251
|
Cao Q, Wang Y, Ji Y, He Z, Lei X. Resting-State EEG Reveals Abnormal Microstate Characteristics of Depression with Insomnia. Brain Topogr 2024; 37:388-396. [PMID: 36892651 DOI: 10.1007/s10548-023-00949-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.
Collapse
Affiliation(s)
- Qike Cao
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yufang Ji
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Zhihui He
- The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
252
|
Zhao S, Fang L, Yang Y, Tang G, Luo G, Han J, Liu T, Hu X. Task sub-type states decoding via group deep bidirectional recurrent neural network. Med Image Anal 2024; 94:103136. [PMID: 38489895 DOI: 10.1016/j.media.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Decoding brain states under different cognitive tasks from functional magnetic resonance imaging (fMRI) data has attracted great attention in the neuroimaging filed. However, the well-known temporal dependency in fMRI sequences has not been fully exploited in existing studies, due to the limited temporal-modeling capacity of the backbone machine learning algorithms and rigid training sample organization strategies upon which the brain decoding methods are built. To address these limitations, we propose a novel method for fine-grain brain state decoding, namely, group deep bidirectional recurrent neural network (Group-DBRNN) model. We first propose a training sample organization strategy that consists of a group-task sample generation module and a multiple-scale random fragment strategy (MRFS) module to collect training samples that contain rich task-relevant brain activity contrast (i.e., the comparison of neural activity patterns between different tasks) and maintain the temporal dependency. We then develop a novel decoding model by replacing the unidirectional RNNs that are widely used in existing brain state decoding studies with bidirectional stacked RNNs to better capture the temporal dependency, and by introducing a multi-task interaction layer (MTIL) module to effectively model the task-relevant brain activity contrast. Our experimental results on the Human Connectome Project task fMRI dataset (7 tasks consisting of 23 task sub-type states) show that the proposed model achieves an average decoding accuracy of 94.7% over the 23 fine-grain sub-type states. Meanwhile, our extensive interpretations of the intermediate features learned in the proposed model via visualizations and quantitative assessments of their discriminability and inter-subject alignment evidence that the proposed model can effectively capture the temporal dependency and task-relevant contrast.
Collapse
Affiliation(s)
- Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, China
| | - Long Fang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guochang Tang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoxin Luo
- Department of Ophthalmology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- School of Computing, The University of Georgia, GA, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
253
|
Phan TX, Baratono S, Drew W, Tetreault AM, Fox MD, Darby RR. Increased Cortical Thickness in Alzheimer's Disease. Ann Neurol 2024; 95:929-940. [PMID: 38400760 PMCID: PMC11060923 DOI: 10.1002/ana.26894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Patients with Alzheimer's disease (AD) have diffuse brain atrophy, but some regions, such as the anterior cingulate cortex (ACC), are spared and may even show increase in size compared to controls. The extent, clinical significance, and mechanisms associated with increased cortical thickness in AD remain unknown. Recent work suggested neural facilitation of regions anticorrelated to atrophied regions in frontotemporal dementia. Here, we aim to determine whether increased thickness occurs in sporadic AD, whether it relates to clinical symptoms, and whether it occur in brain regions functionally connected to-but anticorrelated with-locations of atrophy. METHODS Cross-sectional clinical, neuropsychological, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed to investigate cortical thickness in AD subjects versus controls. Atrophy network mapping was used to identify brain regions functionally connected to locations of increased thickness and atrophy. RESULTS AD patients showed increased thickness in the ACC in a region-of-interest analysis and the visual cortex in an exploratory analysis. Increased thickness in the left ACC was associated with preserved cognitive function, while increased thickness in the left visual cortex was associated with hallucinations. Finally, we found that locations of increased thickness were functionally connected to, but anticorrelated with, locations of brain atrophy (r = -0.81, p < 0.05). INTERPRETATION Our results suggest that increased cortical thickness in Alzheimer's disease is relevant to AD symptoms and preferentially occur in brain regions functionally connected to, but anticorrelated with, areas of brain atrophy. Implications for models of compensatory neuroplasticity in response to neurodegeneration are discussed. ANN NEUROL 2024;95:929-940.
Collapse
Affiliation(s)
- Tony X. Phan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Sheena Baratono
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William Drew
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Aaron M. Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - R. Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
254
|
Feng S, Huang Y, Lu H, Li H, Zhou S, Lu H, Feng Y, Ning Y, Han W, Chang Q, Zhang Z, Liu C, Li J, Wu K, Wu F. Association between degree centrality and neurocognitive impairments in patients with Schizophrenia: A Longitudinal rs-fMRI Study. J Psychiatr Res 2024; 173:115-123. [PMID: 38520845 DOI: 10.1016/j.jpsychires.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Evidence indicates that patients with schizophrenia (SZ) experience significant changes in their functional connectivity during antipsychotic treatment. Despite previous reports of changes in brain network degree centrality (DC) in patients with schizophrenia, the relationship between brain DC changes and neurocognitive improvement in patients with SZ after antipsychotic treatment remains elusive. METHODS A total of 74 patients with acute episodes of chronic SZ and 53 age- and sex-matched healthy controls were recruited. The Positive and Negative Syndrome Scale (PANSS), Symbol Digit Modalities Test, digital span test (DST), and verbal fluency test were used to evaluate the clinical symptoms and cognitive performance of the patients with SZ. Patients with SZ were treated with antipsychotics for six weeks starting at baseline and underwent MRI and clinical interviews at baseline and after six weeks, respectively. We then divided the patients with SZ into responding (RS) and non-responding (NRS) groups based on the PANSS scores (reduction rate of PANSS ≥50%). DC was calculated and analyzed to determine its correlation with clinical symptoms and cognitive performance. RESULTS After antipsychotic treatment, the patients with SZ showed significant improvements in clinical symptoms, semantic fluency performance. Correlation analysis revealed that the degree of DC increase in the left anterior inferior parietal lobe (aIPL) after treatment was negatively correlated with changes in the excitement score (r = -0.256, p = 0.048, adjusted p = 0.080), but this correlation failed the multiple test correction. Patients with SZ showed a significant negative correlation between DC values in the left aIPL and DST scores after treatment, which was not observed at the baseline (r = -0.359, p = 0.005, adjusted p = 0.047). In addition, we did not find a significant difference in DC between the RS and NRS groups, neither at baseline nor after treatment. CONCLUSIONS The results suggested that DC changes in patients with SZ after antipsychotic treatment are correlated with neurocognitive performance. Our findings provide new insights into the neuropathological mechanisms underlying antipsychotic treatment of SZ.
Collapse
Affiliation(s)
- Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongxin Lu
- Department of Psychiatry, Longyan Third Hospital of Fujian Province, Longyan, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yangdong Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Wei Han
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Chang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyun Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenyu Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhao Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China; Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China; Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China.
| |
Collapse
|
255
|
Marzetti L, Basti A, Guidotti R, Baldassarre A, Metsomaa J, Zrenner C, D’Andrea A, Makkinayeri S, Pieramico G, Ilmoniemi RJ, Ziemann U, Romani GL, Pizzella V. Exploring Motor Network Connectivity in State-Dependent Transcranial Magnetic Stimulation: A Proof-of-Concept Study. Biomedicines 2024; 12:955. [PMID: 38790917 PMCID: PMC11118810 DOI: 10.3390/biomedicines12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed using the imaginary part of the phase locking value at the frequency of the sensorimotor μ-rhythm in a 1 s window before the pulse. Group-level connectivity revealed functional links between the left M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity states result in a greater MEP amplitude compared to low connectivity states. At the single-subject level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.
Collapse
Affiliation(s)
- Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Johanna Metsomaa
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada
| | - Antea D’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giulia Pieramico
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Ulf Ziemann
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
256
|
Luo W, Liu B, Tang Y, Huang J, Wu J. Rest to Promote Learning: A Brain Default Mode Network Perspective. Behav Sci (Basel) 2024; 14:349. [PMID: 38667145 PMCID: PMC11047624 DOI: 10.3390/bs14040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The brain often switches freely between focused attention and divergent thinking, and the Default Mode Network (DMN) is activated during brain rest. Since its discovery, the DMN, together with its function and characteristics, indicates that learning does not stop when the brain "rests". Therefore, DMN plays an important role in learning. Neural activities such as beta wave rhythm regulation, "subconscious" divergence thinking mode initiation, hippocampal function, and neural replay occur during default mode, all of which explains that "rest" promotes learning. This paper summarized the function and neural mechanism of DMN in learning and proposed that the DMN plays an essential role in learning, which is that it enables rest to promote learning.
Collapse
Affiliation(s)
- Wei Luo
- Department of Applied Psychology, School of Education Sciences, Nanning Normal University, Nanning 530299, China; (W.L.); (Y.T.)
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Guangxi Education Modernization and Quality Monitoring Research Center, Nanning 530001, China
| | - Biao Liu
- School of Foreign Languages, Nanning Normal University, Nanning 530100, China;
| | - Ying Tang
- Department of Applied Psychology, School of Education Sciences, Nanning Normal University, Nanning 530299, China; (W.L.); (Y.T.)
| | - Jingwen Huang
- Department of Science Research, Guangxi University, Nanning 530004, China;
| | - Ji Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
257
|
Tsang T, Green SA, Liu J, Lawrence K, Jeste S, Bookheimer SY, Dapretto M. Salience network connectivity is altered in 6-week-old infants at heightened likelihood for developing autism. Commun Biol 2024; 7:485. [PMID: 38649483 PMCID: PMC11035613 DOI: 10.1038/s42003-024-06016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Converging evidence implicates disrupted brain connectivity in autism spectrum disorder (ASD); however, the mechanisms linking altered connectivity early in development to the emergence of ASD symptomatology remain poorly understood. Here we examined whether atypicalities in the Salience Network - an early-emerging neural network involved in orienting attention to the most salient aspects of one's internal and external environment - may predict the development of ASD symptoms such as reduced social attention and atypical sensory processing. Six-week-old infants at high likelihood of developing ASD based on family history exhibited stronger Salience Network connectivity with sensorimotor regions; infants at typical likelihood of developing ASD demonstrated stronger Salience Network connectivity with prefrontal regions involved in social attention. Infants with higher connectivity with sensorimotor regions had lower connectivity with prefrontal regions, suggesting a direct tradeoff between attention to basic sensory versus socially-relevant information. Early alterations in Salience Network connectivity predicted subsequent ASD symptomatology, providing a plausible mechanistic account for the unfolding of atypical developmental trajectories associated with vulnerability to ASD.
