251
|
Villegas LEM, Radl J, Dimopoulos G, Short SM. Bacterial communities of Aedes aegypti mosquitoes differ between crop and midgut tissues. PLoS Negl Trop Dis 2023; 17:e0011218. [PMID: 36989328 PMCID: PMC10085046 DOI: 10.1371/journal.pntd.0011218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/10/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microbiota studies of Aedes aegypti and other mosquitoes generally focus on the bacterial communities found in adult female midguts. However, other compartments of the digestive tract maintain communities of bacteria which remain almost entirely unstudied. For example, the Dipteran crop is a food storage organ, but few studies have looked at the microbiome of crops in mosquitoes, and only a single previous study has investigated the crop in Ae. aegypti. In this study, we used both culture-dependent and culture-independent methods to compare the bacterial communities in midguts and crops of laboratory reared Ae. aegypti. Both methods revealed a trend towards higher abundance, but also higher variability, of bacteria in the midgut than the crop. When present, bacteria from the genus Elizabethkingia (family Weeksellaceae) dominated midgut bacterial communities. In crops, we found a higher diversity of bacteria, and these communities were generally dominated by acetic acid bacteria (family Acetobacteriaceae) from the genera Tanticharoenia and Asaia. These three taxa drove significant community structure differences between the tissues. We used FAPROTAX to predict the metabolic functions of these communities and found that crop bacterial communities were significantly more likely to contain bacteria capable of methanol oxidation and methylotrophy. Both the presence of acetic acid bacteria (which commonly catabolize sugar to produce acetic acid) and the functional profile that includes methanol oxidation (which is correlated with bacteria found with natural sources like nectar) may relate to the presence of sugar, which is stored in the mosquito crop. A better understanding of what bacteria are present in the digestive tract of mosquitoes and how these communities assemble will inform how the microbiota impacts mosquito physiology and the full spectrum of functions provided by the microbiota. It may also facilitate better methods of engineering the mosquito microbiome for vector control or prevention of disease transmission.
Collapse
Affiliation(s)
| | - James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
252
|
Li X, Tseng HT, Hemmings G, Omolehin O, Taylor C, Taylor A, Kong P, Daughtrey M, Gouker F, Hong C. Characterization of Boxwood Shoot Bacterial Communities and Potential Impact from Fungicide Treatments. Microbiol Spectr 2023; 11:e0416322. [PMID: 36853063 PMCID: PMC10100737 DOI: 10.1128/spectrum.04163-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Phyllosphere bacterial communities play important roles in plant fitness and growth. The objective of this study was to characterize the epiphytic and endophytic bacterial communities of boxwood shoots and determine how they may respond to commonly used fungicides. In early summer and early fall, shoot samples were collected immediately before and 1, 7, and 14 days after three fungicides containing chlorothalonil and/or propiconazole were applied to the canopy. Total genomic DNA from shoot surface washings and surface-sterilized shoot tissues was used as the template for 16S rRNA metabarcoding, and the amplicons were sequenced on a Nanopore MinION sequencer to characterize the epiphytic and endophytic communities. The bacterial communities were phylogenetically more diverse on the boxwood shoot surface than in the internal tissue, although the two communities shared 12.7% of the total 1,649 identified genera. The most abundant epiphytes were Methylobacterium and Pantoea, while Stenotrophomonas and Brevundimonas were the dominant endophytes. Fungicide treatments had strong impacts on epiphytic bacterial community structure and composition. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) and analysis of variance (ANOVA)-like differential expression (ALDEx2) together identified 312 and 1,362 epiphytes changed in abundance due to fungicide treatments in early summer and early fall, respectively, and over 50% of these epiphytes were negatively impacted by fungicide. The two chlorothalonil-based contact fungicides demonstrated more marked effects than the propiconazole-based systemic fungicide. These results are foundational for exploring and utilizing the full potential of the microbiome and fungicide applications and developing a systems approach to boxwood health and production. IMPORTANCE Agrochemicals are important tools for safeguarding plants from invasive pathogens, insects, mites, and weeds. How they may affect the plant microbiome, a critical component of crop health and production, was poorly understood. Here, we used boxwood, an iconic low-maintenance landscape plant, to characterize shoot epiphytic and endophytic bacterial communities and their responses to contact and systemic fungicides. This study expanded our understanding of the above-ground microbiome in ornamental plants and is foundational for utilizing the full benefits of the microbiome in concert with different fungicide chemistries to improve boxwood health. This study also sets an example for a more thorough evaluation of these and other agrochemicals for their effects on boxwood microbiomes during production and offers an expanded systems approach that could be used with other crops for enhanced integrated pest management.
Collapse
Affiliation(s)
- Xiaoping Li
- Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, USA
| | - Hsien Tzer Tseng
- North Carolina Department of Agriculture and Consumer Services, Plant Industry Division, Raleigh, North Carolina, USA
| | - Ginger Hemmings
- North Carolina Department of Agriculture and Consumer Services, Plant Industry Division, Dobson, North Carolina, USA
| | - Olanike Omolehin
- Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, USA
| | - Chad Taylor
- North Carolina Department of Agriculture and Consumer Services, Plant Industry Division, Boone, North Carolina, USA
| | - Amanda Taylor
- North Carolina University Cooperative Extension, Morganton, North Carolina, USA
| | - Ping Kong
- Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, USA
| | - Margery Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, New York, USA
| | - Fred Gouker
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, Maryland, USA
| | - Chuanxue Hong
- Hampton Roads Agriculture Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, USA
| |
Collapse
|
253
|
Abotsi RE, Dube FS, Rehman AM, Claassen-Weitz S, Xia Y, Simms V, Mwaikono KS, Gardner-Lubbe S, McHugh G, Ngwira LG, Kwambana-Adams B, Heyderman RS, Odland JØ, Ferrand RA, Nicol MP. Sputum bacterial load and bacterial composition correlate with lung function and are altered by long-term azithromycin treatment in children with HIV-associated chronic lung disease. MICROBIOME 2023; 11:29. [PMID: 36803868 PMCID: PMC9940396 DOI: 10.1186/s40168-023-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Long-term azithromycin (AZM) treatment reduces the frequency of acute respiratory exacerbation in children and adolescents with HIV-associated chronic lung disease (HCLD). However, the impact of this treatment on the respiratory bacteriome is unknown. METHOD African children with HCLD (defined as forced expiratory volume in 1 s z-score (FEV1z) less than - 1.0 with no reversibility) were enrolled in a placebo-controlled trial of once-weekly AZM given for 48-weeks (BREATHE trial). Sputum samples were collected at baseline, 48 weeks (end of treatment) and 72 weeks (6 months post-intervention in participants who reached this timepoint before trial conclusion). Sputum bacterial load and bacteriome profiles were determined using 16S rRNA gene qPCR and V4 region amplicon sequencing, respectively. The primary outcomes were within-participant and within-arm (AZM vs placebo) changes in the sputum bacteriome measured across baseline, 48 weeks and 72 weeks. Associations between clinical or socio-demographic factors and bacteriome profiles were also assessed using linear regression. RESULTS In total, 347 participants (median age: 15.3 years, interquartile range [12.7-17.7]) were enrolled and randomised to AZM (173) or placebo (174). After 48 weeks, participants in the AZM arm had reduced sputum bacterial load vs placebo arm (16S rRNA copies/µl in log10, mean difference and 95% confidence interval [CI] of AZM vs placebo - 0.54 [- 0.71; - 0.36]). Shannon alpha diversity remained stable in the AZM arm but declined in the placebo arm between baseline and 48 weeks (3.03 vs. 2.80, p = 0.04, Wilcoxon paired test). Bacterial community structure changed in the AZM arm at 48 weeks compared with baseline (PERMANOVA test p = 0.003) but resolved at 72 weeks. The relative abundances of genera previously associated with HCLD decreased in the AZM arm at 48 weeks compared with baseline, including Haemophilus (17.9% vs. 25.8%, p < 0.05, ANCOM ω = 32) and Moraxella (1% vs. 1.9%, p < 0.05, ANCOM ω = 47). This reduction was sustained at 72 weeks relative to baseline. Lung function (FEV1z) was negatively associated with bacterial load (coefficient, [CI]: - 0.09 [- 0.16; - 0.02]) and positively associated with Shannon diversity (0.19 [0.12; 0.27]). The relative abundance of Neisseria (coefficient, [standard error]: (2.85, [0.7], q = 0.01), and Haemophilus (- 6.1, [1.2], q < 0.001) were positively and negatively associated with FEV1z, respectively. An increase in the relative abundance of Streptococcus from baseline to 48 weeks was associated with improvement in FEV1z (3.2 [1.11], q = 0.01) whilst an increase in Moraxella was associated with decline in FEV1z (-2.74 [0.74], q = 0.002). CONCLUSIONS AZM treatment preserved sputum bacterial diversity and reduced the relative abundances of the HCLD-associated genera Haemophilus and Moraxella. These bacteriological effects were associated with improvement in lung function and may account for reduced respiratory exacerbations associated with AZM treatment of children with HCLD. Video Abstract.
Collapse
Affiliation(s)
- Regina E Abotsi
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Felix S Dube
- Department of Molecular and Cell Biology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andrea M Rehman
- International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Yao Xia
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Victoria Simms
- International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Kilaza S Mwaikono
- Computational Biology Group and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| | - Grace McHugh
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lucky G Ngwira
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Jon Ø Odland
- Department of Community Medicine, University of Tromsø, Tromsø, Norway
- International Research Laboratory for Reproductive Ecotoxicology (IL RET), The National Research University Higher School of Economics, Moscow, Russia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia.
| |
Collapse
|
254
|
Wilson NG, Hernandez-Leyva A, Rosen AL, Jaeger N, McDonough RT, Santiago-Borges J, Lint MA, Rosen TR, Tomera CP, Bacharier LB, Swamidass SJ, Kau AL. The gut microbiota of people with asthma influences lung inflammation in gnotobiotic mice. iScience 2023; 26:105991. [PMID: 36824270 PMCID: PMC9941210 DOI: 10.1016/j.isci.2023.105991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota in early childhood is linked to asthma risk, but may continue to affect older patients with asthma. Here, we profile the gut microbiota of 38 children (19 asthma, median age 8) and 57 adults (17 asthma, median age 28) by 16S rRNA sequencing and find individuals with asthma harbored compositional differences from healthy controls in both adults and children. We develop a model to aid the design of mechanistic experiments in gnotobiotic mice and show enterotoxigenic Bacteroides fragilis (ETBF) is more prevalent in the gut microbiota of patients with asthma compared to healthy controls. In mice, ETBF, modulated by community context, can increase oxidative stress in the lungs during allergic airway inflammation (AAI). Our results provide evidence that ETBF affects the phenotype of airway inflammation in a subset of patients with asthma which suggests that therapies targeting the gut microbiota may be helpful tools for asthma control.
