251
|
Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 2011; 6:e27156. [PMID: 22110609 PMCID: PMC3217948 DOI: 10.1371/journal.pone.0027156] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Large-scale molecular profiling technologies have assisted the identification of disease biomarkers and facilitated the basic understanding of cellular processes. However, samples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies.We describe an approach that builds upon a linear latent variable model, in which expression levels from mixed cell populations are modeled as the weighted average of expression from different cell types. We solve these equations using quadratic programming, which efficiently identifies the globally optimal solution while preserving non-negativity of the fraction of the cells. We applied our method to various existing platforms to estimate proportions of different pure cell or tissue types and gene expression profilings of distinct phenotypes, with a focus on complex samples collected in clinical trials. We tested our methods on several well controlled benchmark data sets with known mixing fractions of pure cell or tissue types and mRNA expression profiling data from samples collected in a clinical trial. Accurate agreement between predicted and actual mixing fractions was observed. In addition, our method was able to predict mixing fractions for more than ten species of circulating cells and to provide accurate estimates for relatively rare cell types (<10% total population). Furthermore, accurate changes in leukocyte trafficking associated with Fingolomid (FTY720) treatment were identified that were consistent with previous results generated by both cell counts and flow cytometry. These data suggest that our method can solve one of the open questions regarding the analysis of complex transcriptional data: namely, how to identify the optimal mixing fractions in a given experiment.
Collapse
|
252
|
Kim HR, Jeon BH, Lee HS, Im SH, Araki M, Araki K, Yamamura KI, Choi SC, Park DS, Jun CD. IGSF4 is a novel TCR ζ-chain-interacting protein that enhances TCR-mediated signaling. ACTA ACUST UNITED AC 2011; 208:2545-60. [PMID: 22084409 PMCID: PMC3256964 DOI: 10.1084/jem.20110853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Immunoglobulin superfamily member 4 (IGSF4) is a known ligand of CRTAM, a receptor expressed in activated NKT and CD8(+) T cells, but its function in T cell immunity has not been elucidated. In this study, we show that IGSF4 directly interacts with the T cell receptor (TCR) ζ-chain and enhances TCR signaling by enhancing ζ-chain phosphorylation. Ectopic overexpression of IGSF4 enhances TCR-mediated T cell activation. In contrast, IGSF4 knockdown shows a dramatic decrease in markers associated with T cell activation compared with those in control small interfering RNA. The transmembrane domain is essential for TCR ζ-chain association and clustering to the immunological synapse, and the ectodomain is associated with T cell interaction with antigen-presenting cells (APCs). IGSF4-deficient mice have impaired TCR-mediated thymocyte selection and maturation. Furthermore, these mice reveal attenuated effector T cell functions accompanied by defective TCR signaling. Collectively, the results indicate that IGSF4 plays a central role in T cell functioning by dual independent mechanisms, control of TCR signaling and control of T cell-APC interaction.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Immune Synapse Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, Coward JI, Schioppa T, Robinson SC, Gallagher WM, Galletta L, Salako MA, Smyth JF, Hagemann T, Brennan DJ, Bowtell DD, Balkwill FR. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2011; 72:66-75. [PMID: 22065722 DOI: 10.1158/0008-5472.can-11-2178] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Constitutive production of inflammatory cytokines is a characteristic of many human malignant cell lines; however, the in vitro and in vivo interdependence of these cytokines, and their significance to the human cancer microenvironment, are both poorly understood. Here, we describe for the first time how three key cytokine/chemokine mediators of cancer-related inflammation, TNF, CXCL12, and interleukin 6, are involved in an autocrine cytokine network, the "TNF network," in human ovarian cancer. We show that this network has paracrine actions on angiogenesis, infiltration of myeloid cells, and NOTCH signaling in both murine xenografts and human ovarian tumor biopsies. Neutralizing antibodies or siRNA to individual members of this TNF network reduced angiogenesis, myeloid cell infiltration, and experimental peritoneal ovarian tumor growth. The dependency of network genes on TNF was shown by their downregulation in tumor cells from patients with advanced ovarian cancer following the infusion of anti-TNF antibodies. Together, the findings define a network of inflammatory cytokine interactions that are crucial to tumor growth and validate this network as a key therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Hagen Kulbe
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Cancer Research UK, Bioinformatics and Biostatistics Service, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Morera D, Roher N, Ribas L, Balasch JC, Doñate C, Callol A, Boltaña S, Roberts S, Goetz G, Goetz FW, MacKenzie SA. RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PLoS One 2011; 6:e26998. [PMID: 22046430 PMCID: PMC3203173 DOI: 10.1371/journal.pone.0026998] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems.
Collapse
Affiliation(s)
- Davinia Morera
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Ribas
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Joan Carles Balasch
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Carmen Doñate
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Agnes Callol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Frederick W. Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Simon A. MacKenzie
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
255
|
Owczarczyk K, Lal P, Abbas AR, Wolslegel K, Holweg CTJ, Dummer W, Kelman A, Brunetta P, Lewin-Koh N, Sorani M, Leong D, Fielder P, Yocum D, Ho C, Ortmann W, Townsend MJ, Behrens TW. A Plasmablast Biomarker for Nonresponse to Antibody Therapy to CD20 in Rheumatoid Arthritis. Sci Transl Med 2011; 3:101ra92. [DOI: 10.1126/scitranslmed.3002432] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
256
|
Buonaguro L, Wang E, Tornesello ML, Buonaguro FM, Marincola FM. Systems biology applied to vaccine and immunotherapy development. BMC SYSTEMS BIOLOGY 2011; 5:146. [PMID: 21933421 PMCID: PMC3191374 DOI: 10.1186/1752-0509-5-146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/20/2011] [Indexed: 02/08/2023]
Abstract
Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses.Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs) plays in determining the nature and duration (immune memory) of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy) on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Dept of Experimental Oncology, Istituto Nazionale Tumori "Fond Pascale", Via Mariano Semmola 142, 80131 Napoli, Italy
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and trans-NIH Center for Human Immunology, National Institutes of Health Bethesda, Maryland, USA
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, Dept of Experimental Oncology, Istituto Nazionale Tumori "Fond Pascale", Via Mariano Semmola 142, 80131 Napoli, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, Dept of Experimental Oncology, Istituto Nazionale Tumori "Fond Pascale", Via Mariano Semmola 142, 80131 Napoli, Italy
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and trans-NIH Center for Human Immunology, National Institutes of Health Bethesda, Maryland, USA
| |
Collapse
|
257
|
Gaujoux R, Seoighe C. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study. INFECTION GENETICS AND EVOLUTION 2011; 12:913-21. [PMID: 21930246 DOI: 10.1016/j.meegid.2011.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Heterogeneity in sample composition is an inherent issue in many gene expression studies and, in many cases, should be taken into account in the downstream analysis to enable correct interpretation of the underlying biological processes. Typical examples are infectious diseases or immunology-related studies using blood samples, where, for example, the proportions of lymphocyte sub-populations are expected to vary between cases and controls. Nonnegative Matrix Factorization (NMF) is an unsupervised learning technique that has been applied successfully in several fields, notably in bioinformatics where its ability to extract meaningful information from high-dimensional data such as gene expression microarrays has been demonstrated. Very recently, it has been applied to biomarker discovery and gene expression deconvolution in heterogeneous tissue samples. Being essentially unsupervised, standard NMF methods are not guaranteed to find components corresponding to the cell types of interest in the sample, which may jeopardize the correct estimation of cell proportions. We have investigated the use of prior knowledge, in the form of a set of marker genes, to improve gene expression deconvolution with NMF algorithms. We found that this improves the consistency with which both cell type proportions and cell type gene expression signatures are estimated. The proposed method was tested on a microarray dataset consisting of pure cell types mixed in known proportions. Pearson correlation coefficients between true and estimated cell type proportions improved substantially (typically from about 0.5 to approximately 0.8) with the semi-supervised (marker-guided) versions of commonly used NMF algorithms. Furthermore known marker genes associated with each cell type were assigned to the correct cell type more frequently for the guided versions. We conclude that the use of marker genes improves the accuracy of gene expression deconvolution using NMF and suggest modifications to how the marker gene information is used that may lead to further improvements.