Collapse
Affiliation(s)
| | - Shulamite A Green
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Cognitive Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Katherine Lawrence
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shafali Jeste
- Children's Hospital Los Angeles, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Cognitive Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
258
|
Rodríguez-Vidal L, Alcauter S, Barrios FA. The functional connectivity of the human claustrum, according to the Human Connectome Project database. PLoS One 2024; 19:e0298349. [PMID: 38635579 PMCID: PMC11025802 DOI: 10.1371/journal.pone.0298349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/22/2024] [Indexed: 04/20/2024] Open
Abstract
The claustrum is an irregular and fine sheet of grey matter in the basolateral telencephalon present in almost all mammals. The claustrum has been the object of several studies using animal models and, more recently, in human beings using neuroimaging. One of the most extended cognitive processes attributed to the claustrum is the salience process, which is also related to the insular cortex. In the same way, studies with human subjects and functional magnetic resonance imaging have reported the coactivation of the claustrum/insular cortex in the integration of sensory signals. This coactivation has been reported in the left claustrum/insular cortex or in the right claustrum/insular cortex. The asymmetry has been reported in task studies and literature related to neurological disorders such as Alzheimer's disease and schizophrenia, relating the severity of delusions with the reduction in left claustral volume. We present a functional connectivity study of the claustrum. Resting-state functional and anatomical MRI data from 100 healthy subjects were analyzed; taken from the Human Connectome Project (HCP, NIH Blueprint: The Human Connectome Project), with 2x2x2 mm3 voxel resolution. We hypothesize that 1) the claustrum is a node involved in different brain networks, 2) the functional connectivity pattern of the claustrum is different from the insular cortex's pattern, and 3) the asymmetry is present in the claustrum's functional connectivity. Our findings include at least three brain networks related to the claustrum. We found functional connectivity between the claustrum, frontoparietal network, and the default mode network as a distinctive attribute. The functional connectivity between the right claustrum with the frontoparietal network and the dorsal attention network supports the hypothesis of claustral asymmetry. These findings provide functional evidence, suggesting that the claustrum is coupled with the frontoparietal network serving together to instantiate new task states by flexibly modulating and interacting with other control and processing networks.
Collapse
Affiliation(s)
- Lluviana Rodríguez-Vidal
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| | - Sarael Alcauter
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| | - Fernando A. Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| |
Collapse
|
259
|
Schneider JM, Behboudi MH, Maguire MJ. The Necessity of Taking Culture and Context into Account When Studying the Relationship between Socioeconomic Status and Brain Development. Brain Sci 2024; 14:392. [PMID: 38672041 PMCID: PMC11048655 DOI: 10.3390/brainsci14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Decades of research has revealed a relationship between childhood socioeconomic status (SES) and brain development at the structural and functional levels. Of particular note is the distinction between income and maternal education, two highly correlated factors which seem to influence brain development through distinct pathways. Specifically, while a families' income-to-needs ratio is linked with physiological stress and household chaos, caregiver education influences the day-to-day language environment a child is exposed to. Variability in either one of these environmental experiences is related to subsequent brain development. While this work has the potential to inform public policies in a way that benefits children, it can also oversimplify complex factors, unjustly blame low-SES parents, and perpetuate a harmful deficit perspective. To counteract these shortcomings, researchers must consider sociodemographic differences in the broader cultural context that underlie SES-based differences in brain development. This review aims to address these issues by (a) identifying how sociodemographic mechanisms associated with SES influence the day-to-day experiences of children, in turn, impacting brain development, while (b) considering the broader cultural contexts that may differentially impact this relationship.
Collapse
Affiliation(s)
- Julie M. Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, 72 Hatcher Hall, Field House Drive, Baton Rouge, LA 70803, USA;
| | - Mohammad Hossein Behboudi
- Callier Center for Communication Disorders, The University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA;
| | - Mandy J. Maguire
- Callier Center for Communication Disorders, The University of Texas at Dallas, 1966 Inwood Road, Dallas, TX 75235, USA;
- Center for Children and Families, The University of Texas at Dallas, 800 W Campbell Road, Dallas, TX 75080, USA
| |
Collapse
|
260
|
Lokossou HA, Rabuffo G, Bernard M, Bernard C, Viola A, Perles-Barbacaru TA. Impact of the day/night cycle on functional connectome in ageing male and female mice. Neuroimage 2024; 290:120576. [PMID: 38490583 DOI: 10.1016/j.neuroimage.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.
Collapse
Affiliation(s)
- Houéfa Armelle Lokossou
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France; Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Giovanni Rabuffo
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France
| | - Monique Bernard
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | - Christophe Bernard
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Angèle Viola
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | | |
Collapse
|
261
|
Liu J, Mosti F, Zhao HT, Sotelo-Fonseca JE, Escobar-Tomlienovich CF, Lollis D, Musso CM, Mao Y, Massri AJ, Doll HM, Sousa AM, Wray GA, Schmidt E, Silver DL. A human-specific enhancer fine-tunes radial glia potency and corticogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588953. [PMID: 38645099 PMCID: PMC11030412 DOI: 10.1101/2024.04.10.588953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Humans evolved an extraordinarily expanded and complex cerebral cortex, associated with developmental and gene regulatory modifications 1-3 . Human accelerated regions (HARs) are highly conserved genomic sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to human-specific cortical development is largely unknown 4,5 . HARE5 is a HAR transcriptional enhancer of the WNT signaling receptor Frizzled8 (FZD8) active during brain development 6 . Here, using genome-edited mouse and primate models, we demonstrate that human (Hs) HARE5 fine-tunes cortical development and connectivity by controlling the proliferative and neurogenic capacity of neural progenitor cells (NPCs). Hs-HARE5 knock-in mice have significantly enlarged neocortices containing more neurons. By measuring neural dynamics in vivo we show these anatomical features correlate with increased functional independence between cortical regions. To understand the underlying developmental mechanisms, we assess progenitor fate using live imaging, lineage analysis, and single-cell RNA sequencing. This reveals Hs-HARE5 modifies radial glial progenitor behavior, with increased self-renewal at early developmental stages followed by expanded neurogenic potential. We use genome-edited human and chimpanzee (Pt) NPCs and cortical organoids to assess the relative enhancer activity and function of Hs-HARE5 and Pt-HARE5. Using these orthogonal strategies we show four human-specific variants in HARE5 drive increased enhancer activity which promotes progenitor proliferation. These findings illustrate how small changes in regulatory DNA can directly impact critical signaling pathways and brain development. Our study uncovers new functions for HARs as key regulatory elements crucial for the expansion and complexity of the human cerebral cortex.
Collapse
|
262
|
Lv Z, Li J, Yao L, Guo X. Predicting resting-state brain functional connectivity from the structural connectome using the heat diffusion model: a multiple-timescale fusion method. J Neural Eng 2024; 21:026041. [PMID: 38565132 DOI: 10.1088/1741-2552/ad39a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Objective.Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC.Approach.In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC.Main results.We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939±0.0079 and 0.7302±0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions.Significance.The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.
Collapse
Affiliation(s)
- Zhengyuan Lv
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jingming Li
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
263
|
Röhr AK, Kohn N, Bergs R, Clemens B, Lampert A, Spehr M, Habel U, Wagels L. Increased anger and stress and heightened connectivity between IFG and vmPFC in victims during social interaction. Sci Rep 2024; 14:8471. [PMID: 38605132 PMCID: PMC11009292 DOI: 10.1038/s41598-024-57585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Self-identification as a victim of violence may lead to increased negative emotions and stress and thus, may change both structure and function of the underlying neural network(s). In a trans-diagnostic sample of individuals who identified themselves as victims of violence and a matched control group with no prior exposure to violence, we employed a social exclusion paradigm, the Cyberball task, to stimulate the re-experience of stress. Participants were partially excluded in the ball-tossing game without prior knowledge. We analyzed group differences in brain activity and functional connectivity during exclusion versus inclusion in exclusion-related regions. The victim group showed increased anger and stress levels during all conditions. Activation patterns during the task did not differ between groups but an enhanced functional connectivity between the IFG and the right vmPFC distinguished victims from controls during exclusion. This effect was driven by aberrant connectivity in victims during inclusion rather than exclusion, indicating that victimization affects emotional responses and inclusion-related brain connectivity rather than exclusion-related brain activity or connectivity. Victims may respond differently to the social context itself. Enhanced negative emotions and connectivity deviations during social inclusion may depict altered social processing and may thus affect social interactions.