Collapse
Affiliation(s)
- Naomi G. Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne L. Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natalia Jaeger
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan T. McDonough
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesus Santiago-Borges
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael A. Lint
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas R. Rosen
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher P. Tomera
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leonard B. Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
255
|
Cheatham CN, Gustafson KL, McAdams ZL, Turner GM, Dorfmeyer RA, Ericsson AC. Standardized Complex Gut Microbiomes Influence Fetal Growth, Food Intake, and Adult Body Weight in Outbred Mice. Microorganisms 2023; 11:484. [PMID: 36838449 PMCID: PMC9961083 DOI: 10.3390/microorganisms11020484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Obesity places a tremendous burden on individual health and the healthcare system. The gut microbiome (GM) influences host metabolism and behaviors affecting body weight (BW) such as feeding. The GM of mice varies between suppliers and significantly influences BW. We sought to determine whether GM-associated differences in BW are associated with differences in intake, fecal energy loss, or fetal growth. Pair-housed mice colonized with a low or high microbial richness GM were weighed, and the total and BW-adjusted intake were measured at weaning and adulthood. Pups were weighed at birth to determine the effects of the maternal microbiome on fetal growth. Fecal samples were collected to assess the fecal energy loss and to characterize differences in the microbiome. The results showed that supplier-origin microbiomes were associated with profound differences in fetal growth and excessive BW-adjusted differences in intake during adulthood, with no detected difference in fecal energy loss. Agreement between the features of the maternal microbiome associated with increased birth weight here and in recent human studies supports the value of this model to investigate the mechanisms by which the maternal microbiome regulates offspring growth and food intake.
Collapse
Affiliation(s)
- Christa N. Cheatham
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri (MU), Columbia, MO 65201, USA
| | - Kevin L. Gustafson
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri (MU), Columbia, MO 65201, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics Program, University of Missouri (MU), Columbia, MO 65201, USA
| | - Giedre M. Turner
- Mutant Mouse Resource and Research Center, University of Missouri (MU), Columbia, MO 65201, USA
- University of Missouri Metagenomics Center, University of Missouri (MU), Columbia, MO 65201, USA
| | - Rebecca A. Dorfmeyer
- Mutant Mouse Resource and Research Center, University of Missouri (MU), Columbia, MO 65201, USA
- University of Missouri Metagenomics Center, University of Missouri (MU), Columbia, MO 65201, USA
| | - Aaron C. Ericsson
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri (MU), Columbia, MO 65201, USA
- Molecular Pathogenesis and Therapeutics Program, University of Missouri (MU), Columbia, MO 65201, USA
- Mutant Mouse Resource and Research Center, University of Missouri (MU), Columbia, MO 65201, USA
- University of Missouri Metagenomics Center, University of Missouri (MU), Columbia, MO 65201, USA
| |
Collapse
|
256
|
Anorexia nervosa and microbiota: systematic review and critical appraisal. Eat Weight Disord 2023; 28:1. [PMID: 36752887 PMCID: PMC9908645 DOI: 10.1007/s40519-023-01529-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE Recent studies have reported a gut microbiota imbalance or dysbiosis associated with anorexia nervosa (AN), which has prompted an appraisal of its aetiological role, and the reformulation of AN as a metabo-psychiatric disorder. Thus, the aim of this paper was to critically review the current scientific findings regarding the role of microbiota in anorexia nervosa. METHODS A systematic study of peer-reviewed literature published in four databases between 2009 and 2022 was conducted according to PRISMA guidelines. Both human and animal studies were included. RESULTS A total of 18 studies were included. In animal models, both the preclinical and clinical findings were inconsistent regarding microbiota composition, faecal metabolite concentrations, and the effects of human faecal microbiota transplants. CONCLUSION The methodological limitations, lack of standardisation, and conceptual ambiguity hinder the analysis of microbiota as a key explanatory factor for AN. LEVEL OF EVIDENCE Level I, systematic review.
Collapse
|
257
|
Memili A, Lulla A, Liu H, Shikany JM, Jacobs DR, Langsetmo L, North KE, Jones C, Launer LJ, Meyer KA. Physical activity and diet associations with the gut microbiota in the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Nutr 2023; 153:552-561. [PMID: 36775672 PMCID: PMC10127529 DOI: 10.1016/j.tjnut.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Gut microbiota may influence metabolic pathways related to chronic health conditions. Evidence for physical activity and diet influences on gut microbial composition exists, but data from diverse population-based cohort studies are limited. OBJECTIVES We hypothesized that gut microbial diversity and genera are associated with physical activity and diet quality. METHODS Data were from 537 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort, who attended the year 30 follow-up examination (2015-2016; aged 47-61 y; 45% Black race/55% White race; 45% men/55% women). The 16S ribosomal RNA marker gene was sequenced from stool DNA, and genus-level taxonomy was assigned. Within-person microbial diversity (α-diversity) was assessed with Shannon diversity index and richness scores; between-person diversity (β-diversity) measures were generated with principal coordinates analysis (PCoA). Current and long-term physical activity and diet quality measures were derived from data collected over 30 y of follow-up. Multivariable-adjusted regression analysis controlled for: sociodemographic variables (age, race, sex, education, and field center), other health behaviors (smoking, alcohol consumption, and medication use), and adjusted for multiple comparisons with the false discovery rate (<0.20). RESULTS Based on PCoA β-diversity, participants' microbial community compositions differed significantly (P < 0.001), with respect to both current and long-term physical activity and diet quality. α-Diversity was associated only with current physical activity (positively) in multivariable-adjusted analysis. Multiple genera (n = 45) were associated with physical activity and fewer with diet (n = 5), including positive associations with Lachnospiraceae UCG-001 and Ruminococcaceae IncertaeSedis with both behaviors. CONCLUSIONS Physical activity and diet quality were associated with gut microbial composition among 537 participants in the CARDIA study. Multiple genera were associated with physical activity. Physical activity and diet quality were associated with genera consistent with pathways related to inflammation and short-chain fatty acid production.
Collapse
Affiliation(s)
- Aylin Memili
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Hongwei Liu
- Departments of Biology, iBGS, and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Langsetmo
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA; Center for Care Delivery and Outcomes Research, VA Health Care System, Minneapolis, MN, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corbin Jones
- Departments of Biology, iBGS, and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lenore J Launer
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Katie A Meyer
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.
| |
Collapse
|
258
|
Microbiome Alterations in Alcohol Use Disorder and Alcoholic Liver Disease. Int J Mol Sci 2023; 24:ijms24032461. [PMID: 36768785 PMCID: PMC9916746 DOI: 10.3390/ijms24032461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Microbiome alterations are emerging as one of the most important factors that influence the course of alcohol use disorder (AUD). Recent advances in bioinformatics enable more robust and accurate characterization of changes in the composition of the microbiome. In this study, our objective was to provide the most comprehensive and up-to-date evaluation of microbiome alterations associated with AUD and alcoholic liver disease (ALD). To achieve it, we have applied consistent, state of art bioinformatic workflow to raw reads from multiple 16S rRNA sequencing datasets. The study population consisted of 122 patients with AUD, 75 with ALD, 54 with non-alcoholic liver diseases, and 260 healthy controls. We have found several microbiome alterations that were consistent across multiple datasets. The most consistent changes included a significantly lower abundance of multiple butyrate-producing families, including Ruminococcaceae, Lachnospiraceae, and Oscillospiraceae in AUD compared to HC and further reduction of these families in ALD compared with AUD. Other important results include an increase in endotoxin-producing Proteobacteria in AUD, with the ALD group having the largest increase. All of these alterations can potentially contribute to increased intestinal permeability and inflammation associated with AUD and ALD.
Collapse
|
259
|
Ward BJ, Nguyen MT, Sam SB, Korir N, Niwagaba CB, Morgenroth E, Strande L. Particle size as a driver of dewatering performance and its relationship to stabilization in fecal sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116801. [PMID: 36435127 DOI: 10.1016/j.jenvman.2022.116801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Poor and unpredictable dewatering performance of fecal sludge is a major barrier to sanitation provision in urban areas not served by sewers. Fecal sludge comprises everything that accumulates in onsite containments, and its characteristics are distinct from wastewater sludges and from feces. There is little fundamental understanding of what causes poor dewatering in fecal sludge. For the first time, we demonstrate that particle size distribution is a driver of dewatering performance in fecal sludge, and is associated with level of stabilization. Higher concentrations of small particles (<10 μm) and smaller median aggregate size (D50) corresponded to poor dewatering performance (measured by capillary suction time (CST) and supernatant turbidity) in field samples from Kenya and Uganda and in controlled laboratory anaerobic storage experiments. More stabilized fecal sludge (higher C/N, lower VSS/TSS) had better dewatering performance, corresponding to lower concentrations of small particles. Samples with the largest aggregates (D50 > 90 μm) had higher abundance of Gammaproteobacteria Pseudomonas, and samples with the smallest aggregates (D50 ≤ 50 μm) were characterized by higher abundance of Bacteroidetes Vadin HA17 and Rikenellaceae. Contrary to common perceptions, stabilization, particle size distribution, and dewatering performance were not dependent on time intervals between emptying of onsite containments or on time in controlled anaerobic storage experiments. Our results suggest that the stabilization process in onsite containments, and hence the dewaterability of sludge arriving at treatment facilities, is not dependent on time in containment but is more likely associated with specific microbial populations and the in-situ environmental conditions which promote or discourage their growth.
