251
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
252
|
Fernandes L, Moraes N, Sagrillo FS, Magalhães AV, de Moraes MC, Romão L, Kelly JW, Foguel D, Grimster NP, Palhano FL. An ortho-Iminoquinone Compound Reacts with Lysine Inhibiting Aggregation while Remodeling Mature Amyloid Fibrils. ACS Chem Neurosci 2017; 8:1704-1712. [PMID: 28425704 DOI: 10.1021/acschemneuro.7b00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. It has been shown that lysine residues play a key role in the formation of these aggregates. Thus, the ability to disrupt aggregate formation by covalently modifying lysine residues could lead to the discovery of therapeutically relevant antiamyloidogenesis compounds. Herein, we demonstrate that an ortho-iminoquinone (IQ) can be utilized to inhibit amyloid aggregation. Using alpha-synuclein and Aβ1-40 as model amyloidogenic proteins, we observed that IQ was able to react with lysine residues and reduce amyloid aggregation. We also observed that IQ reacted with free amines within the amyloid fibrils preventing their dissociation and seeding capacity.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto
de Bioquímica Médica Leopoldo de Meis, Programa de Biologia
Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Nathalia Moraes
- Instituto
de Bioquímica Médica Leopoldo de Meis, Programa de Biologia
Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Fernanda S. Sagrillo
- Department
of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi, Rio de Janeiro 24020-141, Brazil
| | - Augusto V. Magalhães
- Instituto
de Bioquímica Médica Leopoldo de Meis, Programa de Biologia
Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Marcela C. de Moraes
- Department
of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi, Rio de Janeiro 24020-141, Brazil
| | - Luciana Romão
- Universidade Federal do Rio de Janeiro, Pólo
de Xerém, Duque de Caxias, Rio de Janeiro 25245-390, Brazil
| | - Jeffery W. Kelly
- Departments
of Chemistry and Molecular Medicine and the Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Foguel
- Instituto
de Bioquímica Médica Leopoldo de Meis, Programa de Biologia
Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Neil P. Grimster
- Departments
of Chemistry and Molecular Medicine and the Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Fernando L. Palhano
- Instituto
de Bioquímica Médica Leopoldo de Meis, Programa de Biologia
Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
253
|
Haney EF, Wu BC, Lee K, Hilchie AL, Hancock REW. Aggregation and Its Influence on the Immunomodulatory Activity of Synthetic Innate Defense Regulator Peptides. Cell Chem Biol 2017; 24:969-980.e4. [PMID: 28807783 DOI: 10.1016/j.chembiol.2017.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/05/2017] [Accepted: 07/07/2017] [Indexed: 01/21/2023]
Abstract
There is increasing interest in developing cationic host defense peptides (HDPs) and their synthetic derivatives as antimicrobial, immunomodulatory, and anti-biofilm agents. These activities are often evaluated without considering biologically relevant concentrations of salts or serum; furthermore certain HDPs have been shown to aggregate in vitro. Here we examined the effect of aggregation on the immunomodulatory activity of a synthetic innate defense regulator peptide, 1018 (VRLIVAVRIWRR-NH2). A variety of salts and solutes were screened to determine their influence on 1018 aggregation, revealing that this peptide "salts out" of solution in an anion-specific and concentration-dependent manner. Furthermore, the immunomodulatory activity of 1018 was found to be inhibited under aggregation-promoting conditions. A series of 1018 derivatives were synthesized with the goal of disrupting this self-assembly process. Indeed, some derivatives exhibited reduced aggregation while maintaining certain immunomodulatory functions, demonstrating that it is possible to engineer optimized synthetic HDPs to avoid unwanted peptide aggregation.
Collapse
Affiliation(s)
- Evan F Haney
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #232, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Bing Catherine Wu
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #232, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Kelsey Lee
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #232, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Ashley L Hilchie
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #232, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Robert E W Hancock
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #232, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
254
|
Pisani L, De Palma A, Giangregorio N, Miniero DV, Pesce P, Nicolotti O, Campagna F, Altomare CD, Catto M. Mannich base approach to 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone: A water-soluble prodrug for a multitarget inhibition of cholinesterases, beta-amyloid fibrillization and oligomer-induced cytotoxicity. Eur J Pharm Sci 2017; 109:381-388. [PMID: 28801274 DOI: 10.1016/j.ejps.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
Targeting protein aggregation for the therapy of neurodegenerative diseases remains elusive for medicinal chemists, despite a number of small molecules known to interfere in amyloidogenesis, particularly of amyloid beta (Aβ) protein. Starting from previous findings in the antiaggregating activity of a class of indolin-2-ones inhibiting Aβ fibrillization, 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone 1 was identified as a multitarget inhibitor of Aβ aggregation and cholinesterases with IC50s in the low μM range. With the aim of increasing aqueous solubility, a Mannich-base functionalization led to the synthesis of N-methylpiperazine derivative 2. At acidic pH, an outstanding solubility increase of 2 over the parent compound 1 was proved through a turbidimetric method. HPLC analysis revealed an improved stability of the Mannich base 2 at pH2 along with a rapid release of 1 in human serum as well as an outstanding hydrolytic stability of the parent hydrazone. Coincubation of Aβ1-42 with 2 resulted in the accumulation of low MW oligomers, as detected with PICUP assay. Cell assays on SH-SY5Y cells revealed that 2 exerts strong cytoprotective effects in both cell viability and radical quenching assays, mainly related to its active metabolite 1. These findings show that 2 drives the formation of non-toxic, off-pathway Aβ oligomers unable to trigger the amyloid cascade and toxicity.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Annalisa De Palma
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, via G. Amendola 165/A, I-70126 Bari, Italy
| | - Daniela V Miniero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Pesce
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Francesco Campagna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
255
|
|
256
|
Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 2017; 114:8770-8775. [PMID: 28760994 DOI: 10.1073/pnas.1705091114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register β-sheet structures and identifies a target for structure-based therapeutics in ALS.