Collapse
Affiliation(s)
- Ann-Kristin Röhr
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Nils Kohn
- Donders Institute, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Rene Bergs
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Jülich, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen - SCN Aachen, Uniklinik RWTH Aachen University, 52074, Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Jülich, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Jülich, Germany.
| |
Collapse
|
264
|
Meng J, Zhang T, Hao T, Xie X, Zhang M, Zhang L, Wan X, Zhu C, Li Q, Wang K. Functional and Structural Abnormalities in the Pain Network of Generalized Anxiety Disorder Patients with Pain Symptoms. Neuroscience 2024; 543:28-36. [PMID: 38382693 DOI: 10.1016/j.neuroscience.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Pain symptoms significantly impact the well-being and work capacity of individuals with generalized anxiety disorder (GAD), and hinder treatment and recovery. Despite existing literature focusing on the neural substrate of pain and anxiety separately, further exploration is needed to understand the possible neuroimaging mechanisms of the pain symptoms in GAD patients. We recruited 73 GAD patients and 75 matched healthy controls (HC) for clinical assessments, as well as resting-state functional and structural magnetic resonance imaging scans. We defined a pain-related network through a published meta-analysis, including the insula, thalamus, periaqueductal gray, prefrontal cortex, anterior cingulate cortex, amygdala, and hippocampus. Subsequently, we conducted the regional homogeneity (ReHo) and the gray matter volume (GMV) within the pain-related network. Correlation analysis was then employed to explore associations between abnormal regions and self-reported outcomes, assessed using the Patient Health Questionnaire-15 (PHQ-15) and pain scores. We observed significantly increased ReHo in the bilateral insula but decreased GMV in the bilateral thalamus of GAD compared to HC. Further correlation analysis revealed a positive correlation between ReHo of the left anterior insula and pain scores in GAD patients, while a respective negative correlation between GMV of the bilateral thalamus and PHQ-15 scores. In summary, GAD patients exhibit structural and functional abnormalities in pain-related networks. The enhanced ReHo in the left anterior insula is correlated with pain symptoms, which might be a crucial brain region of pain symptoms in GAD.
Collapse
Affiliation(s)
- Jie Meng
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Ting Zhang
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Tong Hao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Mengdan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xingsong Wan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China.
| |
Collapse
|
265
|
Guo Z, Tang X, Xiao S, Yan H, Sun S, Yang Z, Huang L, Chen Z, Wang Y. Systematic review and meta-analysis: multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol Autism 2024; 15:16. [PMID: 38576034 PMCID: PMC10996269 DOI: 10.1186/s13229-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
266
|
Deshpande G, Zhao S, Waggoner P, Beyers R, Morrison E, Huynh N, Vodyanoy V, Denney TS, Katz JS. Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs. Animals (Basel) 2024; 14:1082. [PMID: 38612321 PMCID: PMC11010877 DOI: 10.3390/ani14071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner while resting-state fMRI data was acquired. Canine behavior was characterized by an integrated behavioral score capturing their hunting, retrieving, and environmental soundness. Functional scans and behavioral measures were acquired at three different time points across detector dog training. The first time point (TP1) was prior to the dogs entering formal working detector dog training. The second time point (TP2) was soon after formal detector dog training. The third time point (TP3) was three months' post detector dog training while the dogs were engaged in a program of maintenance training for detection work. We hypothesized that the correlation between resting-state FC in the dog brain and behavior measures would significantly change during their detection training process (from TP1 to TP2) and would maintain for the subsequent several months of detection work (from TP2 to TP3). To further study the resting-state FC features that can predict the success of training, dogs at TP1 were divided into a successful group and a non-successful group. We observed a core brain network which showed relatively stable (with respect to time) patterns of interaction that were significantly stronger in successful detector dogs compared to failures and whose connectivity strength at the first time point predicted whether a given dog was eventually successful in becoming a detector dog. A second ontologically based flexible peripheral network was observed whose changes in connectivity strength with detection training tracked corresponding changes in behavior over the training program. Comparing dog and human brains, the functional connectivity between the brain stem and the frontal cortex in dogs corresponded to that between the locus coeruleus and left middle frontal gyrus in humans, suggestive of a shared mechanism for learning and retrieval of odors. Overall, the findings point toward the influence of phylogeny and ontogeny in dogs producing two dissociable functional neural networks.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad 502285, India
| | - Sinan Zhao
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Paul Waggoner
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Ronald Beyers
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Edward Morrison
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Nguyen Huynh
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Thomas S. Denney
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| | - Jeffrey S. Katz
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
267
|
Meghji S, Hilderley AJ, Murias K, Brooks BL, Andersen J, Fehlings D, Dlamini N, Kirton A, Carlson HL. Executive functioning, ADHD symptoms and resting state functional connectivity in children with perinatal stroke. Brain Imaging Behav 2024; 18:263-278. [PMID: 38038867 PMCID: PMC11156742 DOI: 10.1007/s11682-023-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Perinatal stroke describes a group of focal, vascular brain injuries that occur early in development, often resulting in lifelong disability. Two types of perinatal stroke predominate, arterial ischemic stroke (AIS) and periventricular venous infarction (PVI). Though perinatal stroke is typically considered a motor disorder, other comorbidities commonly exist including attention-deficit hyperactivity disorder (ADHD) and deficits in executive function. Rates of ADHD symptoms are higher in children with perinatal stroke and deficits in executive function may also occur but underlying mechanisms are not known. We measured resting state functional connectivity in children with perinatal stroke using previously established dorsal attention, frontoparietal, and default mode network seeds. Associations with parental ratings of executive function and ADHD symptoms were examined. A total of 120 participants aged 6-19 years [AIS N = 31; PVI N = 30; Controls N = 59] were recruited. In comparison to typically developing peers, both the AIS and PVI groups showed lower intra- and inter-hemispheric functional connectivity values in the networks investigated. Group differences in between-network connectivity were also demonstrated, showing weaker anticorrelations between task-positive (frontoparietal and dorsal attention) and task-negative (default mode) networks in stroke groups compared to controls. Both within-network and between-network functional connectivity values were highly associated with parental reports of executive function and ADHD symptoms. These results suggest that differences in functional connectivity exist both within and between networks after perinatal stroke, the degree of which is associated with ADHD symptoms and executive function.
Collapse
Affiliation(s)
- Suraya Meghji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kara Murias
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Brian L Brooks
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - John Andersen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Darcy Fehlings
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Children's Stroke Program, Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada.
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
268
|
Chen Y, Zhang L, Yin H. Different emotion regulation strategies mediate the relations of corresponding connections within the default-mode network to sleep quality. Brain Imaging Behav 2024; 18:302-314. [PMID: 38057650 DOI: 10.1007/s11682-023-00828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Despite a long history of interest in the relation of emotion regulation to sleep quality, how different strategies link with sleep quality at the neural level is still poorly understood. Thus, we utilized the process model of emotion regulation as an organizing framework for examining the neurological underpinning of the links between the two emotion regulation strategies and sleep quality. 183 young adults (51.7% females, Mage = 22.16) were guided to undergo the MRI scans and then complete the Pittsburgh Sleep Quality Index (PSQI) and the emotion regulation Questionnaire (ERQ) formed by two dimensions: cognitive reappraisal and expressive suppression. Results found that emotion regulation mediated the association between functional connectivity within the intrinsic default-mode network (DMN) and sleep quality. Specifically, rsFC analysis showed that cognitive reappraisal was positively correlated with rsFC within DMN, including left superior temporal gyrus (lSTG)-left lateral occipital cortex (lLOC), lSTG-left anterior cingulate gyrus (lACG), right lateral occipital cortex (rLOC)-left middle frontal gyrus (lMFG), and rLOC-lSTG. Further mediation analysis indicated a mediated role of cognitive reappraisal in the links between the four connectivity within the DMN and sleep quality. In addition, expressive suppression was positively correlated with rsFC within DMN, including left precuneus cortex (lPrcu)-right Temporal Pole (rTP) and lPrcu- lSTG. Further mediation analysis indicated a mediated role of expressive suppression in the links between the two connectivity within the DMN and sleep quality. Overall, this finding supports the process model of emotion regulation in that the effects of reappraisal and suppression have varying neural circuits that impact that strategy's effect on sleep quality.
Collapse
Affiliation(s)
- Yang Chen
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China
| | - Li Zhang
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China
| | - Huazhan Yin
- Department of Psychology, School of Education Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan, 410081, China.
- Centre for Mind & Brain Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
269
|
Denfield GH, Kyzar EJ. The Nested States Model: An Empirical Framework for Integrating Brain and Mind. JOURNAL OF CONSCIOUSNESS STUDIES : CONTROVERSIES IN SCIENCE & THE HUMANITIES 2024; 31:28-55. [PMID: 38725942 PMCID: PMC11081467 DOI: 10.53765/20512201.31.3.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Philosophy of mind has made substantial progress on biologically-rooted approaches to understanding the mind and subjectivity through the enactivist perspective, but research on subjectivity within neuroscience has not kept apace. Indeed, we possess no principled means of relating experiential phenomena to neurophysiological processes. Here, we present the Nested States Model as a framework to guide empirical investigation into the relationship between subjectivity and neurobiology. Building on recent work in phenomenology and philosophy of mind, we develop an account of experiential states as layered, or nested. We argue that this nested structure is also apparent in brain activity. The recognition of this structural homology - that both experiential and brain states can be characterized as systems of nested states - brings our views of subjective mental states into broad alignment with our understanding of general principles and properties of brain activity. This alignment enables a more systematic approach to formulating specific hypotheses and predictions about how the two domains relate to one another.
