251
|
Zhou Z, Long J, Wang Y, Li Y, Zhang X, Tang L, Chang Q, Chen Z, Hu G, Hu S, Li Q, Peng C, Chen X. Targeted degradation of CD147 proteins in melanoma. Bioorg Chem 2020; 105:104453. [PMID: 33197849 DOI: 10.1016/j.bioorg.2020.104453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
CD147 is a transmembrane glycoprotein and a member of immunoglobulin superfamily, is strongly expressed in melanoma cells. CD147 has a pivotal role in tumor development. Therefore, it is a potential drug target for melanoma. In this article, we report the discovery of the first CD147 protein proteolysis targeting chimeras (PROTACs) derived from the natural product pseudolaric acid B (PAB). The representative compound 6a effectively induced degradation of CD147 and inhibited melanoma cells in vitro and in vivo. 6a could be used as the novel type of anticancer agent or as a part of the molecular biology research toolkit used in the gain-of-function study of the dynamic roles of CD147 in cancer networks.
Collapse
Affiliation(s)
- Zhe Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Long
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - YaYun Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - GaoYun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Shuo Hu
- Department of Nuclear Medicine, XiangYa Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan, China
| | - QianBin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
252
|
|
253
|
Leissing TM, Luh LM, Cromm PM. Structure driven compound optimization in targeted protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:73-82. [PMID: 34895657 DOI: 10.1016/j.ddtec.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/14/2023]
Abstract
Small molecule induced protein degradation has created tremendous excitement in drug discovery within recent years. Not being confined to target inhibition and being able to remove disease-causing protein targets via engagement and subsequent ubiquitination has provided scientists with a powerful tool to expand the druggable space. At the center of this approach sits the ternary complex formed between an E3 ubiquitin ligase, the small molecule degrader, and the target protein. A productive ternary complex is pivotal for a ubiquitin to be transferred to a surface lysine of the target protein resulting in poly-ubiquitination which enables recognition and finally degradation by the proteasome. As understanding the ternary complex means understanding the degradation process, many efforts are put into obtaining structural information of the ternary complex and getting a snapshot of the underlying conformations and molecular contacts. Locking this transient trimeric intermediate in a crystalline state has proven to be very demanding but the obtained results have tremendously improved our understanding of small molecule degraders. This review discusses target protein degradation from a structural perspective and highlights the evolution of certain degraders based on the obtained structural insights.
Collapse
Affiliation(s)
| | - Laura M Luh
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Philipp M Cromm
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany.
| |
Collapse
|
254
|
Discovery of potent small molecule PROTACs targeting mutant EGFR. Eur J Med Chem 2020; 208:112781. [DOI: 10.1016/j.ejmech.2020.112781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
|
255
|
Nguyen KM, Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin Cancer Biol 2020; 67:53-60. [DOI: 10.1016/j.semcancer.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
256
|
Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol 2020; 179:2795-2812. [PMID: 33238031 DOI: 10.1111/bph.15331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy.
Collapse
Affiliation(s)
- Yuewei Xu
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anke Nijhuis
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
257
|
Kounde CS, Tate EW. Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. J Med Chem 2020; 63:15483-15493. [PMID: 33226810 DOI: 10.1021/acs.jmedchem.0c01542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted protein degradation with bifunctional degraders is positioned as a remarkable game-changing strategy to control cellular protein levels and promises a new therapeutic modality in drug discovery. Light activation of a degrader to achieve exquisite spatiotemporal control over protein stability in cells has attracted the interest of multiple research groups, with recent reports demonstrating optical control of proteolysis with chimeric molecules bearing photolabile or photoswitchable motifs. In this context of targeted proteolysis research spurring the emergence of innovative tools, we examine the design, synthesis, and properties of light-activated degraders. The significant impact of this approach in regulating disease-relevant protein levels in a light-dependent manner is highlighted with key examples, and future developments to fully harness the potential of light-induced protein degradation with photoactive bifunctional molecules are discussed.
Collapse
Affiliation(s)
- Cyrille S Kounde
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
258
|
Riching KM, Schwinn MK, Vasta JD, Robers MB, Machleidt T, Urh M, Daniels DL. CDK Family PROTAC Profiling Reveals Distinct Kinetic Responses and Cell Cycle-Dependent Degradation of CDK2. SLAS DISCOVERY 2020; 26:560-569. [PMID: 33190579 DOI: 10.1177/2472555220973602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted protein degradation using heterobifunctional proteolysis-targeting chimera (PROTAC) compounds, which recruit E3 ligase machinery to a target protein, is increasingly becoming an attractive pharmacologic strategy. PROTAC compounds are often developed from existing inhibitors, and assessing selectivity is critical for understanding on-target and off-target degradation. We present here an in-depth kinetic degradation study of the pan-kinase PROTAC, TL12-186, applied to 16 members of the cyclin-dependent kinase (CDK) family. Each CDK family member was endogenously tagged with the 11-amino-acid HiBiT peptide, allowing for live cell luminescent monitoring of degradation. Using this approach, we found striking differences and patterns in kinetic degradation rates, potencies, and Dmax values across the CDK family members. Analysis of the responses revealed that most of the CDKs showed rapid and near complete degradation, yet all cell cycle-associated CDKs (1, 2, 4, and 6) showed multimodal and partial degradation. Further mechanistic investigation of the key cell cycle protein CDK2 was performed and revealed CDK2 PROTAC-dependent degradation in unsynchronized or G1-arrested cells but minimal loss in S or G2/M arrest. The ability of CDK2 to form the PROTAC-mediated ternary complex with CRBN in only G1-arrested cells matched these trends, despite binding of CDK2 to TL12-186 in all phases. These data indicate that target subpopulation degradation can occur, dictated by the formation of the ternary complex. These studies additionally underscore the importance of profiling degradation compounds in cellular systems where complete pathways are intact and target proteins can be characterized in their relevant complexes.
