251
|
Combinations of exonic deletions and rare mutations lead to misdiagnosis of propionic acidemia. Clin Chim Acta 2020; 502:153-158. [DOI: 10.1016/j.cca.2019.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/23/2022]
|
252
|
Balachandran P, Beck CR. Structural variant identification and characterization. Chromosome Res 2020; 28:31-47. [PMID: 31907725 PMCID: PMC7131885 DOI: 10.1007/s10577-019-09623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Structural variant (SV) differences between human genomes can cause germline and mosaic disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high-throughput genome-level sequencing on humans in the past decade. These studies have shed light on the mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both sequencing and other mapping technologies as well as calling algorithms for detection of genomic rearrangements have helped propel SV detection into population-scale studies, and have begun to elucidate previously inaccessible regions of the genome. Here, we discuss the genomic organization of simple and complex SVs, the molecular mechanisms of their formation, and various ways to detect them. We also introduce methods for characterizing SVs and their consequences on human genomes.
Collapse
Affiliation(s)
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
253
|
Abstract
Identifying structural variation (SV) is essential for genome interpretation but has been historically difficult due to limitations inherent to available genome technologies. Detection methods that use ensemble algorithms and emerging sequencing technologies have enabled the discovery of thousands of SVs, uncovering information about their ubiquity, relationship to disease and possible effects on biological mechanisms. Given the variability in SV type and size, along with unique detection biases of emerging genomic platforms, multiplatform discovery is necessary to resolve the full spectrum of variation. Here, we review modern approaches for investigating SVs and proffer that, moving forwards, studies integrating biological information with detection will be necessary to comprehensively understand the impact of SV in the human genome.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
254
|
Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Genet Med 2020; 22:1079-1087. [PMID: 32037395 PMCID: PMC7272325 DOI: 10.1038/s41436-020-0759-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases. METHODS Five hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR). RESULTS Likely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene. CONCLUSION CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.
Collapse
|
255
|
Seo SH, Bacolla A, Yoo D, Koo YJ, Cho SI, Kim MJ, Seong MW, Kim HJ, Kim JM, Tainer JA, Park SS, Kim JY, Jeon B. Replication-Based Rearrangements Are a Common Mechanism for SNCA Duplication in Parkinson's Disease. Mov Disord 2020; 35:868-876. [PMID: 32039503 DOI: 10.1002/mds.27998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND SNCA multiplication is a genomic cause of familial PD, showing dosage-dependent toxicity. Until now, nonallelic homologous recombination was suggested as the mechanism of SNCA duplication, based on various types of repetitive elements found in the spanning region of the breakpoints. However, the sequence at the breakpoint was analyzed only for 1 case. OBJECTIVES We have analyzed the breakpoint sequences of 6 patients with PD who had duplicated SNCA using whole-genome sequencing data to elucidate the mechanism of SNCA duplication. METHODS Six patient samples with SNCA duplication underwent whole-genome sequencing. The duplicated regions were defined with nucleotide-resolution breakpoints, which were confirmed by junction polymerase chain reaction and Sanger sequencing. The search for potential non-B DNA-forming sequences and stem-loop structure predictions was conducted. RESULTS Duplicated regions ranged from the smallest region of 718.3 kb to the largest one of 4,162 kb. Repetitive elements were found at 8 of the 12 breakpoint sequences on each side of the junction, but none of the pairs shared overt homologies. Five of these six junctions had microhomologies (2-4 bp) at the breakpoint, and a short stretch of sequences was inserted in 3 cases. All except one junction were located within or next to stem-loop structures. CONCLUSION Our study has determined that homologous recombination mechanisms involving repetitive elements are not the main cause of the duplication of SNCA. The presence of microhomology at the junctions and their position within stem-loop structures suggest that replication-based rearrangements may be a common mechanism for SNCA amplification. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Seoul National University College of Medicine, Seoul, Korea
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Yoon Jung Koo
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Man Jin Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sung Sup Park
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Beomseok Jeon
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
256
|
Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, Chen CY, Wang C, He G, Liang Z, Ma X, Li Z, Tang Y, Wang Y, Li K, Ning L, Zhang H, Zhao K, Li X, Yu H, Lei Y, Wang M, Ma L, Zheng H, Zhang Y, Zhang J, Hu W, Chen ZJ. Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901672. [PMID: 32099754 PMCID: PMC7029647 DOI: 10.1002/advs.201901672] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Indexed: 05/05/2023]
Abstract
Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.
Collapse
Affiliation(s)
- Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Changmian Ji
- Biomarker Technologies CorporationBeijing101300China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| | - Wanke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Xingguo Zhang
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Kunkun Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | | | | | - Guohao He
- Department of Agricultural and Environmental SciencesTuskegee UniversityTuskegeeAL36088USA
| | - Zhe Liang
- Centre for Organismal StudiesUniversity of HeidelbergD‐69120HeidelbergGermany
| | - Xingli Ma
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Zhongfeng Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Yueyi Tang
- Shandong Peanut Research InstituteQingdao266000China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Ke Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Longlong Ning
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Hui Zhang
- College of AgricultureAuburn UniversityAuburnAL36849USA
| | - Kai Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Xuming Li
- Biomarker Technologies CorporationBeijing101300China
| | - Haiyan Yu
- Biomarker Technologies CorporationBeijing101300China
| | - Yan Lei
- Biomarker Technologies CorporationBeijing101300China
| | | | - Liming Ma
- Biomarker Technologies CorporationBeijing101300China
| | - Hongkun Zheng
- Biomarker Technologies CorporationBeijing101300China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Jinsong Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Z. Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| |
Collapse
|
257
|
da Silva VH, Laine VN, Bosse M, Spurgin LG, Derks MFL, van Oers K, Dibbits B, Slate J, Crooijmans RPMA, Visser ME, Groenen MAM. The Genomic Complexity of a Large Inversion in Great Tits. Genome Biol Evol 2020; 11:1870-1881. [PMID: 31114855 PMCID: PMC6609730 DOI: 10.1093/gbe/evz106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome inversions have clear effects on genome evolution and have been associated with speciation, adaptation, and the evolution of the sex chromosomes. In birds, these inversions may play an important role in hybridization of species and disassortative mating. We identified a large (≈64 Mb) inversion polymorphism in the great tit (Parus major) that encompasses almost 1,000 genes and more than 90% of Chromosome 1A. The inversion occurs at a low frequency in a set of over 2,300 genotyped great tits in the Netherlands with only 5% of the birds being heterozygous for the inversion. In an additional analysis of 29 resequenced birds from across Europe, we found two heterozygotes. The likely inversion breakpoints show considerable genomic complexity, including multiple copy number variable segments. We identified different haplotypes for the inversion, which differ in the degree of recombination in the center of the chromosome. Overall, this remarkable genetic variant is widespread among distinct great tit populations and future studies of the inversion haplotype, including how it affects the fitness of carriers, may help to understand the mechanisms that maintain it.