Collapse
Affiliation(s)
- George H Denfield
- Department of Psychiatry, Columbia University, New York, USA
- Research Foundation for Mental Hygiene, Menands, NY, USA
- New York State Psychiatric Institute, New York, USA
| | - Evan J Kyzar
- Department of Psychiatry, Columbia University, New York, USA
- Research Foundation for Mental Hygiene, Menands, NY, USA
- New York State Psychiatric Institute, New York, USA
| |
Collapse
|
270
|
Wang S, Wang W, Chen J, Yu X. Alterations in brain functional connectivity in patients with mild cognitive impairment: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Brain Behav 2024; 14:e3414. [PMID: 38616330 PMCID: PMC11016629 DOI: 10.1002/brb3.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging evidences suggest that cognitive deficits in individuals with mild cognitive impairment (MCI) are associated with disruptions in brain functional connectivity (FC). This systematic review and meta-analysis aimed to comprehensively evaluate alterations in FC between MCI individuals and healthy control (HC) using functional near-infrared spectroscopy (fNIRS). Thirteen studies were included in qualitative analysis, with two studies synthesized for quantitative meta-analysis. Overall, MCI patients exhibited reduced resting-state FC, predominantly in the prefrontal, parietal, and occipital cortex. Meta-analysis of two studies revealed a significant reduction in resting-state FC from the right prefrontal to right occipital cortex (standardized mean difference [SMD] = -.56; p < .001), left prefrontal to left occipital cortex (SMD = -.68; p < .001), and right prefrontal to left occipital cortex (SMD = -.53; p < .001) in MCI patients compared to HC. During naming animal-walking task, MCI patients exhibited enhanced FC in the prefrontal, motor, and occipital cortex, whereas a decrease in FC was observed in the right prefrontal to left prefrontal cortex during calculating-walking task. In working memory tasks, MCI predominantly showed increased FC in the medial and left prefrontal cortex. However, a decreased in prefrontal FC and a shifted in distribution from the left to the right prefrontal cortex were noted in MCI patients during a verbal frequency task. In conclusion, fNIRS effectively identified abnormalities in FC between MCI and HC, indicating disrupted FC as potential markers for the early detection of MCI. Future studies should investigate the use of task- and region-specific FC alterations as a sensitive biomarker for MCI.
Collapse
Affiliation(s)
- Shuangyan Wang
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Weijia Wang
- Department of LibrarySun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jinglong Chen
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| | - Xiaoqi Yu
- Department of Geriatric Neurology, Guangzhou First People's HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
271
|
Wang T, Gao C, Li J, Li L, Yue Y, Liu X, Chen S, Hou Z, Yin Y, Jiang W, Xu Z, Kong Y, Yuan Y. Prediction of Early Antidepressant Efficacy in Patients with Major Depressive Disorder Based on Multidimensional Features of rs-fMRI and P11 Gene DNA Methylation: Prédiction de l'efficacité précoce d'un antidépresseur chez des patients souffrant du trouble dépressif majeur d'après les caractéristiques multidimensionnelles de la méthylation de l'ADN du gène P11 et de la IRMf-rs. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024; 69:264-274. [PMID: 37920958 PMCID: PMC10924577 DOI: 10.1177/07067437231210787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE This study established a machine learning model based on the multidimensional data of resting-state functional activity of the brain and P11 gene DNA methylation to predict the early efficacy of antidepressant treatment in patients with major depressive disorder (MDD). METHODS A total of 98 Han Chinese MDD were analysed in this study. Patients were divided into 51 responders and 47 nonresponders according to whether the Hamilton Depression Rating Scale-17 items (HAMD-17) reduction rate was ≥50% after 2 weeks of antidepressant treatment. At baseline, the Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the P11 gene in peripheral blood samples. Resting-state functional magnetic resonance imaging (rs-fMRI) scan detected the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in 116 brain regions. The least absolute shrinkage and selection operator analysis method was used to perform feature reduction and feature selection. Four typical machine learning methods were used to establish support vector machine (SVM), random forest (RF), Naïve Bayes (NB), and logistic regression (LR) prediction models based on different combinations of functional activity of the brain, P11 gene DNA methylation and clinical/demographic features after screening. RESULTS The SVM model based on ALFF, ReHo, FC, P11 methylation, and clinical/demographic features showed the best performance, with 95.92% predictive accuracy and 0.9967 area under the receiver operating characteristic curve, which was better than RF, NB, and LR models. CONCLUSION The multidimensional data features combining rs-fMRI, DNA methylation, and clinical/demographic features can predict the early antidepressant efficacy in MDD.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiaxing Li
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Lei Li
- Department of Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, China
| |
Collapse
|
272
|
Kung YC, Li CW, Hsu AL, Liu CY, Wu CW, Chang WC, Lin CP. Neurovascular coupling in eye-open-eye-close task and resting state: Spectral correspondence between concurrent EEG and fMRI. Neuroimage 2024; 289:120535. [PMID: 38342188 DOI: 10.1016/j.neuroimage.2024.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Neurovascular coupling serves as an essential neurophysiological mechanism in functional neuroimaging, which is generally presumed to be robust and invariant across different physiological states, encompassing both task engagement and resting state. Nevertheless, emerging evidence suggests that neurovascular coupling may exhibit state dependency, even in normal human participants. To investigate this premise, we analyzed the cross-frequency spectral correspondence between concurrently recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data, utilizing them as proxies for neurovascular coupling during the two conditions: an eye-open-eye-close (EOEC) task and a resting state. We hypothesized that given the state dependency of neurovascular coupling, EEG-fMRI spectral correspondences would change between the two conditions in the visual system. During the EOEC task, we observed a negative phase-amplitude-coupling (PAC) between EEG alpha-band and fMRI visual activity. Conversely, in the resting state, a pronounced amplitude-amplitude-coupling (AAC) emerged between EEG and fMRI signals, as evidenced by the spectral correspondence between the EEG gamma-band of the midline occipital channel (Oz) and the high-frequency fMRI signals (0.15-0.25 Hz) in the visual network. This study reveals distinct scenarios of EEG-fMRI spectral correspondence in healthy participants, corroborating the state-dependent nature of neurovascular coupling.
Collapse
Affiliation(s)
- Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Yun Liu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
273
|
Song C, Xie S, Zhang X, Han S, Lian Y, Ma K, Mao X, Zhang Y, Cheng J. Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy. Brain Imaging Behav 2024; 18:352-367. [PMID: 38087148 DOI: 10.1007/s11682-023-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 06/07/2024]
Abstract
To comprehensively investigate the potential temporal dynamic and static abnormalities of spontaneous brain activity (SBA) in left temporal lobe epilepsy (LTLE) and right temporal lobe epilepsy (RTLE) and to detect whether these alterations correlate with cognition. Twelve SBA metrics, including ALFF, dALFF, fALFF, dfALFF, ReHo, dReHo, DC, dDC, GSCorr, dGSCorr, VMHC, and dVMHC, in 46 LTLE patients, 43 RTLE patients, and 53 healthy volunteers were compared in the voxel-wise analysis. Correlation analyses between metrics in regions showing statistic differences and epilepsy duration, epilepsy severity, and cognition scores were also performed. Compared with the healthy volunteers, the alteration of SBA was identified both in LTLE and RTLE patients. The ALFF, fALFF, and dALFF values in LTLE, as well as the fALFF values in RTLE, increased in the bilateral thalamus, basal ganglia, mesial temporal lobe, cerebellum, and vermis. Increased dfALFF in the bilateral basal ganglia, increased ReHo and dReHo in the bilateral thalamus in the LTLE group, increased ALFF and dALFF in the pons, and increased ReHo and dReHo in the right hippocampus in the RTLE group were also detected. However, the majority of deactivation clusters were in the ipsilateral lateral temporal lobe. For LTLE, the fALFF, DC, dDC, and GSCorr values in the left lateral temporal lobe and the ReHo and VMHC values in the bilateral lateral temporal lobe all decreased. For RTLE, the ALFF, fALFF, dfALFF, ReHo, dReHo, and DC values in the right lateral temporal lobe and the VMHC values in the bilateral lateral temporal lobe all decreased. Moreover, for both the LTLE and RTLE groups, the dVMHC values decreased in the calcarine cortex. The most significant difference between LTLE and RTLE was the higher activation in the cerebellum of the LTLE group. The alterations of many SBA metrics were correlated with cognition and epilepsy duration. The patterns of change in SBA abnormalities in the LTLE and RTLE patients were generally similar. The integrated application of temporal dynamic and static SBA metrics might aid in the investigation of the propagation and suppression pathways of seizure activity as well as the cognitive impairment mechanisms in TLE.
Collapse
Affiliation(s)
- Chengru Song
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Shanshan Xie
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Xiaonan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keran Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Xinyue Mao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, China.
| |
Collapse
|
274
|
Ziontz J, Harrison TM, Chen X, Giorgio J, Adams JN, Wang Z, Jagust W, Alzheimer’s Disease Neuroimaging Initiative. Behaviorally meaningful functional networks mediate the effect of Alzheimer's pathology on cognition. Cereb Cortex 2024; 34:bhae134. [PMID: 38602736 PMCID: PMC11008686 DOI: 10.1093/cercor/bhae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Tau pathology is associated with cognitive impairment in both aging and Alzheimer's disease, but the functional and structural bases of this relationship remain unclear. We hypothesized that the integrity of behaviorally meaningful functional networks would help explain the relationship between tau and cognitive performance. Using resting state fMRI, we identified unique networks related to episodic memory and executive function cognitive domains. The episodic memory network was particularly related to tau pathology measured with positron emission tomography in the entorhinal and temporal cortices. Further, episodic memory network strength mediated the relationship between tau pathology and cognitive performance above and beyond neurodegeneration. We replicated the association between these networks and tau pathology in a separate cohort of older adults, including both cognitively unimpaired and mildly impaired individuals. Together, these results suggest that behaviorally meaningful functional brain networks represent a functional mechanism linking tau pathology and cognition.