Collapse
Affiliation(s)
- Renaud Gaujoux
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| | | |
Collapse
|
258
|
Kossenkov AV, Vachani A, Chang C, Nichols C, Billouin S, Horng W, Rom WN, Albelda SM, Showe MK, Showe LC. Resection of non-small cell lung cancers reverses tumor-induced gene expression changes in the peripheral immune system. Clin Cancer Res 2011; 17:5867-77. [PMID: 21807633 DOI: 10.1158/1078-0432.ccr-11-0737] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the interactions of non-small cell lung cancer (NSCLC) tumors with the immune system at the level of mRNA and microRNA (miRNA) expression and to define expression signatures that characterize the presence of a malignant tumor versus a nonmalignant nodule. EXPERIMENTAL DESIGN We have examined the changes of both mRNA and miRNA expression levels in peripheral blood mononuclear cells (PBMC) between paired samples collected from NSCLC patients before and after tumor removal using Illumina gene expression arrays. RESULTS We found that malignant tumor removal significantly changes expression of more than 3,000 protein-coding genes, especially genes in pathways associated with suppression of the innate immune response, including natural killer cell signaling and apoptosis-associated ceramide signaling. Binding sites for the ETS domain transcription factors ELK1, ELK4, and SPI1 were enriched in promoter regions of genes upregulated in the presence of a tumor. Additional important regulators included five miRNAs expressed at significantly higher levels before tumor removal. Repressed protein-coding targets of those miRNAs included many transcription factors, several involved in immunologically important pathways. Although there was a significant overlap in the effects of malignant tumors and benign lung nodules on PBMC gene expression, we identified one gene panel which indicates a tumor or nodule presence and a second panel that can distinguish malignant from nonmalignant nodules. CONCLUSIONS A tumor presence in the lung influences mRNA and miRNA expression in PBMC and this influence is reversed by tumor removal. These results suggest that PBMC gene expression signatures could be used for lung cancer diagnosis.
Collapse
|
259
|
Bolen CR, Uduman M, Kleinstein SH. Cell subset prediction for blood genomic studies. BMC Bioinformatics 2011; 12:258. [PMID: 21702940 PMCID: PMC3213685 DOI: 10.1186/1471-2105-12-258] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/24/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genome-wide transcriptional profiling of patient blood samples offers a powerful tool to investigate underlying disease mechanisms and personalized treatment decisions. Most studies are based on analysis of total peripheral blood mononuclear cells (PBMCs), a mixed population. In this case, accuracy is inherently limited since cell subset-specific differential expression of gene signatures will be diluted by RNA from other cells. While using specific PBMC subsets for transcriptional profiling would improve our ability to extract knowledge from these data, it is rarely obvious which cell subset(s) will be the most informative. RESULTS We have developed a computational method (Subset Prediction from Enrichment Correlation, SPEC) to predict the cellular source for a pre-defined list of genes (i.e. a gene signature) using only data from total PBMCs. SPEC does not rely on the occurrence of cell subset-specific genes in the signature, but rather takes advantage of correlations with subset-specific genes across a set of samples. Validation using multiple experimental datasets demonstrates that SPEC can accurately identify the source of a gene signature as myeloid or lymphoid, as well as differentiate between B cells, T cells, NK cells and monocytes. Using SPEC, we predict that myeloid cells are the source of the interferon-therapy response gene signature associated with HCV patients who are non-responsive to standard therapy. CONCLUSIONS SPEC is a powerful technique for blood genomic studies. It can help identify specific cell subsets that are important for understanding disease and therapy response. SPEC is widely applicable since only gene expression profiles from total PBMCs are required, and thus it can easily be used to mine the massive amount of existing microarray or RNA-seq data.
Collapse
Affiliation(s)
- Christopher R Bolen
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
260
|
Feng X, Liu T, Wang F, Cao R, Zhou B, Zhang Y, Mao X, Chen P, Zhang H. Isolation, antiproliferation on tumor cell and immunomodulatory activity of BSP-I, a novel bursal peptide from chicken humoral immune system. Peptides 2011; 32:1103-9. [PMID: 21550370 DOI: 10.1016/j.peptides.2011.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 01/12/2023]
Abstract
The bursa of Fabricius (BF) is acknowledged as central humoral immune organ unique to birds. Our purpose was to identify the potential function of a novel bursal-derived bioactive peptide. A bursal septpeptide (BSP-I), EPASGMM, first isolated from BF, reduced MCF and Hela tumor cells proliferation, and enhanced antitumor factor p53 luciferase activity and protein expression. Further, we found the significantly immune inducing function of BSP-I on antigen-specific immune response in BALB/c mice intraperitoneally immunized with inactivated avian influence virus (AIV, H(9)N(2) subtype) vaccine, including of enhancing the antibody (IgG, the isotypes IgG1 and IgG2a) production, and stimulating cytokines IL-4 and IFN-γ level, and inducing T cell immunophenotyping and lymphocyte proliferation. These results suggested that as the bioactive peptide from avian humoral immune system, various biological function of BSP-I may have far-reaching implication on immune system significance, which might provide novel insight on linking between humoral immune system and development of effective immunotherapeutic strategies for treating human cancers diseases.
Collapse
Affiliation(s)
- Xiuli Feng
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agriculture University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood 2011; 118:598-608. [PMID: 21613257 DOI: 10.1182/blood-2010-10-313643] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of cellular survival and apoptosis is of critical importance for the immune system to maintain immune homeostasis and to establish tolerance. Here, we demonstrate that the immune specific cell surface molecule Toso exhibits antiapoptotic effects on death receptor signaling by a novel regulatory mechanism involving the adaptor kinase RIP1. The antiapoptotic function of Toso depends on RIP1 ubiquitination and involves the recruitment of the death adaptor FADD to a Toso/RIP1 protein complex. In response to CD95L and TNFα, Toso promotes the activation of MAPK and NF-κB signaling pathways. Because of this relative augmentation of survival versus apoptotic signals, Toso raises the threshold for death receptor-mediated apoptosis. Our analysis of Toso-deficient mice revealed that Toso is essential for TNFα-mediated liver damage. Furthermore, the antiapoptotic function of Toso could be blocked by a Toso-specific monoclonal antibody, opening up new therapeutic prospects for the treatment of immune disorders and hematologic malignancies.
Collapse
|
262
|
Painter MW, Davis S, Hardy RR, Mathis D, Benoist C. Transcriptomes of the B and T lineages compared by multiplatform microarray profiling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:3047-57. [PMID: 21307297 PMCID: PMC3140206 DOI: 10.4049/jimmunol.1002695] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T and B lymphocytes are developmentally and functionally related cells of the immune system, representing the two major branches of adaptive immunity. Although originating from a common precursor, they play very different roles: T cells contribute to and drive cell-mediated immunity, whereas B cells secrete Abs. Because of their functional importance and well-characterized differentiation pathways, T and B lymphocytes are ideal cell types with which to understand how functional differences are encoded at the transcriptional level. Although there has been a great deal of interest in defining regulatory factors that distinguish T and B cells, a truly genomewide view of the transcriptional differences between these two cells types has not yet been taken. To obtain a more global perspective of the transcriptional differences underlying T and B cells, we exploited the statistical power of combinatorial profiling on different microarray platforms, and the breadth of the Immunological Genome Project gene expression database, to generate robust differential signatures. We find that differential expression in T and B cells is pervasive, with the majority of transcripts showing statistically significant differences. These distinguishing characteristics are acquired gradually, through all stages of B and T differentiation. In contrast, very few T versus B signature genes are uniquely expressed in these lineages, but are shared throughout immune cells.
