements, such as plasmids, chromosome-borne prophages, a Tn916 like transposon, and Listeria Genomic Island 2. The nucleotide variations in the same prophage and the same plasmid shared among isolates of the same outbreak strain were limited, which enabled different WGS tools to unambiguously cluster isolates of the same outbreak strain. In some outbreak strains, correlation between prophage gain/loss and single nucleotide polymorphism (SNP) accumulations in the genome backbone were observed.
Collapse
Affiliation(s)
- Helen Yang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Marc W Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
291
|
Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Appl Environ Microbiol 2020; 86:AEM.00612-20. [PMID: 32358009 PMCID: PMC7301860 DOI: 10.1128/aem.00612-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium. The Gram-positive pathogen Listeria monocytogenes can be subdivided into at least 12 different serovars, based on the differential expression of a set of somatic and flagellar antigens. Of note, strains belonging to serovars 1/2a, 1/2b, and 4b cause the vast majority of foodborne listeriosis cases and outbreaks. The standard protocol for serovar determination involves an agglutination method using a set of sera containing cell surface-recognizing antibodies. However, this procedure is imperfect in both precision and practicality, due to discrepancies resulting from subjective interpretation. Furthermore, the exact antigenic epitopes remain unclear, due to the preparation of the absorbed sera and the complex nature of polyvalent antibody binding. Here, we present a novel method for quantitative somatic antigen differentiation using a set of recombinant affinity proteins (cell wall-binding domains and receptor-binding proteins) derived from a collection of Listeria bacteriophages. These proteins enable rapid, objective, and precise identification of the different teichoic acid glycopolymer structures, which represent the O-antigens, and allow a near-complete differentiation. This glycotyping approach confirmed serovar designations of over 60 previously characterized Listeria strains. Using select phage receptor-binding proteins coupled to paramagnetic beads, we also demonstrate the ability to specifically isolate serovar 1/2 or 4b cells from a mixed culture. In addition, glycotyping led to the discovery that strains designated serovar 4e actually possess an intermediate 4b-4d teichoic acid glycosylation pattern, underpinning the high discerning power and precision of this novel technique. IMPORTANCEListeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium.
Collapse
|
292
|
Aspectos actuales de la listeriosis. Med Clin (Barc) 2020; 154:453-458. [DOI: 10.1016/j.medcli.2020.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
|
293
|
Li XP, Wang SF, Hou PB, Liu J, Du P, Bai L, Fanning S, Zhang HN, Chen YZ, Zhang YK, Kang DM. Nosocomial cross-infection of hypervirulent Listeria monocytogenes sequence type 87 in China. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:603. [PMID: 32566629 PMCID: PMC7290528 DOI: 10.21037/atm-19-2743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the epidemiological and phenotypic characteristics and molecular relatedness of L. monocytogenes, which were cultured from the blood and cerebrospinal fluid (CSF) samples isolated from two neonates. Methods In the present case study, two infected neonates were interviewed and epidemiological investigation performed. The phenotypic characteristics and molecular relatedness of L. monocytogenes was characterized by serotyping, pulsed-field gel electrophoresis and whole-genome sequencing (WGS). Results The field investigation found that the two neonates were born in the same hospital (Hospital B) and admitted to the neonatal department through different channels within half an hour by different nurses, where they were weighed and placed in different but adjacent incubators. Then they were cared for by the same group of nurses that evening. It is worth noting that there was no record of sanitation of the neonatal incubator of neonate-1. The serotype of the two isolated L. monocytogenes were 1/2b, with an indistinguishable pulsotypes and were sequence type (ST) 87. WGS showed that there were no core SNP differences identified. In order to explore the genomic traits associated with L. monocytogenes virulence genes, we identified the Listeria pathogenicity island 4 and found that the genome was devoid of any stress islands. There are no positive results from the environmental samples. Considering the genomic data together with epidemiological evidence and clinical symptoms, insufficient surface cleaning along with the nursing staff caring for these neonates was considered as cross-infection factors. Conclusions To our knowledge, this is the first report of a nosocomial cross-infection of L. monocytogenes ST87 between two neonates, which carries the recently identified gene cluster expressing the cellobiose-family phosphotransferase system (PTS-LIPI-4) between two neonates. The test results of environmental samples in the hospital indicate that strict sterilization and patient isolation measures cannot be emphasized enough in neonatal nursing.