Collapse
Affiliation(s)
- B J Ward
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland.
| | - M T Nguyen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland
| | - S B Sam
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland
| | | | - C B Niwagaba
- Makerere University, Department of Civil and Environmental Engineering, Kampala, Uganda
| | - E Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland
| | - L Strande
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
260
|
Larsen OFA. Nurturing by nutrition: On the future of gut microbiota management strategies for autoimmune disease. Front Nutr 2023; 9:1107016. [PMID: 36712507 PMCID: PMC9877340 DOI: 10.3389/fnut.2022.1107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The incidence of autoimmune disease continues to rise, which urges for new prevention and treatment modalities. The composition of the gut microbiota is associated with both susceptibility and progression of disease. Nutrition significantly shapes the gut microbial composition, and poses as such a modality for both prevention and treatment/adjuvant therapy. At very young age, nutritional intervention targeting the gut microbiota is still possible within a one-size-fits all regime, accompanied by a relatively high effect size. As ageing results in higher interindividual variation induced by cumulative exposome factors, a more personalized approach is needed, having a higher effect size than that of current nutritional intervention. As such, supplementation of microbial consortia consisting of keystone taxa and microbial guilds that are involved in the pathophysiology seem a promising direction to lower the burden of autoimmune disease.
Collapse
|
261
|
Sulit AK, Kolisnik T, Frizelle FA, Purcell R, Schmeier S. MetaFunc: taxonomic and functional analyses of high throughput sequencing for microbiomes. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e4. [PMID: 39295912 PMCID: PMC11406379 DOI: 10.1017/gmb.2022.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 09/21/2024]
Abstract
The identification of functional processes taking place in microbiome communities augment traditional microbiome taxonomic studies, giving a more complete picture of interactions taking place within the community. While there are applications that perform functional annotation on metagenomes or metatranscriptomes, very few of these are able to link taxonomic identity to function or are limited by their input types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads, and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis, mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set enrichment analysis may then be carried out through the pipeline. A final correlation analysis between microbial species and host genes can also be performed. Finally, MetaFunc builds an R shiny application that allows users to view and interact with the microbiome results. In this paper, we showed how MetaFunc can be applied to metatranscriptomic datasets of colorectal cancer.
Collapse
Affiliation(s)
- Arielle Kae Sulit
- Department of Surgery, University of Otago, Christchurch, New Zealand
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tyler Kolisnik
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Rachel Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
262
|
Ghorbani M, Al-Manei K, Naud S, Healy K, Gabarrini G, Sobkowiak MJ, Chen P, Ray S, Akber M, Muschiol S, Bogdanovic G, Bergman P, Ljungman P, Buggert M, Ljunggren HG, Pin E, Nowak P, Aleman S, Sällberg Chen M. Persistence of salivary antibody responses after COVID-19 vaccination is associated with oral microbiome variation in both healthy and people living with HIV. Front Immunol 2023; 13:1079995. [PMID: 36703980 PMCID: PMC9871925 DOI: 10.3389/fimmu.2022.1079995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.
Collapse
Affiliation(s)
- Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Khaled Al-Manei
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sabrina Naud
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Puran Chen
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Shilpa Ray
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mira Akber
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sandra Muschiol
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Per Ljungman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Huddinge, Sweden
| | - Marcus Buggert
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | | | - Elisa Pin
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Piotr Nowak
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Soo Aleman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden,*Correspondence: Margaret Sällberg Chen,
| |
Collapse
|
263
|
Baldo L, Tavecchia G, Rotger A, Igual JM, Riera JL. Insular holobionts: persistence and seasonal plasticity of the Balearic wall lizard ( Podarcis lilfordi) gut microbiota. PeerJ 2023; 11:e14511. [PMID: 36620745 PMCID: PMC9817956 DOI: 10.7717/peerj.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023] Open
Abstract
Background Integrative studies of animals and associated microbial assemblages (i.e., the holobiont) are rapidly changing our perspectives on organismal ecology and evolution. Insular vertebrates provide ideal natural systems to understand patterns of host-gut microbiota coevolution, the resilience and plasticity these microbial communities over temporal and spatial scales, and ultimately their role in the host ecological adaptation. Methods Here we used the endemic Balearic wall lizard Podarcis lilfordi to dissect the drivers of the microbial diversity within and across host allopatric populations/islets. By focusing on three extensively studied populations/islets of Mallorca (Spain) and fecal sampling from individually identified lizards along two years (both in spring and autumn), we sorted out the effect of islet, sex, life stage, year and season on the microbiota composition. We further related microbiota diversity to host genetics, trophic ecology and expected annual metabolic changes. Results All the three populations showed a remarkable conservation of the major microbial taxonomic profile, while carrying their unique microbial signature at finer level of taxonomic resolution (Amplicon Sequence Variants (ASVs)). Microbiota distances across populations were compatible with both host genetics (based on microsatellites) and trophic niche distances (based on stable isotopes and fecal content). Within populations, a large proportion of ASVs (30-50%) were recurrently found along the four sampling dates. The microbial diversity was strongly marked by seasonality, with no sex effect and a marginal life stage and annual effect. The microbiota showed seasonal fluctuations along the two sampled years, primarily due to changes in the relative abundances of fermentative bacteria (mostly families Lachnospiraceae and Ruminococcaceae), without any major compositional turnover. Conclusions These results support a large resilience of the major compositional aspects of the P. lilfordi gut microbiota over the short-term evolutionary divergence of their host allopatric populations (<10,000 years), but also indicate an undergoing process of parallel diversification of the both host and associated gut microbes. Predictable seasonal dynamics in microbiota diversity suggests a role of microbiota plasticity in the lizards' metabolic adaptation to their resource-constrained insular environments. Overall, our study supports the need for longitudinal and integrative studies of host and associated microbes in natural systems.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), Barcelona, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA, Consejo Superior de Investigaciones Científicas, Esporles, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
264
|
Alemu AW, Gruninger RJ, Zhang XM, O’Hara E, Kindermann M, Beauchemin KA. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility. J Anim Sci 2023; 101:skad001. [PMID: 36617172 PMCID: PMC9904186 DOI: 10.1093/jas/skad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Supplementation of ruminant diets with the methane (CH4) inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products, Switzerland) is a promising greenhouse gas mitigation strategy. However, most studies have used high grain or mixed forage-concentrate diets. The objective of this study was to evaluate the effects of supplementing a high-forage diet (90% forage DM basis) with 3-NOP on dry matter (DM) intake, rumen fermentation and microbial community, salivary secretion, enteric gas emissions, and apparent total-tract nutrient digestibility. Eight ruminally cannulated beef heifers (average initial body weight (BW) ± SD, 515 ± 40.5 kg) were randomly allocated to two treatments in a crossover design with 49-d periods. Dietary treatments were: 1) control (no 3-NOP supplementation); and 2) 3-NOP (control + 150 mg 3-NOP/kg DM). After a 16-d diet adaption, DM intake was recorded daily. Rumen contents were collected on days 17 and 28 for volatile fatty acid (VFA) analysis, whereas ruminal pH was continuously monitored from days 20 to 28. Eating and resting saliva production were measured on days 20 and 31, respectively. Diet digestibility was measured on days 38-42 by the total collection of feces, while enteric gas emissions were measured in chambers on days 46-49. Data were analyzed using the mixed procedure of SAS. Dry matter intake and apparent total-tract digestibility of nutrients (DM, neutral and acid detergent fiber, starch, and crude protein) were similar between treatments (P ≥ 0.15). No effect was observed on eating and resting saliva production. Relative abundance of the predominant bacterial taxa and rumen methanogen community was not affected by 3-NOP supplementation but rather by rumen digesta phase and sampling hour (P ≤ 0.01). Total VFA concentration was lower (P = 0.004) following 3-NOP supplementation. Furthermore, the reduction in acetate and increase in propionate molar proportions for 3-NOP lowered (P < 0.001) the acetate to propionate ratio by 18.9% as compared with control (4.1). Mean pH was 0.21 units lower (P < 0.001) for control than 3-NOP (6.43). Furthermore, CH4 emission (g/d) and yield (g/kg DMI) were 22.4 and 22.0% smaller (P < 0.001), respectively, for 3-NOP relative to control. Overall, the results indicate that enteric CH4 emissions were decreased by more than 20% with 3-NOP supplementation of a forage diet without affecting DM intake, predominant rumen microbial community, and apparent total-tract nutrients digestibility.
Collapse
Affiliation(s)
- Aklilu W Alemu
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Xiu Min Zhang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Eóin O’Hara
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
265
|
Yan F, Zhang Q, Shi K, Zhang Y, Zhu B, Bi Y, Wang X. Gut microbiota dysbiosis with hepatitis B virus liver disease and association with immune response. Front Cell Infect Microbiol 2023; 13:1152987. [PMID: 37201112 PMCID: PMC10185817 DOI: 10.3389/fcimb.2023.1152987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background and aims Given hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) exhibits unique gut microbiota characteristics and a significant immunosuppressive tumor microenvironment. Thus, a better understanding of the correlation between gut microbiota and the immunosuppressive response may help predict occurrence and prognosis of HBV-HCC. Methods Here, in a cohort of ninety adults (healthy control n=30, HBV-cirrhosis n=30, HBV-HCC n=30) with clinical data, fecal 16S rRNA gene sequencing, matched peripheral blood immune response with flow cytometry analysis. Correlation between the gut microbiome of significantly different in HBV-HCC patients and clinical parameters as well as the peripheral immune response was assessed. Results We found that community structures and diversity of the gut microbiota in HBV-CLD patients become more unbalanced. Differential microbiota analysis that p:Acidobacteriota, p:Proteobacteria, p:Campilobacterota, f:Streptococcaceae, g:Klebsiella associated with inflammation were enriched. The beneficial bacteria of f:Clostridia UCG-014, f:Oscillospiraceae, f:_Rikenellaceae, g:_Barnesiella, g:Prevotella, g:Agathobacter were decreased. Functional analysis of gut microbiota revealed that lipopolysaccharide biosynthesis, lipid metabolism, butanoate metabolism were significantly elevated in HBV-CLD patients. Spearman's correlation analysis showed that Muribaculaceae, Akkermaniacaeae, [Eubacterium]_coprostanoligenes_group, RF39, Tannerellaceae have positive correlation with CD3+T, CD4+T and CD8+T cell counts while negatively correlated with liver dysfunction. Furthermore, paired peripheral blood showed a decreased proportion of CD3+T, CD4+T and CD8+T cells, while an increased T (Treg) cells. The immunosuppressive response of programmed cell death 1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), immune receptor tyrosine based inhibitor motor (ITIM) domain (TIGIT), T-cell immune domain, and multiple domain 3 (TIM-3) of CD8+T cells were higher in HBV-HCC patients. They were positively correlated with harmful bacteria, such as Actinobaciota, Myxococota, Streptococcaceae and Eubacterium coprostanoligenes. Conclusions Our study indicated that gut beneficial bacteria, mainly Firmicutes and Bacteroides appeared dysbiosis in HBV-CLD patients. They have negative regulation of liver dysfunction and T cell immune response. It provides potential avenues for microbiome-based prevention and intervention for anti-tumor immune effects of HBV-CLD.