Collapse
Affiliation(s)
| | - Scott Davis
- Department of Pathology, Harvard Medical School, Boston, MA 02215
| | | | - Diane Mathis
- Department of Pathology, Harvard Medical School, Boston, MA 02215
| | | |
Collapse
|
263
|
Cole SW, Hawkley LC, Arevalo JMG, Cacioppo JT. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc Natl Acad Sci U S A 2011; 108:3080-5. [PMID: 21300872 PMCID: PMC3041107 DOI: 10.1073/pnas.1014218108] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To clarify the biological rationale for social regulation of gene expression, this study sought to identify the specific immune cell types that are transcriptionally sensitive to subjective social isolation (loneliness). Using reference distributions for the expression of each human gene in each major leukocyte subtype, we mapped the cellular origin of transcripts found to be differentially expressed in the circulating immune cells from chronically lonely individuals. Loneliness-associated genes derived primarily from plasmacytoid dendritic cells, monocytes, and, to a lesser extent, B lymphocytes. Those dynamics reflected per-cell changes in the expression of inducible genes and related more strongly to the subjective experience of loneliness than to objective social network size. Evolutionarily ancient myeloid antigen-presenting cells appear to have evolved a transcriptional sensitivity to socioenvironmental conditions that may allow them to shift basal gene expression profiles to counter the changing microbial threats associated with hostile vs. affine social conditions.
Collapse
Affiliation(s)
- Steven W. Cole
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, CA 90095-1678
- University of California Los Angeles AIDS Institute and University of California Los Angeles Molecular Biology Institute, The Jonsson Comprehensive Cancer Center, The Norman Cousins Center, University of California, Los Angeles, CA 90095; and
| | - Louise C. Hawkley
- Department of Psychology and Center for Cognitive and Social Neuroscience, University of Chicago, Chicago, IL 60637
| | - Jesusa M. G. Arevalo
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, CA 90095-1678
| | - John T. Cacioppo
- Department of Psychology and Center for Cognitive and Social Neuroscience, University of Chicago, Chicago, IL 60637
| |
Collapse
|
264
|
Abstract
Vaccines represent a potent tool to prevent or contain infectious diseases with high morbidity or mortality. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the effective elicitation of protective immune responses by vaccines. Recent research suggests that this represents the cooperative action of the innate and adaptive immune systems. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules, whose list is constantly updated to fill the several empty spaces of this puzzle. The recent development of new technologies and computational tools permits the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review the role of the innate immunity in the host response to vaccine antigens and the potential of systems biology in providing relevant and novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| | | |
Collapse
|
265
|
Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, Fedorowicz G, Modrusan Z, Fahy JV, Woodruff PG, Arron JR. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. THE JOURNAL OF IMMUNOLOGY 2010; 186:1861-9. [PMID: 21187436 DOI: 10.4049/jimmunol.1002568] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is canonically thought of as a disorder of excessive Th2-driven inflammation in the airway, although recent studies have described heterogeneity with respect to asthma pathophysiology. We have previously described distinct phenotypes of asthma based on the presence or absence of a three-gene "Th2 signature" in bronchial epithelium, which differ in terms of eosinophilic inflammation, mucin composition, subepithelial fibrosis, and corticosteroid responsiveness. In the present analysis, we sought to describe Th2 inflammation in human asthmatic airways quantitatively with respect to known mediators of inflammation and intercellular communication. Using whole-genome microarray and quantitative real-time PCR analysis of endobronchial biopsies from 27 mild-to-moderate asthmatics and 13 healthy controls with associated clinical and demographic data, we found that asthmatic Th2 inflammation is expressed over a variable continuum, correlating significantly with local and systemic measures of allergy and eosinophilia. We evaluated a composite metric describing 79 coexpressed genes associated with Th2 inflammation against the biological space comprising cytokines, chemokines, and growth factors, identifying distinctive patterns of inflammatory mediators as well as Wnt, TGF-β, and platelet-derived growth factor family members. This integrated description of the factors regulating inflammation, cell migration, and tissue remodeling in asthmatic airways has important consequences for the pathophysiological and clinical impacts of emerging asthma therapeutics targeting Th2 inflammation.
Collapse
Affiliation(s)
- David F Choy
- Immunology, Tissue Growth, and Repair Biomarker Discovery, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Gandhi KS, McKay FC, Cox M, Riveros C, Armstrong N, Heard RN, Vucic S, Williams DW, Stankovich J, Brown M, Danoy P, Stewart GJ, Broadley S, Moscato P, Lechner-Scott J, Scott RJ, Booth DR. The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. Hum Mol Genet 2010; 19:2134-43. [PMID: 20190274 DOI: 10.1093/hmg/ddq090] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10(-12)) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P < 10(-14)). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.
Collapse
Affiliation(s)
- Kaushal S Gandhi
- Westmead Millennium Institute, University of Sydney, Sydney, Darcy Rd, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Doñate C, Balasch JC, Callol A, Bobe J, Tort L, MacKenzie S. The effects of immunostimulation through dietary manipulation in the rainbow trout; evaluation of mucosal immunity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:88-99. [PMID: 19609615 DOI: 10.1007/s10126-009-9203-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/17/2009] [Indexed: 05/28/2023]
Abstract
Immunostimulant-containing diets are commonly used in aquaculture to enhance the resistance of cultured fish to disease and stress. Although widespread in use, there have been conflicting results published, and surprisingly little is known about the regulation of immune response-related genes in tissues key to mucosal immunity induced by immunostimulant dietary feeding. Using a salmonid-specific microarray platform enriched with immune-related genes and in situ hybridization, we investigated dietary acclimation in two organs relevant to mucosal immunity, the gills and the intestine, in the rainbow trout (Oncorhynchus mykiss). Immunostimulant diets significantly changed gene expression profiles and gene distribution in a tissue-specific manner: genes and functional Gene Ontology categories involved in immunity were differently expressed at portals of entry where significant changes in genes and functional groups related to remodeling processes and antigen presentation were observed. Furthermore, genes involved in chemotaxis, cell differentiation, antigen-presenting capacity and tissue remodeling were localized in both organs.
Collapse
Affiliation(s)
- Carmen Doñate
- Unitat de Fisiologia Animal, Departament de Biologia Cellular, Fisiologia i d'Immunologia, Facultat de Ciencies, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
268
|
Hoe E, McKay FC, Schibeci SD, Gandhi K, Heard RN, Stewart GJ, Booth DR. Functionally Significant Differences in Expression of Disease-Associated IL-7 Receptor α Haplotypes in CD4 T Cells and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2512-7. [DOI: 10.4049/jimmunol.0902900] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
269
|
Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 2009; 4:e6098. [PMID: 19568420 PMCID: PMC2699551 DOI: 10.1371/journal.pone.0006098] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/02/2009] [Indexed: 02/04/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with a complex spectrum of cellular and molecular characteristics including several dramatic changes in the populations of peripheral leukocytes. These changes include general leukopenia, activation of B and T cells, and maturation of granulocytes. The manifestation of SLE in peripheral blood is central to the disease but is incompletely understood. A technique for rigorously characterizing changes in mixed populations of cells, microarray expression deconvolution, has been applied to several areas of biology but not to SLE or to blood. Here we demonstrate that microarray expression deconvolution accurately quantifies the constituents of real blood samples and mixtures of immune-derived cell lines. We characterize a broad spectrum of peripheral leukocyte cell types and states in SLE to uncover novel patterns including: specific activation of NK and T helper lymphocytes, relationships of these patterns to each other, and correlations to clinical variables and measures. The expansion and activation of monocytes, NK cells, and T helper cells in SLE at least partly underlie this disease's prominent interferon signature. These and other patterns of leukocyte dynamics uncovered here correlate with disease severity and treatment, suggest potential new treatments, and extend our understanding of lupus pathology as a complex autoimmune disease involving many arms of the immune system.