Collapse
Affiliation(s)
- Vinicius H da Silva
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Veronika N Laine
- Department of Molecular and Cellular Biology, Harvard University
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park University of East Anglia, Norwich, United Kingdom
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jon Slate
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | | | - Marcel E Visser
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
258
|
Dong Z, Zhao X, Li Q, Yang Z, Xi Y, Alexeev A, Shen H, Wang O, Ruan J, Ren H, Wei H, Qi X, Li J, Zhu X, Zhang Y, Dai P, Kong X, Kirkconnell K, Alferov O, Giles S, Yamtich J, Kermani BG, Dong C, Liu P, Mi Z, Zhang W, Xu X, Drmanac R, Choy KW, Jiang Y. Development of coupling controlled polymerizations by adapter-ligation in mate-pair sequencing for detection of various genomic variants in one single assay. DNA Res 2020; 26:313-325. [PMID: 31173071 PMCID: PMC6704401 DOI: 10.1093/dnares/dsz011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The diversity of disease presentations warrants one single assay for detection and delineation of various genomic disorders. Herein, we describe a gel-free and biotin-capture-free mate-pair method through coupling Controlled Polymerizations by Adapter-Ligation (CP-AL). We first demonstrated the feasibility and ease-of-use in monitoring DNA nick translation and primer extension by limiting the nucleotide input. By coupling these two controlled polymerizations by a reported non-conventional adapter-ligation reaction 3′ branch ligation, we evidenced that CP-AL significantly increased DNA circularization efficiency (by 4-fold) and was applicable for different sequencing methods but at a faction of current cost. Its advantages were further demonstrated by fully elimination of small-insert-contaminated (by 39.3-fold) with a ∼50% increment of physical coverage, and producing uniform genome/exome coverage and the lowest chimeric rate. It achieved single-nucleotide variants detection with sensitivity and specificity up to 97.3 and 99.7%, respectively, compared with data from small-insert libraries. In addition, this method can provide a comprehensive delineation of structural rearrangements, evidenced by a potential diagnosis in a patient with oligo-atheno-terato-spermia. Moreover, it enables accurate mutation identification by integration of genomic variants from different aberration types. Overall, it provides a potential single-integrated solution for detecting various genomic variants, facilitating a genetic diagnosis in human diseases.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xia Zhao
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Qiaoling Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zhenjun Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yang Xi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | | | - Hanjie Shen
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Ou Wang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jie Ruan
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Han Ren
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Xiaojuan Qi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiguang Li
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Xiaofan Zhu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Peng Dai
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | - Chao Dong
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pengjuan Liu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Zilan Mi
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong High-Throughput Sequencing Research Center, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Radoje Drmanac
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong—Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| | - Yuan Jiang
- Complete Genomics Inc., San Jose, CA, USA
- To whom correspondence should be addressed. Tel. +1 4086482560 3079. Fax. +1 4086482549. (Y.J.); Tel. +852 35053099. Fax. +852 26360008. (K.W.C.); Tel. +1 4088389539. Fax. +1 4086482549. (R.D.)
| |
Collapse
|
259
|
Shabana NA, Shahid SU, Irfan U. Genetic Contribution to Congenital Heart Disease (CHD). Pediatr Cardiol 2020; 41:12-23. [PMID: 31872283 DOI: 10.1007/s00246-019-02271-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/11/2019] [Indexed: 01/15/2023]
Abstract
Congenital heart defects (CHD) are the most common congenital problems in neonates. The basis for CHD is multifactorial, involving genetic and environmental components. The elucidation of genetic components remains difficult because it is a genetically heterogeneous disease. Currently, the major identified genetic causes include chromosomal abnormalities, large subchromosomal deletions/duplications, and point mutations. However, much more remains to be unraveled. An important insight from the research on the genetics of CHD is that any change at the genetic level that alters the dosage of genes required in any process during heart development results in a developmental defect. The use of conventional gene identification (linkage analysis and direct targeted sequencing) methods followed by the rapid advancements in high-throughput technologies (copy number variant platforms, SNP arrays, and next-generation sequencing) has identified an extensive list of genetic causes. However, the most common presentation of CHD is in the form of sporadic cases. Therefore, it is important to identify their underlying genetic cause. In this review, we revisit the causal genetic factors of CHD and discuss the clinical implications of research in the field.
Collapse
Affiliation(s)
- N A Shabana
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
| | - Uzma Irfan
- The Women University Multan, Multan, Pakistan
| |
Collapse
|
260
|
Yokoyama TT, Kasahara M. Visualization tools for human structural variations identified by whole-genome sequencing. J Hum Genet 2020; 65:49-60. [PMID: 31666648 PMCID: PMC8075883 DOI: 10.1038/s10038-019-0687-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023]
Abstract
Visualizing structural variations (SVs) is a critical step for finding associations between SVs and human traits or diseases. Given that there are many sequencing platforms used for SV identification and given that how best to visualize SVs together with other data, such as read alignments and annotations, depends on research goals, there are dozens of SV visualization tools designed for different research goals and sequencing platforms. Here, we provide a comprehensive survey of over 30 SV visualization tools to help users choose which tools to use. This review targets users who wish to visualize a set of SVs identified from the massively parallel sequencing reads of an individual human genome. We first categorize the ways in which SV visualization tools display SVs into ten major categories, which we denote as view modules. View modules allow readers to understand the features of each SV visualization tool quickly. Next, we introduce the features of individual SV visualization tools from several aspects, including whether SV views are integrated with annotations, whether long-read alignment is displayed, whether underlying data structures are graph-based, the type of SVs shown, whether auditing is possible, whether bird's eye view is available, sequencing platforms, and the number of samples. We hope that this review will serve as a guide for readers on the currently available SV visualization tools and lead to the development of new SV visualization tools in the near future.
Collapse
Affiliation(s)
- Toshiyuki T Yokoyama
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masahiro Kasahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
261
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
262
|
Heft IE, Mostovoy Y, Levy-Sakin M, Ma W, Stevens AJ, Pastor S, McCaffrey J, Boffelli D, Martin DI, Xiao M, Kennedy MA, Kwok PY, Sikela JM. The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human Genome. Genetics 2020; 214:179-191. [PMID: 31754017 PMCID: PMC6944415 DOI: 10.1534/genetics.119.302782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022] Open
Abstract
Sequences encoding Olduvai protein domains (formerly DUF1220) show the greatest human lineage-specific increase in copy number of any coding region in the genome and have been associated, in a dosage-dependent manner, with brain size, cognitive aptitude, autism, and schizophrenia. Tandem intragenic duplications of a three-domain block, termed the Olduvai triplet, in four NBPF genes in the chromosomal 1q21.1-0.2 region, are primarily responsible for the striking human-specific copy number increase. Interestingly, most of the Olduvai triplets are adjacent to, and transcriptionally coregulated with, three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Until now, the underlying genomic events that drove the Olduvai hyperamplification in humans have remained unexplained. Here, we show that the presence or absence of an alternative first exon of the Olduvai triplet perfectly discriminates between amplified (58/58) and unamplified (0/12) triplets. We provide sequence and breakpoint analyses that suggest the alternative exon was produced by an nonallelic homologous recombination-based mechanism involving the duplicative transposition of an existing Olduvai exon found in the CON3 domain, which typically occurs at the C-terminal end of NBPF genes. We also provide suggestive in vitro evidence that the alternative exon may promote instability through a putative G-quadraplex (pG4)-based mechanism. Lastly, we use single-molecule optical mapping to characterize the intragenic structural variation observed in NBPF genes in 154 unrelated individuals and 52 related individuals from 16 families and show that the presence of pG4-containing Olduvai triplets is strongly correlated with high levels of Olduvai copy number variation. These results suggest that the same driver of genomic instability that allowed the evolutionarily recent, rapid, and extreme human-specific Olduvai expansion remains highly active in the human genome.
Collapse
Affiliation(s)
- Ilea E Heft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Yulia Mostovoy
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Walfred Ma
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Aaron J Stevens
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Steven Pastor
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Jennifer McCaffrey
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - David I Martin
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Dermatology, University of California, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, California
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
263
|
Wong IN, Neo JPS, Oehler J, Schafhauser S, Osman F, Carr SB, Whitby MC. The Fml1-MHF complex suppresses inter-fork strand annealing in fission yeast. eLife 2019; 8:e49784. [PMID: 31855181 PMCID: PMC6952179 DOI: 10.7554/elife.49784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Judith Oehler
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Fekret Osman
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton LaboratoryHarwellUnited Kingdom
| | - Matthew C Whitby
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
264
|
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med 2019; 11:80. [PMID: 31818324 PMCID: PMC6902434 DOI: 10.1186/s13073-019-0676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Collapse
|
265
|
Fang L, Kao C, Gonzalez MV, Mafra FA, Pellegrino da Silva R, Li M, Wenzel SS, Wimmer K, Hakonarson H, Wang K. LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data. Nat Commun 2019; 10:5585. [PMID: 31811119 PMCID: PMC6898185 DOI: 10.1038/s41467-019-13397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023] Open
Abstract
Linked-read sequencing provides long-range information on short-read sequencing data by barcoding reads originating from the same DNA molecule, and can improve detection and breakpoint identification for structural variants (SVs). Here we present LinkedSV for SV detection on linked-read sequencing data. LinkedSV considers barcode overlapping and enriched fragment endpoints as signals to detect large SVs, while it leverages read depth, paired-end signals and local assembly to detect small SVs. Benchmarking studies demonstrate that LinkedSV outperforms existing tools, especially on exome data and on somatic SVs with low variant allele frequencies. We demonstrate clinical cases where LinkedSV identifies disease-causal SVs from linked-read exome sequencing data missed by conventional exome sequencing, and show examples where LinkedSV identifies SVs missed by high-coverage long-read sequencing. In summary, LinkedSV can detect SVs missed by conventional short-read and long-read sequencing approaches, and may resolve negative cases from clinical genome/exome sequencing studies.