Collapse
Affiliation(s)
- Jacob Ziontz
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Xi Chen
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - Joseph Giorgio
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, University Dr, Callaghan, Newcastle, NSW 2305, Australia
| | - Jenna N Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, 1400 Biological Sciences III, University of California, Irvine, Irvine, CA 92697, United States
| | - Zehao Wang
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
| | - William Jagust
- Helen Wills Neuroscience Institute, UC Berkeley, 250 Warren Hall, 2195 Hearst Ave, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | | |
Collapse
|
275
|
Zheng C, Xiao X, Zhao W, Yang Z, Guo S. Functional brain network controllability dysfunction in Alzheimer's disease and its relationship with cognition and gene expression profiling. J Neural Eng 2024; 21:026018. [PMID: 38502960 DOI: 10.1088/1741-2552/ad357e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective. In recent studies, network control theory has been applied to clarify transitions between brain states, emphasizing the significance of assessing the controllability of brain networks in facilitating transitions from one state to another. Despite these advancements, the potential alterations in functional network controllability associated with Alzheimer's disease (AD), along with the underlying genetic mechanisms responsible for these alterations, remain unclear.Approach. We conducted a comparative analysis of functional network controllability measures between patients with AD (n= 64) and matched normal controls (NCs,n= 64). We investigated the association between altered controllability measures and cognitive function in AD. Additionally, we conducted correlation analyses in conjunction with the Allen Human Brain Atlas to identify genes whose expression was correlated with changes in functional network controllability in AD, followed by a set of analyses on the functional features of the identified genes.Main results. In comparison to NCs, patients with AD exhibited a reduction in average controllability, predominantly within the default mode network (DMN) (63% of parcellations), and an increase in average controllability within the limbic (LIM) network (33% of parcellations). Conversely, AD patients displayed a decrease in modal controllability within the LIM network (27% of parcellations) and an increase in modal controllability within the DMN (80% of parcellations). In AD patients, a significant positive correlation was found between the average controllability of the salience network and the mini-mental state examination scores. The changes in controllability measures exhibited spatial correlation with transcriptome profiles. The significant genes identified exhibited enrichment in neurobiologically relevant pathways and demonstrated preferential expression in various tissues, cell types, and developmental periods.Significance. Our findings have the potential to offer new insights into the genetic mechanisms underlying alterations in the controllability of functional networks in AD. Additionally, these results offered perspectives for a deeper understanding of the pathogenesis and the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Xiaoxia Xiao
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, People's Republic of China
- Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, People's Republic of China
| |
Collapse
|
276
|
Hurzeler T, Watt J, Logge W, Towers E, Suraev A, Lintzeris N, Haber P, Morley KC. Neuroimaging studies of cannabidiol and potential neurobiological mechanisms relevant for alcohol use disorders: a systematic review. J Cannabis Res 2024; 6:15. [PMID: 38509580 PMCID: PMC10956336 DOI: 10.1186/s42238-024-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
The underlying neurobiological mechanisms of cannabidiol's (CBD) management of alcohol use disorder (AUD) remains elusive.Aim We conducted a systematic review of neuroimaging literature investigating the effects of CBD on the brain in healthy participants. We then theorise the potential neurobiological mechanisms by which CBD may ameliorate various symptoms of AUD.Methods This review was conducted according to the PRISMA guidelines. Terms relating to CBD and neuroimaging were used to search original clinical research published in peer-reviewed journals.Results Of 767 studies identified by our search strategy, 16 studies satisfied our eligibility criteria. The results suggest that CBD modulates γ-Aminobutyric acid and glutamate signaling in the basal ganglia and dorso-medial prefrontal cortex. Furthermore, CBD regulates activity in regions associated with mesocorticolimbic reward pathways; salience, limbic and fronto-striatal networks which are implicated in reward anticipation; emotion regulation; salience processing; and executive functioning.Conclusion CBD appears to modulate neurotransmitter systems and functional connections in brain regions implicated in AUD, suggesting CBD may be used to manage AUD symptomatology.
Collapse
Affiliation(s)
- Tristan Hurzeler
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Joshua Watt
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Warren Logge
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Ellen Towers
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Lintzeris
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Sydney, Australia
| | - Paul Haber
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Kirsten C Morley
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia.
| |
Collapse
|
277
|
Han M, He C, Li T, Li Q, Chu T, Li J, Wang P. Altered dynamic and static brain activity and functional connectivity in COVID-19 patients: a preliminary study. Neuroreport 2024; 35:306-315. [PMID: 38305116 DOI: 10.1097/wnr.0000000000002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aimed to investigate the effects of COVID-19 on brain functional activity through resting-state functional MRI (rs-fMRI). fMRI scans were conducted on a cohort of 42 confirmed COVID-19-positive patients and 46 healthy controls (HCs) to assess brain functional activity. A combination of dynamic and static amplitude of low-frequency fluctuations (dALFF/sALFF) and dynamic and static functional connectivity (dFC/sFC) was used for evaluation. Abnormal brain regions identified were then used as feature inputs in the model to evaluate support vector machine (SVM) capability in recognizing COVID-19 patients. Moreover, the random forest (RF) model was employed to verify the stability of SVM diagnoses for COVID-19 patients. Compared to HCs, COVID-19 patients exhibited a decrease in sALFF in the right lingual gyrus and the left medial occipital gyrus and an increase in dALFF in the right straight gyrus. Moreover, there was a decline in sFC between both lingual gyri and the right superior occipital gyrus and a reduction in dFC with the precentral gyrus. The dynamic and static combined ALFF and FC could distinguish between COVID-19 patients and the HCs with an accuracy of 0.885, a specificity of 0.818, a sensitivity of 0.933 and an area under the curve of 0.909. The combination of dynamic and static ALFF and FC can provide information for detecting brain functional abnormalities in COVID-19 patients.
Collapse
Affiliation(s)
- Mingxing Han
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Chunni He
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Tianping Li
- Department of Radiology, The Second Hospital of Jiaxing, Jiaxing, People's Republic of China
| | - Qinglong Li
- Department of Magenetic Resonance Imaging (MRI), Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai
| |
Collapse
|
278
|
Apablaza-Yevenes DE, Corsi-Cabrera M, Martinez-Guerrero A, Northoff G, Romaniello C, Farinelli M, Bertoletti E, Müller MF, Muñoz-Torres Z. Stationary stable cross-correlation pattern and task specific deviations in unresponsive wakefulness syndrome as well as clinically healthy subjects. PLoS One 2024; 19:e0300075. [PMID: 38489260 PMCID: PMC10942032 DOI: 10.1371/journal.pone.0300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Brain dynamics is highly non-stationary, permanently subject to ever-changing external conditions and continuously monitoring and adjusting internal control mechanisms. Finding stationary structures in this system, as has been done recently, is therefore of great importance for understanding fundamental dynamic trade relationships. Here we analyse electroencephalographic recordings (EEG) of 13 subjects with unresponsive wakefulness syndrome (UWS) during rest and while being influenced by different acoustic stimuli. We compare the results with a control group under the same experimental conditions and with clinically healthy subjects during overnight sleep. The main objective of this study is to investigate whether a stationary correlation pattern is also present in the UWS group, and if so, to what extent this structure resembles the one found in healthy subjects. Furthermore, we extract transient dynamical features via specific deviations from the stationary interrelation pattern. We find that (i) the UWS group is more heterogeneous than the two groups of healthy subjects, (ii) also the EEGs of the UWS group contain a stationary cross-correlation pattern, although it is less pronounced and shows less similarity to that found for healthy subjects and (iii) deviations from the stationary pattern are notably larger for the UWS than for the two groups of healthy subjects. The results suggest that the nervous system of subjects with UWS receive external stimuli but show an overreaching reaction to them, which may disturb opportune information processing.
Collapse
Affiliation(s)
- David E. Apablaza-Yevenes
- Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - María Corsi-Cabrera
- Unidad de Investigación en Neurodesarrollo, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, People’s Republic of China
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | | | | | | | - Markus F. Müller
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, México
- Centro Internacional de Ciencias A.C., Morelos, México
| | - Zeidy Muñoz-Torres
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
- Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
279
|
Dannhauer M, Gomez LJ, Robins PL, Wang D, Hasan NI, Thielscher A, Siebner HR, Fan Y, Deng ZD. Electric Field Modeling in Personalizing Transcranial Magnetic Stimulation Interventions. Biol Psychiatry 2024; 95:494-501. [PMID: 38061463 PMCID: PMC10922371 DOI: 10.1016/j.biopsych.2023.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/21/2024]
Abstract
The modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications. Modeling methodologies have been optimized to efficiently execute numerous TMS simulations across diverse scalp coil configurations, facilitating the identification of optimal setups or rapid cortical E-field visualization for specific brain targets. These brain targets are extrapolated from neurophysiological measurements and neuroimaging, enabling precise and individualized E-field dosing in experimental and clinical applications. This necessitates the quantification of E-field estimates using metrics that enable the comparison of brain target engagement, functional localization, and TMS intensity adjustments across subjects. The integration of E-field modeling with empirical data has the potential to uncover pivotal insights into the aspects of E-fields responsible for stimulating and modulating brain function and states, enhancing behavioral task performance, and impacting the clinical outcomes of personalized TMS interventions.
Collapse
Affiliation(s)
- Moritz Dannhauer
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Luis J Gomez
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Pei L Robins
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Dezhi Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Nahian I Hasan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
280
|
Fu L, Aximu R, Zhao G, Chen Y, Sun Z, Xue H, Wang S, Zhang N, Zhang Z, Lei M, Zhai Y, Xu J, Sun J, Ma J, Liu F. Mapping the landscape: a bibliometric analysis of resting-state fMRI research on schizophrenia over the past 25 years. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:35. [PMID: 38490990 PMCID: PMC10942978 DOI: 10.1038/s41537-024-00456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.
Collapse
Affiliation(s)
- Linhan Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Remilai Aximu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
281
|
Wang S, Constable T, Zhang H, Zhao Y. Heterogeneity Analysis on Multi-state Brain Functional Connectivity and Adolescent Neurocognition. J Am Stat Assoc 2024; 119:851-863. [PMID: 39371422 PMCID: PMC11451334 DOI: 10.1080/01621459.2024.2311363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 10/08/2024]
Abstract
Brain functional connectivity or connectome, a unique measure for brain functional organization, provides a great potential to explain the neurobiological underpinning of behavioral profiles. Existing connectome-based analyses highly concentrate on brain activities under a single cognitive state, and fail to consider heterogeneity when attempting to characterize brain-to-behavior relationships. In this work, we study the complex impact of multi-state functional connectivity on behaviors by analyzing the data from a recent landmark brain development and child health study. We propose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurodevelopmental subtypes with distinct effect mechanisms. We impose stochastic block structures to identify network-based functional phenotypes and develop a variational expectation-maximization algorithm to facilitate an efficient posterior computation. Through integrating resting-state and task-related functional connectomes, we dissect heterogeneous effect mechanisms on children's fluid intelligence from the functional network phenotypes including Fronto-parietal Network and Default Mode Network under different cognitive states. Based on extensive simulations, we further confirm the superior performance of our method on uncovering brain-to-behavior relationships.