Collapse
|
257
|
Li M, Dong Y, Yu X, Li Y, Zou Y, Zheng Y, He Z, Liu Z, Quan J, Bu X, Wu H. Synthesis and Evaluation of Diphenyl Conjugated Imidazole Derivatives as Potential Glutaminyl Cyclase Inhibitors for Treatment of Alzheimer's Disease. J Med Chem 2017; 60:6664-6677. [PMID: 28700245 DOI: 10.1021/acs.jmedchem.7b00648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High expression of glutaminyl cyclase (QC) contributes to the initiation of Alzheimer's disease (AD) by catalyzing the generation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides. Preventing the generation of pE-Aβs by QC inhibition has been suggested as a novel approach to a disease-modifying therapy for AD. In this work, a series of diphenyl conjugated imidazole derivatives (DPCIs) was rationally designed and synthesized. Analogues with this scaffold exhibited potent inhibitory activity against human QC (hQC) and good in vitro blood-brain barrier (BBB) permeability. Further assessments corroborated that the selected hQC inhibitor 28 inhibits the activity of hQC, dramatically reduces the generation of pE-Aβs in cultured cells and in vivo, and improves the behavior of AD mice.
Collapse
Affiliation(s)
- Manman Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yao Dong
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Xi Yu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yue Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Yongdong Zou
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yizhi Zheng
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Zhigang Liu
- School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Junmin Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School , Shenzhen 518055, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University , Guangzhou, 510006, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
258
|
Angelov B, Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. NANOSCALE 2017; 9:9797-9804. [PMID: 28682396 DOI: 10.1039/c7nr03454g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale organization of the tropomyosin-related kinase receptor type B (TrkB), a promising therapeutic target for severe neurodegenerative and psychiatric disorders, is examined by stimulated emission depletion (STED) microscopy using the deconvoluted gated STED option. The performed immunofluorescence nanoscopic subdiffraction imaging of the membrane receptor localization reveals that clusters of oligomeric TrkB states and randomly organized nanodomains are formed in the membranes of differentiated human neuroblastoma SH-SY5Y cells, which are studied as an in vitro model of neurodegeneration. Despite that the monomeric (isolated) states of the receptor cannot be distinguished from its dimeric forms in such images, TrkB receptor dimers (or couple of individual monomers) are visualized at super-resolution as single pixels in the magnified Huygens-deconvoluted gated STED images. The clusters of higher-order TrkB oligomers are of dynamic nature rather than of a fixed stoichiometry. The propensity for membrane protein clustering as well as the dissociation of the TrkB receptors nanodomains can be modulated by neurotherapeutic formulations containing ω-3 polyunsaturated docosahexaenoic acid (DHA). Nanomolar concentrations of DHA change the receptor topology and lead to disruption of the cluster phases. This result is of therapeutic importance for TrkB receptor availability upon ligand binding as DHA favours the mobility and the dynamic distribution of the protein populations in the cell membranes.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | | |
Collapse
|
259
|
Amylin Receptor: A Potential Therapeutic Target for Alzheimer's Disease. Trends Mol Med 2017; 23:709-720. [PMID: 28694141 DOI: 10.1016/j.molmed.2017.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/29/2023]
Abstract
Alzheimer'sdisease (AD) is a progressive neurodegenerative disorder, characterized by senile plaques constituting extracellular deposits of β-amyloid (Aβ) fibrils. Since Aβ accumulation in the brain is considered an early event preceding, by decades, cognitive dysfunction, disease-modifying treatments are aimed at facilitating clearance of this protein from the brain or ameliorating its toxic effects. Recent studies have identified the amylin receptor as a capable mediator of the deleterious actions of Aβ and furthermore, administration of amylin receptor-based peptides has been shown to improve spatial memory and learning in transgenic mouse models of AD. Here, by discussing available evidence, we posit that the amylin receptor could be considered a potential therapeutic target for AD, and present the rationale for using amylin receptor antagonists to treat this debilitating condition.
Collapse
|
260
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
261
|
Chemerovski‐Glikman M, Frenkel‐Pinter M, Mdah R, Abu‐Mokh A, Gazit E, Segal D. Inhibition of the Aggregation and Toxicity of the Minimal Amyloidogenic Fragment of Tau by Its Pro‐Substituted Analogues. Chemistry 2017; 23:9618-9624. [DOI: 10.1002/chem.201701218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Marina Chemerovski‐Glikman
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Moran Frenkel‐Pinter
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Ragad Mdah
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Amjaad Abu‐Mokh
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
- Department of Materials Science and EngineeringIby and Aladar Fleischman Faculty of EngineeringTel Aviv University Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| |
Collapse
|
262
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
263
|
Plate L, Wiseman RL. Regulating Secretory Proteostasis through the Unfolded Protein Response: From Function to Therapy. Trends Cell Biol 2017. [PMID: 28647092 DOI: 10.1016/j.tcb.2017.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imbalances in secretory proteostasis induced by genetic, environmental, or aging-related insults are pathologically associated with etiologically diverse protein misfolding diseases. To protect the secretory proteome from these insults, organisms evolved stress-responsive signaling pathways that regulate the composition and activity of biologic pathways involved in secretory proteostasis maintenance. The most prominent of these is the endoplasmic reticulum (ER) unfolded protein response (UPR), which functions to regulate ER proteostasis in response to ER stress. While the signaling mechanisms involved in UPR activation are well defined, the impact of UPR activation on secretory proteostasis is only now becoming clear. Here, we highlight recent reports defining how activation of select UPR signaling pathways influences proteostasis within the ER and downstream secretory environments. Furthermore, we describe recent evidence that highlights the therapeutic potential for targeting UPR signaling pathways to correct pathologic disruption in secretory proteostasis associated with diverse types of protein misfolding diseases.
Collapse
Affiliation(s)
- Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
264
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
265
|
Velander P, Wu L, Henderson F, Zhang S, Bevan DR, Xu B. Natural product-based amyloid inhibitors. Biochem Pharmacol 2017; 139:40-55. [PMID: 28390938 DOI: 10.1016/j.bcp.2017.04.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 11/26/2022]
Abstract
Many chronic human diseases, including multiple neurodegenerative diseases, are associated with deleterious protein aggregates, also called protein amyloids. One common therapeutic strategy is to develop protein aggregation inhibitors that can slow down, prevent, or remodel toxic amyloids. Natural products are a major class of amyloid inhibitors, and several dozens of natural product-based amyloid inhibitors have been identified and characterized in recent years. These plant- or microorganism-extracted compounds have shown significant therapeutic potential from in vitro studies as well as in vivo animal tests. Despite the technical challenges of intrinsic disordered or partially unfolded amyloid proteins that are less amenable to characterizations by structural biology, a significant amount of research has been performed, yielding biochemical and pharmacological insights into how inhibitors function. This review aims to summarize recent progress in natural product-based amyloid inhibitors and to analyze their mechanisms of inhibition in vitro. Major classes of natural product inhibitors and how they were identified are described. Our analyses comprehensively address the molecular interactions between the inhibitors and relevant amyloidogenic proteins. These interactions are delineated at molecular and atomic levels, which include covalent, non-covalent, and metal-mediated mechanisms. In vivo animal studies and clinical trials have been summarized as an extension. To enhance natural product bioavailability in vivo, emerging work using nanocarriers for delivery has also been described. Finally, issues and challenges as well as future development of such inhibitors are envisioned.