Collapse
Affiliation(s)
- Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Charlly Kao
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael V Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fernanda A Mafra
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sören-Sebastian Wenzel
- Institute of Human Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Wimmer
- Institute of Human Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
266
|
Middelkamp S, Vlaar JM, Giltay J, Korzelius J, Besselink N, Boymans S, Janssen R, de la Fonteijne L, van Binsbergen E, van Roosmalen MJ, Hochstenbach R, Giachino D, Talkowski ME, Kloosterman WP, Cuppen E. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants. Genome Med 2019; 11:79. [PMID: 31801603 PMCID: PMC6894143 DOI: 10.1186/s13073-019-0692-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Judith M Vlaar
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Jacques Giltay
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Jerome Korzelius
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Lisanne de la Fonteijne
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ron Hochstenbach
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wigard P Kloosterman
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
267
|
Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y, Morikawa M, Ishizuka K, Shiino T, Kimura H, Arioka Y, Yoshimi A, Takasaki Y, Yu Y, Nakamura Y, Yamamoto M, Iidaka T, Iritani S, Inada T, Ogawa N, Shishido E, Torii Y, Kawano N, Omura Y, Yoshikawa T, Uchiyama T, Yamamoto T, Ikeda M, Hashimoto R, Yamamori H, Yasuda Y, Someya T, Watanabe Y, Egawa J, Nunokawa A, Itokawa M, Arai M, Miyashita M, Kobori A, Suzuki M, Takahashi T, Usami M, Kodaira M, Watanabe K, Sasaki T, Kuwabara H, Tochigi M, Nishimura F, Yamasue H, Eriguchi Y, Benner S, Kojima M, Yassin W, Munesue T, Yokoyama S, Kimura R, Funabiki Y, Kosaka H, Ishitobi M, Ohmori T, Numata S, Yoshikawa T, Toyota T, Yamakawa K, Suzuki T, Inoue Y, Nakaoka K, Goto YI, Inagaki M, Hashimoto N, Kusumi I, Son S, Murai T, Ikegame T, Okada N, Kasai K, Kunimoto S, Mori D, Iwata N, Ozaki N. Comparative Analyses of Copy-Number Variation in Autism Spectrum Disorder and Schizophrenia Reveal Etiological Overlap and Biological Insights. Cell Rep 2019; 24:2838-2856. [PMID: 30208311 DOI: 10.1016/j.celrep.2018.08.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/24/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023] Open
Abstract
Compelling evidence in Caucasian populations suggests a role for copy-number variations (CNVs) in autism spectrum disorder (ASD) and schizophrenia (SCZ). We analyzed 1,108 ASD cases, 2,458 SCZ cases, and 2,095 controls in a Japanese population and confirmed an increased burden of rare exonic CNVs in both disorders. Clinically significant (or pathogenic) CNVs, including those at 29 loci common to both disorders, were found in about 8% of ASD and SCZ cases, which was significantly higher than in controls. Phenotypic analysis revealed an association between clinically significant CNVs and intellectual disability. Gene set analysis showed significant overlap of biological pathways in both disorders including oxidative stress response, lipid metabolism/modification, and genomic integrity. Finally, based on bioinformatics analysis, we identified multiple disease-relevant genes in eight well-known ASD/SCZ-associated CNV loci (e.g., 22q11.2, 3q29). Our findings suggest an etiological overlap of ASD and SCZ and provide biological insights into these disorders.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Nakatochi
- Division of Data Science, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomoko Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yanjie Yu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsuya Iidaka
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Toshiya Inada
- Department of Psychiatry and Psychobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Center for Postgraduate Clinical Training and Career Development, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yutaka Omura
- Aichi Psychiatric Medical Center, Nagoya, Aichi 464-0031, Japan
| | - Toru Yoshikawa
- Department of Child Psychiatry, Aichi Prefectural Colony Central Hospital, Kasugai, Aichi 480-0392, Japan
| | - Tokio Uchiyama
- Department of Clinical Psychology, Taisho University, Tokyo 170-8470, Japan
| | - Toshimichi Yamamoto
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masanari Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mitsuhiro Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Akiko Kobori
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama 930-0194, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Kyota Watanabe
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hitoshi Kuwabara
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Seico Benner
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development University of Fukui, Eiheiji, Fukui 910-1193, Japan; Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Makoto Ishitobi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan; Department of Child and Adolescent Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorder, Shizuoka 420-8688, Japan
| | - Kentaro Nakaoka
- Aichi Psychiatric Medical Center, Nagoya, Aichi 464-0031, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Sapporo 060-8638, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo 113-0033, Japan
| | - Shohko Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
268
|
Dai Z, Li T, Li J, Han Z, Pan Y, Tang S, Diao X, Luo M. High-throughput long paired-end sequencing of a Fosmid library by PacBio. PLANT METHODS 2019; 15:142. [PMID: 31788019 PMCID: PMC6878638 DOI: 10.1186/s13007-019-0525-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Large insert paired-end sequencing technologies are important tools for assembling genomes, delineating associated breakpoints and detecting structural rearrangements. To facilitate the comprehensive detection of inter- and intra-chromosomal structural rearrangements or variants (SVs) and complex genome assembly with long repeats and segmental duplications, we developed a new method based on single-molecule real-time synthesis sequencing technology for generating long paired-end sequences of large insert DNA libraries. RESULTS A Fosmid vector, pHZAUFOS3, was developed with the following new features: (1) two 18-bp non-palindromic I-SceI sites flank the cloning site, and another two sites are present in the skeleton of the vector, allowing long DNA inserts (and the long paired-ends in this paper) to be recovered as single fragments and the vector (~ 8 kb) to be fragmented into 2-3 kb fragments by I-SceI digestion and therefore was effectively removed from the long paired-ends (5-10 kb); (2) the chloramphenicol (Cm) resistance gene and replicon (oriV), necessary for colony growth, are located near the two sides of the cloning site, helping to increase the proportion of the paired-end fragments to single-end fragments in the paired-end libraries. Paired-end libraries were constructed by ligating the size-selected, mechanically sheared pooled Fosmid DNA fragments to the Ampicillin (Amp) resistance gene fragment and screening the colonies with Cm and Amp. We tested this method on yeast and Setaria italica Yugu1. Fosmid-size paired-ends with an average length longer than 2 kb for each end were generated. The N50 scaffold lengths of the de novo assemblies of the yeast and S. italica Yugu1 genomes were significantly improved. Five large and five small structural rearrangements or assembly errors spanning tens of bp to tens of kb were identified in S. italica Yugu1 including deletions, inversions, duplications and translocations. CONCLUSIONS We developed a new method for long paired-end sequencing of large insert libraries, which can efficiently improve the quality of de novo genome assembly and identify large and small structural rearrangements or assembly errors.
Collapse
Affiliation(s)
- Zhaozhao Dai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiadong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhifei Han
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yonglong Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081 China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081 China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
269
|
Hum YF, Jinks-Robertson S. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res 2019; 47:4554-4568. [PMID: 30809658 PMCID: PMC6511840 DOI: 10.1093/nar/gkz126] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.
Collapse
Affiliation(s)
- Yee Fang Hum
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
270
|
Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol 2019; 20:246. [PMID: 31747936 PMCID: PMC6868818 DOI: 10.1186/s13059-019-1828-7] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Recent research into structural variants (SVs) has established their importance to medicine and molecular biology, elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale chromosome evolution-giving rise to the differences within populations and among species. Nevertheless, characterizing SVs and determining the optimal approach for a given experimental design remains a computational and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges. Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.