Collapse
|
259
|
PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem 2020; 210:112993. [PMID: 33189436 DOI: 10.1016/j.ejmech.2020.112993] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Small molecule inhibitors of proteins represent important medicines and critical chemical tools to investigate the biology of the target proteins. Advances in various -omics technologies have fueled the pace of discovery of disease-relevant proteins. Translating these discoveries into human benefits requires us to develop specific chemicals to inhibit the proteins. However, traditional small molecule inhibitors binding to orthosteric or allosteric sites face significant challenges. These challenges include drug selectivity, therapy resistance as well as drugging undruggable proteins and multi-domain proteins. To address these challenges, PROteolysis TArgeting Chimera (PROTAC) has been proposed. PROTACs are heterobifunctional molecules containing a binding ligand for a protein of interest and E3 ligase-recruiting ligand that are connected through a chemical linker. Binding of a PROTAC to its target protein will bring a E3 ligase in close proximity to initiate polyubiquitination of the target protein ensuing its proteasome-mediated degradation. Unlike small molecule inhibitors, PROTACs achieve target protein degradation in its entirety in a catalytical fashion. In this review, we analyze recent advances in PROTAC design to discuss how PROTACs can address the challenges facing small molecule inhibitors to potentially deliver next-generation medicines and chemical tools with high selectivity and efficacy. We also offer our perspectives on the future promise and potential limitations facing PROTACs. Investigations to overcome these limitations of PROTACs will further help realize the promise of PROTACs for human benefits.
Collapse
|
260
|
Development of a Bestatin-SAHA Hybrid with Dual Inhibitory Activity against APN and HDAC. Molecules 2020; 25:molecules25214991. [PMID: 33126591 PMCID: PMC7662900 DOI: 10.3390/molecules25214991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023] Open
Abstract
With five histone deacetylase (HDAC) inhibitors approved for cancer treatment, proteolysis-targeting chimeras (PROTACs) for degradation of HDAC are emerging as an alternative strategy for HDAC-targeted therapeutic intervention. Herein, three bestatin-based hydroxamic acids (P1, P2 and P3) were designed, synthesized and biologically evaluated to see if they could work as HDAC degrader by recruiting cellular inhibitor of apoptosis protein 1 (cIAP1) E3 ubiquitin ligase. Among the three compounds, the bestatin-SAHA hybrid P1 exhibited comparable even more potent inhibitory activity against HDAC1, HDAC6 and HDAC8 relative to the approved HDAC inhibitor SAHA. It is worth noting that although P1 could not lead to intracellular HDAC degradation after 6 h of treatment, it could dramatically decrease the intracellular levels of HDAC1, HDAC6 and HDAC8 after 24 h of treatment. Intriguingly, the similar phenomenon was also observed in the HDAC inhibitor SAHA. Cotreatment with proteasome inhibitor bortezomib could not reverse the HDAC decreasing effects of P1 and SAHA, confirming that their HDAC decreasing effects were not due to protein degradation. Moreover, all three bestatin-based hydroxamic acids P1, P2 and P3 exhibited more potent aminopeptidase N (APN, CD13) inhibitory activities than the approved APN inhibitor bestatin, which translated to their superior anti-angiogenic activities. Taken together, a novel bestatin-SAHA hybrid was developed, which worked as a potent APN and HDAC dual inhibitor instead of a PROTAC.
Collapse
|
261
|
Nabet B. Charting a New Path Towards Degrading Every Protein. Chembiochem 2020; 22:483-484. [PMID: 33103843 DOI: 10.1002/cbic.202000531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Indexed: 11/07/2022]
Abstract
Strategies to directly alter protein abundance such as small-molecule-induced targeted protein degradation (TPD) are innovative pharmacological modalities with promising clinical potential. Herein, I describe my experience with the development of the degradation tag (dTAG) system, which is a chemical biology strategy to induce rapid and precise degradation of any target protein. Open-source collaborative discovery has been critical for advancing the versatility and accessibility of the dTAG system and will be necessary to understand the benefits and limits of TPD-based strategies in the clinic.
Collapse
Affiliation(s)
- Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
262
|
Bartlett DW, Gilbert AM. A kinetic proofreading model for bispecific protein degraders. J Pharmacokinet Pharmacodyn 2020; 48:149-163. [PMID: 33090299 DOI: 10.1007/s10928-020-09722-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Bispecific protein degraders (BPDs) engage the ubiquitin-proteasome system (UPS) to catalytically degrade intracellular proteins through the formation of ternary complexes with the target protein and E3 ubiquitin ligases. Here, we describe the development of a mechanistic modeling framework for BPDs that includes the reaction network governing ternary complex formation and degradation via the UPS. A critical element of the model framework is a multi-step process that results in a time delay between ternary complex formation and protein degradation, thereby balancing ternary complex stability against UPS degradation rates akin to the kinetic proofreading concept that has been proposed to explain the accuracy and specificity of biological processes including protein translation and T cell receptor signal transduction. Kinetic proofreading likely plays a central role in the cell's ability to regulate substrate recognition and degradation by the UPS, and the model presented here applies this concept in the context of a quantitative pharmacokinetic (PK)-pharmacodynamic (PD) framework to inform the design of potent and selective BPDs.