Collapse
Affiliation(s)
- Xin-Peng Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| | - Shi-Fu Wang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong University, Jinan 250022, China
| | - Pei-Bin Hou
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| | - Jing Liu
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Li Bai
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Hua-Ning Zhang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| | - Yu-Zhen Chen
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| | - Yun-Kui Zhang
- Department of Children's Medical Laboratory Diagnosis Center, Qilu Children's Hospital of Shandong University, Jinan 250022, China
| | - Dian-Min Kang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China.,Academy of Preventive Medicine, Shandong University, Jinan 250014, China.,Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan 250014, China
| |
Collapse
|
294
|
Parsons C, Niedermeyer J, Gould N, Brown P, Strules J, Parsons AW, Bernardo Mesa‐Cruz J, Kelly MJ, Hooker MJ, Chamberlain MJ, Olfenbuttel C, DePerno C, Kathariou S. Listeria monocytogenes at the human-wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria. Microb Biotechnol 2020; 13:706-721. [PMID: 31713354 PMCID: PMC7111103 DOI: 10.1111/1751-7915.13509] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human-wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of L. monocytogenes and highlight the public health significance of the human-wildlife interface.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jeff Niedermeyer
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Nicholas Gould
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Phillip Brown
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer Strules
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Arielle W. Parsons
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
- North Carolina Museum of Natural SciencesRaleighNCUSA
| | - J. Bernardo Mesa‐Cruz
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
- Department of BiologyElizabethtown CollegeElizabethtownPAUSA
| | - Marcella J. Kelly
- Department of Fish and Wildlife ConservationVirginia TechBlacksburgVAUSA
| | - Michael J. Hooker
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | | | | | - Christopher DePerno
- Fisheries, Wildlife, and Conservation Biology, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
295
|
Chen Y, Chen Y, Pouillot R, Dennis S, Xian Z, Luchansky JB, Porto-Fett ACS, Lindsay JA, Hammack TS, Allard M, Van Doren JM, Brown EW. Genetic diversity and profiles of genes associated with virulence and stress resistance among isolates from the 2010-2013 interagency Listeria monocytogenes market basket survey. PLoS One 2020; 15:e0231393. [PMID: 32352974 PMCID: PMC7192433 DOI: 10.1371/journal.pone.0231393] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Whole genome sequencing (WGS) was performed on 201 Listeria monocytogenes isolates recovered from 102 of 27,389 refrigerated ready-to-eat (RTE) food samples purchased at retail in U.S. FoodNet sites as part of the 2010-2013 interagency L. monocytogenes Market Basket Survey (Lm MBS). Core genome multi-locus sequence typing (cgMLST) and in-silico analyses were conducted, and these data were analyzed with metadata for isolates from five food groups: produce, seafood, dairy, meat, and combination foods. Six of 201 isolates, from 3 samples, were subsequently confirmed as L. welshimeri. Three samples contained one isolate per sample; mmong the 96 samples that contained two isolates per sample, 3 samples each contained two different strains and 93 samples each contained duplicate isolates. After 93 duplicate isolates were removed, the remaining 102 isolates were delineated into 29 clonal complexes (CCs) or singletons based on their sequence type. The five most prevalent CCs were CC155, CC1, CC5, CC87, and CC321. The Shannon's diversity index for clones per food group ranged from 1.49 for dairy to 2.32 for produce isolates, which were not significantly different in pairwise comparisons. The most common molecular serogroup as determined by in-silico analysis was IIa (45.6%), followed by IIb (27.2%), IVb (20.4%), and IIc (4.9%). The proportions of isolates within lineages I, II, and III were 48.0%, 50.0% and 2.0%, respectively. Full-length inlA was present in 89.3% of isolates. Listeria pathogenicity island 3 (LIPI-3) and LIPI-4 were found in 51% and 30.6% of lineage I isolates, respectively. Stress survival islet 1 (SSI-1) was present in 34.7% of lineage I isolates, 80.4% of lineage II isolates and the 2 lineage III isolates; SSI-2 was present only in the CC121 isolate. Plasmids were found in 48% of isolates, including 24.5% of lineage I isolates and 72.5% of lineage II isolates. Among the plasmid-carrying isolates, 100% contained at least one cadmium resistance cassette and 89.8% contained bcrABC, involved in quaternary ammonium compound tolerance. Multiple clusters of isolates from different food samples were identified by cgMLST which, along with available metadata, could aid in the investigation of possible cross-contamination and persistence events.