Collapse
Affiliation(s)
- Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA
| | - Nastassia Gobet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Diana Ivette Cruz-Dávalos
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
271
|
Hijazi H, Coelho FS, Gonzaga-Jauregui C, Bernardini L, Mar SS, Manning MA, Hanson-Kahn A, Naidu S, Srivastava S, Lee JA, Jones JR, Friez MJ, Alberico T, Torres B, Fang P, Cheung SW, Song X, Davis-Williams A, Jornlin C, Wight PA, Patyal P, Taube J, Poretti A, Inoue K, Zhang F, Pehlivan D, Carvalho CMB, Hobson GM, Lupski JR. Xq22 deletions and correlation with distinct neurological disease traits in females: Further evidence for a contiguous gene syndrome. Hum Mutat 2019; 41:150-168. [PMID: 31448840 DOI: 10.1002/humu.23902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.
Collapse
Affiliation(s)
- Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fernanda S Coelho
- Programa de Pós-Graduação em Genética Departmento de Biologia Geral, UFMG, Belo Horizonte, Minas Gerais, Brazil.,Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Bernardini
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Soe S Mar
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Melanie A Manning
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Andrea Hanson-Kahn
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California.,Department of Genetics, Stanford University School of Medicine, Palo Alto, California
| | - SakkuBai Naidu
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland
| | | | - Jennifer A Lee
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Michael J Friez
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Thomas Alberico
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Barbara Torres
- Medical Genetics Division, IRCCS "Casa Sollievo della Sofferenza" Foundation, San Giovanni Rotondo (FG), Italy
| | - Ping Fang
- Clinical Genomics, WuXi NextCODE, Cambridge, Massachusetts
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Angelique Davis-Williams
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Carly Jornlin
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Patricia A Wight
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer Taube
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Andrea Poretti
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Grace M Hobson
- Nemours Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| |
Collapse
|
272
|
Zhou A, Lin T, Xing J. Evaluating nanopore sequencing data processing pipelines for structural variation identification. Genome Biol 2019; 20:237. [PMID: 31727126 PMCID: PMC6857234 DOI: 10.1186/s13059-019-1858-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variations (SVs) account for about 1% of the differences among human genomes and play a significant role in phenotypic variation and disease susceptibility. The emerging nanopore sequencing technology can generate long sequence reads and can potentially provide accurate SV identification. However, the tools for aligning long-read data and detecting SVs have not been thoroughly evaluated. RESULTS Using four nanopore datasets, including both empirical and simulated reads, we evaluate four alignment tools and three SV detection tools. We also evaluate the impact of sequencing depth on SV detection. Finally, we develop a machine learning approach to integrate call sets from multiple pipelines. Overall SV callers' performance varies depending on the SV types. For an initial data assessment, we recommend using aligner minimap2 in combination with SV caller Sniffles because of their speed and relatively balanced performance. For detailed analysis, we recommend incorporating information from multiple call sets to improve the SV call performance. CONCLUSIONS We present a workflow for evaluating aligners and SV callers for nanopore sequencing data and approaches for integrating multiple call sets. Our results indicate that additional optimizations are needed to improve SV detection accuracy and sensitivity, and an integrated call set can provide enhanced performance. The nanopore technology is improving, and the sequencing community is likely to grow accordingly. In turn, better benchmark call sets will be available to more accurately assess the performance of available tools and facilitate further tool development.
Collapse
Affiliation(s)
- Anbo Zhou
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Timothy Lin
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
273
|
Roychowdhury T, Abyzov A. Chromatin organization modulates the origin of heritable structural variations in human genome. Nucleic Acids Res 2019; 47:2766-2777. [PMID: 30773596 PMCID: PMC6451188 DOI: 10.1093/nar/gkz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Structural variations (SVs) in the human genome originate from different mechanisms related to DNA repair, replication errors, and retrotransposition. Our analyses of 26 927 SVs from the 1000 Genomes Project revealed differential distributions and consequences of SVs of different origin, e.g. deletions from non-allelic homologous recombination (NAHR) are more prone to disrupt chromatin organization while processed pseudogenes can create accessible chromatin. Spontaneous double stranded breaks (DSBs) are the best predictor of enrichment of NAHR deletions in open chromatin. This evidence, along with strong physical interaction of NAHR breakpoints belonging to the same deletion suggests that majority of NAHR deletions are non-meiotic i.e. originate from errors during homology directed repair (HDR) of spontaneous DSBs. In turn, the origin of the spontaneous DSBs is associated with transcription factor binding in accessible chromatin revealing the vulnerability of functional, open chromatin. The chromatin itself is enriched with repeats, particularly fixed Alu elements that provide the homology required to maintain stability via HDR. Through co-localization of fixed Alus and NAHR deletions in open chromatin we hypothesize that old Alu expansion had a stabilizing role on the human genome.
Collapse
Affiliation(s)
- Tanmoy Roychowdhury
- Mayo Clinic, Department of Health Sciences Research, Center for Individualized Medicine, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Mayo Clinic, Department of Health Sciences Research, Center for Individualized Medicine, Rochester, MN 55905, USA
| |
Collapse
|
274
|
Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjö A, Georgii-Hemming P, Iwarsson E, Johansson-Soller M, Lagerstedt-Robinson K, Lieden A, Magnusson M, Martin M, Malmgren H, Nordenskjöld M, Norling A, Sahlin E, Stranneheim H, Tham E, Wincent J, Ygberg S, Wedell A, Wirta V, Nordgren A, Lundin J, Nilsson D. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68. [PMID: 31694722 PMCID: PMC6836550 DOI: 10.1186/s13073-019-0675-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. Methods We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. Results First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. Conclusion The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
Collapse
Affiliation(s)
- Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Bjerin
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Iwarsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcel Martin
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ameli Norling
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josephine Wincent
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Ygberg
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
275
|
Savory K, Manivannan S, Zaben M, Uzun O, Syed YA. Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. Neurosci Biobehav Rev 2019; 108:83-93. [PMID: 31682886 DOI: 10.1016/j.neubiorev.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
Abstract
Copy number variant (CNV) syndromes are often associated with both neurocognitive deficits (NCDs) and congenital heart defects (CHDs). Children and adults with cardiac developmental defects likely to have NCDs leading to increased risk of hospitalisation and reduced level of independence. To date, the association between these two phenotypes have not been explored in relation to CNV syndromes. In order to address this question, we systematically reviewed the prevalence of CHDs in a range of CNV syndromes associated with NCDs. A meta-analysis showed a relationship with the size of CNV and its association with both NCDs and CHDs, and also inheritance pattern. To our knowledge, this is the first review to establish association between NCD and CHDs in CNV patients, specifically in relation to the severity of NCD. Importantly, we also found specific types of CHDs were associated with severe neurocognitive deficits. Finally, we discuss the implications of these results for patients in the clinical setting which warrants further exploration of this association in order to lead an improvement in the quality of patient's life.