Collapse
|
266
|
Chen P, Hu T, Jiang H, Li B, Li G, Ran P, Zhou Y. Chronic exposure to ampicillin alters lung microbial composition in laboratory rat. Exp Lung Res 2023; 49:116-130. [PMID: 37318203 DOI: 10.1080/01902148.2023.2219790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE High-throughput sequencing technologies have revealed that the lungs contain a variety of low biomass microbiota associated with various lung diseases. Rat model is an important tool to understand the possible causal relationship between pulmonary microbiota and diseases. Antibiotic exposure can alter the microbiota, however, a direct influence of long-term ampicillin exposure on commensal bacteria of healthy lungs has not been investigated, which could be useful in the study of the relation between microbiome and long-term lung diseases, especially in animal model-making of lung diseases. METHODS The rats were aerosolized ampicillin of different concentrations for five months, and then the effect on the lung microbiota was investigated using 16S rRNA gene sequencing. RESULTS The ampicillin treatment by a certain concentration (LA5, 0.2 ml of 5 mg/ml ampicillin) administration leads to profound changes in the rat lung microbiota but not in the low critical ampicillin concentration (LA01 and LA1, 0.1 and 1 mg/ml ampicillin), when compared to the untreated group (LC). The genus Acidobacteria_Gp16 dominated the ampicillin treated lung microbiota while the genera Brucella, Acinetobacter, Acidobacteria_Gp14, Sphingomonas, and Tumebacillus dominated the untreated lung microbiota. The predicted KEGG pathway analysis profile revealed some difference in the ampicillin treated group. CONCLUSIONS The study demonstrated the effects of different concentrations of ampicillin treatment on lung microbiota of rats in a relatively long term. It could serve as a basis for the clinical use of antibiotic and the use of ampicillin to control certain bacteria in the animal model-making of respiratory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ping Chen
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Tingting Hu
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Haonan Jiang
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong, P. R. China
| | - Guiying Li
- Shool of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, P. R. China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Bioland, Guangzhou, Guangdong, P. R. China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
267
|
Li J, Bates KA, Hoang KL, Hector TE, Knowles SCL, King KC. Experimental temperatures shape host microbiome diversity and composition. GLOBAL CHANGE BIOLOGY 2023; 29:41-56. [PMID: 36251487 PMCID: PMC10092218 DOI: 10.1111/gcb.16429] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 05/10/2023]
Abstract
Global climate change has led to more extreme thermal events. Plants and animals harbour diverse microbial communities, which may be vital for their physiological performance and help them survive stressful climatic conditions. The extent to which microbiome communities change in response to warming or cooling may be important for predicting host performance under global change. Using a meta-analysis of 1377 microbiomes from 43 terrestrial and aquatic species, we found a decrease in the amplicon sequence variant-level microbiome phylogenetic diversity and alteration of microbiome composition under both experimental warming and cooling. Microbiome beta dispersion was not affected by temperature changes. We showed that the host habitat and experimental factors affected microbiome diversity and composition more than host biological traits. In particular, aquatic organisms-especially in marine habitats-experienced a greater depletion in microbiome diversity under cold conditions, compared to terrestrial hosts. Exposure involving a sudden long and static temperature shift was associated with microbiome diversity loss, but this reduction was attenuated by prior-experimental lab acclimation or when a ramped regime (i.e., warming) was used. Microbial differential abundance and co-occurrence network analyses revealed several potential indicator bacterial classes for hosts in heated environments and on different biome levels. Overall, our findings improve our understanding on the impact of global temperature changes on animal and plant microbiome structures across a diverse range of habitats. The next step is to link these changes to measures of host fitness, as well as microbial community functions, to determine whether microbiomes can buffer some species against a more thermally variable and extreme world.
Collapse
Affiliation(s)
- Jingdi Li
- Department of BiologyUniversity of OxfordOxfordUK
| | | | - Kim L. Hoang
- Department of BiologyUniversity of OxfordOxfordUK
| | | | | | | |
Collapse
|
268
|
Li M, Liu J, Zhu J, Wang H, Sun C, Gao NL, Zhao XM, Chen WH. Performance of Gut Microbiome as an Independent Diagnostic Tool for 20 Diseases: Cross-Cohort Validation of Machine-Learning Classifiers. Gut Microbes 2023; 15:2205386. [PMID: 37140125 PMCID: PMC10161951 DOI: 10.1080/19490976.2023.2205386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Cross-cohort validation is essential for gut-microbiome-based disease stratification but was only performed for limited diseases. Here, we systematically evaluated the cross-cohort performance of gut microbiome-based machine-learning classifiers for 20 diseases. Using single-cohort classifiers, we obtained high predictive accuracies in intra-cohort validation (~0.77 AUC), but low accuracies in cross-cohort validation, except the intestinal diseases (~0.73 AUC). We then built combined-cohort classifiers trained on samples combined from multiple cohorts to improve the validation of non-intestinal diseases, and estimated the required sample size to achieve validation accuracies of >0.7. In addition, we observed higher validation performance for classifiers using metagenomic data than 16S amplicon data in intestinal diseases. We further quantified the cross-cohort marker consistency using a Marker Similarity Index and observed similar trends. Together, our results supported the gut microbiome as an independent diagnostic tool for intestinal diseases and revealed strategies to improve cross-cohort performance based on identified determinants of consistent cross-cohort gut microbiome alterations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jiaying Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- College of Life Science, Henan Normal University, Xinxiang, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
269
|
Calgaro M, Romualdi C, Risso D, Vitulo N. benchdamic: benchmarking of differential abundance methods for microbiome data. Bioinformatics 2023; 39:6881076. [PMID: 36477500 PMCID: PMC9825737 DOI: 10.1093/bioinformatics/btac778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
SUMMARY Recently, an increasing number of methodological approaches have been proposed to tackle the complexity of metagenomics and microbiome data. In this scenario, reproducibility and replicability have become two critical issues, and the development of computational frameworks for the comparative evaluations of such methods is of utmost importance. Here, we present benchdamic, a Bioconductor package to benchmark methods for the identification of differentially abundant taxa. AVAILABILITY AND IMPLEMENTATION benchdamic is available as an open-source R package through the Bioconductor project at https://bioconductor.org/packages/benchdamic/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matteo Calgaro
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | |
Collapse
|
270
|
Rydal MP, Gambino M, Castro-Mejia JL, Poulsen LL, Jørgensen CB, Nielsen JP. Post-weaning diarrhea in pigs from a single Danish production herd was not associated with the pre-weaning fecal microbiota composition and diversity. Front Microbiol 2023; 14:1108197. [PMID: 36922976 PMCID: PMC10010570 DOI: 10.3389/fmicb.2023.1108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The association between the porcine pre-weaning gut microbiota composition and diversity, and subsequent post-weaning diarrhea (PWD) susceptibility is currently being studied. In this longitudinal study, we examined the association between pre-weaning fecal microbiome composition and diversity, and PWD development in a Danish sow herd. Methods Forty-five pigs were followed from birth until 7 days after weaning (post-natal day (PND) 33). At PND 33, the pigs were categorized as PWD cases or healthy controls based on fecal consistency. We compared their fecal microbiomes at PND 8, late lactation (PND 27) and 7 days post weaning (PND 33) using 16S rRNA V3 region high-throughput sequencing. At PND 27 and 33, we also weighed the pigs, assessed fecal shedding of hemolytic Escherichia coli by culture and characterized hemolytic isolates by ETEC virulence factors with PCR and by whole genome sequencing. Results A total of 25 out of 45 pigs developed PWD and one Enterotoxigenic E. coli strain with F18:LT:EAST1 virotype was isolated from most pigs. At PND 33, we found differences in beta diversity between PWD and healthy pigs (R2 = 0.027, p = 0.009) and that body weight was associated with both alpha and beta diversity. Pre-weaning fecal microbiome diversity did not differ between PWD and healthy pigs and we found no significant, differentially abundant bacteria between them. Conclusion In the production herd under study, pre-weaning fecal microbiome diversity and composition were not useful indicators of PWD susceptibility.
Collapse
Affiliation(s)
- Martin Peter Rydal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Josue L Castro-Mejia
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Louise Ladefoged Poulsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Claus Bøttcher Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Peter Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
271
|
Yoshikawa T, Minaga K, Hara A, Sekai I, Kurimoto M, Masuta Y, Otsuka Y, Takada R, Kamata K, Park AM, Takamura S, Kudo M, Watanabe T. Disruption of the intestinal barrier exacerbates experimental autoimmune pancreatitis by promoting the translocation of Staphylococcus sciuri into the pancreas. Int Immunol 2022; 34:621-634. [PMID: 36044992 DOI: 10.1093/intimm/dxac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Autoimmune pancreatitis (AIP) and IgG4-related disease (IgG4-RD) are new disease entities characterized by enhanced IgG4 antibody responses and involvement of multiple organs, including the pancreas and salivary glands. Although the immunopathogenesis of AIP and IgG4-RD is poorly understood, we previously reported that intestinal dysbiosis mediates experimental AIP through the activation of IFN-α- and IL-33-producing plasmacytoid dendritic cells (pDCs). Because intestinal dysbiosis is linked to intestinal barrier dysfunction, we explored whether the latter affects the development of AIP and autoimmune sialadenitis in MRL/MpJ mice treated with repeated injections of polyinosinic-polycytidylic acid [poly (I:C)]. Epithelial barrier disruption was induced by the administration of dextran sodium sulfate (DSS) in the drinking water. Mice co-treated with poly (I:C) and DSS, but not those treated with either agent alone, developed severe AIP, but not autoimmune sialadenitis, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Sequencing of 16S ribosomal RNA revealed that Staphylococcus sciuri translocation from the gut to the pancreas was preferentially observed in mice with severe AIP co-treated with DSS and poly (I:C). The degree of experimental AIP, but not of autoimmune sialadenitis, was greater in germ-free mice mono-colonized with S. sciuri and treated with poly (I:C) than in germ-free mice treated with poly (I:C) alone, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Taken together, these data suggest that intestinal barrier dysfunction exacerbates AIP through the activation of pDCs and translocation of S. sciuri into the pancreas.