Collapse
Affiliation(s)
- Shiying Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Todd Constable
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT
| | - Heping Zhang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Yize Zhao
- Department of Biostatistics, Yale University, New Haven, CT
| |
Collapse
|
282
|
Liu Y, Ge E, He M, Liu Z, Zhao S, Hu X, Qiang N, Zhu D, Liu T, Ge B. Mapping dynamic spatial patterns of brain function with spatial-wise attention. J Neural Eng 2024; 21:026005. [PMID: 38407988 DOI: 10.1088/1741-2552/ad2cea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Objective: Using functional magnetic resonance imaging (fMRI) and deep learning to discover the spatial pattern of brain function, or functional brain networks (FBNs) has been attracted many reseachers. Most existing works focus on static FBNs or dynamic functional connectivity among fixed spatial network nodes, but ignore the potential dynamic/time-varying characteristics of the spatial networks themselves. And most of works based on the assumption of linearity and independence, that oversimplify the relationship between blood-oxygen level dependence signal changes and the heterogeneity of neuronal activity within voxels.Approach: To overcome these problems, we proposed a novel spatial-wise attention (SA) based method called Spatial and Channel-wise Attention Autoencoder (SCAAE) to discover the dynamic FBNs without the assumptions of linearity or independence. The core idea of SCAAE is to apply the SA to generate FBNs directly, relying solely on the spatial information present in fMRI volumes. Specifically, we trained the SCAAE in a self-supervised manner, using the autoencoder to guide the SA to focus on the activation regions. Experimental results show that the SA can generate multiple meaningful FBNs at each fMRI time point, which spatial similarity are close to the FBNs derived by known classical methods, such as independent component analysis.Main results: To validate the generalization of the method, we evaluate the approach on HCP-rest, HCP-task and ADHD-200 dataset. The results demonstrate that SA mechanism can be used to discover time-varying FBNs, and the identified dynamic FBNs over time clearly show the process of time-varying spatial patterns fading in and out.Significance: Thus we provide a novel method to understand human brain better. Code is available athttps://github.com/WhatAboutMyStar/SCAAE.
Collapse
Affiliation(s)
- Yiheng Liu
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, People's Republic of China
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Enjie Ge
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Mengshen He
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Zhengliang Liu
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Shijie Zhao
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, People's Republic of China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Qiang
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Dajiang Zhu
- Department of Computer Science, University of Texas at Arlington, Arlington, TX, United States of America
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Bao Ge
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, People's Republic of China
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
283
|
Mikutta CA, Knight RT, Sammler D, Müller TJ, Koenig T. Electrocorticographic Activation Patterns of Electroencephalographic Microstates. Brain Topogr 2024; 37:287-295. [PMID: 36939988 PMCID: PMC10884069 DOI: 10.1007/s10548-023-00952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.
Collapse
Affiliation(s)
- Christian A Mikutta
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Private Clinic Meiringen, Meiringen, Switzerland
- Interdisciplinary Biosciences Doctoral Training Partnership, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California-Berkeley, 132 Barker Hall, 94720, Berkeley, CA, USA
| | - Daniela Sammler
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Thomas J Müller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Private Clinic Meiringen, Meiringen, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
284
|
Moradi N, Goodyear BG, Sotero RC. Deep EEG source localization via EMD-based fMRI high spatial frequency. PLoS One 2024; 19:e0299284. [PMID: 38427616 PMCID: PMC10906834 DOI: 10.1371/journal.pone.0299284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Brain imaging with a high-spatiotemporal resolution is crucial for accurate brain-function mapping. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are two popular neuroimaging modalities with complementary features that record brain function with high temporal and spatial resolution, respectively. One popular non-invasive way to obtain data with both high spatial and temporal resolutions is to combine the fMRI activation map and EEG data to improve the spatial resolution of the EEG source localization. However, using the whole fMRI map may cause spurious results for the EEG source localization, especially for deep brain regions. Considering the head's conductivity, deep regions' sources with low activity are unlikely to be detected by the EEG electrodes at the scalp. In this study, we use fMRI's high spatial-frequency component to identify the local high-intensity activations that are most likely to be captured by the EEG. The 3D Empirical Mode Decomposition (3D-EMD), a data-driven method, is used to decompose the fMRI map into its spatial-frequency components. Different validation measurements for EEG source localization show improved performance for the EEG inverse-modeling informed by the fMRI's high-frequency spatial component compared to the fMRI-informed EEG source-localization methods. The level of improvement varies depending on the voxels' intensity and their distribution. Our experimental results also support this conclusion.
Collapse
Affiliation(s)
- Narges Moradi
- Biomedical Engineering Department, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bradley G. Goodyear
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roberto C. Sotero
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
285
|
Huang W, Fang X, Li S, Mao R, Ye C, Liu W, Deng Y, Lin G. Abnormal characteristic static and dynamic functional network connectivity in idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2024; 30:e14178. [PMID: 36949617 PMCID: PMC10915979 DOI: 10.1111/cns.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
AIMS Idiopathic Normal pressure hydrocephalus (iNPH) is a neurodegenerative disease characterized by gait disturbance, dementia, and urinary dysfunction. The neural network mechanisms underlying this phenomenon is currently unknown. METHODS To investigate the resting-state functional connectivity (rs-FC) abnormalities of iNPH-related brain connectivity from static and dynamic perspectives and the correlation of these abnormalities with clinical symptoms before and 3-month after shunt. We investigated both static and dynamic functional network connectivity (sFNC and dFNC, respectively) in 33 iNPH patients and 23 healthy controls (HCs). RESULTS The sFNC and dFNC of networks were generally decreased in iNPH patients. The reduction in sFNC within the default mode network (DMN) and between the somatomotor network (SMN) and visual network (VN) were related to symptoms. The temporal properties of dFNC and its temporal variability in state-4 were sensitive to the identification of iNPH and were correlated with symptoms. The temporal variability in the dorsal attention network (DAN) increased, and the average instantaneous FC was altered among networks in iNPH. These features were partially associated with clinical symptoms. CONCLUSION The dFNC may be a more sensitive biomarker for altered network function in iNPH, providing us with extra information on the mechanisms of iNPH.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Xuhao Fang
- Department of NeurosurgeryHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Shihong Li
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Renling Mao
- Department of NeurosurgeryHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Chuntao Ye
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Wei Liu
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Yao Deng
- Department of NeurosurgeryHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Guangwu Lin
- Department of RadiologyHuadong Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
286
|
Harp NR, Nielsen AN, Schultz DH, Neta M. In the face of ambiguity: intrinsic brain organization in development predicts one's bias toward positivity or negativity. Cereb Cortex 2024; 34:bhae102. [PMID: 38494885 PMCID: PMC10945044 DOI: 10.1093/cercor/bhae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Exacerbated negativity bias, including in responses to ambiguity, represents a common phenotype of internalizing disorders. Individuals differ in their propensity toward positive or negative appraisals of ambiguity. This variability constitutes one's valence bias, a stable construct linked to mental health. Evidence suggests an initial negativity in response to ambiguity that updates via regulatory processes to support a more positive bias. Previous work implicates the amygdala and prefrontal cortex, and regions of the cingulo-opercular system, in this regulatory process. Nonetheless, the neurodevelopmental origins of valence bias remain unclear. The current study tests whether intrinsic brain organization predicts valence bias among 119 children and adolescents (6 to 17 years). Using whole-brain resting-state functional connectivity, a machine-learning model predicted valence bias (r = 0.20, P = 0.03), as did a model restricted to amygdala and cingulo-opercular system features (r = 0.19, P = 0.04). Disrupting connectivity revealed additional intra-system (e.g. fronto-parietal) and inter-system (e.g. amygdala to cingulo-opercular) connectivity important for prediction. The results highlight top-down control systems and bottom-up perceptual processes that influence valence bias in development. Thus, intrinsic brain organization informs the neurodevelopmental origins of valence bias, and directs future work aimed at explicating related internalizing symptomology.
Collapse
Affiliation(s)
- Nicholas R Harp
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, United States
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Douglas H Schultz
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588, United States
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, C89 East Stadium, Lincoln, NE 68588, United States
| |
Collapse
|
287
|
Yan S, Zhao G, Zhang Q, Liu L, Bai X, Jin H. Altered resting-state brain function in endurance athletes. Cereb Cortex 2024; 34:bhae076. [PMID: 38494416 DOI: 10.1093/cercor/bhae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Previous research has confirmed significant differences in regional brain activity and functional connectivity between endurance athletes and non-athletes. However, no studies have investigated the differences in topological efficiency of the brain functional network between endurance athletes and non-athletes. Here, we compared differences in regional activities, functional connectivity, and topological properties to explore the functional basis associated with endurance training. The results showed significant correlations between Regional Homogeneity in the motor cortex, visual cortex, cerebellum, and the training intensity parameters. Alterations in functional connectivity among the motor cortex, visual cortex, cerebellum, and the inferior frontal gyrus and cingulate gyrus were significantly correlated with training intensity parameters. In addition, the graph theoretical analysis results revealed a significant reduction in global efficiency among athletes. This decline is mainly caused by decreased nodal efficiency and nodal local efficiency of the cerebellar regions. Notably, the sensorimotor regions, such as the precentral gyrus and supplementary motor areas, still exhibit increased nodal efficiency and nodal local efficiency. This study not only confirms the improvement of regional activity in brain regions related to endurance training, but also offers novel insights into the mechanisms through which endurance athletes undergo changes in the topological efficiency of the brain functional network.