Collapse
Affiliation(s)
- Katrina Savory
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Susruta Manivannan
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Orhan Uzun
- University Hospital of Wales, Heath Park, Cardiff, CF10 3AX, UK
| | - Yasir Ahmed Syed
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
276
|
Chau MHK, Cao Y, Kwok YKY, Chan S, Chan YM, Wang H, Yang Z, Wong HK, Leung TY, Choy KW. Characteristics and mode of inheritance of pathogenic copy number variants in prenatal diagnosis. Am J Obstet Gynecol 2019; 221:493.e1-493.e11. [PMID: 31207233 DOI: 10.1016/j.ajog.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Microdeletions and microduplications can occur in any pregnancy independent of maternal age. The spectrum and features of pathogenic copy number variants including the size, genomic distribution, and mode of inheritance are not well studied. These characteristics have important clinical implications regarding expanding noninvasive prenatal screening for microdeletions and microduplications. OBJECTIVES The aim was to investigate the spectrum and characteristics of pathogenic copy number variants in prenatal genetic diagnosis and to provide recommendations for expanding the scope of noninvasive prenatal screening for microdeletions and microduplications. STUDY DESIGN This was a retrospective study of 1510 pregnant women who underwent invasive prenatal diagnostic testing by chromosomal microarray analysis. Prenatal samples were retrieved by amniocentesis or chorionic villus sampling and sent to our prenatal genetic diagnosis laboratory for chromosomal microarray analysis. The risk of carrying a fetus with pathogenic copy number variants is stratified by the patients' primary indication for invasive testing. We searched the literature for published prenatal chromosomal microarray data to generate a large cohort of 23,865 fetuses. The characteristics and spectrum of pathogenic copy number variants including the type of aberrations (gains or losses), genomic loci, sizes, and the mode of inheritance were studied. RESULTS Overall, 375 of 23,865 fetuses (1.6%) carried pathogenic copy number variants for any indication for invasive testing, and 44 of them (11.7%) involve 2 or more pathogenic copy number variants. A total of 428 pathogenic copy number variants were detected in these fetuses, of which 280 were deletions and 148 were duplications. Three hundred sixty (84.1%) were less than 5 Mb in size and 68 (15.9%) were between 5 and 10 Mb. The incidence of carrying a pathogenic copy number variant in the high-risk group is 1 in 36 and the low-risk group is 1 in 125. Parental inheritance study results were available for 311 pathogenic copy number variants, 71 (22.8%) were maternally inherited, 36 (11.6%) were paternally inherited, and 204 (65.6%) occurred de novo. CONCLUSION Collectively, pathogenic copy number variants are common in pregnancies. High-risk pregnancies should be offered invasive testing with chromosomal microarray analysis for the most comprehensive investigation. Detection limits on size, parental inheritance, and genomic distribution should be carefully considered before implementing copy number variant screening in expanded noninvasive prenatal screening.
Collapse
Affiliation(s)
- Matthew Hoi Kin Chau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne Ka Yin Kwok
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Samantha Chan
- Warwick Medical School at the University of Warwick, Coventry, United Kingdom
| | - Yiu Man Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huilin Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital, Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research, and Transformation Team, Shenzhen, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhenjun Yang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hoi Kin Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China.
| |
Collapse
|
277
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
278
|
Exploration of intermediate-sized INDELs by next-generation multigene panel testing in Han Chinese patients with breast cancer. Hum Genome Var 2019; 6:51. [PMID: 31700649 PMCID: PMC6820797 DOI: 10.1038/s41439-019-0080-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022] Open
Abstract
Multigene panel testing via next-generation sequencing focuses on the detection of small-sized mutations, such as single nucleotide variants and short insertions and deletions (INDELs). However, intermediate-sized INDELs have not been fully explored due to technical difficulties. Here, we performed bioinformatics analyses to identify intermediate-sized INDELs in 54 cancer-related genes from 583 Han Chinese patients with breast cancer. We detected a novel deletion-insertion in a translational variant of PTEN (also known as PTENα) in one patient.
Collapse
|
279
|
A high-quality cucumber genome assembly enhances computational comparative genomics. Mol Genet Genomics 2019; 295:177-193. [PMID: 31620884 DOI: 10.1007/s00438-019-01614-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/30/2019] [Indexed: 01/12/2023]
Abstract
Genetic variation is expressed by the presence of polymorphisms in compared genomes of individuals that can be transferred to next generations. The aim of this work was to reveal genome dynamics by predicting polymorphisms among the genomes of three individuals of the highly inbred B10 cucumber (Cucumis sativus L.) line. In this study, bioinformatic comparative genomics was used to uncover cucumber genome dynamics (also called real-time evolution). We obtained a new genome draft assembly from long single molecule real-time (SMRT) sequencing reads and used short paired-end read data from three individuals to analyse the polymorphisms. Using this approach, we uncovered differentiation aspects in the genomes of the inbred B10 line. The newly assembled genome sequence (B10v3) has the highest contiguity and quality characteristics among the currently available cucumber genome draft sequences. Standard and newly designed approaches were used to predict single nucleotide and structural variants that were unique among the three individual genomes. Some of the variant predictions spanned protein-coding genes and their promoters, and some were in the neighbourhood of annotated interspersed repetitive elements, indicating that the highly inbred homozygous plants remained genetically dynamic. This is the first bioinformatic comparative genomics study of a single highly inbred plant line. For this project, we developed a polymorphism prediction method with optimized precision parameters, which allowed the effective detection of small nucleotide variants (SNVs). This methodology could significantly improve bioinformatic pipelines for comparative genomics and thus has great practical potential in genomic metadata handling.
Collapse
|
280
|
Shi W, Massaia A, Louzada S, Handsaker J, Chow W, McCarthy S, Collins J, Hallast P, Howe K, Church DM, Yang F, Xue Y, Tyler-Smith C. Birth, expansion, and death of VCY-containing palindromes on the human Y chromosome. Genome Biol 2019; 20:207. [PMID: 31610793 PMCID: PMC6790999 DOI: 10.1186/s13059-019-1816-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Large palindromes (inverted repeats) make up substantial proportions of mammalian sex chromosomes, often contain genes, and have high rates of structural variation arising via ectopic recombination. As a result, they underlie many genomic disorders. Maintenance of the palindromic structure by gene conversion between the arms has been documented, but over longer time periods, palindromes are remarkably labile. Mechanisms of origin and loss of palindromes have, however, received little attention. RESULTS Here, we use fiber-FISH, 10x Genomics Linked-Read sequencing, and breakpoint PCR sequencing to characterize the structural variation of the P8 palindrome on the human Y chromosome, which contains two copies of the VCY (Variable Charge Y) gene. We find a deletion of almost an entire arm of the palindrome, leading to death of the palindrome, a size increase by recruitment of adjacent sequence, and other complex changes including the formation of an entire new palindrome nearby. Together, these changes are found in ~ 1% of men, and we can assign likely molecular mechanisms to these mutational events. As a result, healthy men can have 1-4 copies of VCY. CONCLUSIONS Gross changes, especially duplications, in palindrome structure can be relatively frequent and facilitate the evolution of sex chromosomes in humans, and potentially also in other mammalian species.
Collapse
Affiliation(s)
- Wentao Shi
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Andrea Massaia
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Present address: National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sandra Louzada
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Juliet Handsaker
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - William Chow
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Shane McCarthy
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Present address: Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Joanna Collins
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Pille Hallast
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Institute of Biomedicine and Translational Medicine, University of Tartu, 51011, Tartu, Estonia
| | - Kerstin Howe
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Deanna M Church
- 10x Genomics, 7068 Koll Center Parkway, Suite 401, Pleasanton, CA, 94566, USA
- Present address: Inscripta Inc., 5500 Central Avenue #220, Boulder, CO, 80301, USA
| | - Fengtang Yang
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
281
|
Poot M. Concurrent Structural and Single Nucleotide Variation Resulting from a Single Replication-Based Mechanism. Mol Syndromol 2019; 10:183-185. [PMID: 31602189 DOI: 10.1159/000501382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 11/19/2022] Open
|
282
|
Hu Q, Lu H, Wang H, Li S, Truong L, Li J, Liu S, Xiang R, Wu X. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J 2019; 38:e101751. [PMID: 31571254 DOI: 10.15252/embj.2019101751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Repetitive DNA sequences are often associated with chromosomal rearrangements in cancers. Conventionally, single-strand annealing (SSA) is thought to mediate homology-directed repair of double-strand breaks (DSBs) between two repeats, causing repeat-mediated deletion (RMD). In this report, we demonstrate that break-induced replication (BIR) is used predominantly over SSA in mammalian cells for mediating RMD, especially when repeats are far apart. We show that SSA becomes inefficient in mammalian cells when the distance between the DSBs and the repeats is increased to the 1-2 kb range, while BIR-mediated RMD (BIR/RMD) can act over a long distance (e.g., ~ 100-200 kb) when the DSB is close to one repeat. Importantly, oncogene expression potentiates BIR/RMD but not SSA, and BIR/RMD is used more frequently at single-ended DSBs formed at collapsed replication forks than at double-ended DSBs. In contrast to short-range SSA, H2AX is required for long-range BIR/RMD, and sequence divergence strongly suppresses BIR/RMD in a manner partially dependent on MSH2. Our finding that BIR/RMD has a more important role than SSA in mammalian cells has a significant impact on the understanding of repeat-mediated rearrangements associated with oncogenesis.