Collapse
Affiliation(s)
- Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research and Development, Pfizer Inc., San Diego, CA, USA.
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
263
|
Powell CE, Du G, Che J, He Z, Donovan KA, Yue H, Wang ES, Nowak RP, Zhang T, Fischer ES, Gray NS. Selective Degradation of GSPT1 by Cereblon Modulators Identified via a Focused Combinatorial Library. ACS Chem Biol 2020; 15:2722-2730. [PMID: 32865967 DOI: 10.1021/acschembio.0c00520] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cereblon (CRBN) is an E3 ligase adapter protein that can be reprogrammed by imide-class compounds such as thalidomide, lenalidomide, and pomalidomide to induce the degradation of neo-substrate proteins. In order to identify additional small molecule CRBN modulators, we implemented a focused combinatorial library approach where we fused an imide-based CRBN-binding pharmacophore to a heterocyclic scaffold, which could be further elaborated. We screened the library for CRBN-dependent antiproliferative activity in the multiple myeloma cell line MM1.S and identified five hit compounds. Quantitative chemical proteomics of hit compounds revealed that they induced selective degradation of GSPT1, a translation termination factor that is currently being explored as a therapeutic target for the treatment of acute myeloid leukemia. Molecular docking studies with CRBN and GSPT1 followed by analogue synthesis identified a possible hydrogen bond interaction with the central pyrimidine ring as a molecular determinant of hit compounds' selectivity. This study demonstrates that a focused combinatorial library design, phenotypic screening, and chemical proteomics can provide a suitable workflow to efficiently identify novel CRBN modulators.
Collapse
Affiliation(s)
- Chelsea E. Powell
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric S. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Radosław P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
264
|
Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020; 39:7106-7113. [PMID: 33024277 DOI: 10.1038/s41388-020-01491-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy using immune-checkpoint blockade has displayed promising clinical effects, but prevalent antibody-based inhibitors face multiple challenges such as low response rate, acquired resistance, and adverse effects. The intracellular expression of PD-1/PD-L1 in recycling endosomes and their active trafficking to membrane highlight the importance of depleting rather than interfering with checkpoint proteins. Preclinical investigations on the therapeutic effects of lead compounds that function by degrading immune checkpoint ligands and receptors have reported highly promising results. By harnessing the degradation capabilities of the lysosome, proteasome and autophagosomes, different small molecules and peptides potently induced degradation of checkpoint proteins and enhanced anti-tumor immunity. Both in vitro and in vivo experiments support the therapeutic efficacy of these molecules. Thus, targeted degradation through endo-lysosomal, autophagic, proteasomal, or endoplasmic reticulum-related pathways may provide promising strategies for tackling the challenges in cancer immunotherapy.
Collapse
|
265
|
Reidenbach AG, Mesleh MF, Casalena D, Vallabh SM, Dahlin JL, Leed AJ, Chan AI, Usanov DL, Yehl JB, Lemke CT, Campbell AJ, Shah RN, Shrestha OK, Sacher JR, Rangel VL, Moroco JA, Sathappa M, Nonato MC, Nguyen KT, Wright SK, Liu DR, Wagner FF, Kaushik VK, Auld DS, Schreiber SL, Minikel EV. Multimodal small-molecule screening for human prion protein binders. J Biol Chem 2020; 295:13516-13531. [PMID: 32723867 PMCID: PMC7521658 DOI: 10.1074/jbc.ra120.014905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.
Collapse
Affiliation(s)
- Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dominick Casalena
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jayme L Dahlin
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison J Leed
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alix I Chan
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry L Usanov
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jenna B Yehl
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher T Lemke
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rishi N Shah
- Undergraduate Research Opportunities Program (UROP), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Om K Shrestha
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Joshua R Sacher
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Victor L Rangel
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kong T Nguyen
- Artificial Intelligence Molecular Screen (AIMS) Awards Program, Atomwise, San Francisco, California, USA
| | - S Kirk Wright
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - David R Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Douglas S Auld
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
266
|
Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci Rep 2020; 10:15543. [PMID: 32968148 PMCID: PMC7511954 DOI: 10.1038/s41598-020-72491-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Targeted protein degradation (TPD) has emerged as a powerful tool in drug discovery for the perturbation of protein levels using heterobifunctional small molecules. E3 ligase recruiters remain central to this process yet relatively few have been identified relative to the ~ 600 predicted human E3 ligases. While, initial recruiters have utilized non-covalent chemistry for protein binding, very recently covalent engagement to novel E3's has proven fruitful in TPD application. Herein we demonstrate efficient proteasome-mediated degradation of BRD4 by a bifunctional small molecule linking the KEAP1-Nrf2 activator bardoxolone to a BRD4 inhibitor JQ1.