Collapse
Affiliation(s)
- Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
272
|
Vismans G, van Bentum S, Spooren J, Song Y, Goossens P, Valls J, Snoek BL, Thiombiano B, Schilder M, Dong L, Bouwmeester HJ, Pétriacq P, Pieterse CMJ, Bakker PAHM, Berendsen RL. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. Sci Rep 2022; 12:22473. [PMID: 36577764 PMCID: PMC9797477 DOI: 10.1038/s41598-022-26551-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.
Collapse
Affiliation(s)
- Gilles Vismans
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Sietske van Bentum
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Jelle Spooren
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Yang Song
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Pim Goossens
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Basten L Snoek
- Department of Biology, Science4, Life Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Mario Schilder
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE, Amsterdam, the Netherlands
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathology, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Corné M J Pieterse
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Peter A H M Bakker
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands
| | - Roeland L Berendsen
- Department of Biology, Science4Life, Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3508 CH, Utrecht, the Netherlands.
| |
Collapse
|
273
|
Microbiome in Bladder Cancer: A Systematic Review. Diagnostics (Basel) 2022; 13:diagnostics13010084. [PMID: 36611376 PMCID: PMC9818914 DOI: 10.3390/diagnostics13010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Although many studies on bladder cancer and the microbiome have been conducted so far, useful strains at the species level have not yet been identified. In addition, in the case of urine studies, methodological heterogeneity is too great, and in tissue studies, the species level through shotgun analysis has not been revealed, and studies using stool samples have provided only limited information. In this review, we will review all the microbiome studies related to bladder cancer so far through a systematic review.
Collapse
|
274
|
Najmanová L, Vídeňská P, Cahová M. Healthy microbiome – a mere idea or a sound concept? Physiol Res 2022. [PMID: 36426891 DOI: 10.33549/physiolres.934967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: “What is the healthy microbiome?” or “Is it possible to define it unequivocally?”. In this review, we describe the main hindrances complicating the definition of “healthy microbiome” in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
Collapse
Affiliation(s)
| | | | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
275
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
276
|
Jurburg SD, Buscot F, Chatzinotas A, Chaudhari NM, Clark AT, Garbowski M, Grenié M, Hom EFY, Karakoç C, Marr S, Neumann S, Tarkka M, van Dam NM, Weinhold A, Heintz-Buschart A. The community ecology perspective of omics data. MICROBIOME 2022; 10:225. [PMID: 36510248 PMCID: PMC9746134 DOI: 10.1186/s40168-022-01423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (β-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and β-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research- UFZ, Halle, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Narendrakumar M Chaudhari
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Adam T Clark
- Institute of Biology, University of Graz, Graz, Austria
| | - Magda Garbowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Botany, University of Wyoming, Wyoming, USA
| | - Matthias Grenié
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Erik F Y Hom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, Oxford, Mississippi, USA
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Biology, Indiana University, Indiana, USA
| | - Susanne Marr
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Halle, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, Halle, Germany
| | - Steffen Neumann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, Halle, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research- UFZ, Halle, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
277
|
Zhou Q, Lan F, Gu S, Li G, Wu G, Yan Y, Li X, Jin J, Wen C, Sun C, Yang N. Genetic and microbiome analysis of feed efficiency in laying hens. Poult Sci 2022; 102:102393. [PMID: 36805401 PMCID: PMC9958098 DOI: 10.1016/j.psj.2022.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, 101206, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiaming Jin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
278
|
Vaher K, Bogaert D, Richardson H, Boardman JP. Microbiome-gut-brain axis in brain development, cognition and behavior during infancy and early childhood. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
279
|
Jung JH, Kim G, Byun MS, Lee JH, Yi D, Park H, Lee DY. Gut microbiome alterations in preclinical Alzheimer's disease. PLoS One 2022; 17:e0278276. [PMID: 36445883 PMCID: PMC9707757 DOI: 10.1371/journal.pone.0278276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although some human studies have reported gut microbiome changes in individuals with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is largely unknown. OBJECTIVE We aimed to identify gut microbial alterations associated with preclinical AD by comparing cognitively normal (CN) older adults with cerebral Aβ deposition (Aβ+ CN) and those without cerebral Aβ deposition (Aβ- CN). METHODS Seventy-eight CN older participants (18 Aβ+ CN and 60 Aβ- CN) were included, and all participants underwent clinical assessment and Pittsburg compound B-positron emission tomography. The V3-V4 region of the 16S rRNA gene of genomic DNA extracted from feces was amplified and sequenced to establish the microbial community. RESULTS Generalized linear model analysis revealed that the genera Megamonas (B = 3.399, q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium (family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aβ+ CN group than the Aβ- CN group. In contrast, genera CF231 (B = -3.237, q< 0.001), Victivallis (B = -3.447, q = 0.004) Enterococcus (B = -2.044, q = 0.042), Mitsuokella (B = -2.119, q = 0.042) and Clostridium (family Erysipelotrichaceae) (B = -2.222, q = 0.043) were decreased in Aβ+ CN compared to Aβ- CN. Notably, the classification model including the differently abundant genera could effectively distinguish Aβ+ CN from Aβ- CN (AUC = 0.823). CONCLUSION Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical AD, which means these changes may precede cognitive decline. Therefore, examining changes in the microbiome may be helpful in preclinical AD screening.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Genome and Company, Seongnam, Republic of Korea
- * E-mail: (DYL); (HP)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
- * E-mail: (DYL); (HP)
| | | |
Collapse
|
280
|
Mineharu Y, Nakamura Y, Sato N, Kamata T, Oichi Y, Fujitani T, Funaki T, Okuno Y, Miyamoto S, Koizumi A, Harada KH. Increased abundance of Ruminococcus gnavus in gut microbiota is associated with moyamoya disease and non-moyamoya intracranial large artery disease. Sci Rep 2022; 12:20244. [PMID: 36424438 PMCID: PMC9691692 DOI: 10.1038/s41598-022-24496-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease endemic in East Asia. The p.R4810K mutation in RNF213 gene confers a risk of MMD, but other factors remain largely unknown. We tested the association of gut microbiota with MMD. Fecal samples were collected from 27 patients with MMD, 7 patients with non-moyamoya intracranial large artery disease (ICAD) and 15 control individuals with other disorders, and 16S rRNA were sequenced. Although there was no difference in alpha diversity or beta diversity between patients with MMD and controls, the cladogram showed Streptococcaceae was enriched in patient samples. The relative abundance analysis demonstrated that 23 species were differentially abundant between patients with MMD and controls. Among them, increased abundance of Ruminococcus gnavus > 0.003 and decreased abundance of Roseburia inulinivorans < 0.002 were associated with higher risks of MMD (odds ratio 9.6, P = 0.0024; odds ratio 11.1, P = 0.0051). Also, Ruminococcus gnavus was more abundant and Roseburia inulinivorans was less abundant in patients with ICAD than controls (P = 0.046, P = 0.012). The relative abundance of Ruminococcus gnavus or Roseburia inulinivorans was not different between the p.R4810K mutant and wildtype. Our data demonstrated that gut microbiota was associated with both MMD and ICAD.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
| | - Yasuhisa Nakamura
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiko Kamata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Oichi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Okuno
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
281
|
Choroszy M, Litwinowicz K, Bednarz R, Roleder T, Lerman A, Toya T, Kamiński K, Sawicka-Śmiarowska E, Niemira M, Sobieszczańska B. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:1165. [PMID: 36557203 PMCID: PMC9788186 DOI: 10.3390/metabo12121165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the importance of the gut microbiome in human health and disease has increased. Growing evidence suggests that gut dysbiosis might be a crucial risk factor for coronary artery disease (CAD). Therefore, we conducted a systematic review and meta-analysis to determine whether or not CAD is associated with specific changes in the gut microbiome. The V3-V4 regions of the 16S rDNA from fecal samples were analyzed to compare the gut microbiome composition between CAD patients and controls. Our search yielded 1181 articles, of which 21 met inclusion criteria for systematic review and 7 for meta-analysis. The alpha-diversity, including observed OTUs, Shannon and Simpson indices, was significantly decreased in CAD, indicating the reduced richness of the gut microbiome. The most consistent results in a systematic review and meta-analysis pointed out the reduced abundance of Bacteroidetes and Lachnospiraceae in CAD patients. Moreover, Enterobacteriaceae, Lactobacillus, and Streptococcus taxa demonstrated an increased trend in CAD patients. The alterations in the gut microbiota composition are associated with qualitative and quantitative changes in bacterial metabolites, many of which have pro-atherogenic effects on endothelial cells, increasing the risk of developing and progressing CAD.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Robert Bednarz
- Ninewells Hospital and Medical School, James Arrott Drive, Dundee DD1 9SY, UK
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
282
|
Vega L, Bohórquez L, Ramírez JD, Muñoz M. Do we need to change our perspective about gut biomarkers? A public data mining approach to identify differentially abundant bacteria in intestinal inflammatory diseases. Front Cell Infect Microbiol 2022; 12:918237. [PMID: 36478676 PMCID: PMC9719923 DOI: 10.3389/fcimb.2022.918237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction The gut microbiome is involved in multiple processes that influence host physiology, and therefore, disruptions in microbiome homeostasis have been linked to diseases or secondary infections. Given the importance of the microbiome and the communities of microorganisms that compose it (microbiota), the term biomarkers were coined, which are bacteria correlated with disease states, diets, and the lifestyle of the host. However, a large field in the study of intestinal biomarkers remains unexplored because the bacterial communities associated with a given disease state have not been exactly defined yet. Methods Here, we analyzed public data of studies focused on describing the intestinal microbiota of patients with some intestinal inflammatory diseases together with their respective controls. With these analyses, we aimed to identify differentially abundant bacteria between the subjects with the disease and their controls. Results We found that frequently reported bacteria such as Fusobacterium, Streptococcus, and Escherichia/Shigella were differentially abundant between the groups, with a higher abundance mostly in patients with the disease in contrast with their controls. On the other hand, we also identified potentially beneficial bacteria such as Faecalibacterium and Phascolarctobacterium, with a higher abundance in control patients. Discussion Our results of the differentially abundant bacteria contrast with what was already reported in previous studies on certain inflammatory diseases, but we highlight the importance of considering more comprehensive approaches to redefine or expand the definition of biomarkers. For instance, the intra-taxa diversity within a bacterial community must be considered, as well as environmental and genetic factors of the host, and even consider a functional validation of these biomarkers through in vivo and in vitro approaches. With the above, these key bacterial communities in the intestinal microbiota may have potential as next-generation probiotics or may be functional for the design of specific therapies in certain intestinal diseases.