Collapse
Affiliation(s)
- Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
283
|
Bodkin JA, Coleman MJ, Godfrey LJ, Carvalho CM, Morgan CJ, Suckow RF, Anderson T, Ongur D, Kaufman MJ, Lewandowski KE, Siegel AJ, Waldstreicher E, Grochowski CM, Javitt DC, Rujescu D, Hebbring S, Weinshilboum R, Rodriguez SB, Kirchhoff C, Visscher T, Vuckovic A, Fialkowski A, McCarthy S, Malhotra D, Sebat J, Goff DC, Hudson JI, Lupski JR, Coyle JT, Rudolph U, Levy DL. Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biol Psychiatry 2019; 86:523-535. [PMID: 31279534 PMCID: PMC6745274 DOI: 10.1016/j.biopsych.2019.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The increased mutational burden for rare structural genomic variants in schizophrenia and other neurodevelopmental disorders has so far not yielded therapies targeting the biological effects of specific mutations. We identified two carriers (mother and son) of a triplication of the gene encoding glycine decarboxylase, GLDC, presumably resulting in reduced availability of the N-methyl-D-aspartate receptor coagonists glycine and D-serine and N-methyl-D-aspartate receptor hypofunction. Both carriers had a diagnosis of a psychotic disorder. METHODS We carried out two double-blind, placebo-controlled clinical trials of N-methyl-D-aspartate receptor augmentation of psychotropic drug treatment in these two individuals. Glycine was used in the first clinical trial, and D-cycloserine was used in the second one. RESULTS Glycine or D-cycloserine augmentation of psychotropic drug treatment each improved psychotic and mood symptoms in placebo-controlled trials. CONCLUSIONS These results provide two independent proof-of-principle demonstrations of symptom relief by targeting a specific genotype and explicitly link an individual mutation to the pathophysiology of psychosis and treatment response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dost Ongur
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | - Marc J. Kaufman
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | | | - Arthur J. Siegel
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | | | | | - Daniel C. Javitt
- Columbia University Medical Center, New York, NY.,Nathan Kline Institute, Orangeburg, NY
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Scott Hebbring
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI
| | | | | | | | | | | | | | | | | | | | - Donald C. Goff
- Nathan Kline Institute, Orangeburg, NY.,Department of Psychiatry, New York University Langone Medical Center, New York, NY
| | - James I. Hudson
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | | | - Joseph T. Coyle
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | - Uwe Rudolph
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| | - Deborah L. Levy
- McLean Hospital, Belmont, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
284
|
Meier MJ, Beal MA, Schoenrock A, Yauk CL, Marchetti F. Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Sci Rep 2019; 9:13775. [PMID: 31551502 PMCID: PMC6760142 DOI: 10.1038/s41598-019-50302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
285
|
De Coster W, Van Broeckhoven C. Newest Methods for Detecting Structural Variations. Trends Biotechnol 2019; 37:973-982. [DOI: 10.1016/j.tibtech.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023]
|
286
|
Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends Genet 2019; 35:632-644. [PMID: 31296341 DOI: 10.1016/j.tig.2019.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
A recognized source of disease-causing genome alterations is erroneous repair of broken chromosomes, which can be executed by two distinct mechanisms: non-homologous end joining (NHEJ) and the recently discovered polymerase theta-mediated end joining (TMEJ) pathway. While TMEJ has previously been considered to act as an alternative mechanism backing up NHEJ, recent work points to a role for TMEJ in the repair of replication-associated DNA breaks that are excluded from repair through homologous recombination. Because of its mode of action, TMEJ is intrinsically mutagenic and sometimes leaves behind a recognizable genomic scar when joining chromosome break ends (i.e., 'templated insertions'). This review article focuses on the intriguing observation that this polymerase theta signature is frequently observed in disease alleles, arguing for a prominent role of this double-strand break repair pathway in genome diversification and disease-causing spontaneous mutagenesis in humans.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
287
|
Choy KW, Wang H, Shi M, Chen J, Yang Z, Zhang R, Yan H, Wang Y, Chen S, Chau MHK, Cao Y, Chan OYM, Kwok YK, Zhu Y, Chen M, Leung TY, Dong Z. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front Genet 2019; 10:761. [PMID: 31475041 PMCID: PMC6706460 DOI: 10.3389/fgene.2019.00761] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Increased nuchal translucency (NT) is an important biomarker associated with increased risk of fetal structural anomalies. It is known to be contributed by a wide range of genetic etiologies from single-nucleotide variants to those affecting millions of base pairs. Currently, prenatal diagnosis is routinely performed by karyotyping and chromosomal microarray analysis (CMA); however, both of them have limited resolution. The diversity of the genetic etiologies warrants an integrated assay such as genome sequencing (GS) for comprehensive detection of genomic variants. Herein, we aim to evaluate the feasibility of applying GS in prenatal diagnosis for the fetuses with increased NT. Methods: We retrospectively applied GS (> 30-fold) for fetuses with increased NT (≥3.5 mm) who underwent routine prenatal diagnosis. Detection of single-nucleotide variants, copy number variants, and structural rearrangements was performed simultaneously, and the results were integrated for interpretation in accordance with the guidelines of the American College of Medical Genetics and Genomics. Pathogenic or likely pathogenic (P/LP) variants were selected for validation and parental confirmation, when available. Results: Overall, 50 fetuses were enrolled, including 34 cases with isolated increased NT and 16 cases with other fetal structural malformations. Routine CMA and karyotyping reported eight P/LP CNVs, yielding a diagnostic rate of 16.0% (8/50). In comparison, GS provided a twofold increase in diagnostic yield (32.0%, 16/50), including one mosaic turner syndrome, eight cases with microdeletions/microduplications, and seven cases with P/LP point mutations. Moreover, GS identified two cryptic insertions and two inversions. Follow-up study further demonstrated the potential pathogenicity of an apparently balanced insertion that disrupted an OMIM autosomal dominant disease-causing gene at the insertion site. Conclusions: Our study demonstrates that applying GS in fetuses with increased NT can comprehensively detect and delineate the various genomic variants that are causative to the diseases. Importantly, prenatal diagnosis by GS doubled the diagnostic yield compared with routine protocols. Given a comparable turnaround time and less DNA required, our study provides strong evidence to facilitate GS in prenatal diagnosis, particularly in fetuses with increased NT.
Collapse
Affiliation(s)
- Kwong Wai Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Huilin Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Mengmeng Shi
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Yang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Zhang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Wang
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Shaoyun Chen
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Olivia Y M Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne K Kwok
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuanfang Zhu
- Department of Central Laboratory, Bao'an Maternity and Child Healthcare Hospital Affiliated to Jinan University School of Medicine, Key Laboratory of Birth Defects Research, Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tak Yeung Leung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
288
|
Shi W, Louzada S, Grigorova M, Massaia A, Arciero E, Kibena L, Ge XJ, Chen Y, Ayub Q, Poolamets O, Tyler-Smith C, Punab M, Laan M, Yang F, Hallast P, Xue Y. Evolutionary and functional analysis of RBMY1 gene copy number variation on the human Y chromosome. Hum Mol Genet 2019; 28:2785-2798. [PMID: 31108506 PMCID: PMC6687947 DOI: 10.1093/hmg/ddz101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023] Open
Abstract
Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.