Collapse
Affiliation(s)
- Alexander R Abbas
- Department of Bioinformatics, Genentech Inc, South San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
270
|
Abstract
A monoclonal antibody directed against lymphotoxin-α (LT-α) expressed by pathogenic T cells can prompt the clearance of these cells from the body (pages 766–773). The findings bring us one step closer to targeting only the cell populations that cause harm in autoimmune diseases while leaving beneficial arms of the immune system largely intact.
Collapse
Affiliation(s)
- Anna M Hansen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
271
|
Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 2009; 15:766-73. [PMID: 19561618 DOI: 10.1038/nm.1984] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/05/2009] [Indexed: 02/07/2023]
Abstract
Uncontrolled T helper type 1 (T(H)1) and T(H)17 cells are associated with autoimmune responses. We identify surface lymphotoxin-alpha (LT-alpha) as common to T(H)0, T(H)1 and T(H)17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-alpha. Depleting LT-alpha-specific mAb inhibited T cell-mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. In collagen-induced arthritis (CIA), preventive and therapeutic administration of LT-alpha-specific mAb inhibited disease, and immunoablated T cells expressing interleukin-17 (IL-17), interferon-gamma and tumor necrosis factor-alpha (TNF-alpha), whereas decoy lymphotoxin-beta receptor (LT-betaR) fusion protein had no effect. A mutation in the Fc tail, rendering the antibody incapable of Fcgamma receptor binding and antibody-dependent cellular cytotoxicity activity, abolished all in vivo effects. Efficacy in CIA was preceded by a loss of rheumatoid-associated cytokines IL-6, IL-1beta and TNF-alpha within joints. These data indicate that depleting LT-alpha-expressing lymphocytes with LT-alpha-specific mAb may be beneficial in the treatment of autoimmune disease.
Collapse
|
272
|
Abstract
The regulated degradation of cellular proteins by the ubiquitin-proteasome system impacts a range of vital cellular processes in both normal and cancerous cells. An ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3) catalyzes the conjugation of the protein ubiquitin to a target protein and, thereby, tags that protein for recognition and destruction by the proteasome. Ubiquitin ligases are particularly interesting because they determine substrate selection. This review examines the role of dysregulated ubiquitin ligase activity in the development and progression of various cancers, and highlights why ubiquitin ligases have emerged as extremely attractive targets for therapeutic intervention in a number of human malignancies.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94110, USA
| | | |
Collapse
|
273
|
Gardy JL, Lynn DJ, Brinkman FSL, Hancock REW. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 2009; 30:249-62. [PMID: 19428301 DOI: 10.1016/j.it.2009.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/15/2022]
Abstract
Immunity is not simply the product of a series of discrete linear signalling pathways; rather it is comprised of a complex set of integrated responses arising from a dynamic network of thousands of molecules subject to multiple influences. Its behaviour often cannot be explained or predicted solely by examining its components. Here, we review recently developed resources for the systems-level investigation of immunity. Although innate immunity is emphasized here, its considerable overlap with adaptive immunity makes many of these resources relevant to both arms of the immune response. We discuss recent studies implementing these approaches and illustrate the potential of systems biology to generate novel insights into the complexities of innate immunity.
Collapse
Affiliation(s)
- Jennifer L Gardy
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
274
|
MacKenzie S, Ribas L, Pilarczyk M, Capdevila DM, Kadri S, Huntingford FA. Screening for coping style increases the power of gene expression studies. PLoS One 2009; 4:e5314. [PMID: 19390591 PMCID: PMC2669184 DOI: 10.1371/journal.pone.0005314] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 03/20/2009] [Indexed: 11/21/2022] Open
Abstract
Background Individuals of many vertebrate species show different stress coping styles and these have a striking influence on how gene expression shifts in response to a variety of challenges. Principal Findings This is clearly illustrated by a study in which common carp displaying behavioural predictors of different coping styles (characterised by a proactive, adrenaline-based or a reactive, cortisol-based response) were subjected to inflammatory challenge and specific gene transcripts measured in individual brains. Proactive and reactive fish differed in baseline gene expression and also showed diametrically opposite responses to the challenge for 80% of the genes investigated. Significance Incorporating coping style as an explanatory variable can account for some the unexplained variation that is common in gene expression studies, can uncover important effects that would otherwise have passed unnoticed and greatly enhances the interpretive value of gene expression data.
Collapse
Affiliation(s)
- Simon MacKenzie
- Unitat de Fisiologia Animal, Department de Biología Cel.lular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
275
|
Ohara O. From transcriptome analysis to immunogenomics: current status and future direction. FEBS Lett 2009; 583:1662-7. [PMID: 19379746 DOI: 10.1016/j.febslet.2009.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
In 1994, we pioneered a complementary DNA (cDNA) sequencing project that aimed to predict the primary structures of unknown human proteins. Although our cDNA project was focused on the sequencing of large cDNAs, the following cDNA sequencing projects conducted by other groups have more extensively characterized mammalian transcriptome. In parallel, many groups have made a tremendous amount of effort to develop various resources for functional human genomics. In this context, to demonstrate the power of functional genomic approaches in practice, we have applied them for a comprehensive understanding of the immune system, which we term 'immunogenomics'. This mini-review first describes the historical background of our cDNA project and then provides perspectives on the present and future of immunogenomics based on our experiences.
Collapse
Affiliation(s)
- Osamu Ohara
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|
276
|
Gandhi KS, McKay FC, Schibeci SD, Arthur JW, Heard RN, Stewart GJ, Booth DR. BAFF is a biological response marker to IFN-beta treatment in multiple sclerosis. J Interferon Cytokine Res 2009; 28:529-39. [PMID: 18715196 DOI: 10.1089/jir.2008.0007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease characterized by the destruction of the myelin sheath of neurons. Interferon beta (IFN-beta) is currently the major drug used to treat MS. Some patients fail to respond to this treatment, in some cases due to the development of neutralizing antibodies (NAb) to IFN-beta. We used microarray analysis and RT-PCR to measure gene expression in whole blood, 9-15 h postinjection, in patients with and without NAbs to IFN-beta. The canonical marker of biological response to IFN-beta, myxovirus resistance protein A, was upregulated in all NAb- patients while remaining unchanged in NAb+ patients. Genes functioning in immune response pathways were dominant in the set of differentially expressed genes: 73 immune response genes were identified as upregulated and 29 genes were identified as downregulated. B-cell activating factor (BAFF) is a strong candidate marker for biological and clinical response as well as for predisposition to NAb development. We demonstrate that it is responsive to IFN-beta in vitro and in vivo, and that its soluble form is elevated in serum from NAb- but not NAb+ patients. We conclude BAFF is a good biomarker for IFN-beta response, and requires further studies to determine its value as a marker for clinical response and NAb predisposition.
Collapse
Affiliation(s)
- Kaushal S Gandhi
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
277
|
The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2008; 10:48-57. [PMID: 19011627 DOI: 10.1038/ni.1674] [Citation(s) in RCA: 1060] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/06/2008] [Indexed: 12/26/2022]
Abstract
Here we have identified a surface protein, TIGIT, containing an immunoglobulin variable domain, a transmembrane domain and an immunoreceptor tyrosine-based inhibitory motif that was expressed on regulatory, memory and activated T cells. Poliovirus receptor, which is expressed on dendritic cells, bound TIGIT with high affinity. A TIGIT-Fc fusion protein inhibited T cell activation in vitro, and this was dependent on the presence of dendritic cells. The binding of poliovirus receptor to TIGIT on human dendritic cells enhanced the production of interleukin 10 and diminished the production of interleukin 12p40. Knockdown of TIGIT with small interfering RNA in human memory T cells did not affect T cell responses. TIGIT-Fc inhibited delayed-type hypersensitivity reactions in wild-type but not interleukin 10-deficient mice. Our data suggest that TIGIT exerts immunosuppressive effects by binding to poliovirus receptor and modulating cytokine production by dendritic cells.
Collapse
|
278
|
Heng TSP, Painter MW. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 2008; 9:1091-4. [PMID: 18800157 DOI: 10.1038/ni1008-1091] [Citation(s) in RCA: 1457] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.