Collapse
Affiliation(s)
- Shizhen Yan
- School of Health, Fujian Medical University, Fuzhou 350122, China
| | - Guang Zhao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
| | - Qihan Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
| | - Liqing Liu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
| | - Xuejun Bai
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
| | - Hua Jin
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
288
|
Tang X, Guo Z, Chen G, Sun S, Xiao S, Chen P, Tang G, Huang L, Wang Y. A Multimodal Meta-Analytical Evidence of Functional and Structural Brain Abnormalities Across Alzheimer's Disease Spectrum. Ageing Res Rev 2024; 95:102240. [PMID: 38395200 DOI: 10.1016/j.arr.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Numerous neuroimaging studies have reported that Alzheimer's disease (AD) spectrum have been linked to alterations in intrinsic functional activity and cortical thickness (CT) of some brain areas. However, the findings have been inconsistent and the correlation with the transcriptional profile and neurotransmitter systems remain largely unknown. METHODS We conducted a meta-analysis to identify multimodal differences in the amplitude of low-frequency fluctuation (ALFF)/fractional ALFF (fALFF) and CT in patients with AD and preclinical AD compared to healthy controls (HCs), using the Seed-based d Mapping with Permutation of Subject Images software. Transcriptional data were retrieved from the Allen Human Brain Atlas. The atlas-based nuclear imaging-derived neurotransmitter maps were investigated by JuSpace toolbox. RESULTS We included 26 ALFF/fALFF studies comprising 884 patients with AD and 1,020 controls, along with 52 studies comprising 2,046 patients with preclinical AD and 2,336 controls. For CT, we included 11 studies comprising 353 patients with AD and 330 controls. Overall, compared to HCs, patients with AD showed decreased ALFF/fALFF in the bilateral posterior cingulate gyrus (PCC)/precuneus and right angular gyrus, as well as increased ALFF/fALFF in the bilateral parahippocampal gyrus (PHG). Patients with peclinical AD showed decreased ALFF/fALFF in the left precuneus. Additionally, patients with AD displayed decreased CT in the bilateral PHG, left PCC, bilateral orbitofrontal cortex, sensorimotor areas and temporal lobe. Furthermore, gene sets related to brain structural and functional changes in AD and preclincal AD were enriched for G protein-coupled receptor signaling pathway, ion gated channel activity, and components of biological membrane. Functional and structural alterations in AD and preclinical AD were spatially associated with dopaminergic, serotonergic, and GABAergic neurotransmitter systems. CONCLUSIONS The multimodal meta-analysis demonstrated that patients with AD exhibited convergent functional and structural alterations in the PCC/precuneus and PHG, as well as cortical thinning in the primary sensory and motor areas. Furthermore, patients with preclinical AD showed reduced functional activity in the precuneus. AD and preclinical AD showed genetic modulations/neurotransmitter deficits of brain functional and structural impairments. These findings may provide new insights into the pathophysiology of the AD spectrum.
Collapse
Affiliation(s)
- Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
289
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
290
|
Bain KA, Kosik KB, Terada M, Gribble PA, Johnson NF. Contralateral thalamocortical connectivity is related to postural control in the uninvolved limb of older adults with history of ankle sprain. Gait Posture 2024; 109:115-119. [PMID: 38295486 DOI: 10.1016/j.gaitpost.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Sensorimotor brain connectivity is often overlooked when determining relationships between postural control and motor performance following musculoskeletal injury. Thalamocortical brain connectivity is of particular interest as it represents the temporal synchrony of functionally and anatomically linked brain regions. Importantly, adults over the age of 60 are especially vulnerable to musculoskeletal injury due to age-related declines in postural control and brain connectivity. RESEARCH QUESTION Is there a relationship between thalamocortical connectivity and static postural control in older adults with a history of LAS? METHODS Data were analyzed from twenty older adults (mean age = 67.0 ± 4.3 yrs; 13 females) with a history of LAS. The sensorimotor network (SMN) was identified from resting-state MRI data, and a priori thalamic and postcentral gyri regions of interest were selected in order to determine left and right hemisphere thalamocortical connectivity. Balance was assessed for the involved and non-involved limbs via center of pressure velocity (COPV) in the medial-lateral (ML) and anterior-posterior (AP) directions. RESULTS Contralateral thalamocortical connectivity was significantly associated with COPV_ML COPV_ML (r = -0.474, P = 0.05) and COPV_AP (r = -0.622, P = 0.008) in the non-involved limb. No significant association was observed between involved limb balance and contralateral thalamocortical connectivity (COPV_ML: r = -0.08, P = 0.77; COPV_AP: r = 0.12, P = 0.63). SIGNIFICANCE A significant relationship between thalamocortical connectivity and static postural control was observed in the non-involved, but not the involved limb in older adults with a history of LAS. Findings suggest that thalamocortical connectivity may lead to or be the product of LAS.
Collapse
Affiliation(s)
- Katherine A Bain
- Division of Physical Therapy, Shenandoah University, Leesburg, VA, USA.
| | - Kyle B Kosik
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritusmeikan University, Kusatusu, Shiga-ken, Japan
| | - Phillip A Gribble
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Nathan F Johnson
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
291
|
Tang Z, Liu T, Han K, Liu Y, Su W, Wang R, Zhang H. The effects of rTMS on motor recovery after stroke: a systematic review of fMRI studies. Neurol Sci 2024; 45:897-909. [PMID: 37880452 DOI: 10.1007/s10072-023-07123-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used in motor rehabilitation after stroke, and functional magnetic resonance imaging (fMRI) has been used to investigate the neural mechanisms of motor recovery during stroke therapy. However, there is no review on the mechanism of rTMS intervention for motor recovery after stroke based on fMRI explicitly. We aim to reveal and summarize the neural mechanism of the effects of rTMS on motor function after stroke as measured by fMRI. We carefully performed a literature search using PubMed, EMBASE, Web of Science, and Cochrane Library databases from their respective inceptions to November 2022 to identify any relevant randomized controlled trials. Researchers independently screened the literature, extracted data, and qualitatively described the included studies. Eleven studies with a total of 420 poststroke patients were finally included in this systematic review. A total of 338 of those participants received fMRI examinations before and after rTMS intervention. Five studies reported the effects of rTMS on activation of brain regions, and four studies reported results related to brain functional connectivity (FC). Additionally, five studies analyzed the correlation between fMRI and motor evaluation. The neural mechanism of rTMS in improving motor function after stroke may be the activation and FCs of motor-related brain areas, including enhancement of the activation of motor-related brain areas in the affected hemisphere, inhibition of the activation of motor-related brain areas in the unaffected hemisphere, and changing the FCs of intra-hemispheric and inter-hemispheric motor networks.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Rongrong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China.
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.
- University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China.
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
292
|
Wang F, Zhou T, Wang P, Zhang Y, Jiang J. Study of vision-related resting-state activity in suprasellar tumor patients with postoperative visual damage. Brain Behav 2024; 14:e3462. [PMID: 38468484 PMCID: PMC10928331 DOI: 10.1002/brb3.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION The objective of this study was to investigate changes in vision-related resting-state activity in patients with suprasellar tumors (ST) who experienced vision deterioration after surgery. METHODS Twelve patients with ST and vision deterioration after surgery were included in the study. Resting-state functional connectivity (FC) was compared before and after surgery using a seed-based analysis with a priori specified regions of interest (ROIs) within the visual areas. The differences between the two groups were identified using a paired t-test. RESULTS The data showed a decrease in FC within and between the dorsal and ventral pathways, as well as in the third pathway in ST patients. The middle temporal visual cortex (MT+) showed a decreased FC with more regions than other visual ROIs. The data also revealed an increase in FC between the visual ROIs and higher-order cortex. The superior frontal gyrus/BA8 showed an increased FC with more ROIs than other high-order regions, and the hOC4d was involved in an increased FC with more high-order regions than other ROIs. CONCLUSIONS The study results indicate significant neural reorganization in the vision-related cortex of ST patients with postoperative vision damage. Most subareas within the visual cortex showed remarkable neural dysfunction, and some highe-order cortex may be primarily involved in top-down control of the subareas within the visual cortex. The hot zones may arise in the processing of "top-down" influence.
Collapse
Affiliation(s)
- Fuyu Wang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Tao Zhou
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Peng Wang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Yanyang Zhang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Jinli Jiang
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalSanyaChina
| |
Collapse
|
293
|
Lin TY, Zhang YH, Zhang YN, Yang Y, Du L, Li QY, He Y, Liu FC, Tang XY, Tang LL, Sun YS. Resting state functional connectome in breast cancer patients with fear of cancer recurrence. Cereb Cortex 2024; 34:bhae062. [PMID: 38436464 DOI: 10.1093/cercor/bhae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.