Collapse
Affiliation(s)
- Paul Velander
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Frances Henderson
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David R Bevan
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA; Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
266
|
De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D'Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 2017; 242:24-38. [PMID: 28035683 DOI: 10.1002/path.4872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frederik De Smet
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA
| | - Mirian Saiz Rubio
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Daphne Hompes
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Evelyne Naus
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Greet De Baets
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Tobias Langenberg
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bert Houben
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Filip Claes
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Sarah Charbonneau
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javier Delgado Blanco
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Stephane Plaisance
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Shakti Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Colinda Simons
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet van den Brandt
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Manon Van England
- Department of Pathology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Centre for Gynaecological Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Xavier Sagaert
- Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Frederic Rousseau
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
267
|
Shorter J. Designer protein disaggregases to counter neurodegenerative disease. Curr Opin Genet Dev 2017; 44:1-8. [PMID: 28208059 DOI: 10.1016/j.gde.2017.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/07/2017] [Accepted: 01/26/2017] [Indexed: 01/21/2023]
Abstract
Protein misfolding and aggregation unify several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. There are no effective therapeutics for these disorders and none that target the reversal of the aberrant protein misfolding and aggregation that cause disease. Here, I showcase important advances to define, engineer, and apply protein disaggregases to mitigate deleterious protein misfolding and counter neurodegeneration. I focus on two exogenous protein disaggregases, Hsp104 from yeast and gene 3 protein from bacteriophages, as well as endogenous human protein disaggregases, including: (a) Hsp110, Hsp70, Hsp40, and small heat-shock proteins; (b) HtrA1; and (c) NMNAT2 and Hsp90. I suggest that protein-disaggregase modalities can be channeled to treat numerous fatal and presently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
268
|
Guzman-Villanueva D, Migrino RQ, Truran S, Karamanova N, Franco DA, Burciu C, Senapati S, Nedelkov D, Hari P, Weissig V. PEGylated-nanoliposomal clusterin for amyloidogenic light chain-induced endothelial dysfunction. J Liposome Res 2017; 28:97-105. [PMID: 28103719 PMCID: PMC5591079 DOI: 10.1080/08982104.2016.1274756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.
Collapse
Affiliation(s)
- Diana Guzman-Villanueva
- a Department of Pharmaceutical Sciences , College of Pharmacy-Glendale, Midwestern University , AZ , USA.,b Nanomedicine Center of Excellence in Translation Cancer Research , Glendale , AZ , USA
| | - Raymond Q Migrino
- c Phoenix Veterans Affairs Health Care System , AZ , USA.,d University of Arizona College of Medicine-Phoenix , AZ , USA
| | - Seth Truran
- c Phoenix Veterans Affairs Health Care System , AZ , USA
| | | | | | - Camelia Burciu
- c Phoenix Veterans Affairs Health Care System , AZ , USA
| | - Subhadip Senapati
- e Department of Ophthalmology and Visual Sciences , Case Western Reserve University , OH , USA
| | - Dobrin Nedelkov
- f Biodesign Institute, Arizona State University , AZ , USA , and
| | - Parameswaran Hari
- g Department of Medicine , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Volkmar Weissig
- a Department of Pharmaceutical Sciences , College of Pharmacy-Glendale, Midwestern University , AZ , USA.,b Nanomedicine Center of Excellence in Translation Cancer Research , Glendale , AZ , USA
| |
Collapse
|
269
|
Sami N, Rahman S, Kumar V, Zaidi S, Islam A, Ali S, Ahmad F, Hassan MI. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int J Neurosci 2017; 127:1047-1057. [PMID: 28110595 DOI: 10.1080/00207454.2017.1286339] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are major components of the biological functions in a cell. Biology demands that a protein must fold into its stable three-dimensional structure to become functional. In an unfavorable cellular environment, protein may get misfolded resulting in its aggregation. These conformational disorders are directly related to the tissue damage resulting in cellular dysfunction giving rise to different diseases. This way, several neurodegenerative diseases such as Alzheimer, Parkinson Huntington diseases and amyotrophic lateral sclerosis are caused. Misfolding of the protein is prevented by innate molecular chaperones of different classes. It is envisaged that work on this line is likely to translate the knowledge into the development of possible strategies for early diagnosis and efficient management of such related human diseases. The present review deals with the human neurodegenerative diseases caused due to the protein misfolding highlighting pathomechanisms and therapeutic intervention.
Collapse
Affiliation(s)
- Neha Sami
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Safikur Rahman
- b Department of Medical Biotechnology , Yeungnam University , Gyeongsan , South Korea
| | - Vijay Kumar
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sobia Zaidi
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Sher Ali
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
270
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
271
|
Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28280572 DOI: 10.5061/dryad.b8c4r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Formation of amyloid fibrils underlies a wide range of human disorders, including Alzheimer's and prion diseases. The amyloid fibrils can be readily detected thanks to thioflavin T (ThT), a small molecule that gives strong fluorescence upon binding to amyloids. Using the amyloid fibrils of Aβ40 and Aβ42 involved in Alzheimer's disease, and of yeast prion protein Ure2, here we study three aspects of ThT binding to amyloids: quantification of amyloid fibrils using ThT, the optimal ThT concentration for monitoring amyloid formation and the effect of ThT on aggregation kinetics. We show that ThT fluorescence correlates linearly with amyloid concentration over ThT concentrations ranging from 0.2 to 500 µM. At a given amyloid concentration, the plot of ThT fluorescence versus ThT concentration exhibits a bell-shaped curve. The maximal fluorescence signal depends mostly on the total ThT concentration, rather than amyloid to ThT ratio. For the three proteins investigated, the maximal fluorescence is observed at ThT concentrations of 20-50 µM. Aggregation kinetics experiments in the presence of different ThT concentrations show that ThT has little effect on aggregation at concentrations of 20 µM or lower. ThT at concentrations of 50 µM or more could affect the shape of the aggregation curves, but this effect is protein-dependent and not universal.