Collapse
Affiliation(s)
- Tracy S P Heng
- Section on Immunology and Immunogenetics, Joslin Diabetes Center & Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
279
|
McKay FC, Swain LI, Schibeci SD, Rubio JP, Kilpatrick TJ, Heard RN, Stewart GJ, Booth DR. CD127 immunophenotyping suggests altered CD4+ T cell regulation in primary progressive multiple sclerosis. J Autoimmun 2008; 31:52-8. [PMID: 18406576 DOI: 10.1016/j.jaut.2008.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Aberrant regulatory T cell populations, characterised by a wide array of CD markers, have been identified in many autoimmune diseases. CD127 has recently been identified as a specific marker for the CD4(+)CD25(Hi) (Tregs) subset. CD127 is the first non-HLA gene to have its association with multiple sclerosis widely replicated. We demonstrate that the regulatory or suppressor T cells CD4(+)CD25(Hi) (Tregs), CD8(+)CD28(-), and CD3(+)CD56(+) (NKT) all produce low levels of CD127, and so could be at a disadvantage in survival and/or proliferation where IL7 is limiting. The remissions seen in relapsing remitting multiple sclerosis (RRMS) could be driven by regulatory T cells, and the absence of remissions seen in primary progressive MS (PPMS) may point to a particularly reduced function of this cell subset. We found that the proportions of CD4(+)FoxP3(+)CD25(Hi) regulatory T cells were not aberrant in PPMS. There was, however, a trend towards reduced FoxP3 expression per cell in this fraction (p<0.083), which has been highly correlated with suppressor function. Notably, we found that the target of regulatory T cells, the CD4(+)CD25(-) cells, was in excess (p<0.009); and in PPMS a protective CD127 haplotype is correlated with higher CD127 expression (p<0.01). These data support further investigations into the regulatory T cell immunophenotype in MS.
Collapse
Affiliation(s)
- Fiona C McKay
- Department of Immunology, Westmead Millennium Institute, University of Sydney, Darcy Road, Westmead 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Arthur AT, Armati PJ, Bye C, Heard RNS, Stewart GJ, Pollard JD, Booth DR. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC MEDICAL GENETICS 2008; 9:17. [PMID: 18366677 PMCID: PMC2324081 DOI: 10.1186/1471-2350-9-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/19/2008] [Indexed: 11/30/2022]
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes. Methods In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous trancriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level. Results Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFβ1, CD58 and DBC1. TGFβ1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p < 0.13). Upregulation of CD58 and DBC1 in remission is consistent with their putative roles in promoting regulatory T cells and reducing cell proliferation, respectively. A fourth gene, ALOX5, is consistently found over-expressed in MS. Two common genetic variants were confirmed in the ALOX5 putatve promoter: -557 T>C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found. Conclusion The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.
Collapse
Affiliation(s)
- Ariel T Arthur
- Department of Medicine and the Nerve Research Foundation, the University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Yeh JH, Sidhu SS, Chan AC. Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell 2008; 132:846-59. [PMID: 18329370 DOI: 10.1016/j.cell.2008.01.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/22/2007] [Accepted: 01/08/2008] [Indexed: 11/25/2022]
Abstract
Spatial organization of cellular proteins plays an important role in establishment of cellular polarity to regulate cell division, differentiation, migration, and organogenesis. Activation of T cells by antigen-presenting cells (APCs) results in the formation of an immunological synapse (IS), assembly of a signaling scaffold at the T cell receptor (TCR) contact, cytoskeletal reorganization, and generation of second messengers within the first hours following intercellular contact. We demonstrate here that Crtam (class-I MHC-restricted T-cell associated molecule), an immunoglobulin-superfamily transmembrane protein, coordinates a signaling complex anchored by the Scrib polarity protein to establish a later phase of T cell polarity on a subset of CD4+ T cells >6 hours following activation. Maintenance of this late cellular polarity results in the ability of CD4+Crtam+ T cells to selectively produce more IFNgamma and IL22. Crtam engagement thus modulates signals many hours beyond the initial activation event and dynamically influences the adaptive immune response.
Collapse
Affiliation(s)
- Jung-Hua Yeh
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
282
|
Taylor BS, Pal M, Yu J, Laxman B, Kalyana-Sundaram S, Zhao R, Menon A, Wei JT, Nesvizhskii AI, Ghosh D, Omenn GS, Lubman DM, Chinnaiyan AM, Sreekumar A. Humoral Response Profiling Reveals Pathways to Prostate Cancer Progression. Mol Cell Proteomics 2008; 7:600-11. [DOI: 10.1074/mcp.m700263-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
283
|
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PVK, Ballinger DG, Kosoy R, Demirci FY, Kamboh MI, Kao AH, Tian C, Gunnarsson I, Bengtsson AA, Rantapää-Dahlqvist S, Petri M, Manzi S, Seldin MF, Rönnblom L, Syvänen AC, Criswell LA, Gregersen PK, Behrens TW. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358:900-9. [PMID: 18204098 DOI: 10.1056/nejmoa0707865] [Citation(s) in RCA: 729] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4 are established susceptibility genes; there is strong evidence for the existence of additional risk loci. METHODS We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent. Genotypes from 1557 additional control subjects were obtained from public data repositories. We measured the association between the SNPs and SLE after applying strict quality-control filters to reduce technical artifacts and to correct for the presence of population stratification. Replication of the top loci was performed in 793 case subjects and 857 control subjects from Sweden. RESULTS Genetic variation in the region upstream from the transcription initiation site of the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1) was associated with disease risk in both the U.S. and Swedish case-control series (rs13277113; odds ratio, 1.39; P=1x10(-10)) and also with altered levels of messenger RNA in B-cell lines. In addition, variants on chromosome 16p11.22, near the genes encoding integrin alpha M (ITGAM, or CD11b) and integrin alpha X (ITGAX), were associated with SLE in the combined sample (rs11574637; odds ratio, 1.33; P=3x10(-11)). CONCLUSIONS We identified and then confirmed through replication two new genetic loci for SLE: a promoter-region allele associated with reduced expression of BLK and increased expression of C8orf13 and variants in the ITGAM-ITGAX region.
Collapse
|
284
|
Gorgani NN, Ma Y, Clark HF. Gene signatures reflect the marked heterogeneity of tissue-resident macrophages. Immunol Cell Biol 2007; 86:246-54. [PMID: 17998916 DOI: 10.1038/sj.icb.7100131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue-resident macrophages play an important role in defense against pathogens and perform key functions in organ homeostasis, innate and adaptive immunity. Tissue macrophages originate from blood monocytes that infiltrate virtually every organ in the body. Macrophages in different tissues share many characteristics, including their ability to migrate, phagocytose particles, metabolize lipids and present antigens. Morphologically they are quite heterogeneous, and some distinct functions have been reported. The gene expression profile of macrophages is reflective of both their shared and distinct biological functions. Here, we show that macrophages from murine spleen, liver and peritoneum display dramatically different expression profiles. Clusters of genes were found to represent unique biological functions related to adhesion, antigen presentation, phagocytosis, lipid metabolism and signal transduction. Some gene families, such as integrins, are differentially expressed among the macrophages resident in different tissues, suggesting that the tissue of residence influences their biological function.
Collapse
Affiliation(s)
- Nick N Gorgani
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
285
|
Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A. Host pathogen protein interactions predicted by comparative modeling. Protein Sci 2007; 16:2585-96. [PMID: 17965183 DOI: 10.1110/ps.073228407] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage-specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for "neglected" human diseases. The method was assessed by (1) comparison to a set of known host-pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host-pathogen interactions. We present several specific predictions that warrant experimental follow-up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is complementary to experimental efforts in elucidating networks of host-pathogen protein interactions.