Collapse
Affiliation(s)
- Bingqi Tong
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Mai Luo
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Yi Xie
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Departments of Molecular and Cell Biology and Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
267
|
Identification of Small-Molecule Activators of the Ubiquitin Ligase E6AP/UBE3A and Angelman Syndrome-Derived E6AP/UBE3A Variants. Cell Chem Biol 2020; 27:1510-1520.e6. [PMID: 32966807 DOI: 10.1016/j.chembiol.2020.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Genetic aberrations of the UBE3A gene encoding the E3 ubiquitin ligase E6AP underlie the development of Angelman syndrome (AS). Approximately 10% of AS individuals harbor UBE3A genes with point mutations, frequently resulting in the expression of full-length E6AP variants with defective E3 activity. Since E6AP exists in two states, an inactive and an active one, we hypothesized that distinct small molecules can stabilize the active state and that such molecules may rescue the E3 activity of AS-derived E6AP variants. Therefore, we established an assay that allows identifying modulators of E6AP in a high-throughput format. We identified several compounds that not only stimulate wild-type E6AP but also rescue the E3 activity of certain E6AP variants. Moreover, by chemical cross-linking coupled to mass spectrometry we provide evidence that the compounds stabilize an active conformation of E6AP. Thus, these compounds represent potential lead structures for the design of drugs for AS treatment.
Collapse
|
268
|
Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the Proteasome: Targeted Protein Degradation-A Medicinal Chemist's Perspective. Angew Chem Int Ed Engl 2020; 59:15448-15466. [PMID: 32428344 PMCID: PMC7496094 DOI: 10.1002/anie.202004310] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation (TPD), the ability to control a proteins fate by triggering its degradation in a highly selective and effective manner, has created tremendous excitement in chemical biology and drug discovery within the past decades. The TPD field is spearheaded by small molecule induced protein degradation with molecular glues and proteolysis targeting chimeras (PROTACs) paving the way to expand the druggable space and to create a new paradigm in drug discovery. However, besides the therapeutic angle of TPD a plethora of novel techniques to modulate and control protein levels have been developed. This enables chemical biologists to better understand protein function and to discover and verify new therapeutic targets. This Review gives a comprehensive overview of chemical biology techniques inducing TPD. It explains the strengths and weaknesses of these methods in the context of drug discovery and discusses their future potential from a medicinal chemist's perspective.
Collapse
Affiliation(s)
- Laura M. Luh
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Ulrike Scheib
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Katrin Juenemann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Lars Wortmann
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Michael Brands
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| | - Philipp M. Cromm
- Research and DevelopmentPharmaceuticalsBayer AG13353BerlinGermany
| |
Collapse
|
269
|
Wang ZW, Liu Y, Zhu X. PhotoPROTACs: A Novel Biotechnology for Cancer Treatment. Trends Cell Biol 2020; 30:749-751. [PMID: 32855019 DOI: 10.1016/j.tcb.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022]
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) have been developed for targeting specific protein destruction. Two recent studies in Science Advances by Liu et al. and Reynders et al. reported a novel technology, PHOtochemically TArgeting Chimeras (PHOTACs) or opto-PROTAC, which is light-induced control of protein degradation. This new approach might lead to precision therapeutics in patients with cancer.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
270
|
Tomoshige S, Ishikawa M. PROTACs and Other Chemical Protein Degradation Technologies for the Treatment of Neurodegenerative Disorders. Angew Chem Int Ed Engl 2020; 60:3346-3354. [PMID: 32410219 DOI: 10.1002/anie.202004746] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 02/03/2023]
Abstract
Neurodegenerative disorders (NDs) are a group of diseases that cause neural cell damage, leading to motility and/or cognitive dysfunctions. One of the causative agents is misfolded protein aggregates, which are considered as undruggable in terms of conventional tools, such as inhibitors and agonists/antagonists. Indeed, there is currently no FDA-approved drug for the causal treatment of NDs. However, emerging technologies for chemical protein degradation are opening up the possibility of selective elimination of target proteins through physiological protein degradation machineries, which do not depend on the functions of the target proteins. Here, we review recent efforts towards the treatment of NDs using chemical protein degradation technologies, and we briefly discuss the challenges and prospects.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
271
|
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn GO, Lee JS, Song HK, Lim HS. Targeted Degradation of Transcription Coactivator SRC-1 through the N-Degron Pathway. Angew Chem Int Ed Engl 2020; 59:17548-17555. [PMID: 33026161 DOI: 10.1002/anie.202005004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/01/2020] [Indexed: 01/12/2023]
Abstract
Aberrantly elevated steroid receptor coactivator-1 (SRC-1) expression and activity are strongly correlated with cancer progression and metastasis. Here we report, for the first time, the development of a proteolysis targeting chimera (PROTAC) that is composed of a selective SRC-1 binder linked to a specific ligand for UBR box, a unique class of E3 ligases recognizing N-degrons. We showed that the bifunctional molecule efficiently and selectively induced the degradation of SRC-1 in cells through the N-degron pathway. Importantly, given the ubiquitous expression of the UBR protein in most cells, PROTACs targeting the UBR box could degrade a protein of interest regardless of cell types. We also showed that the SRC-1 degrader significantly suppressed cancer cell invasion and migration in vitro and in vivo. Together, these results demonstrate that the SRC-1 degrader can be an invaluable chemical tool in the studies of SRC-1 functions. Moreover, our findings suggest PROTACs based on the N-degron pathway as a widely useful strategy to degrade disease-relevant proteins.