Collapse
Affiliation(s)
- Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Bohórquez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia,*Correspondence: Marina Muñoz,
| |
Collapse
|
283
|
Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG, Sampson TR, Payami H. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022; 13:6958. [PMID: 36376318 PMCID: PMC9663292 DOI: 10.1038/s41467-022-34667-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.
Collapse
Affiliation(s)
- Zachary D. Wallen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Ayse Demirkan
- grid.5475.30000 0004 0407 4824Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey GU2 7XH UK
| | - Guy Twa
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Gwendolyn Cohen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Marissa N. Dean
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - David G. Standaert
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Timothy R. Sampson
- grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA ,grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Haydeh Payami
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
284
|
Ham H, Park T. Combining p-values from various statistical methods for microbiome data. Front Microbiol 2022; 13:990870. [PMID: 36439799 PMCID: PMC9686280 DOI: 10.3389/fmicb.2022.990870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
MOTIVATION In the field of microbiome analysis, there exist various statistical methods that have been developed for identifying differentially expressed features, that account for the overdispersion and the high sparsity of microbiome data. However, due to the differences in statistical models or test formulations, it is quite often to have inconsistent significance results across statistical methods, that makes it difficult to determine the importance of microbiome taxa. Thus, it is practically important to have the integration of the result from all statistical methods to determine the importance of microbiome taxa. A standard meta-analysis is a powerful tool for integrative analysis and it provides a summary measure by combining p-values from various statistical methods. While there are many meta-analyses available, it is not easy to choose the best meta-analysis that is the most suitable for microbiome data. RESULTS In this study, we investigated which meta-analysis method most adequately represents the importance of microbiome taxa. We considered Fisher's method, minimum value of p method, Simes method, Stouffer's method, Kost method, and Cauchy combination test. Through simulation studies, we showed that Cauchy combination test provides the best combined value of p in the sense that it performed the best among the examined methods while controlling the type 1 error rates. Furthermore, it produced high rank similarity with the true ranks. Through the real data application of colorectal cancer microbiome data, we demonstrated that the most highly ranked microbiome taxa by Cauchy combination test have been reported to be associated with colorectal cancer.
Collapse
Affiliation(s)
- Hyeonjung Ham
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | - Taesung Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
- Departement of Statistics, Seoul National University, Seoul, South Korea
| |
Collapse
|
285
|
C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data. BMC Bioinformatics 2022; 23:468. [DOI: 10.1186/s12859-022-05027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differential abundance analyses to reveal the disease-related taxa–taxa relationship. In addition, it is also necessary to tighten the co-occurrence network into smaller modules to increase the ability for functional annotation and interpretability of these taxa-taxa relationships. Also, it is critical to retain the phylogenetic relationship among the taxa to identify differential abundance patterns, which can be used to resolve contradicting functions reported by different studies.
Results
In this article, we present Correlation and Consensus-based Cross-taxonomy Network Analysis (C3NA), a user-friendly R package for investigating compositional microbial sequencing data to identify and compare co-occurrence patterns across different taxonomic levels. C3NA contains two interactive graphic user interfaces (Shiny applications), one of them dedicated to the comparison between two diagnoses, e.g., disease versus control. We used C3NA to analyze two well-studied diseases, colorectal cancer, and Crohn’s disease. We discovered clusters of study and disease-dependent taxa that overlap with known functional taxa studied by other discovery studies and differential abundance analyses.
Conclusion
C3NA offers a new microbial data analyses pipeline for refined and enriched taxa–taxa co-occurrence network analyses, and the usability was further expanded via the built-in Shiny applications for interactive investigation.
Collapse
|
286
|
Miller JC, Satheesh Babu AK, Petersen C, Wankhade UD, Robeson MS, Putich MN, Mueller JE, O'Farrell AS, Cho JM, Chintapalli SV, Jalili T, Symons JD, Anandh Babu PV. Gut Microbes Are Associated with the Vascular Beneficial Effects of Dietary Strawberry on Metabolic Syndrome-Induced Vascular Inflammation. Mol Nutr Food Res 2022; 66:e2200112. [PMID: 36112603 PMCID: PMC9691581 DOI: 10.1002/mnfr.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Metabolic syndrome (MetS) alters the gut microbial ecology and increases the risk of cardiovascular disease. This study investigates whether strawberry consumption reduces vascular complications in an animal model of MetS and identifies whether this effect is associated with changes in the composition of gut microbes. METHODS AND RESULTS Seven-week-old male mice consume diets with 10% (C) or 60% kcal from fat (high-fat diet fed mice; HF) for 12 weeks and subgroups are fed a 2.35% freeze-dried strawberry supplemented diet (C+SB or HF+SB). This nutritional dose is equivalent to ≈160 g of strawberry. After 12 weeks treatment, vascular inflammation is enhanced in HF versus C mice as shown by an increased monocyte binding to vasculature, elevated serum chemokines, and increased mRNA expression of inflammatory molecules. However, strawberry supplementation suppresses vascular inflammation in HF+SB versus HF mice. Metabolic variables, blood pressure, and indices of vascular function were similar among the groups. Further, the abundance of opportunistic microbe is decreased in HF+SB. Importantly, circulating chemokines are positively associated with opportunistic microbes and negatively associated with the commensal microbes (Bifidobacterium and Facalibaculum). CONCLUSION Dietary strawberry decreases the abundance of opportunistic microbe and this is associated with a decrease in vascular inflammation resulting from MetS.
Collapse
Affiliation(s)
- James Coleman Miller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Madison Nicole Putich
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jennifer Ellen Mueller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aubrey Sarah O'Farrell
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sree V Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - John David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
287
|
Grieves LA, Bottini CLJ, Gloor GB, MacDougall-Shackleton EA. Uropygial gland microbiota differ between free-living and captive songbirds. Sci Rep 2022; 12:18283. [PMID: 36316352 PMCID: PMC9622905 DOI: 10.1038/s41598-022-22425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Symbiotic microbes can affect host behavior and fitness. Gut microbiota have received the most study, with less attention to other important microbial communities like those of scent-producing glands such as mammalian anal glands and the avian uropygial gland. However, mounting evidence suggests that microbes inhabiting scent-producing glands play an important role in animal behavior by contributing to variation in chemical signals. Free-living and captive conditions typically differ in social environment, food diversity and availability, disease exposure, and other factors-all of which can translate into differences in gut microbiota. However, whether extrinsic factors such as captivity alter microbial communities in scent glands remains an open question. We compared the uropygial gland microbiota of free-living and captive song sparrows (Melospiza melodia) and tested for an effect of dietary manipulations on the gland microbiota of captive birds. As predicted, the uropygial gland microbiota was significantly different between free-living and captive birds. Surprisingly, microbial diversity was higher in captive than free-living birds, and we found no effect of dietary treatments on captive bird microbiota. Identifying the specific factors responsible for microbial differences among groups and determining whether changes in symbiotic microbiota alter behavior and fitness are important next steps in this field.
Collapse
Affiliation(s)
- L. A. Grieves
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada ,grid.25073.330000 0004 1936 8227Present Address: Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 3L8 Canada
| | - C. L. J. Bottini
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada
| | - G. B. Gloor
- grid.39381.300000 0004 1936 8884Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1 Canada
| | - E. A. MacDougall-Shackleton
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada
| |
Collapse
|
288
|
Love CJ, Gubert C, Kodikara S, Kong G, Lê Cao KA, Hannan AJ. Microbiota DNA isolation, 16S rRNA amplicon sequencing, and bioinformatic analysis for bacterial microbiome profiling of rodent fecal samples. STAR Protoc 2022; 3:101772. [PMID: 36313541 PMCID: PMC9597187 DOI: 10.1016/j.xpro.2022.101772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fecal samples are frequently used to characterize bacterial populations of the gastrointestinal tract. A protocol is provided to profile gut bacterial populations using rodent fecal samples. We describe the optimal procedures for collecting rodent fecal samples, isolating genomic DNA, 16S rRNA gene V4 region sequencing, and bioinformatic analyses. This protocol includes detailed instructions and example outputs to ensure accurate, reproducible results and data visualization. Comprehensive troubleshooting and limitation sections address technical and statistical issues that may arise when profiling microbiota. For complete details on the use and execution of this protocol, please refer to Gubert et al. (2022).
Collapse
Affiliation(s)
- Chloe J. Love
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carolina Gubert
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia,Corresponding author
| | - Saritha Kodikara
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia,Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville VIC, 3010, Australia
| | - Geraldine Kong
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim-Anh Lê Cao
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony J. Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia,Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia,Corresponding author
| |
Collapse
|
289
|
Neugent ML, Kumar A, Hulyalkar NV, Lutz KC, Nguyen VH, Fuentes JL, Zhang C, Nguyen A, Sharon BM, Kuprasertkul A, Arute AP, Ebrahimzadeh T, Natesan N, Xing C, Shulaev V, Li Q, Zimmern PE, Palmer KL, De Nisco NJ. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep Med 2022; 3:100753. [PMID: 36182683 PMCID: PMC9588997 DOI: 10.1016/j.xcrm.2022.100753] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI susceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking estrogen hormone therapy. We find robust correlations between Bifidobacterium and Lactobacillus and urinary estrogens in women without urinary tract infection (UTI) history. Functional analyses reveal distinct metabolic and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.