Collapse
Affiliation(s)
- Christine Xue
- Department of Neurology, Brain Research Institute, Molecular Biology Institute , University of California , Los Angeles, CA 90095 , USA
| | - Tiffany Yuwen Lin
- Department of Neurology, Brain Research Institute, Molecular Biology Institute , University of California , Los Angeles, CA 90095 , USA
| | - Dennis Chang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute , University of California , Los Angeles, CA 90095 , USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute , University of California , Los Angeles, CA 90095 , USA
| |
Collapse
|
272
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
273
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
274
|
Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160696. [PMID: 28280572 PMCID: PMC5319338 DOI: 10.1098/rsos.160696] [Citation(s) in RCA: 454] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Formation of amyloid fibrils underlies a wide range of human disorders, including Alzheimer's and prion diseases. The amyloid fibrils can be readily detected thanks to thioflavin T (ThT), a small molecule that gives strong fluorescence upon binding to amyloids. Using the amyloid fibrils of Aβ40 and Aβ42 involved in Alzheimer's disease, and of yeast prion protein Ure2, here we study three aspects of ThT binding to amyloids: quantification of amyloid fibrils using ThT, the optimal ThT concentration for monitoring amyloid formation and the effect of ThT on aggregation kinetics. We show that ThT fluorescence correlates linearly with amyloid concentration over ThT concentrations ranging from 0.2 to 500 µM. At a given amyloid concentration, the plot of ThT fluorescence versus ThT concentration exhibits a bell-shaped curve. The maximal fluorescence signal depends mostly on the total ThT concentration, rather than amyloid to ThT ratio. For the three proteins investigated, the maximal fluorescence is observed at ThT concentrations of 20-50 µM. Aggregation kinetics experiments in the presence of different ThT concentrations show that ThT has little effect on aggregation at concentrations of 20 µM or lower. ThT at concentrations of 50 µM or more could affect the shape of the aggregation curves, but this effect is protein-dependent and not universal.
Collapse
Affiliation(s)
| | | | | | - Zhefeng Guo
- Author for correspondence: Zhefeng Guo e-mail:
| |
Collapse
|
275
|
Dou WT, Chen W, He XP, Su J, Tian H. Vibration-Induced-Emission (VIE) for imaging amyloid β fibrils. Faraday Discuss 2017; 196:395-402. [DOI: 10.1039/c6fd00156d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper discusses the use of N,N′-disubstituted-dihydrodibenzo[a,c]phenazines with typical Vibration-Induced-Emission (VIE) properties for imaging amyloid β (Aβ) fibrils, which are a signature of neurological disorders such as Alzheimer's disease. A water-soluble VIEgen with a red fluorescence emission shows a pronounced, blue-shifted emission with Aβ peptide monomers and fibrils. The enhancement in blue fluorescence can be ascribed to the restriction of the molecular vibration by selectively binding to Aβ. We determine an increasing blue-to-red emission ratio of the VIEgen with both the concentration and fibrogenesis time of Aβ, thereby enabling a ratiometric detection of Aβ in its different morphological forms. Importantly, the VIEgen was proven to be suitable for the fluorescence imaging of small Aβ plaques in the hippocampus of a transgenic mouse brain (five months old), with the blue and red emissions well overlapped on the Aβ. This research offers a new rationale to design molecular VIE probes for biological applications.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Wei Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jianhua Su
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|
276
|
Enríquez P. CRISPR-Mediated Epigenome Editing. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:471-486. [PMID: 28018139 PMCID: PMC5168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Mounting evidence has called into question our understanding of the role that the central dogma of molecular biology plays in human pathology. The conventional view that elucidating the mechanisms for translating genes into proteins can account for a panoply of diseases has proven incomplete. Landmark studies point to epigenetics as a missing piece of the puzzle. However, technological limitations have hindered the study of specific roles for histone post-translational modifications, DNA modifications, and non-coding RNAs in regulation of the epigenome and chromatin structure. This feature highlights CRISPR systems, including CRISPR-Cas9, as novel tools for targeted epigenome editing. It summarizes recent developments in the field, including integration of optogenetic and functional genomic approaches to explore new therapeutic opportunities, and underscores the importance of mitigating current limitations in the field. This comprehensive, analytical assessment identifies current research gaps, forecasts future research opportunities, and argues that as epigenome editing technologies mature, overcoming critical challenges in delivery, specificity, and fidelity should clear the path to bring these technologies into the clinic.
Collapse
Affiliation(s)
- Paul Enríquez
- To whom all correspondence should be addressed: Paul Enríquez, Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
277
|
Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature 2016; 539:227-235. [PMID: 27830791 DOI: 10.1038/nature20416] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular β-sheets, which form the cross-β-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - David S Eisenberg
- UCLA-DOE Institute, Los Angeles, California 90095-1570, USA.,Howard Hughes Medical Institute, Los Angeles, California 90095-1570, USA
| |
Collapse
|
278
|
Simoni E, Caporaso R, Bergamini C, Fiori J, Fato R, Miszta P, Filipek S, Caraci F, Giuffrida ML, Andrisano V, Minarini A, Bartolini M, Rosini M. Polyamine Conjugation as a Promising Strategy To Target Amyloid Aggregation in the Framework of Alzheimer's Disease. ACS Med Chem Lett 2016; 7:1145-1150. [PMID: 27994754 PMCID: PMC5150688 DOI: 10.1021/acsmedchemlett.6b00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 01/15/2023] Open
Abstract
![]()
Spermine
conjugates 2–6, carrying
variously decorated 3,5-dibenzylidenepiperidin-4-one as bioactive
motives, were designed to direct antiaggregating properties into mitochondria,
using a polyamine functionality as the vehicle tool. The study confirmed
mitochondrial import of the catechol derivative 2, which
displayed effective antiaggregating activity and neuroprotective effects
against Aβ-induced toxicity. Notably, a key functional role
for the polyamine motif in Aβ molecular recognition was also
unraveled. This experimental readout, which was supported by in silico
studies, gives important new insight into the polyamine’s action.