Collapse
Affiliation(s)
- Yeongju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jiwon Heo
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hoibin Jeong
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5. Hwarang-ro, 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Do Hoon Kwon
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Misook Oh
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Ganesh A Sable
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - G-One Ahn
- Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5. Hwarang-ro, 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|
272
|
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn G, Lee J, Song HK, Lim H. Targeted Degradation of Transcription Coactivator SRC‐1 through the N‐Degron Pathway. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yeongju Lee
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Jiwon Heo
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Hoibin Jeong
- Research Institute for Veterinary Science and College of Veterinary Medicine Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) 5. Hwarang-ro, 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Do Hoon Kwon
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Misook Oh
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - Ganesh A. Sable
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| | - G‐One Ahn
- Research Institute for Veterinary Science and College of Veterinary Medicine Seoul National University 1 Gwanak-ro Gwanak-gu Seoul 08826 South Korea
| | - Jun‐Seok Lee
- Molecular Recognition Research Center Korea Institute of Science and Technology (KIST) 5. Hwarang-ro, 14-gil, Seongbuk-gu Seoul 02792 South Korea
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 South Korea
| | - Hyun‐Suk Lim
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang 37673 South Korea
| |
Collapse
|
273
|
Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Front Immunol 2020; 11:1423. [PMID: 32733473 PMCID: PMC7360838 DOI: 10.3389/fimmu.2020.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Success in cancer treatment over the last four decades has ranged from improvements in classical drug therapy to immune oncology. Anti-cancer drugs have also often proven beneficial for the treatment of inflammatory and autoimmune diseases. In this review, we report on challenging examples that bridge between treatment of cancer and immune-mediated diseases, addressing mechanisms and experimental models as well as clinical investigations. Patient-derived tumor xenograft (PDX) (humanized) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. However, new developments using human ex vivo approaches modeling cancer, for example in microfluidic human organs-on-chips, promise to identify key molecular, cellular and immunological features of human cancer progression in a fully human setting. Classical drugs which bridge the gap, for instance, include cytotoxic drugs, proteasome inhibitors, PI3K/mTOR inhibitors and metabolic inhibitors. Biologicals developed for cancer therapy have also shown efficacy in the treatment of autoimmune diseases. In immune oncology, redirected chimeric antigen receptor (CAR) T cells have achieved spectacular remissions in refractory B cell leukemia and lymphoma and are currently under development for tolerance induction using cell-based therapies such as CAR Tregs or NK cells. Finally, a brief outline will be given of the lessons learned from bridging cancer and autoimmune diseases as well as tolerance induction.
Collapse
Affiliation(s)
- Stephan Klöß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology, University Hospital Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| |
Collapse
|
274
|
Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur J Med Chem 2020; 199:112377. [DOI: 10.1016/j.ejmech.2020.112377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
|
275
|
PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem Biol 2020; 27:998-1014. [DOI: 10.1016/j.chembiol.2020.07.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
|
276
|
Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura M. Luh
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Ulrike Scheib
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Katrin Juenemann
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Lars Wortmann
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Michael Brands
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| | - Philipp M. Cromm
- Research and Development Pharmaceuticals Bayer AG 13353 Berlin Germany
| |
Collapse
|
277
|
Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 2020; 21:630-644. [PMID: 32709985 DOI: 10.1038/s41576-020-0258-4] [Citation(s) in RCA: 555] [Impact Index Per Article: 138.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Gene expression involves transcription, translation and the turnover of mRNAs and proteins. The degree to which protein abundances scale with mRNA levels and the implications in cases where this dependency breaks down remain an intensely debated topic. Here we review recent mRNA-protein correlation studies in the light of the quantitative parameters of the gene expression pathway, contextual confounders and buffering mechanisms. Although protein and mRNA levels typically show reasonable correlation, we describe how transcriptomics and proteomics provide useful non-redundant readouts. Integrating both types of data can reveal exciting biology and is an essential step in refining our understanding of the principles of gene expression control.
Collapse
Affiliation(s)
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
278
|
Cheng J, Li Y, Wang X, Dong G, Sheng C. Discovery of Novel PDEδ Degraders for the Treatment of KRAS Mutant Colorectal Cancer. J Med Chem 2020; 63:7892-7905. [PMID: 32603594 DOI: 10.1021/acs.jmedchem.0c00929] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
KRAS-PDEδ protein-protein interaction represents an appealing target for cancer therapy. However, fast release of high-affinity inhibitors from PDEδ hampered drug binding affinity and antiproliferative activity. To overcome the limitations, the first proteolysis-targeting chimeric (PROTAC) small molecules targeting PDEδ were designed. By employment of PDEδ inhibitor deltazinone (2) and cereblon ligand pomalidomide (6), a series of potent PROTAC PDEδ degraders were obtained. The most promising compound 17f efficiently induced PDEδ degradation and demonstrated significantly improved antiproliferative potency in KRAS mutant SW480 cells. Compound 17f also achieved significant tumor growth inhibition in the SW480 colorectal cancer xenograft model. This proof-of-concept study provided a new strategy to validate the druggability of KRAS-PDEδ interaction and offered an effective lead compound for the treatment of KRAS mutant cancer.