Collapse
Affiliation(s)
- Yi Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Régis Pouillot
- Consultant, Buenos Aires, Argentina, United States of America
| | - Sherri Dennis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Zhihan Xian
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - John B. Luchansky
- USDA Agricultural Research Service, Wyndmoor, Pennsylvania, United States of America
| | - Anna C. S. Porto-Fett
- USDA Agricultural Research Service, Wyndmoor, Pennsylvania, United States of America
| | - James A. Lindsay
- USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Thomas S. Hammack
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Jane M. Van Doren
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
296
|
Liao J, Orsi RH, Carroll LM, Wiedmann M. Comparative genomics reveals different population structures associated with host and geographic origin in antimicrobial-resistant Salmonella enterica. Environ Microbiol 2020; 22:2811-2828. [PMID: 32337816 DOI: 10.1111/1462-2920.15014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023]
Abstract
Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
297
|
Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A, Steglich M, Conchillo-Solé O, Scherer IC, Mamat U, Luz CF, De Bruyne K, Utpatel C, Yero D, Gibert I, Daura X, Kampmeier S, Rahman NA, Kresken M, van der Werf TS, Alio I, Streit WR, Zhou K, Schwartz T, Rossen JWA, Farhat MR, Schaible UE, Nübel U, Rupp J, Steinmann J, Niemann S, Kohl TA. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun 2020; 11:2044. [PMID: 32341346 PMCID: PMC7184733 DOI: 10.1038/s41467-020-15123-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals. Multidrug resistance of the opportunistic pathogen Stenotrophomonas maltophilia is an increasing problem. Here, analyzing strains from 22 countries, the authors show that the S. maltophilia complex is divided into 23 monophyletic lineages and find evidence for intra-hospital transmission.
Collapse
Affiliation(s)
- Matthias I Gröschel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Conor J Meehan
- School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- bioMérieux, Applied Maths NV, Keistraat 120, 9830, St-Martens-Latem, Belgium
| | - Aitor Gonzaga
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Oscar Conchillo-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabell-Christin Scherer
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Uwe Mamat
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christian F Luz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Katrien De Bruyne
- bioMérieux, Applied Maths NV, Keistraat 120, 9830, St-Martens-Latem, Belgium
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Daniel Yero
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isidre Gibert
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | | | - Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany.,Rheinische Fachhochschule Köln gGmbH, Cologne, Germany
| | - Tjip S van der Werf
- Department of Pulmonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ifey Alio
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.,Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Thomas Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Eggenstein- Leopoldshafen, Germany
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Ulrich E Schaible
- Cellular Microbiology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany.,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany.,Germany Center for Infection Research (DZIF), partner site Hannover - Braunschweig, Cologne, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Braunschweig, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Medical Center Essen, Essen, Germany.,Medical Microbiology and Infection Prevention, Institute of Clinical Hygiene, Paracelsus Medical Private University, Klinikum Nürnberg, Nuremberg, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany. .,Leibniz Research Alliance INFECTIONS'21, Cologne, Germany.