Hence, we propose polyamine conjugation as a promising strategy for
the development of neuroprotectant leads that may contribute to decipher
the complex picture of Aβ toxicity.
Collapse
Affiliation(s)
- Elena Simoni
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberta Caporaso
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Fiori
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Romana Fato
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Przemyslaw Miszta
- Faculty of Chemistry, Biological & Chemical Research Centre University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological & Chemical Research Centre University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Filippo Caraci
- IRCCS
Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Via Conte Ruggero 73, 94018 Troina, Enna, Italy
- Department of Drug Sciences, University of Catania, Viale A.
Doria 6, 95125 Catania, Italy
| | - Maria Laura Giuffrida
- Institute
of Biostructure and Bioimaging, National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Vincenza Andrisano
- Department
for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto
237, 47921 Rimini, Italy
| | - Anna Minarini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
279
|
Groh M, Albulescu LO, Cristini A, Gromak N. Senataxin: Genome Guardian at the Interface of Transcription and Neurodegeneration. J Mol Biol 2016; 429:3181-3195. [PMID: 27771483 DOI: 10.1016/j.jmb.2016.10.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 12/12/2022]
Abstract
R-loops comprise an RNA/DNA hybrid and a displaced single-stranded DNA. They play crucial biological functions and are implicated in neurological diseases, including ataxias, amyotrophic lateral sclerosis, nucleotide expansion disorders (Friedreich ataxia and fragile X syndrome), and cancer. Currently, it is unclear which mechanisms cause R-loop structures to become pathogenic. The RNA/DNA helicase senataxin (SETX) is one of the best characterised R-loop-binding factors in vivo. Mutations in SETX are linked to two neurodegenerative disorders: ataxia with oculomotor apraxia type 2 (AOA2) and amyotrophic lateral sclerosis type 4 (ALS4). SETX is known to play a role in transcription, neurogenesis, and antiviral response. Here, we review the causes of R-loop dysregulation in neurodegenerative diseases and how these structures contribute to pathomechanisms. We will discuss the importance of SETX as a genome guardian in suppressing aberrant R-loop formation and analyse how SETX mutations can lead to neurodegeneration in AOA2/ALS4. Finally, we will discuss the implications for other R-loop-associated neurodegenerative diseases and point to future therapeutic approaches to treat these disorders.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK.
| |
Collapse
|
280
|
Pellegrino S, Tonali N, Erba E, Kaffy J, Taverna M, Contini A, Taylor M, Allsop D, Gelmi ML, Ongeri S. β-Hairpin mimics containing a piperidine-pyrrolidine scaffold modulate the β-amyloid aggregation process preserving the monomer species. Chem Sci 2016; 8:1295-1302. [PMID: 28451272 PMCID: PMC5359901 DOI: 10.1039/c6sc03176e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder linked to oligomerization and fibrillization of amyloid β peptides, with Aβ1-42 being the most aggregative and neurotoxic one. We report herein the synthesis and conformational analysis of Aβ1-42-amyloid related β-hairpin peptidomimetics, built on a piperidine-pyrrolidine semi rigid β-turn inducer and bearing two small recognition peptide sequences, designed on oligomeric and fibril structures of Aβ1-42. According to these peptide sequences, a stable β-hairpin or a dynamic equilibrium between two possible architectures was observed. These original constructs are able to greatly delay the kinetics of Aβ1-42 aggregation process as demonstrated by thioflavin-T fluorescence, and transmission electron microscopy. Capillary electrophoresis indicates their ability to preserve the monomer species, inhibiting the formation of toxic oligomers. Furthermore, compounds protect against toxic effects of Aβ on neuroblastoma cells even at substoichiometric concentrations. This study is the first example of acyclic small β-hairpin mimics possessing such a highly efficient anti-aggregation activity. The protective effect is more pronounced than that observed with molecules which have undergone clinical trials. The structural elements made in this study provide valuable insights in the understanding of the aggregation process and insights to explore the design of novel acyclic β-hairpin targeting other types of amyloid-forming proteins.
Collapse
Affiliation(s)
- S Pellegrino
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - N Tonali
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| | - E Erba
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - J Kaffy
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| | - M Taverna
- Protéines et Nanotechnologies en Sciences Séparatives , Institut Galien Paris-Sud , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France
| | - A Contini
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - M Taylor
- Lancaster University , Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster LA1 4YQ , UK
| | - D Allsop
- Lancaster University , Division of Biomedical and Life Sciences , Faculty of Health and Medicine , Lancaster LA1 4YQ , UK
| | - M L Gelmi
- DISFARM-Sez. Chimica Generale e Organica "A. Marchesini" , Universitá degli Studi di Milano , via Venezian 21 , 20133 Milano , Italy .
| | - S Ongeri
- Molécules Fluorées et Chimie Médicinale , BioCIS , Univ. Paris-Sud , CNRS , Université Paris Saclay , 5 rue Jean-Baptiste Clément , 92296 Châtenay-Malabry Cedex , France .
| |
Collapse
|
281
|
Chen JJ, Genereux JC, Suh EH, Vartabedian VF, Rius B, Qu S, Dendle MTA, Kelly JW, Wiseman RL. Endoplasmic Reticulum Proteostasis Influences the Oligomeric State of an Amyloidogenic Protein Secreted from Mammalian Cells. Cell Chem Biol 2016; 23:1282-1293. [PMID: 27720586 DOI: 10.1016/j.chembiol.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023]
Abstract
Transthyretin (TTR) is a tetrameric serum protein associated with multiple systemic amyloid diseases. In these disorders, TTR aggregates in extracellular environments through a mechanism involving rate-limiting dissociation of the tetramer to monomers, which then misfold and aggregate into soluble oligomers and amyloid fibrils that induce toxicity in distal tissues. Using an assay established herein, we show that highly destabilized, aggregation-prone TTR variants are secreted as both native tetramers and non-native conformations that accumulate as high-molecular-weight oligomers. Pharmacologic chaperones that promote endoplasmic reticulum (ER) proteostasis of destabilized TTR variants increase their fraction secreted as a tetramer and reduce extracellular aggregate populations. In contrast, disrupting ER proteostasis reduces the fraction of destabilized TTR secreted as a tetramer and increases extracellular aggregates. These results identify ER proteostasis as a factor that can affect conformational integrity and thus toxic aggregation of secreted amyloidogenic proteins associated with the pathology of protein aggregation diseases.