Collapse
Affiliation(s)
- Michael L Neugent
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neha V Hulyalkar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kevin C Lutz
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Vivian H Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jorge L Fuentes
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Zhang
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amber Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Belle M Sharon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amy Kuprasertkul
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda P Arute
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tahmineh Ebrahimzadeh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nitya Natesan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, TX, USA; Advanced Environmental Research Institute, The University of North Texas, Denton, TX, USA
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
290
|
Yang Z, Chen Z, Lin X, Yao S, Xian M, Ning X, Fu W, Jiang M, Li N, Xiao X, Feng M, Lian Z, Yang W, Ren X, Zheng Z, Zhao J, Wei N, Lu W, Roponen M, Schaub B, Wong GWK, Su Z, Wang C, Li J. Rural environment reduces allergic inflammation by modulating the gut microbiota. Gut Microbes 2022; 14:2125733. [PMID: 36193874 PMCID: PMC9542937 DOI: 10.1080/19490976.2022.2125733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rural environments and microbiota are linked to a reduction in the prevalence of allergies. However, the mechanism underlying the reduced allergies modulated by rural residency is unclear. Here, we assessed gut bacterial composition and metagenomics in urban and rural children in the EuroPrevall-INCO cohort. Airborne dusts, including mattress and rural henhouse dusts, were profiled for bacterial and fungal composition by amplicon sequencing. Mice were repeatedly exposed to intranasal dust extracts and evaluated for their effects on ovalbumin (OVA)-induced allergic airway inflammation, and gut microbiota restoration was validated by fecal microbiota transplant (FMT) from dust-exposed donor mice. We found that rural children had fewer allergies and unique gut microbiota with fewer Bacteroides and more Prevotella. Indoor dusts in rural environments harbored higher endotoxin level and diversity of bacteria and fungi, whereas indoor urban dusts were enriched with Aspergillus and contained elevated pathogenic bacteria. Intranasal administration of rural dusts before OVA sensitization reduced respiratory eosinophils and blood IgE level in mice and also led to a recovery of gut bacterial diversity and Ruminiclostridium in the mouse model. FMT restored the protective effect by reducing OVA-induced lung eosinophils in recipient mice. Together, these results support a cause-effect relationship between exposure to dust microbiota and allergy susceptibility in children and mice. Specifically, rural environmental exposure modulated the gut microbiota, which was essential in reducing allergy in children from Southern China. Our findings support the notion that the modulation of gut microbiota by exposure to rural indoor dust may improve allergy prevention.
Collapse
Affiliation(s)
- Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CAUSA
| | - Xinliu Lin
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiaoping Ning
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Jiang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Mulin Feng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexuan Lian
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wenqing Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Xia Ren
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhenyu Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiefeng Zhao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Nili Wei
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Wenju Lu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Marjut Roponen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Bianca Schaub
- Department of Pulmonary and Allergy, University Children’s Hospital Munich, LMU Munich, Munich, Germany
| | - Gary W. K. Wong
- Department of Paediatrics, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China,Gary W. K. Wong Department of Paediatrics, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhong Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,Zhong Su State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CAUSA,Charles Wang Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA USA
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China,CONTACT Jing Li Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
291
|
Hernández Medina R, Kutuzova S, Nielsen KN, Johansen J, Hansen LH, Nielsen M, Rasmussen S. Machine learning and deep learning applications in microbiome research. ISME COMMUNICATIONS 2022; 2:98. [PMID: 37938690 PMCID: PMC9723725 DOI: 10.1038/s43705-022-00182-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 05/27/2023]
Abstract
The many microbial communities around us form interactive and dynamic ecosystems called microbiomes. Though concealed from the naked eye, microbiomes govern and influence macroscopic systems including human health, plant resilience, and biogeochemical cycling. Such feats have attracted interest from the scientific community, which has recently turned to machine learning and deep learning methods to interrogate the microbiome and elucidate the relationships between its composition and function. Here, we provide an overview of how the latest microbiome studies harness the inductive prowess of artificial intelligence methods. We start by highlighting that microbiome data - being compositional, sparse, and high-dimensional - necessitates special treatment. We then introduce traditional and novel methods and discuss their strengths and applications. Finally, we discuss the outlook of machine and deep learning pipelines, focusing on bottlenecks and considerations to address them.
Collapse
Affiliation(s)
- Ricardo Hernández Medina
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Svetlana Kutuzova
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Department of Computer Science, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Knud Nor Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
292
|
Seibert B, Cáceres CJ, Carnaccini S, Cardenas-Garcia S, Gay LC, Ortiz L, Geiger G, Rajao DS, Ottesen E, Perez DR. Pathobiology and dysbiosis of the respiratory and intestinal microbiota in 14 months old Golden Syrian hamsters infected with SARS-CoV-2. PLoS Pathog 2022; 18:e1010734. [PMID: 36279276 PMCID: PMC9632924 DOI: 10.1371/journal.ppat.1010734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.
Collapse
Affiliation(s)
- Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth Ottesen
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
293
|
Douglas GM, Hayes MG, Langille MGI, Borenstein E. Integrating phylogenetic and functional data in microbiome studies. Bioinformatics 2022; 38:5055-5063. [PMID: 36179077 PMCID: PMC9665866 DOI: 10.1093/bioinformatics/btac655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Microbiome functional data are frequently analyzed to identify associations between microbial functions (e.g. genes) and sample groups of interest. However, it is challenging to distinguish between different possible explanations for variation in community-wide functional profiles by considering functions alone. To help address this problem, we have developed POMS, a package that implements multiple phylogeny-aware frameworks to more robustly identify enriched functions. RESULTS The key contribution is an extended balance-tree workflow that incorporates functional and taxonomic information to identify functions that are consistently enriched in sample groups across independent taxonomic lineages. Our package also includes a workflow for running phylogenetic regression. Based on simulated data we demonstrate that these approaches more accurately identify gene families that confer a selective advantage compared with commonly used tools. We also show that POMS in particular can identify enriched functions in real-world metagenomics datasets that are potential targets of strong selection on multiple members of the microbiome. AVAILABILITY AND IMPLEMENTATION These workflows are freely available in the POMS R package at https://github.com/gavinmdouglas/POMS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Molly G Hayes
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | | |
Collapse
|
294
|
Kwon J, Kong Y, Wade M, Williams DJ, Creech CB, Evans S, Walter EB, Martin JM, Gerber JS, Newland JG, Hofto ME, Staat MA, Chambers HF, Fowler VG, Huskins WC, Pettigrew MM. Gastrointestinal Microbiome Disruption and Antibiotic-Associated Diarrhea in Children Receiving Antibiotic Therapy for Community-Acquired Pneumonia. J Infect Dis 2022; 226:1109-1119. [PMID: 35249113 PMCID: PMC9492313 DOI: 10.1093/infdis/jiac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022] Open
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotics. We examined the gastrointestinal microbiota in children treated with β-lactams for community-acquired pneumonia. Data were from 66 children (n = 198 samples), aged 6-71 months, enrolled in the SCOUT-CAP trial (NCT02891915). AAD was defined as ≥1 day of diarrhea. Stool samples were collected on study days 1, 6-10, and 19-25. Samples were analyzed using 16S ribosomal RNA gene sequencing to identify associations between patient characteristics, microbiota characteristics, and AAD (yes/no). Nineteen (29%) children developed AAD. Microbiota compositional profiles differed between AAD groups (permutational multivariate analysis of variance, P < .03) and across visits (P < .001). Children with higher baseline relative abundances of 2 Bacteroides species were less likely to experience AAD. Higher baseline abundance of Lachnospiraceae and amino acid biosynthesis pathways were associated with AAD. Children in the AAD group experienced prolonged dysbiosis (P < .05). Specific gastrointestinal microbiota profiles are associated with AAD in children.
Collapse
Affiliation(s)
- Jiye Kwon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Derek J Williams
- Department of Pediatrics and the Vanderbilt Vaccine Research Program, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Clarence Buddy Creech
- Department of Pediatrics and the Vanderbilt Vaccine Research Program, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Scott Evans
- Biostatistics Center, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Emmanuel B Walter
- Department of Pediatrics and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Judy M Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine and the UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey S Gerber
- Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jason G Newland
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Meghan E Hofto
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mary Allen Staat
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Henry F Chambers
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Vance G Fowler
- Department of Medicine and Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - W Charles Huskins
- Mayo Clinic College of Medicine and Science and Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | |
Collapse
|
295
|
Abdel-Rahman LIH, Morgan XC. Searching for a Consensus Among Inflammatory Bowel Disease Studies: A Systematic Meta-Analysis. Inflamm Bowel Dis 2022; 29:125-139. [PMID: 36112501 PMCID: PMC9825291 DOI: 10.1093/ibd/izac194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Numerous studies have examined the gut microbial ecology of patients with Crohn's disease (CD) and ulcerative colitis, but inflammatory bowel disease-associated taxa and ecological effect sizes are not consistent between studies. METHODS We systematically searched PubMed and Google Scholar and performed a meta-analysis of 13 studies to analyze how variables such as sample type (stool, biopsy, and lavage) affect results in inflammatory bowel disease gut microbiome studies, using uniform bioinformatic methods for all primary data. RESULTS Reduced alpha diversity was a consistent feature of both CD and ulcerative colitis but was more pronounced in CD. Disease contributed significantly variation in beta diversity in most studies, but effect size varied, and the effect of sample type was greater than the effect of disease. Fusobacterium was the genus most consistently associated with CD, but disease-associated genera were mostly inconsistent between studies. Stool studies had lower heterogeneity than biopsy studies, especially for CD. CONCLUSIONS Our results indicate that sample type variation is an important contributor to study variability that should be carefully considered during study design, and stool is likely superior to biopsy for CD studies due to its lower heterogeneity.