Collapse
Affiliation(s)
- Fred P Davis
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | |
Collapse
|
286
|
Cheadle C, Watkins T, Fan J, Williams MA, Georas S, Hall J, Rosen A, Barnes KC. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data. Bioinform Biol Insights 2007. [DOI: 10.1177/117793220700100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently. Results We have developed (gene set matrix analysis) GSMA as a useful method for the rapid testing of group-wise up- or down-regulation of gene expression simultaneously for multiple lists of genes (gene sets) against entire distributions of gene expression changes (datasets) for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously. Conclusions GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.
Collapse
Affiliation(s)
- Chris Cheadle
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Tonya Watkins
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Jinshui Fan
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Marc A. Williams
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - Steven Georas
- University of Rochester School of Medicine and Dentistry, Division of Pulmonary and Critical Care Medicine, Rochester, New York, U.S.A
| | - John Hall
- Division of Rheumatology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Antony Rosen
- Division of Rheumatology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| | - Kathleen C. Barnes
- Genomics Core, Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, Baltimore, MD 21224
| |
Collapse
|
287
|
Haplotypes of the interleukin 7 receptor alpha gene are correlated with altered expression in whole blood cells in multiple sclerosis. Genes Immun 2007; 9:1-6. [PMID: 17928869 DOI: 10.1038/sj.gene.6364436] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IL7 regulates T cell survival, differentiation and proliferation. The alpha chain of its receptor, CD127, is polymorphic, and its haplotypes are associated with recovery from transplantation and with the autoimmune disease multiple sclerosis (MS), especially primary progressive MS (PPMS). We demonstrate that two CD127 haplotypes are highly associated with the proportion of the mRNA encoding the soluble isoform of CD127 (P<or=0.001). The soluble isoform is over-represented (P<or=0.002) in PPMS peripheral blood, irrespective of haplotype, and the MS susceptibility haplotype produces more of the soluble isoform. CD127 mRNA is underexpressed (P<or=0.001) in PPMS. Neutrophils, which produce very low levels of CD127 mRNA, were over-represented in our PPMS cohort (P<0.02). CD127 expression is lower in more differentiated cells, such as Th1s, which can be elevated in MS. A higher proportion of these two abundant cell types in peripheral blood could be the basis for the observed reduction in CD127 mRNA. CD127 expression may be a biomarker for these potentially pathologically significant leukocyte types. These significant haplotypic effects on expression are likely to modulate regulation, differentiation and function of T cell subsets in health and disease.
Collapse
|
288
|
Lacy-Hulbert A, Smith AM, Tissire H, Barry M, Crowley D, Bronson RT, Roes JT, Savill JS, Hynes RO. Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci U S A 2007; 104:15823-8. [PMID: 17895374 PMCID: PMC1994135 DOI: 10.1073/pnas.0707421104] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is constantly challenged by foreign antigens and commensal bacteria but nonetheless is able to maintain a state of immunological quiescence. Recent advances have highlighted the importance of active suppression by regulatory lymphocytes and immunosuppressive cytokines in controlling mucosal immunity. Failures of these mechanisms contribute to the development of inflammatory bowel disease, but how these regulatory networks are established remains unclear. Here, we demonstrate key roles for alphav integrins in regulation of mucosal immunity. We report that deletion of alphav in the immune system causes severe colitis, autoimmunity, and cancer. Mice lacking immune cell alphav have fewer regulatory T (Treg) cells in the colon and corresponding increases in activated T cells and T cell cytokine production, leading to colitis. Using conditional gene targeting, we demonstrate that this is specifically attributable to loss of alphav from myeloid cells. Furthermore, we show that gut-associated macrophages and dendritic cells fail both to remove apoptotic cells efficiently and to induce Treg cells. Our results identify a vital role for myeloid alphav integrins in generating mucosal Treg cells and emphasize the importance of antigen-presenting cells in establishing immune tolerance.
Collapse
Affiliation(s)
- Adam Lacy-Hulbert
- *Medical Research Council/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- To whom correspondence may be addressed at:
Center for Cancer Research, Massachusetts Institute of Technology, 40 Ames Street E17-227, Cambridge, MA 02139. E-mail:
| | - Aileen M. Smith
- *Medical Research Council/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Hamid Tissire
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Marc Barry
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Denise Crowley
- Howard Hughes Medical Institute and
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Roderick T. Bronson
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Rodent Histopathology Laboratory, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115; and
| | - Jürgen T. Roes
- Windeyer Institute for Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - John S. Savill
- *Medical Research Council/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Richard O. Hynes
- Howard Hughes Medical Institute and
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- **To whom correspondence may be addressed. E-mail:
| |
Collapse
|
289
|
Hijikata A, Kitamura H, Kimura Y, Yokoyama R, Aiba Y, Bao Y, Fujita S, Hase K, Hori S, Ishii Y, Kanagawa O, Kawamoto H, Kawano K, Koseki H, Kubo M, Kurita-Miki A, Kurosaki T, Masuda K, Nakata M, Oboki K, Ohno H, Okamoto M, Okayama Y, O-Wang J, Saito H, Saito T, Sakuma M, Sato K, Sato K, Seino KI, Setoguchi R, Tamura Y, Tanaka M, Taniguchi M, Taniuchi I, Teng A, Watanabe T, Watarai H, Yamasaki S, Ohara O. Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells. ACTA ACUST UNITED AC 2007; 23:2934-41. [PMID: 17893089 DOI: 10.1093/bioinformatics/btm430] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Although a huge amount of mammalian genomic data does become publicly available, there are still hurdles for biologists to overcome before such data can be fully exploited. One of the challenges for gaining biological insight from genomic data has been the inability to cross-reference transcriptomic and proteomic data using a single informational platform. To address this, we constructed an open-access database that enabled us to cross-reference transcriptomic and proteomic data obtained from immune cells. RESULTS The database, named RefDIC (Reference genomics Database of Immune Cells), currently contains: (i) quantitative mRNA profiles for human and mouse immune cells/tissues obtained using Affymetrix GeneChip technology; (ii) quantitative protein profiles for mouse immune cells obtained using two-dimensional gel electrophoresis (2-DE) followed by image analysis and mass spectrometry and (iii) various visualization tools to cross-reference the mRNA and protein profiles of immune cells. RefDIC is the first open-access database for immunogenomics and serves as an important information-sharing platform, enabling a focused genomic approach in immunology. AVAILABILITY All raw data and information can be accessed from http://refdic.rcai.riken.jp/. The microarray data is also available at http://cibex.nig.ac.jp/ under CIBEX accession no. CBX19, and http://www.ebi.ac.uk/pride/ under PRIDE accession numbers 2354-2378 and 2414.
Collapse
Affiliation(s)
- Atsushi Hijikata
- RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Steppan S, Kupfer K, Mayer A, Evans M, Yamasaki G, Greve JM, Eckart MR, Cassell DJ. Genome wide expression profiling of human peripheral blood mononuclear cells stimulated with BAY 50-4798, a novel T cell selective interleukin-2 analog. J Immunother 2007; 30:150-68. [PMID: 17471163 DOI: 10.1097/01.cji.0000211320.07654.f1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BAY 50-4798, a novel, engineered form of interleukin (IL)-2, is a selective agonist for the high-affinity IL-2 receptor and induces the proliferation of activated human T cells with potency similar to recombinant IL-2 (rIL-2), but has reduced proliferative activity on natural killer cells and is associated with a diminished secondary cytokine cascade. In the current study, the transcriptional profiles of human peripheral blood mononuclear cells (PBMCs) stimulated in vitro with BAY 50-4798 and rIL-2 were compared using Affymetrix microarray technology in combination with Ingenuity Pathway Analysis (IPA) to determine whether there are quantitative or qualitative differences in the molecular networks activated by these IL-2 analogs. A total of 299 genes were differentially expressed in response to the two IL-2 analogs, with an increase in the number of differences over time. Consistent with the fact that BAY 50-4798 interacts with fewer forms of the IL-2 receptor than rIL-2 to activate fewer cell types, 169 genes were expressed at lower levels in PBMCs cultured with BAY 50-4798 compared with IL-2. These genes were mainly categorized as cytokines and chemokines, and were used to build multiple molecular interaction networks, the most significant of which centered around a subunit of NF-kappaB, which is known to play a pivotal role in inflammation, and was associated with cell death. Of the genes induced in response to BAY 50-4798, only 25% were expressed at lower levels than those induced by rIL-2. Moreover, despite its more selective receptor targeting compared with rIL-2, BAY 50-4798 caused higher levels of expression of 130 genes, which predominantly fell into categories associated with metabolism and transcription. We interpret these results as consistent with the expected transcriptional profile of a mutein engineered and demonstrated to have diminished inflammatory effects yet fully retain selected features of IL-2 activity. In addition to demonstrating that the responses to BAY 50-4798 are characterized by differential expression of genes known to be induced by IL-2, we report for the first time the induction of a significant number of genes not previously reported in the context of IL-2 biology.