Collapse
Affiliation(s)
- John J Chen
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Joseph C Genereux
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eul Hyun Suh
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vincent F Vartabedian
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Bibiana Rius
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Song Qu
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA
| | - Maria T A Dendle
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W Kelly
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 North, Torrey Pines Road, MEM 220, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
282
|
Goedert M. The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies. Alzheimers Dement 2016; 12:1040-1050. [PMID: 27686274 DOI: 10.1016/j.jalz.2016.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pathological pathway leading from soluble to insoluble and filamentous tau underlies human tauopathies. This ordered assembly causes disease and is the gain-of-toxic function. It involves the transition from an intrinsically disordered monomer to a highly structured filament. Based on recent findings, one can divide the ordered assembly into propagation of pathology and neurodegeneration. Short tau fibrils constitute the major species of seed-competent tau in the brains of mice transgenic for human P301S tau. The molecular species of aggregated tau that are essential for neurodegeneration remain to be identified.
Collapse
Affiliation(s)
- Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge United Kingdom.
| |
Collapse
|
283
|
Yatsyna V, Bakker DJ, Salén P, Feifel R, Rijs AM, Zhaunerchyk V. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure. PHYSICAL REVIEW LETTERS 2016; 117:118101. [PMID: 27661721 DOI: 10.1103/physrevlett.117.118101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800 cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Daniël J Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Peter Salén
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
284
|
Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway. Nat Commun 2016; 7:12419. [PMID: 27546208 PMCID: PMC4996947 DOI: 10.1038/ncomms12419] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results support an aggregation initiation mechanism for Aβ-polyQ hybrids, and by extension for full-length Aβ peptides, in which a modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers. The resulting high local concentration of tethered amyloidogenic segments within these α-oligomers facilitates transition to a β-oligomer population that, via further remodelling and/or elongation steps, ultimately generates mature amyloid. Consistent with this mechanism, an engineered Aβ C-terminal fragment delays aggregation onset by Aβ-polyglutamine peptides and redirects assembly of Aβ42 fibrils. The elucidation of amyloid nucleation mechanisms remains challenging as early oligomeric intermediates are transient and difficult to distinguish. Here the authors use Aβ- polyglutamine hybrid peptides designed to slow and limit amyloid maturation to provide insights into the structures of Aβ self-assembly intermediates.
Collapse
|
285
|
A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System. Sci Rep 2016; 6:30633. [PMID: 27464832 PMCID: PMC4964355 DOI: 10.1038/srep30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Innovation in hypotheses is a key transformative driver for scientific development.
The conventional centralized hypothesis formulation approach, where a dominant
hypothesis is typically derived from a primary phenomenon, can, inevitably, impose
restriction on the range of conceivable experiments and legitimate hypotheses, and
ultimately impede understanding of the system of interest. We report herein the
proposal of a decentralized approach for the formulation of hypotheses, through
initial preconception-free phenomenon accumulation and subsequent reticular logical
reasoning processes. The two-step approach can provide an unbiased, panoramic view
of the system and as such should enable the generation of a set of more coherent and
therefore plausible hypotheses. As a proof-of-concept demonstration of the utility
of this open-ended approach, a hierarchical model has been developed for a prion
self-assembled system, allowing insight into hitherto elusive static and dynamic
features associated with this intriguing structure.
Collapse
|
286
|
Velander P, Wu L, Ray WK, Helm RF, Xu B. Amylin Amyloid Inhibition by Flavonoid Baicalein: Key Roles of Its Vicinal Dihydroxyl Groups of the Catechol Moiety. Biochemistry 2016; 55:4255-8. [DOI: 10.1021/acs.biochem.6b00578] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Velander
- Department of Biochemistry, ‡Center for Drug Discovery, and §Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Ling Wu
- Department of Biochemistry, ‡Center for Drug Discovery, and §Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - W. Keith Ray
- Department of Biochemistry, ‡Center for Drug Discovery, and §Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Richard F. Helm
- Department of Biochemistry, ‡Center for Drug Discovery, and §Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Bin Xu
- Department of Biochemistry, ‡Center for Drug Discovery, and §Translational Obesity Research Center, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
287
|
The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proc Natl Acad Sci U S A 2016; 113:E4708-15. [PMID: 27457957 DOI: 10.1073/pnas.1601091113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence strongly suggests that chaperone proteins are cytoprotective in neurodegenerative proteinopathies involving protein aggregation; for example, in the accumulation of aggregated α-synuclein into the Lewy bodies present in Parkinson's disease. Of the various chaperones known to be associated with neurodegenerative disease, the small secretory chaperone known as proSAAS (named after four residues in the amino terminal region) has many attractive properties. We show here that proSAAS, widely expressed in neurons throughout the brain, is associated with aggregated synuclein deposits in the substantia nigra of patients with Parkinson's disease. Recombinant proSAAS potently inhibits the fibrillation of α-synuclein in an in vitro assay; residues 158-180, containing a largely conserved element, are critical to this bioactivity. ProSAAS also exhibits a neuroprotective function; proSAAS-encoding lentivirus blocks α-synuclein-induced cytotoxicity in primary cultures of nigral dopaminergic neurons, and recombinant proSAAS blocks α-synuclein-induced cytotoxicity in SH-SY5Y cells. Four independent proteomics studies have previously identified proSAAS as a potential cerebrospinal fluid biomarker in various neurodegenerative diseases. Coupled with prior work showing that proSAAS blocks β-amyloid aggregation into fibrils, this study supports the idea that neuronal proSAAS plays an important role in proteostatic processes. ProSAAS thus represents a possible therapeutic target in neurodegenerative disease.