Collapse
Affiliation(s)
- Wentao Shi
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Sandra Louzada
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Marina Grigorova
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Andrea Massaia
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Elena Arciero
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Laura Kibena
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Xiangyu Jack Ge
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Faculty of Biology, Medicine and Health, School of Biological Science, Division of Musculoskeletal and Dermatological Science, University of Manchester, Manchester M13 9PL, UK
| | - Yuan Chen
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Qasim Ayub
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Olev Poolamets
- Andrology Unit, Tartu University Hospital, Tartu 50406, Estonia
| | - Chris Tyler-Smith
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu 50406, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Fengtang Yang
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Pille Hallast
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Yali Xue
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
289
|
Nucleolar DNA Double-Strand Break Responses Underpinning rDNA Genomic Stability. Trends Genet 2019; 35:743-753. [PMID: 31353047 DOI: 10.1016/j.tig.2019.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Nucleoli, the sites of ribosome biogenesis, form around ribosomal gene (rDNA) arrays termed nucleolar organiser regions (NORs). These are the most transcriptionally active regions of the human genome and specialised responses have evolved to ensure their genomic stability. This review focuses on nucleolar responses to DNA double-strand breaks (DSBs) introduced into rDNA arrays using sequence-specific endonucleases, including CRISPR/Cas9. Repair of rDNA DSBs is predominantly carried out by the homology-directed repair (HDR) pathway that is facilitated by inhibition of transcription by RNA polymerase-I (Pol-I) and ensuing dramatic nucleolar reorganisation. Additionally, we review evidence that nucleoli can sense and respond to DSBs elsewhere in the genome.
Collapse
|
290
|
Transposable Elements Adaptive Role in Genome Plasticity, Pathogenicity and Evolution in Fungal Phytopathogens. Int J Mol Sci 2019; 20:ijms20143597. [PMID: 31340492 PMCID: PMC6679389 DOI: 10.3390/ijms20143597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
Collapse
|
291
|
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 2019; 19:329-346. [PMID: 29599501 DOI: 10.1038/s41576-018-0003-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.
Collapse
Affiliation(s)
- Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charlotte A Darby
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. .,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
292
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
293
|
Xia LC, Bell JM, Wood-Bouwens C, Chen JJ, Zhang NR, Ji HP. Identification of large rearrangements in cancer genomes with barcode linked reads. Nucleic Acids Res 2019; 46:e19. [PMID: 29186506 PMCID: PMC5829571 DOI: 10.1093/nar/gkx1193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023] Open
Abstract
Large genomic rearrangements involve inversions, deletions and other structural changes that span Megabase segments of the human genome. This category of genetic aberration is the cause of many hereditary genetic disorders and contributes to pathogenesis of diseases like cancer. We developed a new algorithm called ZoomX for analysing barcode-linked sequence reads—these sequences can be traced to individual high molecular weight DNA molecules (>50 kb). To generate barcode linked sequence reads, we employ a library preparation technology (10X Genomics) that uses droplets to partition and barcode DNA molecules. Using linked read data from whole genome sequencing, we identify large genomic rearrangements, typically greater than 200kb, even when they are only present in low allelic fractions. Our algorithm uses a Poisson scan statistic to identify genomic rearrangement junctions, determine counts of junction-spanning molecules and calculate a Fisher's exact test for determining statistical significance for somatic aberrations. Utilizing a well-characterized human genome, we benchmarked this approach to accurately identify large rearrangement. Subsequently, we demonstrated that our algorithm identifies somatic rearrangements when present in lower allelic fractions as occurs in tumors. We characterized a set of complex cancer rearrangements with multiple classes of structural aberrations and with possible roles in oncogenesis.
Collapse
Affiliation(s)
- Li C Xia
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M Bell
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Christina Wood-Bouwens
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiamin J Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancy R Zhang
- Department of Statistics, the Wharton School, University of Pennsylvania, Philadelphia, PA 18014, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
294
|
Pehlivan D, Bayram Y, Gunes N, Coban Akdemir Z, Shukla A, Bierhals T, Tabakci B, Sahin Y, Gezdirici A, Fatih JM, Gulec EY, Yesil G, Punetha J, Ocak Z, Grochowski CM, Karaca E, Albayrak HM, Radhakrishnan P, Erdem HB, Sahin I, Yildirim T, Bayhan IA, Bursali A, Elmas M, Yuksel Z, Ozdemir O, Silan F, Yildiz O, Yesilbas O, Isikay S, Balta B, Gu S, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Tsiakas K, Hempel M, Girisha KM, Gul D, Posey JE, Elcioglu NH, Tuysuz B, Lupski JR. The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. Am J Hum Genet 2019; 105:132-150. [PMID: 31230720 PMCID: PMC6612529 DOI: 10.1016/j.ajhg.2019.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/21/2019] [Indexed: 01/29/2023] Open
Abstract
Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.
Collapse
Affiliation(s)
- Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nilay Gunes
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Burcu Tabakci
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey
| | - Yavuz Sahin
- Department of Medical Genetics, Necip Fazıl City Hospital, Kahramanmaras 46050, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Gozde Yesil
- Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul 34093, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Ocak
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | | | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hatice Mutlu Albayrak
- Department of Pediatrics, Division of Pediatric Genetics, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55270, Turkey
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Erzurum, School of Medicine, Erzurum 25240, Turkey
| | - Timur Yildirim
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Ilhan A Bayhan
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Aysegul Bursali
- Department of Orthopedics and Traumatology, Baltalimani Bone Diseases Training and Research Hospital, Istanbul 34470, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Zafer Yuksel
- Medical Genetics Clinic, Mersin Women and Children Hospital, Mersin 33330, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Onur Yildiz
- Department of Medical Genetics, Faculty of Medicine, Onsekiz Mart University, Canakkale 17000, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, University of Health Sciences, Van Training and Research Hospital, Van 65130, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep 27000, Turkey
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri 38080, Turkey
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34854, Turkey; Eastern Mediterranean University School of Medicine, Cyprus, Mersin 10, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa Medical Faculty, Istanbul 34096, Turkey
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
295
|
Bhandari J, Karg T, Golic KG. Homolog-Dependent Repair Following Dicentric Chromosome Breakage in Drosophila melanogaster. Genetics 2019; 212:615-630. [PMID: 31053594 PMCID: PMC6614899 DOI: 10.1534/genetics.119.302247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Double-strand DNA breaks are repaired by one of several mechanisms that rejoin two broken ends. However, cells are challenged when asked to repair a single broken end and respond by: (1) inducing programmed cell death; (2) healing the broken end by constructing a new telomere; (3) adapting to the broken end and resuming the mitotic cycle without repair; and (4) using information from the sister chromatid or homologous chromosome to restore a normal chromosome terminus. During one form of homolog-dependent repair in yeast, termed break-induced replication (BIR), a template chromosome can be copied for hundreds of kilobases. BIR efficiency depends on Pif1 helicase and Pol32, a nonessential subunit of DNA polymerase δ. To date, there is little evidence that BIR can be used for extensive chromosome repair in higher eukaryotes. We report that a dicentric chromosome broken in mitosis in the male germline of Drosophila melanogaster is usually repaired by healing, but can also be repaired in a homolog-dependent fashion, restoring at least 1.3 Mb of terminal sequence information. This mode of repair is significantly reduced in pif1 and pol32 mutants. Formally, the repaired chromosomes are recombinants. However, the absence of reciprocal recombinants and the dependence on Pif1 and Pol32 strongly support the hypothesis that BIR is the mechanism for restoration of the chromosome terminus. In contrast to yeast, pif1 mutants in Drosophila exhibit a reduced rate of chromosome healing, likely owing to fundamental differences in telomeres between these organisms.