Collapse
Affiliation(s)
- Sonja Steppan
- Biotechnology Research Division, Bayer Corporation, Berkeley, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Baken KA, Vandebriel RJ, Pennings JLA, Kleinjans JC, van Loveren H. Toxicogenomics in the assessment of immunotoxicity. Methods 2007; 41:132-41. [PMID: 17161310 DOI: 10.1016/j.ymeth.2006.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2006] [Indexed: 11/23/2022] Open
Abstract
Microarray analysis is used for simultaneous measurement of expression of thousands of genes in a given sample and as such extends and deepens our understanding of biological processes. Application of the technique in toxicology is referred to as toxicogenomics. The examples of assessment of immunotoxicity by gene expression profiling presented and discussed here, show that microarray analysis is able to detect known and novel effects of a wide range of immunomodulating agents. Besides the elucidation of mechanisms of action, toxicogenomics is also applied to predict consequences of exposing biological systems to toxic agents. Successful attempts to classify compounds using signature gene expression profiles have been reported. These did, however, not specifically focus on immunotoxicity. Databases containing expression profiles can facilitate the applications of toxicogenomics. Platforms and methodologies for gene expression profiling may vary, however, hampering data compiling across different laboratories. Therefore, attention is paid to standardization of the generation, reporting, and management of microarray data. Obtained gene expression profiles should be anchored to pathological and functional endpoints for correct interpretation of results. These issues are also important when using toxicogenomics in risk assessment. The application of toxicogenomics in evaluation of immunotoxicity is thus not yet without challenges. It already contributes to the understanding of immunotoxic processes and the development of in vitro screening assays, though, and is therefore expected to be of value for mechanistic insight into immunotoxicity and hazard identification of existing and novel compounds.
Collapse
Affiliation(s)
- Kirsten A Baken
- Nutrition and Toxicology Research Institute Maastricht, Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
292
|
Ortutay C, Siermala M, Vihinen M. Molecular characterization of the immune system: emergence of proteins, processes, and domains. Immunogenetics 2007; 59:333-48. [PMID: 17294181 DOI: 10.1007/s00251-007-0191-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 01/08/2007] [Indexed: 12/27/2022]
Abstract
Many genes and proteins are required to carry out the processes of innate and adaptive immunity. For many studies, including systems biology, it is necessary to have a clear and comprehensive definition of the immune system, including the genes and proteins that take part in immunological processes. We have identified and cataloged a large portion of the human immunology-related genes, which we call the essential immunome. The 847 identified genes and proteins were annotated, and their chromosomal localizations were compared to the mouse genome. Relation to disease was also taken into account. We identified numerous pseudogenes, many of which are expressed, and found two putative new genes. We also carried out an evolutionary analysis of immune processes based on gene orthologs to gain an overview of the evolutionary past and molecular present of the human immune system. A list of genes and proteins were compiled. A comprehensive characterization of the member genes and proteins, including the corresponding pseudogenes is presented. Immunome genes were found to have three types of emergence in independent studies of their ontologies, domains, and functions.
Collapse
Affiliation(s)
- Csaba Ortutay
- Institute of Medical Technology, University of Tampere, 33014, Tampere, Finland
| | | | | |
Collapse
|
293
|
Abstract
Discovery of a large family of Fc receptor-like (FCRL) molecules, homologous to the well-known receptors for the Fc portion of immunoglobulin (FCR), has uncovered an impressive abundance of immunoglobulin superfamily (IgSF) genes in the human 1q21-23 chromosomal region and revealed significant diversity for these genes between humans and mice. The observation that FCRL representatives are members of an ancient multigene family that share a common ancestor with the classical FCR is underscored by their linked genomic locations, gene structure, shared extracellular domain composition, and utilization of common cytoplasmic tyrosine-based signaling elements. In contrast to the conventional FCR, however, FCRL molecules possess diverse extracellular frameworks, autonomous or dual signaling properties, and preferential B lineage expression. Most importantly, there is no strong evidence thus far to support a role for them as Ig-binding receptors. These characteristics, in addition to their identification in malignancies and autoimmune disorders, predict a fundamental role for these receptors as immunomodulatory agents in normal and subverted B lineage cells.
Collapse
Affiliation(s)
- Randall S Davis
- Division of Developmental and Clinical Immunology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA.
| |
Collapse
|
294
|
Sheppard D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Ann Am Thorac Soc 2006; 3:413-7. [PMID: 16799084 PMCID: PMC2658705 DOI: 10.1513/pats.200601-008aw] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The requirement for precise geometric organization of endothelial cells and epithelial cells makes the gas-exchange region of the lung especially vulnerable to the adverse consequences of toxic products released from inflammatory cells. However, as a filter for large volumes of atmospheric gas, the lung is continually exposed to microorganisms and other toxic insults that require robust inflammatory defense. Enhanced production of extracellular matrix proteins is one important mechanism for restricting tissue damage, but excessive matrix production also has serious adverse effects on gas exchange. The amazing ability of the lung to recover from a barrage of environmental insults depends on precisely regulating both inflammation and extracellular matrix production in space and time. Below I review some of the evidence implicating members of the transforming growth factor beta family as critical mediators of this delicate dance and describe examples of how disruption of this balance by alterations in the magnitude of spatially restricted transforming growth factor beta activation can contribute to pathologic consequences of alveolar and airway injury and inflammation.
Collapse
Affiliation(s)
- Dean Sheppard
- Lung Biology Center and Department of Medicine, University of California San Francisco, Box 2922, San Francisco, CA 94143-2922, USA.