Collapse
Affiliation(s)
- Junfei Cheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Yu Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Xu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
279
|
Burslem GM, Bondeson DP, Crews CM. Scaffold hopping enables direct access to more potent PROTACs with in vivo activity. Chem Commun (Camb) 2020; 56:6890-6892. [PMID: 32519703 PMCID: PMC7404552 DOI: 10.1039/d0cc02201b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we employ a scaffold hopping approach to enhance the activity of a previously reported BCR-Abl PROTAC. This represents a significant advance in the PROTAC field since it can abrogate the need to optimize the linker to access a more potent degrader. The new PROTAC demonstrates a >10 fold increase in ability to induce degradation and demonstrates in vivo activity.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| | - Daniel P Bondeson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA. and Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA
| |
Collapse
|
280
|
Asatsuma-Okumura T, Ito T, Handa H. Molecular Mechanisms of the Teratogenic Effects of Thalidomide. Pharmaceuticals (Basel) 2020; 13:ph13050095. [PMID: 32414180 PMCID: PMC7281272 DOI: 10.3390/ph13050095] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Thalidomide was sold worldwide as a sedative over 60 years ago, but it was quickly withdrawn from the market due to its teratogenic effects. Thalidomide was later found to have therapeutic effects in several diseases, although the molecular mechanisms remained unclear. The discovery of cereblon (CRBN), the direct target of thalidomide, a decade ago greatly improved our understanding of its mechanism of action. Accumulating evidence has shown that CRBN functions as a substrate of Cullin RING E3 ligase (CRL4CRBN), whose specificity is controlled by ligands such as thalidomide. For example, lenalidomide and pomalidomide, well-known thalidomide derivatives, degrade the neosubstrates Ikaros and Aiolos, resulting in anti-proliferative effects in multiple myeloma. Recently, novel CRBN-binding drugs have been developed. However, for the safe handling of thalidomide and its derivatives, a greater understanding of the mechanisms of its adverse effects is required. The teratogenic effects of thalidomide occur in multiple tissues in the developing fetus and vary in phenotype, making it difficult to clarify this issue. Recently, several CRBN neosubstrates (e.g., SALL4 (Spalt Like Transcription Factor 4) and p63 (Tumor Protein P63)) have been identified as candidate mediators of thalidomide teratogenicity. In this review, we describe the current understanding of molecular mechanisms of thalidomide, particularly in the context of its teratogenicity.
Collapse
Affiliation(s)
| | - Takumi Ito
- Correspondence: ; Tel.: +81-3-9323-3250; Fax: +81-3-9323-3251
| | | |
Collapse
|
281
|
Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol 2020; 13:50. [PMID: 32404196 PMCID: PMC7218526 DOI: 10.1186/s13045-020-00885-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proteolysis-targeting chimera (PROTAC) has been developed to be a useful technology for targeted protein degradation. A bifunctional PROTAC molecule consists of a ligand (mostly small-molecule inhibitor) of the protein of interest (POI) and a covalently linked ligand of an E3 ubiquitin ligase (E3). Upon binding to the POI, the PROTAC can recruit E3 for POI ubiquitination, which is subjected to proteasome-mediated degradation. PROTAC complements nucleic acid-based gene knockdown/out technologies for targeted protein reduction and could mimic pharmacological protein inhibition. To date, PROTACs targeting ~ 50 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for cancer therapy. This article reviews PROTAC-mediated degradation of critical oncoproteins in cancer, particularly those in hematological malignancies. Chemical structures, cellular and in vivo activities, pharmacokinetics, and pharmacodynamics of these PROTACs are summarized. In addition, potential advantages, challenges, and perspectives of PROTAC technology in cancer therapy are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
282
|
Hanan EJ, Liang J, Wang X, Blake RA, Blaquiere N, Staben ST. Monomeric Targeted Protein Degraders. J Med Chem 2020; 63:11330-11361. [DOI: 10.1021/acs.jmedchem.0c00093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
283
|
Manda S, Lee NK, Oh DC, Lee J. Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src. Molecules 2020; 25:molecules25081948. [PMID: 32340152 PMCID: PMC7221895 DOI: 10.3390/molecules25081948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023] Open
Abstract
A focused PROTAC library was developed to degrade both IGF-1R and Src proteins, which are associated with various cancers. PROTACs with IGF-1R and Src degradation potentials were synthesized by tethering different inhibitor warhead units and the E3 ligase (CRBN) recruiting-pomalidomide with various linkers. The designed PROTACs 12a-b inhibited the proliferation and migration of MCF7 and A549 cancer cells with low micromolar potency (1-5 μM) in various cellular assays.
Collapse
Affiliation(s)
- Sudhakar Manda
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Na Keum Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (S.M.); (N.K.L.)
- Correspondence: ; Tel.: +82-02-880-2471
| |
Collapse
|
284
|
Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a More Precise Future for Oncology. Cancer Cell 2020; 37:431-442. [PMID: 32289268 PMCID: PMC7499397 DOI: 10.1016/j.ccell.2020.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Prospective molecular characterization of cancer has enabled physicians to define the genomic changes of each patient's tumor in real time and select personalized therapies based on these detailed portraits. Despite the promise of such an approach, previously unrecognized biological and therapeutic complexity is emerging. Here, we synthesize lessons learned and discuss the steps required to extend the benefits of genome-driven oncology, including proposing strategies for improved drug design, more nuanced patient selection, and optimized use of available therapies. Finally, we suggest ways that next-generation genome-driven clinical trials can evolve to accelerate our understanding of cancer biology and improve patient outcomes.
Collapse
Affiliation(s)
- Yonina R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Barry S Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncogenesis and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Loxo Oncology, A Wholly Owned Subsidiary of Eli Lilly, Stamford, CT, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
285
|
Affiliation(s)
- Nikolai Slavov
- Department of Bioengineering and Barnett Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
286
|
Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex. Nat Struct Mol Biol 2020; 27:319-322. [PMID: 32251415 DOI: 10.1038/s41594-020-0405-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Thalidomide-dependent degradation of the embryonic transcription factor SALL4 by the CRL4CRBN E3 ubiquitin ligase is a plausible major driver of thalidomide teratogenicity. The structure of the second zinc finger of SALL4 in complex with pomalidomide, cereblon and DDB1 reveals the molecular details of recruitment. Sequence differences and a shifted binding position relative to Ikaros offer a path to the rational design of cereblon-binding drugs with reduced teratogenic risk.