Collapse
|
288
|
Kurian SM, Novais M, Whisenant T, Gelbart T, Buxbaum JN, Kelly JW, Coelho T, Salomon DR. Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures. Theranostics 2016; 6:1792-809. [PMID: 27570551 PMCID: PMC4997237 DOI: 10.7150/thno.14584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/07/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Early diagnosis of familial transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease-modifying therapies. Endomyocardial biopsies are typically amyloid positive when cardiomyopathy is suspected, but this disease manifestation is generally diagnosed late. Early diagnosis is often difficult because patients exhibit apparent symptoms of polyneuropathy, but have a negative amyloid biopsy. Thus, there is a pressing need for an additional early diagnostic strategy for TTR-aggregation-associated polyneuropathy and cardiomyopathy. Methods and Findings: Global peripheral blood cell mRNA expression profiles from 263 tafamidis-treated and untreated V30M Familiar Amyloid Neuropathy patients, asymptomatic V30M carriers, and healthy, age- and sex-matched controls without TTR mutations were used to differentiate symptomatic from asymptomatic patients. We demonstrate that blood cell gene expression patterns reveal sex-independent, as well as male- and female-specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers. These signatures differentiated symptomatic patients from asymptomatic V30M carriers with >80% accuracy. There was a global downregulation of the eIF2 pathway and its associated genes in all symptomatic FAP patients. We also demonstrated that the molecular scores based on these signatures significantly trended toward normalized values in an independent cohort of 46 FAP patients after only 3 months of tafamidis treatment. Conclusions: This study identifies novel molecular signatures that differentiate symptomatic FAP patients from asymptomatic V30M carriers as well as affected males and females. We envision using this approach, initially in parallel with amyloid biopsies, to identify individuals who are asymptomatic gene carriers that may convert to FAP patients. Upon further validation, peripheral blood cell mRNA expression profiling could become an independent early diagnostic. This quantitative gene expression signature for symptomatic FAP could also become a biomarker to demonstrate significant disease-modifying effects of drugs and drug candidates. For example, when new disease modifiers are being evaluated in a FAP clinical trial, such surrogate biomarkers have the potential to provide an objective, quantitative and mechanistic molecular diagnostic of disease response to therapy.
Collapse
|
289
|
Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau. J Neurosci 2016; 36:762-72. [PMID: 26791207 DOI: 10.1523/jneurosci.3542-15.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent. Here, we have dissected the molecular characteristics of seed-competent tau species from the TgP301S tau mouse model using various biochemical techniques and assessed their seeding ability in cell and animal models. We found that sucrose gradient fractions from brain lysates seeded cellular tau aggregation only when large (>10 mer) aggregated, hyperphosphorylated (AT8- and AT100-positive) and nitrated tau was present. In contrast, there was no detectable seeding by fractions containing small, oligomeric (<6 mer) tau. Immunodepletion of the large aggregated AT8-positive tau strongly reduced seeding; moreover, fractions containing these species initiated the formation and spreading of filamentous tau pathology in vivo, whereas fractions containing tau monomers and small oligomeric assemblies did not. By electron microscopy, seed-competent sucrose gradient fractions contained aggregated tau species ranging from ring-like structures to small filaments. Together, these findings indicate that a range of filamentous tau aggregates are the major species that underlie the spreading of tau pathology in the P301S transgenic model. Significance statement: The spread of tau pathology from neuron to neuron is postulated to account for, or at least to contribute to, the overall propagation of tau pathology during the development of human tauopathies including Alzheimer's disease. It is therefore important to characterize the native tau species responsible for this process of seeding and pathology spreading. Here, we use several biochemical techniques to dissect the molecular characteristics of native tau protein conformers from TgP301S tau mice and show that seed-competent tau species comprise small fibrils capable of seeding tau pathology in cell and animal models. Characterization of seed-competent tau gives insight into disease mechanisms and therapeutic interventions.
Collapse
|
290
|
Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016; 37:672-688. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions.
Collapse
Affiliation(s)
- Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
291
|
Hughes RE, Nikolic K, Ramsay RR. One for All? Hitting Multiple Alzheimer's Disease Targets with One Drug. Front Neurosci 2016; 10:177. [PMID: 27199640 PMCID: PMC4842778 DOI: 10.3389/fnins.2016.00177] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
HIGHLIGHTS Many AD target combinations are being explored for multi-target drug design.New databases and models increase the potential of computational drug designLiraglutide and other antidiabetics are strong candidates for repurposing to AD.Donecopride a dual 5-HT/AChE inhibitor shows promise in pre-clinical studies Alzheimer's Disease is a complex and multifactorial disease for which the mechanism is still not fully understood. As new insights into disease progression are discovered, new drugs must be designed to target those aspects of the disease that cause neuronal damage rather than just the symptoms currently addressed by single target drugs. It is becoming possible to target several aspects of the disease pathology at once using multi-target drugs (MTDs). Intended as an introduction for non-experts, this review describes the key MTD design approaches, namely structure-based, in silico, and data-mining, to evaluate what is preventing compounds progressing through the clinic to the market. Repurposing current drugs using their off-target effects reduces the cost of development, time to launch, and the uncertainty associated with safety and pharmacokinetics. The most promising drugs currently being investigated for repurposing to Alzheimer's Disease are rasagiline, originally developed for the treatment of Parkinson's Disease, and liraglutide, an antidiabetic. Rational drug design can combine pharmacophores of multiple drugs, systematically change functional groups, and rank them by virtual screening. Hits confirmed experimentally are rationally modified to generate an effective multi-potent lead compound. Examples from this approach are ASS234 with properties similar to rasagiline, and donecopride, a hybrid of an acetylcholinesterase inhibitor and a 5-HT4 receptor agonist with pro-cognitive effects. Exploiting these interdisciplinary approaches, public-private collaborative lead factories promise faster delivery of new drugs to the clinic.
Collapse
Affiliation(s)
- Rebecca E Hughes
- School of Biology, BMS Building, University of St Andrews St Andrews, UK
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Rona R Ramsay
- School of Biology, BMS Building, University of St Andrews St Andrews, UK
| |
Collapse
|
292
|
Baranczak A, Kelly JW. A current pharmacologic agent versus the promise of next generation therapeutics to ameliorate protein misfolding and/or aggregation diseases. Curr Opin Chem Biol 2016; 32:10-21. [PMID: 26859714 DOI: 10.1016/j.cbpa.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
Abstract
The list of protein aggregation-associated degenerative diseases is long and growing, while the portfolio of disease-modifying strategies is very small. In this review and perspective, we assess what has worked to slow the progression of an aggregation-associated degenerative disease, covering the underlying mechanism of pharmacologic action and what we have learned about the etiology of the transthyretin amyloid diseases and likely amyloidoses in general. Next, we introduce emerging therapies that should apply more generally to protein misfolding and/or aggregation diseases, approaches that rely on adapting the protein homeostasis or proteostasis network for disease amelioration.