| |
Collapse
|
295
|
Vendelin J, Bruce S, Holopainen P, Pulkkinen V, Rytilä P, Pirskanen A, Rehn M, Laitinen T, Laitinen LA, Haahtela T, Saarialho-Kere U, Laitinen A, Kere J. Downstream target genes of the neuropeptide S-NPSR1 pathway. Hum Mol Genet 2006; 15:2923-35. [PMID: 16926187 DOI: 10.1093/hmg/ddl234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide S (NPS)-NPS receptor 1 (NPSR1) pathway has recently been implicated in the pathogenesis of asthma. The purpose of this study was to identify downstream gene targets regulated by NPSR1 upon NPS stimulation. A total of 104 genes were found significantly up-regulated and 42 down-regulated by microarray analysis 6 h after NPS administration. By Gene Ontology enrichment analysis, the categories 'cell proliferation', 'morphogenesis' and 'immune response' were among the most altered. A TMM microarray database comparison suggested a common co-regulated pathway, which includes JUN/FOS oncogene homologs, early growth response genes, nuclear receptor subfamily 4 members and dual specificity phosphatases. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), exhibited a significant NPS dose-response relationship as confirmed by quantitative reverse-transcriptase-PCR and for MMP10 by immunoassay. Immunohistochemical analyses revealed that MMP10 and TIMP metallopeptidase inhibitor 3 (TIMP3) were both strongly expressed in bronchial epithelium, and macrophages and eosinophils expressed MMP10 in asthmatic sputum samples. Because remodeling of airway epithelium is a feature of chronic asthma, the up-regulation of MMP10 and TIMP3 by NPS-NPSR1 signaling may be of relevance in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Johanna Vendelin
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Finland, and Department of Biosciences and Nutrition, Clinical Research Centre, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Liu SM, Xavier R, Good KL, Chtanova T, Newton R, Sisavanh M, Zimmer S, Deng C, Silva DG, Frost MJ, Tangye SG, Rolph MS, Mackay CR. Immune cell transcriptome datasets reveal novel leukocyte subset-specific genes and genes associated with allergic processes. J Allergy Clin Immunol 2006; 118:496-503. [PMID: 16890777 DOI: 10.1016/j.jaci.2006.04.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/19/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The precise function of various resting and activated leukocyte subsets remains unclear. For instance, mast cells, basophils, and eosinophils play important roles in allergic inflammation but also participate in other immunologic responses. One strategy to understand leukocyte subset function is to define the expression and function of subset-restricted molecules. OBJECTIVE To use a microarray dataset and bioinformatics strategies to identify novel leukocyte markers as well as genes associated with allergic or innate responses. METHODS By using Affymetrix microarrays, we generated an immune transcriptome dataset composed of gene profiles from all of the major leukocyte subsets, including rare enigmatic subsets such as mast cells, basophils, and plasma cells. We also assessed whether analysis of genes expressed commonly by certain groups of leukocytes, such as allergic leukocytes, might identify genes associated with particular responses. RESULTS Transcripts highly restricted to a single leukocyte subset were readily identified (>2000 subset-specific transcripts), many of which have not been associated previously with leukocyte functions. Transcripts expressed exclusively by allergy-related leukocytes revealed well known as well as novel molecules, many of which presumably contribute to allergic responses. Likewise, Nearest Neighbor Analysis of genes coexpressed with Toll-like receptors identified genes of potential relevance for innate immunity. CONCLUSION Gene profiles from all of the major human leukocyte subsets provide a powerful means to identify genes associated with single leukocyte subsets, or different types of immune response. CLINICAL IMPLICATIONS A comprehensive dataset of gene expression profiles of human leukocytes should provide new targets or biomarkers for human inflammatory diseases.
Collapse
Affiliation(s)
- Sue M Liu
- Immunology and Inflammation Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Sydney 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Hyatt G, Melamed R, Park R, Seguritan R, Laplace C, Poirot L, Zucchelli S, Obst R, Matos M, Venanzi E, Goldrath A, Nguyen L, Luckey J, Yamagata T, Herman A, Jacobs J, Mathis D, Benoist C. Gene expression microarrays: glimpses of the immunological genome. Nat Immunol 2006; 7:686-91. [PMID: 16785882 DOI: 10.1038/ni0706-686] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful microarray experimentation can generate enormous amounts of data, potentially very rich but also very unwieldy. Bold outlooks and new methods for data analysis and presentation should yield additional insight into the complexities of the immune system.
Collapse
Affiliation(s)
- Gordon Hyatt
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Amos CI, Chen WV, Lee A, Li W, Kern M, Lundsten R, Batliwalla F, Wener M, Remmers E, Kastner DA, Criswell LA, Seldin MF, Gregersen PK. High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun 2006; 7:277-86. [PMID: 16691188 DOI: 10.1038/sj.gene.6364295] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have completed a genome wide linkage scan using >5700 informative single-nucleotide polymorphism (SNP) markers (Illumina IV SNP linkage panel) in 642 Caucasian families containing affected sibling pairs with rheumatoid arthritis (RA), ascertained by the North American Rheumatoid Arthritis Consortium. The results show striking new evidence of linkage at chromosomes 2q33 and 11p12 with logarithm of odds (LOD) scores of 3.52 and 3.09, respectively. In addition to a strong and broad linkage interval surrounding the major histocompatibility complex (LOD>16), regions with LOD>2.5 were observed on chromosomes 5 and 10. Additional linkage evidence (LOD scores between 1.46 and 2.35) was also observed on chromosomes 4, 7, 12, 16 and 18. This new evidence for multiple regions of genetic linkage is partly explained by the significantly increased information content of the Illumina IV SNP linkage panel (75.6%) compared with a standard microsatellite linkage panel utilized previously (mean 52.6%). Stratified analyses according to whether or not the sibling pair members showed elevated anticyclic citrullinated peptide titers indicates significant variation in evidence for linkage among strata on chromosomes 4, 5, 6 and 7. Overall, these new linkage data should reinvigorate efforts to utilize positional information to identify susceptibility genes for RA.
Collapse
Affiliation(s)
- C I Amos
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Turk R, Sterrenburg E, van der Wees CGC, de Meijer EJ, de Menezes RX, Groh S, Campbell KP, Noguchi S, van Ommen GJB, den Dunnen JT, 't Hoen PAC. Common pathological mechanisms in mouse models for muscular dystrophies. FASEB J 2005; 20:127-9. [PMID: 16306063 DOI: 10.1096/fj.05-4678fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Duchenne/Becker and limb-girdle muscular dystrophies share clinical symptoms like muscle weakness and wasting but differ in clinical presentation and severity. To get a closer view on the differentiating molecular events responsible for the muscular dystrophies, we have carried out a comparative gene expression profiling of hindlimb muscles of the following mouse models: dystrophin-deficient (mdx, mdx(3cv)), sarcoglycan-deficient (Sgca null, Sgcb null, Sgcg null, Sgcd null), dysferlin-deficient (Dysf null, SJL(Dysf)), sarcospan-deficient (Sspn null), and wild-type (C57Bl/6, C57Bl/10) mice. The expression profiles clearly discriminated between severely affected (dystrophinopathies and sarcoglycanopathies) and mildly or nonaffected models (dysferlinopathies, sarcospan-deficiency, wild-type). Dystrophin-deficient and sarcoglycan-deficient profiles were remarkably similar, sharing inflammatory and structural remodeling processes. These processes were also ongoing in dysferlin-deficient animals, albeit at lower levels, in agreement with the later age of onset of this muscular dystrophy. The inflammatory proteins Spp1 and S100a9 were up-regulated in all models, including sarcospan-deficient mice, which points, for the first time, at a subtle phenotype for Sspn null mice. In conclusion, we identified biomarker genes for which expression correlates with the severity of the disease, which can be used for monitoring disease progression. This comparative study is an integrating step toward the development of an expression profiling-based diagnostic approach for muscular dystrophies in humans.
Collapse
Affiliation(s)
- R Turk
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Rolph MS, Sisavanh M, Liu SM, Mackay CR. Clues to asthma pathogenesis from microarray expression studies. Pharmacol Ther 2005; 109:284-94. [PMID: 16203040 DOI: 10.1016/j.pharmthera.2005.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/24/2005] [Indexed: 11/27/2022]
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), tissue remodeling, and airflow obstruction. The pathogenesis of asthma is only partly understood, and there is an urgent need for improved therapeutic strategies for this disease. Microarray technology has considerable promise as a tool for discovery of novel asthma therapeutic targets, although the field is still in its infancy. A number of studies have described expression profiles derived from human asthmatic lung tissue, mouse airway tissue, or from key cell types associated with asthma, but to date relatively few studies have exploited these findings to discover new pathways involved in the pathogenesis of asthma. Among the genes to have been identified by array studies and validated by further studies are monokine induced by interferon (IFN)-gamma, fatty acid binding proteins (FABP), and complement factor 5 (C5). Here we provide examples of microarray approaches to the discovery of new molecules associated with asthma. We anticipate that these types of analyses will provide considerable insight into asthma pathogenesis and will provide a wealth of new molecules for downstream analyses such as gene deficient mouse studies, or monoclonal antibody production.
Collapse
Affiliation(s)
- Michael S Rolph
- Arthritis and Inflammation Research Program, Garvan Institute for Medical Research, Darlinghurst, Australia.
| | | | | | | |
Collapse
|