Collapse
Affiliation(s)
- Jayaram Bhandari
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Travis Karg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
296
|
Li W, Yang L, Harris RS, Lin L, Olson TL, Hamele CE, Feith DJ, Loughran TP, Poss M. Retrovirus insertion site analysis of LGL leukemia patient genomes. BMC Med Genomics 2019; 12:88. [PMID: 31208405 PMCID: PMC6580525 DOI: 10.1186/s12920-019-0549-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Large granular lymphocyte (LGL) leukemia is an uncommon cancer characterized by sustained clonal proliferation of LGL cells. Antibodies reactive to retroviruses have been documented in the serum of patients with LGL leukemia. Culture or molecular approaches have to date not been successful in identifying a retrovirus. Methods Because a retrovirus must integrate into the genome of an infected cell, we focused our efforts on detecting a novel retrovirus integration site in the clonally expanded LGL cells. We present a new computational tool that uses long-insert mate pair sequence data to search the genome of LGL leukemia cells for retrovirus integration sites. We also utilize recently published methods to interrogate the status of polymorphic human endogenous retrovirus type K (HERV-K) provirus in patient genomes. Results Our data show that there are no new retrovirus insertions in LGL genomes of LGL leukemia patients. However, our insertion call tool did detect four HERV-K provirus integration sites that are polymorphic in the human population but absent from the human reference genome, hg19. To determine if the prevalence of these or other polymorphic proviral HERV-Ks differed between LGL leukemia patients and the general population, we used a recently developed tool that reports sites in the human genome occupied by a known proviral HERV-K. We report that there are significant differences in the number of polymorphic HERV-Ks in the genomes of LGL leukemia patients of European origin compared to individuals with European ancestry in the 1000 genomes (KGP) data. Conclusions Our study confirms that the clonal expansion of LGL cells in LGL leukemia is not driven by the integration of a new infectious or endogenous retrovirus, although we do not rule out that these cells are responding to retroviral antigens produced in other cell types. However, our computational analyses revealed that the genomes of LGL leukemia patients carry a higher burden of polymorphic HERV-K proviruses compare to individuals from KGP of European ancestry. Our research emphasizes the merits of comprehensive genomic assessment of HERV-K in cancer samples and suggests that further analyses to determine contributions of HERV-K to LGL leukemia are warranted. Electronic supplementary material The online version of this article (10.1186/s12920-019-0549-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiling Li
- The School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lei Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Robert S Harris
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lin Lin
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas L Olson
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Cait E Hamele
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Mary Poss
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. .,University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
297
|
β-Mannosidosis caused by a novel homozygous intragenic inverted duplication in MANBA. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003954. [PMID: 30886116 PMCID: PMC6549551 DOI: 10.1101/mcs.a003954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
β-Mannosidosis is a lysosomal storage disorder characterized by accumulation of disaccharides due to deficiency of the lysosomal enzyme β-mannosidase. The disease is caused by mutations in MANBA and is extremely rare in humans. Although the clinical presentation is heterogeneous, common symptoms include various degrees of developmental delay, behavioral disturbances, hearing loss, and frequent infections. We report a 15-yr-old girl presenting with mild intellectual disability, sensorineural hearing loss, severe behavioral disturbances, dysmorphic traits, and evolving angiokeratomas. Copy-number variation analysis of next-generation sequencing (NGS) data indicated increased coverage in exons 8-11 of MANBA Low β-mannosidase activity (1 µkatal/kg protein, refv 25-40) established the diagnosis of β-mannosidosis. Whole-genome sequencing (WGS) and cDNA analysis revealed a novel homozygous intragenic inverted duplication in MANBA, where a 13.1-kb region between introns 7 and 11 was duplicated and inserted in an inverted orientation, creating a 67-base nonduplicated gap at the insertion point. Both junctions showed microhomology regions. The inverted duplication resulted in exon skipping of exons 8-9 or 8-10. Our report highlights the importance of copy-number variation analysis of data from NGS and in particular the power of WGS in the identification and characterization of copy-number variants.
Collapse
|
298
|
Dharmadhikari AV, Ghosh R, Yuan B, Liu P, Dai H, Al Masri S, Scull J, Posey JE, Jiang AH, He W, Vetrini F, Braxton AA, Ward P, Chiang T, Qu C, Gu S, Shaw CA, Smith JL, Lalani S, Stankiewicz P, Cheung SW, Bacino CA, Patel A, Breman AM, Wang X, Meng L, Xiao R, Xia F, Muzny D, Gibbs RA, Beaudet AL, Eng CM, Lupski JR, Yang Y, Bi W. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med 2019; 11:30. [PMID: 31101064 PMCID: PMC6525387 DOI: 10.1186/s13073-019-0639-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Background Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES. Methods In a cohort of 11,020 consecutive ES patients, an Illumina SNP array analysis interrogating mostly coding SNPs was performed as a quality control (QC) measurement and for CNV/ROH detection. Among these patients, clinical chromosomal microarray analysis (CMA) was performed at Baylor Genetics (BG) on 3229 patients, either before, concurrently, or after ES. We retrospectively analyzed the findings from CMA and the QC array. Results The QC array can detect ~ 70% of pathogenic/likely pathogenic CNVs (PCNVs) detectable by CMA. Out of the 11,020 ES cases, the QC array identified PCNVs in 327 patients and uniparental disomy (UPD) disorder-related ROH in 10 patients. The overall PCNV/UPD detection rate was 5.9% in the 3229 ES patients who also had CMA at BG; PCNV/UPD detection rate was higher in concurrent ES and CMA than in ES with prior CMA (7.2% vs 4.6%). The PCNVs/UPD contributed to the molecular diagnoses in 17.4% (189/1089) of molecularly diagnosed ES cases with CMA and were estimated to contribute in 10.6% of all molecularly diagnosed ES cases. Dual diagnoses with both PCNVs and SNVs were detected in 38 patients. PCNVs affecting single recessive disorder genes in a compound heterozygous state with SNVs were detected in 4 patients, and homozygous deletions (mostly exonic deletions) were detected in 17 patients. A higher PCNV detection rate was observed for patients with syndromic phenotypes and/or cardiovascular abnormalities. Conclusions Our clinical genomics study demonstrates that detection of PCNV/UPD through the QC array or CMA increases ES diagnostic rate, provides more precise molecular diagnosis for dominant as well as recessive traits, and enables more complete genetic diagnoses in patients with dual or multiple molecular diagnoses. Concurrent ES and CMA using an array with exonic coverage for disease genes enables most effective detection of both CNVs and SNVs and therefore is recommended especially in time-sensitive clinical situations. Electronic supplementary material The online version of this article (10.1186/s13073-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Rajarshi Ghosh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Bo Yuan
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Hongzheng Dai
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | | | - Jennifer Scull
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | | | - Weimin He
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Alicia A Braxton
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Patricia Ward
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Chunjing Qu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Chad A Shaw
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Janice L Smith
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Seema Lalani
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Pawel Stankiewicz
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sau-Wai Cheung
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Ankita Patel
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Amy M Breman
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Xia Wang
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Linyan Meng
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Rui Xiao
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Fan Xia
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Christine M Eng
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Yaping Yang
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Weimin Bi
- Baylor Genetics Laboratories, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.
| |
Collapse
|
299
|
Cleal K, Jones RE, Grimstead JW, Hendrickson EA, Baird DM. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res 2019; 29:737-749. [PMID: 30872351 PMCID: PMC6499312 DOI: 10.1101/gr.240705.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/11/2019] [Indexed: 01/02/2023]
Abstract
Telomere erosion, dysfunction, and fusion can lead to a state of cellular crisis characterized by large-scale genome instability. We investigated the impact of a telomere-driven crisis on the structural integrity of the genome by undertaking whole-genome sequence analyses of clonal populations of cells that had escaped crisis. Quantification of large-scale structural variants revealed patterns of rearrangement consistent with chromothripsis but formed in the absence of functional nonhomologous end-joining pathways. Rearrangements frequently consisted of short fragments with complex mutational patterns, with a repair topology that deviated from randomness showing preferential repair to local regions or exchange between specific loci. We find evidence of telomere involvement with an enrichment of fold-back inversions demarcating clusters of rearrangements. Our data suggest that chromothriptic rearrangements caused by a telomere crisis arise via a replicative repair process involving template switching.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Julia W Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
300
|
Carvalho CMB, Coban-Akdemir Z, Hijazi H, Yuan B, Pendleton M, Harrington E, Beaulaurier J, Juul S, Turner DJ, Kanchi RS, Jhangiani SN, Muzny DM, Gibbs RA, Stankiewicz P, Belmont JW, Shaw CA, Cheung SW, Hanchard NA, Sutton VR, Bader PI, Lupski JR. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med 2019; 11:25. [PMID: 31014393 PMCID: PMC6480824 DOI: 10.1186/s13073-019-0633-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. Methods Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. Results We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. Conclusions These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases. Electronic supplementary material The online version of this article (10.1186/s13073-019-0633-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | | | | | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, USA.,Oxford Nanopore Technologies Inc, San Francisco, CA, USA
| | | | | | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Texas Children's Hospital, Houston, TX, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, 77030-3498, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|