Collapse
Affiliation(s)
- Tian-Ye Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yi-He Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
| | - Ye-Ning Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Lei Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Qing-Yang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Yi He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Fu-Chao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Xiao-Yu Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Li-Li Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Psycho-Oncology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| | - Ying-Shi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, No. 52 Fu Cheng Road, Hai Dian District, Beijing 100142, China
| |
Collapse
|
294
|
Zhan L, Gao Y, Huang L, Zhang H, Huang G, Wang Y, Sun J, Xie Z, Li M, Jia X, Cheng L, Yu Y. Brain functional connectivity alterations of Wernicke's area in individuals with autism spectrum conditions in multi-frequency bands: A mega-analysis. Heliyon 2024; 10:e26198. [PMID: 38404781 PMCID: PMC10884452 DOI: 10.1016/j.heliyon.2024.e26198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Characterized by severe deficits in communication, most individuals with autism spectrum conditions (ASC) experience significant language dysfunctions, thereby impacting their overall quality of life. Wernicke's area, a classical and traditional brain region associated with language processing, plays a substantial role in the manifestation of language impairments. The current study carried out a mega-analysis to attain a comprehensive understanding of the neural mechanisms underpinning ASC, particularly in the context of language processing. The study employed the Autism Brain Image Data Exchange (ABIDE) dataset, which encompasses data from 443 typically developing (TD) individuals and 362 individuals with ASC. The objective was to detect abnormal functional connectivity (FC) between Wernicke's area and other language-related functional regions, and identify frequency-specific altered FC using Wernicke's area as the seed region in ASC. The findings revealed that increased FC in individuals with ASC has frequency-specific characteristics. Further, in the conventional frequency band (0.01-0.08 Hz), individuals with ASC exhibited increased FC between Wernicke's area and the right thalamus compared with TD individuals. In the slow-5 frequency band (0.01-0.027 Hz), increased FC values were observed in the left cerebellum Crus II and the right lenticular nucleus, pallidum. These results provide novel insights into the potential neural mechanisms underlying communication deficits in ASC from the perspective of language impairments.
Collapse
Affiliation(s)
- Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Yang Yu
- Psychiatry Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
295
|
Malach R. The neuronal basis of human creativity. Front Hum Neurosci 2024; 18:1367922. [PMID: 38476979 PMCID: PMC10929679 DOI: 10.3389/fnhum.2024.1367922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Human creativity is a powerful cognitive ability underlying all uniquely human cultural and scientific advancement. However, the neuronal basis of this creative ability is unknown. Here, I propose that slow, spontaneous fluctuations in neuronal activity, also known as "resting state" fluctuations, constitute a universal mechanism underlying all facets of human creativity. Support for this hypothesis is derived from experiments that directly link spontaneous fluctuations and verbal creativity. Recent experimental and modeling advances in our understanding of the spontaneous fluctuations offer an explanation for the diversity and innovative nature of creativity, which is derived from a unique integration of random, neuronal noise on the one hand with individually specified, deterministic information acquired through learning, expertise training, and hereditary traits. This integration between stochasticity and order leads to a process that offers, on the one hand, original, unexpected outcomes but, on the other hand, endows these outcomes with knowledge-based meaning and significance.
Collapse
Affiliation(s)
- Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
296
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
297
|
Zhong Y, Li J, Li H, Li M, Lyu Y, Cui M, Gao Y. The Neuroimaging Role of Modified Electroconvulsive Therapy in the Major Depressive Disorder: Effectiveness in First-Episode Antipsychotic-Naive Major Depressive Disorder Patients. Depress Anxiety 2024; 2024:9211145. [PMID: 40226641 PMCID: PMC11919022 DOI: 10.1155/2024/9211145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/24/2023] [Accepted: 01/24/2024] [Indexed: 04/15/2025] Open
Abstract
Objectives It is a high risk for adolescents with first-episode major depressive disorder (MDD) to commit suicide. However, few studies reported the effect of modified electroconvulsive therapy (MECT) in first-episode antipsychotic-naive MDD adolescents. Methods The study explores the alternations of regional homogeneity of modified electroconvulsive therapy to treat the first-episode antipsychotic-naive major depressive disorder. 72 first-episode MDD patients were recruited from Tianyou Hospital Affiliated to Wuhan University of Science and Technology from October 2017 to May 2020, and 65 of 72 completed the trial. Results Before MECT treatment, ReHo values of the bilateral cerebellum and left cuneus were higher, and ReHo value of left postcentral and supramarginal gyrus was lower in MDD patients compared to healthy subjects (HS). After treatment, the MDD patients have higher ReHo values of the right insula and postcentral gyrus, while left fusiform gyrus were lower than the pretreatment. Compared to the HS, the ReHo values of left lingual gyrus, right calcarine cortex, and right mid occipital thalamus were higher in the posttreatment. In the posttreatment, left calcarine cortex and right cerebrum were lower than in healthy subjects. Conclusions The study confirmed that MECT improves psychotic symptoms in patients with first-episode antipsychotic-naive MDD. These results further contributed to a more tailored treatment approach to MDD from the pathophysiological and neuroimaging views.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Jianfeng Li
- Yi Zheng Hospital, Drum Tower Hospital Group of Nanjing, Nanjing, Jiangsu, China
| | - Haitao Li
- Affiliated Shuyang Hospital of Nanjing University of Chinese Medicine, Suqian 223600, Jiangsu, China
| | - Mingzhe Li
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanaohai Lyu
- Department of Social and Behavioral Sciences, City University of Hong Kong, HKSAR, China
| | - Minghu Cui
- Department of Psychiatry, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
- Clinical and Translational Sciences (CaTS) Lab, The Douglas Research Centre, McGill University, Montréal, Québec, Canada
| |
Collapse
|
298
|
Wu J, Zhou H, Chen H, Jiang W, Wang X, Meng T, Wu C, Li L, Wu Y, Fan W, Shi C, Zuo G. Effects of rhythmic visual cues on cortical activation and functional connectivity features during stepping: an fNIRS study. Front Hum Neurosci 2024; 18:1337504. [PMID: 38410257 PMCID: PMC10894907 DOI: 10.3389/fnhum.2024.1337504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Rhythmic visual cues (RVCs) may influence gait initiation by modulating cognition resources. However, it is unknown how RVCs modulate cognitive resources allocation during gait movements. This study focused on investigating the effects of RVCs on cortical hemodynamic response features during stepping to evaluate the changes of cognitive resources. Methods We recorded cerebral hemoglobin concentration changes of 14 channels in 17 healthy subjects using functional near-infrared spectroscopy (fNIRS) during stepping tasks under exposure to RVCs and non-rhythmic visual cues (NRVCs). We reported mean oxygenated hemoglobin (HbO) concentration changes, β-values, and functional connectivity (FC) between channels. Results The results showed that, the RVC conditions revealed lower HbO responses compared to the NRVC conditions during the preparation and early stepping. Correspondingly, the β-values reflected that RVCs elicited lower hemodynamic responses than NRVCs, and there was a decreasing trend in stimulus-evoked cortical activation as the task progressed. However, the FC between channels were stronger under RVCs than under NRVCs during the stepping progress, and there were more significant differences in FC during the early stepping. Discussion In conclusion, there were lower cognitive demand and stronger FC under RVC conditions than NRVC conditions, which indicated higher efficiency of cognitive resources allocation during stepping tasks. This study may provide a new insight for further understanding the mechanism on how RVCs alleviate freezing of gait.
Collapse
Affiliation(s)
- Jiajia Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Hao Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Wensong Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Xuelian Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Tao Meng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Chaowen Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Li Li
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yuemin Wu
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Weinv Fan
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Changcheng Shi
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| |
Collapse
|
299
|
França LGS, Ciarrusta J, Gale-Grant O, Fenn-Moltu S, Fitzgibbon S, Chew A, Falconer S, Dimitrova R, Cordero-Grande L, Price AN, Hughes E, O'Muircheartaigh J, Duff E, Tuulari JJ, Deco G, Counsell SJ, Hajnal JV, Nosarti C, Arichi T, Edwards AD, McAlonan G, Batalle D. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. Nat Commun 2024; 15:16. [PMID: 38331941 PMCID: PMC10853532 DOI: 10.1038/s41467-023-44050-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024] Open
Abstract
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Collapse
Affiliation(s)
- Lucas G S França
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Judit Ciarrusta
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Oliver Gale-Grant
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sunniva Fenn-Moltu
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Sean Fitzgibbon
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Ralica Dimitrova
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Eugene Duff
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, 20500, Turku, Finland
- Turku Collegium for Science and Medicine and Technology, University of Turku, 20500, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, 20500, Turku, Finland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Pompeu Fabra University, 08002, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
300
|
Gui W, Lu F, Fu L, Deng Z, Zhao X, Cheng W, Yang Y, Wang Y. Genetic mechanisms underlying local spontaneous brain activity in episodic migraine. Front Neurosci 2024; 18:1348591. [PMID: 38379763 PMCID: PMC10876778 DOI: 10.3389/fnins.2024.1348591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Advances in neuroimaging techniques during the past few decades have captured impaired functional brain activity in migraine disorders, yet the molecular mechanisms accounting for its alterations in migraine remain largely unknown. A total of 27 patients with episodic migraine (EM) and 30 matched healthy controls (HCs) underwent resting-state functional and structural magnetic resonance imaging (MRI) scans. Regional homogeneity (ReHo), low-frequency fluctuations (ALFF), and fractional amplitude of low-frequency fluctuations (fALFF) of fMRI were compared between the two groups. Based on the Allen Human Brain Atlas and risk genes in migraine, we identified gene expression profiles associated with ReHo alterations in EM. Compared with HCs, patients with EM showed increased ReHo in the left orbital part of the superior frontal gyrus (P < 0.05, cluster-level FWE-corrected). The expression profiles of 16 genes were significantly correlated with ReHo alterations in EM (P < 0.05/5,013, Bonferroni corrected). These genes were mainly enriched for transcription regulation, synaptic transmission, energy metabolism, and migraine disorders. Furthermore, the neural activation was positively correlated with Hamilton Rating Scale for Anxiety (HAMA) scores. To test the stability of our results, we repeated our procedure by using ALFF and fALFF and found these results had a high degree of consistency. Overall, these findings not only demonstrated that regional brain activity was increased in patients with EM, which was associated with emotional regulation but also provided new insights into the genetic mechanisms underlying these changes in migraine.
Collapse
Affiliation(s)
- Wei Gui
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengqing Lu
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lulan Fu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziru Deng
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiuxiu Zhao
- Anhui Provincial Stereotactic Neurosurgical Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Wenwen Cheng
- Anhui Provincial Stereotactic Neurosurgical Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache Group, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|