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Hamburg - Lübeck - Borstel - Riems, Cologne, Germany
| |
Collapse
|
298
|
Varadarajan AR, Goetze S, Pavlou MP, Grosboillot V, Shen Y, Loessner MJ, Ahrens CH, Wollscheid B. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. J Proteome Res 2020; 19:1647-1662. [PMID: 32091902 DOI: 10.1021/acs.jproteome.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Maria P Pavlou
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Virginie Grosboillot
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
299
|
Rolhion N, Chassaing B, Nahori MA, de Bodt J, Moura A, Lecuit M, Dussurget O, Bérard M, Marzorati M, Fehlner-Peach H, Littman DR, Gewirtz AT, Van de Wiele T, Cossart P. A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection. Cell Host Microbe 2020; 26:691-701.e5. [PMID: 31726031 PMCID: PMC6854461 DOI: 10.1016/j.chom.2019.10.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Understanding the role of the microbiota components in either preventing or favoring enteric infections is critical. Here, we report the discovery of a Listeria bacteriocin, Lmo2776, which limits Listeria intestinal colonization. Oral infection of conventional mice with a Δlmo2776 mutant leads to a thinner intestinal mucus layer and higher Listeria loads both in the intestinal content and deeper tissues compared to WT Listeria. This latter difference is microbiota dependent, as it is not observed in germ-free mice. Strikingly, it is phenocopied by pre-colonization of germ-free mice before Listeria infection with Prevotella copri, an abundant gut-commensal bacteria, but not with the other commensals tested. We further show that Lmo2776 targets P. copri and reduces its abundance. Together, these data unveil a role for P.copri in exacerbating intestinal infection, highlighting that pathogens such as Listeria may selectively deplete microbiota bacterial species to avoid excessive inflammation. L. monocytogenes secretes a bacteriocin (Lmo2776) homologous to the lactococcin 972 Lmo2776 controls Listeria intestinal colonization in a microbiota-dependent manner Lmo2776 targets the abundant gut commensal Prevotella copri Presence of P. copri exacerbates infection
Collapse
Affiliation(s)
- Nathalie Rolhion
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Benoit Chassaing
- Neurosciences Institute, Georgia State University (GSU), Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Jana de Bodt
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexandra Moura
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, 75743 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France; Université de Paris, 75013 Paris, France
| | - Marion Bérard
- Animalerie Centrale, Department of Technology and Scientific Programmes, Institut Pasteur, 75015 Paris, France
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Hannah Fehlner-Peach
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France.
| |
Collapse
|
300
|
Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl Environ Microbiol 2020; 86:AEM.02493-19. [PMID: 31900305 PMCID: PMC7054086 DOI: 10.1128/aem.02493-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.). Whole-genome sequencing (WGS) is becoming the standard method for subtyping Listeria monocytogenes. Interpretation of WGS data for isolates from foods and associated environments is, however, challenging due to a lack of detailed data on Listeria evolution in processing facilities. Here, we used previously collected WGS data for 40 L. monocytogenes isolates obtained from a cold-smoked salmon processing facility between 1998 and 2015 to probe the L. monocytogenes molecular evolution in this facility, combined with phenotypic assessment of selected isolates. Isolates represented three clusters (1, 2, and 3); cluster 3 isolates (n = 32) were obtained over 18 years. The average mutation rate for cluster 3 was estimated as 1.15 × 10−7 changes per nucleotide per year (∼0.35 changes per genome per year); the most recent common ancestors (MRCAs) of subclusters 3a and 3b were estimated to have occurred around 1958 and 1974, respectively, within the age of the facility, suggesting long-term persistence in this facility. Extensive prophage diversity was observed within subclusters 3a and 3b, which have one shared and six unique prophage profiles for each subcluster (with 16 prophage profiles found among all 40 isolates). The plasmid-borne sanitizer tolerance operon bcrABC was found in all cluster 2 and 3 isolates, while the transposon-borne sanitizer tolerance gene qacH was found in one cluster 1 isolate; presence of these genes was correlated with the ability to survive increased concentrations of sanitizers. Selected isolates showed significant variation in the ability to attach to surfaces, with persistent isolates attaching better than transient isolates at 21°C. IMPORTANCE Knowledge about the genetic evolution of L. monocytogenes in food processing facilities over multiple years is generally lacking. This information is critical to interpret WGS findings involving food or food-associated isolates. This study suggests that L. monocytogenes that persists in processing facilities may evolve with a low single-nucleotide mutation rate mostly driven by negative (i.e., purifying) selection but with rapid diversification of prophages. Hence, isolation of L. monocytogenes with few single-nucleotide polymorphism (SNP) differences in different locations (e.g., supplier plants and receiving plants) is possible, highlighting the importance of epidemiological and detailed isolate metadata for interpreting WGS data in traceback investigation. Our study also shows how advanced WGS data analyses can be used to support root cause analysis efforts and may, for example, pinpoint the time when a persistence event started (which then potentially could be linked to facility changes, introduction of new equipment, etc.).
Collapse
|