Collapse
Affiliation(s)
- Aleksandra Baranczak
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Jeffery W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
293
|
Affiliation(s)
- Joost Schymkowitz
- Switch Laboratory, VIB, Leuven, Belgium, and the Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, Leuven, Belgium, and the Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
294
|
Leri M, Nosi D, Natalello A, Porcari R, Ramazzotti M, Chiti F, Bellotti V, Doglia SM, Stefani M, Bucciantini M. The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies. J Nutr Biochem 2016; 30:153-66. [PMID: 27012632 DOI: 10.1016/j.jnutbio.2015.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Transthyretin (TTR) is involved in a subset of familial or sporadic amyloid diseases including senile systemic amyloidosis (SSA), familial amyloid polyneuropathy and cardiomyopathy (FAP/FAC) for which no effective therapy has been found yet. These conditions are characterized by extracellular deposits primarily found in the heart parenchyma and in peripheral nerves whose main component are amyloid fibrils, presently considered the main culprits of cell sufferance. The latter are polymeric assemblies grown from misfolded TTR, either wt or carrying one out of many identified mutations. The recent introduction in the clinical practice of synthetic TTR-stabilizing molecules that reduce protein aggregation provides the rationale to search natural effective molecules able to interfere with TTR amyloid aggregation by hindering the appearance of toxic species or by favoring the growth of harmless aggregates. Here we carried out an in depth biophysical and morphological study on the molecular features of the aggregation of wt- and L55P-TTR involved in SSA or FAP/FAC, respectively, and on the interference with fibril aggregation, stability and toxicity to cardiac HL-1 cells to demonstrate the ability of Oleuropein aglycone (OleA), the main phenolic component of the extra virgin olive oil. We describe the molecular basis of such interference and the resulting reduction of TTR amyloid aggregate cytotoxicity. Our data offer the possibility to validate and optimize the use of OleA or its molecular scaffold to rationally design promising drugs against TTR-related pathologies that could enter a clinical experimental phase.
Collapse
Affiliation(s)
- Manuela Leri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Daniele Nosi
- Dipartimento di Medicina Sperimentale e Clinica - Università degli Studi di Firenze, Largo Brambilla 3, 50134, Firenze, Italy.
| | - Antonino Natalello
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus University College London, NW3 2PF, London, UK.
| | - Matteo Ramazzotti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Fabrizio Chiti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), 50134, Firenze, Italy.
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus University College London, NW3 2PF, London, UK; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| | - Silvia Maria Doglia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
| | - Massimo Stefani
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| | - Monica Bucciantini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
295
|
Yatsyna V, Bakker DJ, Feifel R, Rijs AM, Zhaunerchyk V. Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy. Phys Chem Chem Phys 2016; 18:6275-83. [DOI: 10.1039/c5cp07426f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Far-infrared action spectroscopy of aminophenol in the gas-phase revealed isomer- and conformer-specific vibrational signatures and provided the heights of NH2 inversion barrier.
Collapse
Affiliation(s)
- Vasyl Yatsyna
- University of Gothenburg
- Department of Physics
- 412 96 Gotheburg
- Sweden
- Radboud University
| | - Daniël J. Bakker
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Raimund Feifel
- University of Gothenburg
- Department of Physics
- 412 96 Gotheburg
- Sweden
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
296
|
Epigenome Editing: State of the Art, Concepts, and Perspectives. Trends Genet 2015; 32:101-113. [PMID: 26732754 DOI: 10.1016/j.tig.2015.12.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Epigenome editing refers to the directed alteration of chromatin marks at specific genomic loci by using targeted EpiEffectors which comprise designed DNA recognition domains (zinc finger, TAL effector, or modified CRISPR/Cas9 complex) and catalytic domains from a chromatin-modifying enzyme. Epigenome editing is a promising approach for durable gene regulation, with many applications in basic research including the investigation of the regulatory functions and logic of chromatin modifications and cellular reprogramming. From a clinical point of view, targeted regulation of disease-related genes offers novel therapeutic avenues for many diseases. We review here the progress made in this field and discuss open questions in epigenetic regulation and its stability, methods to increase the specificity of epigenome editing, and improved delivery methods for targeted EpiEffectors. Future work will reveal if the approach of epigenome editing fulfills its great promise in basic research and clinical applications.
Collapse
|
297
|
Srivastava A, Balaji PV. Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides. J Struct Biol 2015; 192:376-391. [DOI: 10.1016/j.jsb.2015.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
|
298
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
299
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
300
|
Chattopadhyay M, Nwadibia E, Strong CD, Gralla EB, Valentine JS, Whitelegge JP. The Disulfide Bond, but Not Zinc or Dimerization, Controls Initiation and Seeded Growth in Amyotrophic Lateral Sclerosis-linked Cu,Zn Superoxide Dismutase (SOD1) Fibrillation. J Biol Chem 2015; 290:30624-36. [PMID: 26511321 DOI: 10.1074/jbc.m115.666503] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo. Previously, we showed that the presence of apo-, disulfide-reduced SOD1, the most immature form of SOD1, results in initiation of fibrillation of more mature forms that have an intact Cys-57-Cys-146 disulfide bond and are partially metallated. In this study, we examine the ability of each of the above post-translational modifications to modulate fibril initiation and seeded growth. Cobalt or zinc binding, despite conferring great structural stability, neither inhibits the initiation propensity of disulfide-reduced SOD1 nor consistently protects disulfide-oxidized SOD1 from being recruited into growing fibrils across wild-type and a number of ALS mutants. In contrast, reduction of the disulfide bond, known to be necessary for fibril initiation, also allows for faster recruitment during seeded amyloid growth. These results identify separate factors that differently influence seeded growth and initiation and indicate a lack of correlation between the overall thermodynamic stability of partially mature SOD1 states and their ability to initiate fibrillation or be recruited by a growing fibril.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095,
| | - Ekeoma Nwadibia
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | - Cynthia D Strong
- the Department of Chemistry, Cornell College, Mt. Vernon, Iowa 52314, and
| | - Edith Butler Gralla
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095
| | | | - Julian P Whitelegge
- From the Department of Chemistry and Biochemistry UCLA, Los Angeles, California 90095, the The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|