Collapse
Affiliation(s)
| | - Xochitl C Morgan
- Address correspondence to: Xochitl C. Morgan, PhD, Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9010 New Zealand ()
| |
Collapse
|
296
|
Li L, Mac Aogáin M, Xu T, Jaggi TK, Chan LLY, Qu J, Wei L, Liao S, Cheng HS, Keir HR, Dicker AJ, Tan KS, De Yun W, Koh MS, Ong TH, Lim AYH, Abisheganaden JA, Low TB, Hassan TM, Long X, Wark PAB, Oliver B, Drautz-Moses DI, Schuster SC, Tan NS, Fang M, Chalmers JD, Chotirmall SH. Neisseria species as pathobionts in bronchiectasis. Cell Host Microbe 2022; 30:1311-1327.e8. [PMID: 36108613 DOI: 10.1016/j.chom.2022.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.
Collapse
Affiliation(s)
- Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland; Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PRC
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jing Qu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lan Wei
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shumin Liao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Holly R Keir
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Alison J Dicker
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wang De Yun
- Department of Otolaryngology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Albert Yick Hou Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - John A Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | | | - Xiang Long
- Department of Respiratory Medicine and Critical Care, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Brian Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - James D Chalmers
- University of Dundee, Ninewells Hospital, Medical School, Dundee, Scotland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore.
| |
Collapse
|
297
|
Innocente G, Patuzzi I, Furlanello T, Di Camillo B, Bargelloni L, Giron MC, Facchin S, Savarino E, Azzolin M, Simionati B. Machine Learning and Canine Chronic Enteropathies: A New Approach to Investigate FMT Effects. Vet Sci 2022; 9:vetsci9090502. [PMID: 36136718 PMCID: PMC9505216 DOI: 10.3390/vetsci9090502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) represents a very promising approach to decreasing disease activity in canine chronic enteropathies (CE). However, the relationship between remission mechanisms and microbiome changes has not been elucidated yet. The main objective of this study was to report the clinical effects of oral freeze-dried FMT in CE dogs, comparing the fecal microbiomes of three groups: pre-FMT CE-affected dogs, post-FMT dogs, and healthy dogs. Diversity analysis, differential abundance analysis, and machine learning algorithms were applied to investigate the differences in microbiome composition between healthy and pre-FMT samples, while Canine Chronic Enteropathy Clinical Activity Index (CCECAI) changes and microbial diversity metrics were used to evaluate FMT effects. In the healthy/pre-FMT comparison, significant differences were noted in alpha and beta diversity and a list of differentially abundant taxa was identified, while machine learning algorithms predicted sample categories with 0.97 (random forest) and 0.87 (sPLS-DA) accuracy. Clinical signs of improvement were observed in 74% (20/27) of CE-affected dogs, together with a statistically significant decrease in CCECAI (median value from 5 to 2 median). Alpha and beta diversity variations between pre- and post-FMT were observed for each receiver, with a high heterogeneity in the response. This highlighted the necessity for further research on a larger dataset that could identify different healing patterns of microbiome changes.
Collapse
Affiliation(s)
- Giada Innocente
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | - Ilaria Patuzzi
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy
| | - Maria Cecilia Giron
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sonia Facchin
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Mirko Azzolin
- Ospedale Veterinario San Francesco, 31038 Castagnole, Italy
| | - Barbara Simionati
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
298
|
He Y, Li J, Yu W, Zheng Y, Yang D, Xu Y, Zhao L, Ma X, Gong P, Gao Z. Characteristics of lower respiratory tract microbiota in the patients with post-hematopoietic stem cell transplantation pneumonia. Front Cell Infect Microbiol 2022; 12:943317. [PMID: 36176576 PMCID: PMC9513191 DOI: 10.3389/fcimb.2022.943317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Pneumonia is a leading cause of non-relapse mortality after hematopoietic stem cell transplantation (HSCT), and the lower respiratory tract (LRT) microbiome has been proven to be associated with various respiratory diseases. However, little is known about the characteristics of the LRT microbiome in patients with post-HSCT compared to healthy controls (HC) and community-acquired pneumonia (CAP). Methods Bronchoalveolar lavage samples from 55 patients with post-HSCT pneumonia, 44 patients with CAP, and 30 healthy volunteers were used to detect microbiota using 16S rRNA gene sequencing. Results The diversity of the LRT microbiome significantly decreased in patients with post-HSCT pneumonia, and the overall community was different from the CAP and HC groups. At the phylum level, post-HSCT pneumonia samples had a high abundance of Actinobacteria and a relatively low abundance of Bacteroidetes. The same is true for non-survivors compared with survivors in patients with post-HSCT pneumonia. At the genus level, the abundances of Pseudomonas, Acinetobacter, Burkholderia, and Mycobacterium were prominent in the pneumonia group after HSCT. On the other hand, gut-associated bacteria, Enterococcus were more abundant in the non-survivors. Some pathways concerning amino acid and lipid metabolism were predicted to be altered in patients with post-HSCT pneumonia. Conclusions Our results reveal that the LRT microbiome in patients with post-HSCT pneumonia differs from CAP patients and healthy controls, which could be associated with the outcome. The LRT microbiota could be a target for intervention during post-HSCT pneumonia.
Collapse
Affiliation(s)
- Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jia Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Pihua Gong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
- *Correspondence: Pihua Gong, ; Zhancheng Gao,
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
- *Correspondence: Pihua Gong, ; Zhancheng Gao,
| |
Collapse
|
299
|
Fréville M, Estienne A, Ramé C, Lefort G, Chahnamian M, Staub C, Venturi E, Lemarchand J, Maximin E, Hondelatte A, Zemb O, Canlet C, Guabiraba R, Froment P, Dupont J. Chronic dietary exposure to a glyphosate-based herbicide results in total or partial reversibility of plasma oxidative stress, cecal microbiota abundance and short-chain fatty acid composition in broiler hens. Front Physiol 2022; 13:974688. [PMID: 36171975 PMCID: PMC9511142 DOI: 10.3389/fphys.2022.974688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glyphosate-based herbicides (GBHs) are massively used in agriculture. However, few studies have investigated the effects of glyphosate-based herbicides on avian species although they are largely exposed via their food. Here, we investigated the potential reversibility of the effects of chronic dietary exposure to glyphosate-based herbicides in broiler hens. For 42 days, we exposed 32-week-old hens to glyphosate-based herbicides via their food (47 mg/kg/day glyphosate equivalent, glyphosate-based herbicides, n = 75) corresponding to half glyphosate’s no-observed-adverse-effect-level in birds. We compared their performance to that of 75 control animals (CT). Both groups (glyphosate-based herbicides and control animals) were then fed for 28 additional days without glyphosate-based herbicides exposure (Ex-glyphosate-based herbicides and Ex-control animals). Glyphosate-based herbicides temporarily increased the plasma glyphosate and AMPA (aminomethylphosphonic acid) concentrations. Glyphosate and aminomethylphosphonic acid mostly accumulated in the liver and to a lesser extent in the leg muscle and abdominal adipose tissue. Glyphosate-based herbicides also temporarily increased the gizzard weight and plasma oxidative stress monitored by TBARS (thiobarbituric acid reactive substances). Glyphosate-based herbicides temporarily decreased the cecal concentrations of propionate, isobutyrate and propionate but acetate and valerate were durably reduced. The cecal microbiome was also durably affected since glyphosate-based herbicides inhibited Barnesiella and favored Alloprevotella. Body weight, fattening, food intake and feeding behavior as well as plasma lipid and uric acid were unaffected by glyphosate-based herbicides. Taken together, our results show possible disturbances of the cecal microbiota associated with plasma oxidative stress and accumulation of glyphosate in metabolic tissues in response to dietary glyphosate-based herbicides exposure in broiler hens. Luckily, glyphosate-based herbicides at this concentration does not hamper growth and most of the effects on the phenotypes are reversible.
Collapse
Affiliation(s)
- Mathias Fréville
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Christelle Ramé
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Gaëlle Lefort
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Marine Chahnamian
- INRAE—Unité Expérimentale Pôle D’expérimentation Avicole de Tours, Nouzilly, France
| | - Christophe Staub
- INRAE—Unité Expérimentale de Physiologie Animale de L’Orfrasière (UEPAO), Nouzilly, France
| | - Eric Venturi
- INRAE—Unité Expérimentale de Physiologie Animale de L’Orfrasière (UEPAO), Nouzilly, France
| | - Julie Lemarchand
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alice Hondelatte
- INRAE-—Elevage Alternatif et Santé des Monogastriques (EASM), Surgères, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Pascal Froment
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- Centre National de La Recherche Scientifique, Institut Français du Cheval et de L’Equitation, Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Université de Tours, Physiologie de La Reproduction et des Comportements, Nouzilly, France
- *Correspondence: Joëlle Dupont,
| |
Collapse
|
300
|
Short- and Long-Term Effects of a Prebiotic Intervention with Polyphenols Extracted from European Black Elderberry—Sustained Expansion of Akkermansia spp. J Pers Med 2022; 12:jpm12091479. [PMID: 36143265 PMCID: PMC9504334 DOI: 10.3390/jpm12091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: The intestinal microbiome has emerged as a central factor in human physiology and its alteration has been associated with disease. Therefore, great hopes are placed in microbiota-modulating strategies. Among various approaches, prebiotics, substrates with selective metabolization conferring a health benefit to the host, are promising candidates. Herein, we studied the prebiotic properties of a purified extract from European black elderberries, with a high and standardized content of polyphenols and anthocyanins. (2) Methods: The ELDERGUT trial represents a 9-week longitudinal intervention study divided into 3 distinct phases, namely a baseline, an intervention and a washout period, three weeks each. The intervention consisted of capsules containing 300 mg elderberry extract taken twice a day. Patient-reported outcomes and biosamples were collected weekly. Microbiome composition was assessed using 16S amplicon metagenomics. (3) Results: The supplementation was well tolerated. Microbiome trajectories were highly individualized with a profound shift in diversity indices immediately upon initiation and after termination of the compound. This was accompanied by corresponding changes in species abundance over time. Of particular interest, the relative abundance of Akkermansia spp. continued to increase in a subset of participants even beyond the supplementation period. Associations with participant metadata were detected.
Collapse
|