Collapse
|
287
|
Gerry CJ, Schreiber SL. Unifying principles of bifunctional, proximity-inducing small molecules. Nat Chem Biol 2020; 16:369-378. [PMID: 32198490 PMCID: PMC7312755 DOI: 10.1038/s41589-020-0469-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
Abstract
Nature uses a variety of tools to mediate the flow of information in cells, many of which control distances between key biomacromolecules. Researchers have thus generated compounds whose activities stem from interactions with two (or more) proteins simultaneously. In this Perspective, we describe how these 'bifunctional' small molecules facilitate the study of an increasingly wide range of complex biological phenomena and enable the drugging of otherwise challenging therapeutic targets and processes. Despite their structural and functional differences, all bifunctional molecules employ Nature's strategy of altering interactomes and inducing proximity to modulate biology. They therefore exhibit a shared set of chemical and biophysical principles that have not yet been appreciated fully. By highlighting these commonalities-and their wide-ranging consequences-we hope to chip away at the artificial barriers that threaten to constrain this interdisciplinary field. Doing so promises to yield remarkable benefits for biological research and therapeutics discovery.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
288
|
Zhang X, Xu F, Tong L, Zhang T, Xie H, Lu X, Ren X, Ding K. Design and synthesis of selective degraders of EGFR L858R/T790M mutant. Eur J Med Chem 2020; 192:112199. [PMID: 32171162 DOI: 10.1016/j.ejmech.2020.112199] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
A series of PROTAC (proteolysis targeting chimera) based selective EGFRL858R/T790M (leucine 858 to arginine 858 mutation and threonine 790 to methionine 790) mutant degraders were designed and synthesized. One of the most potent compounds, 14o, effectively and selectively degraded EGFRL858R/T790M with an DC50 value of 5.9 nM, while did not show obvious effect on the wild-type protein. Further mechanism investigation revealed that the degradation was mediated by ubiquitin proteasome pathway. Compound 14o could be utilized as an initial lead molecule for development of new EGFRL858R/T790M degrader based therapy.
Collapse
Affiliation(s)
- Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
289
|
Steinebach C, Ng YLD, Sosič I, Lee CS, Chen S, Lindner S, Vu LP, Bricelj A, Haschemi R, Monschke M, Steinwarz E, Wagner KG, Bendas G, Luo J, Gütschow M, Krönke J. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci 2020; 11:3474-3486. [PMID: 33133483 PMCID: PMC7552917 DOI: 10.1039/d0sc00167h] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) is an important regulator of the cell cycle. Together with CDK4, it phosphorylates and inactivates retinoblastoma (Rb) protein.
Cyclin-dependent kinase 6 (CDK6) is an important regulator of the cell cycle. Together with CDK4, it phosphorylates and inactivates retinoblastoma (Rb) protein. In tumour cells, CDK6 is frequently upregulated and CDK4/6 kinase inhibitors like palbociclib possess high activity in breast cancer and other malignancies. Besides its crucial catalytic function, kinase-independent roles of CDK6 have been described. Therefore, targeted degradation of CDK6 may be advantageous over kinase inhibition. Proteolysis targeting chimeras (PROTACs) structurally based on the cereblon (CRBN) ligand thalidomide have recently been described to degrade the targets CDK4/6. However, CRBN-based PROTACs have several limitations including the remaining activity of immunomodulatory drugs (IMiDs) on Ikaros transcription factors as well as CRBN inactivation as a resistance mechanism in cancer. Here, we systematically explored the chemical space of CDK4/6 PROTACs by addressing different E3 ligases and connecting their respective small-molecule binders via various linkers to palbociclib. The spectrum of CDK6-specific PROTACs was extended to von Hippel Lindau (VHL) and cellular inhibitor of apoptosis protein 1 (cIAP1) that are essential for most cancer cells and therefore less likely to be inactivated. Our VHL-based PROTAC series included compounds that were either specific for CDK6 or exhibited dual activity against CDK4 and CDK6. IAP-based PROTACs caused a combined degradation of CDK4/6 and IAPs resulting in synergistic effects on cancer cell growth. Our new degraders showed potent and long-lasting degrading activity in human and mouse cells and inhibited proliferation of several leukemia, myeloma and breast cancer cell lines. In conclusion, we show that VHL- and IAP-based PROTACs are an attractive approach for targeted degradation of CDK4/6 in cancer.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute , Department of Pharmaceutical & Medicinal Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Yuen Lam Dora Ng
- Department of Internal Medicine III , University Hospital Ulm , Albert-Einstein-Allee 23 , 89081 Ulm , Germany .
| | - Izidor Sosič
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia
| | - Chih-Shia Lee
- Laboratory of Cancer Biology and Genetics , Center for Cancer Research , National Cancer Institute , Bethesda , MD 20892 , USA
| | - Sirui Chen
- Department of Internal Medicine III , University Hospital Ulm , Albert-Einstein-Allee 23 , 89081 Ulm , Germany .
| | - Stefanie Lindner
- Department of Internal Medicine III , University Hospital Ulm , Albert-Einstein-Allee 23 , 89081 Ulm , Germany .
| | - Lan Phuong Vu
- Pharmaceutical Institute , Department of Pharmaceutical & Medicinal Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Aleša Bricelj
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva cesta 7 , 1000 Ljubljana , Slovenia
| | - Reza Haschemi
- Pharmaceutical Institute , Department of Pharmaceutical & Cell Biological Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Marius Monschke
- Pharmaceutical Institute , Pharmaceutical Technology , University of Bonn , Gerhard-Domagk-Straße 3 , 53121 Bonn , Germany
| | - Elisabeth Steinwarz
- Pharmaceutical Institute , Department of Pharmaceutical & Cell Biological Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Karl G Wagner
- Pharmaceutical Institute , Pharmaceutical Technology , University of Bonn , Gerhard-Domagk-Straße 3 , 53121 Bonn , Germany
| | - Gerd Bendas
- Pharmaceutical Institute , Department of Pharmaceutical & Cell Biological Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics , Center for Cancer Research , National Cancer Institute , Bethesda , MD 20892 , USA
| | - Michael Gütschow
- Pharmaceutical Institute , Department of Pharmaceutical & Medicinal Chemistry , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Jan Krönke
- Department of Internal Medicine III , University Hospital Ulm , Albert-Einstein-Allee 23 , 89081 Ulm , Germany .
| |
Collapse
|
290
|
Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, Trauner D. PHOTACs enable optical control of protein degradation. SCIENCE ADVANCES 2020; 6:eaay5064. [PMID: 32128406 PMCID: PMC7034999 DOI: 10.1126/sciadv.aay5064] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/22/2019] [Indexed: 05/13/2023]
Abstract
PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Bryan S. Matsuura
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Marleen Bérouti
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
291
|
ITO T, HANDA H. Molecular mechanisms of thalidomide and its derivatives. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:189-203. [PMID: 32522938 PMCID: PMC7298168 DOI: 10.2183/pjab.96.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Thalidomide, originally developed as a sedative drug, causes multiple defects due to severe teratogenicity, but it has been re-purposed for treating multiple myeloma, and derivatives such as lenalidomide and pomalidomide have been developed for treating blood cancers. Although the molecular mechanisms of thalidomide and its derivatives remained poorly understood until recently, we identified cereblon (CRBN), a primary direct target of thalidomide, using ferrite glycidyl methacrylate (FG) beads. CRBN is a ligand-dependent substrate receptor of the E3 ubiquitin ligase complex cullin-RING ligase 4 (CRL4CRBN). When a ligand such as thalidomide binds to CRBN, it recognizes various 'neosubstrates' depending on the shape of the ligand. CRL4CRBN binds many neosubstrates in the presence of various ligands. CRBN has been utilized in a novel protein knockdown technology named proteolysis targeting chimeras (PROTACs). Heterobifunctional molecules such as dBET1 are being developed to specifically degrade proteins of interest. Herein, we review recent advances in CRBN research.
Collapse
Affiliation(s)
- Takumi ITO
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi HANDA
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
- Correspondence should be addressed: H. Handa, Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan (e-mail: )
| |
Collapse
|
292
|
Pham V, Rendon R, Le VX, Tippin M, Fu DJ, Le TH, Miller M, Agredano E, Cedano J, Zi X. Gartanin is a novel NEDDylation inhibitor for induction of Skp2 degradation, FBXW2 expression, and autophagy. Mol Carcinog 2019; 59:193-201. [PMID: 31782573 DOI: 10.1002/mc.23140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
Gartanin, a 4-prenylated xanthone, has been identified from the purple mangosteen fruit as a potent growth inhibitor of various cancer cell lines, including prostate cancer. However, much of Gartanin's anticancer mechanism remains unknown. We have discovered that Gartanin docked onto the regulatory subunit of the precursor cell-expressed developmentally downregulated 8 (NEDD8)-activating enzyme (NAE) complex and next to the NEDD8 binding complex, which leads to inhibit NEDD8 conjugations to both Cullin1 and Ubc12 in prostate cancer cell lines and Ubc12 NEDDylation in an in vitro assay. The S phase kinase-associated protein (Skp2) and F-box and WD-repeat domain-containing 2 (FBXW2), the NEDD8 family members of E3 ubiqutin ligases, were also downregulated and upregulated by Gartainin, respectively. Knock-down of NEDD8 expression by short harpin (Sh) RNAs blocked or attenuated these effects of Gartainin. Finally, Gartanin demonstrated its ability to inhibit growth of prostate cancer lines via autophagy initiation. Our data support that Gartanin is a naturally occurring NEDDylation inhibitor and deserves further investigation for prostate cancer prevention and treatment.
Collapse
Affiliation(s)
- Victor Pham
- Department of Urology, University of California, Irvine, California.,Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Raymond Rendon
- Department of Urology, University of California, Irvine, California
| | - Vinh X Le
- Department of Urology, University of California, Irvine, California
| | - Matthew Tippin
- Department of Urology, University of California, Irvine, California
| | - Dong-Jun Fu
- Department of Urology, University of California, Irvine, California
| | - Thanh H Le
- Department of Urology, University of California, Irvine, California
| | - Marvin Miller
- Department of Urology, University of California, Irvine, California
| | - Ericka Agredano
- Department of Urology, University of California, Irvine, California
| | - Jose Cedano
- Department of Urology, University of California, Irvine, California
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, California.,Department of Pharmaceutical Sciences, University of California, Irvine, California
| |
Collapse
|