251
|
Tissue Accumulation of Microplastics and Toxic Effects: Widespread Health Risks of Microplastics Exposure. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
252
|
Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. CURRENT CLINICAL PHARMACOLOGY 2020; 15:20-29. [PMID: 31272358 PMCID: PMC7366001 DOI: 10.2174/1574884714666190704115345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke. OBJECTIVE In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes. METHODS A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles. RESULTS Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS. CONCLUSION Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Address correspondence to this author at the Department of biology, Faculty of basic science, Farhangian University, Tehran, Iran;, Tel: +989133217068; E-mails: ;,
| | | |
Collapse
|
253
|
Kumar A, Das N, Satija NK, Mandrah K, Roy SK, Rayavarapu RG. A Novel Approach towards Synthesis and Characterization of Non-Cytotoxic Gold Nanoparticles Using Taurine as Capping Agent. NANOMATERIALS 2019; 10:nano10010045. [PMID: 31878144 PMCID: PMC7023053 DOI: 10.3390/nano10010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Metal gold nanoparticles are of great interest due to their unique physico-chemical properties and their potential to be used as nano-probes in biosensors, drug delivery, and therapeutic applications. Currently, many capping agents are used for metal gold nanoparticles, such as cetyltrimethylammonium bromide (CTAB) and tri-sodium citrate that have been reported to be toxic and hinders biological applications. To address this issue, we report, for the first time, the use of taurine as a stable non-cytotoxic capping agent for synthesizing gold nanoparticles by using an in situ wet-chemical method. This facile method resulted in monodisperse gold nanospheres with a high yield and stability. Monodisperse gold nanospheres with average diameters of 6.9 nm and 46 nm were synthesized at a high yield with controlled morphology. Temperature played a critical role in determining the size of the taurine-capped gold nanoparticles. The subtle changes in the reaction parameters had a tremendous effect on the final size of nanoparticles and their stability. The synthesized nanoparticles were characterized by using optical spectroscopy, a ZetaSizer, a NanoSight, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), X-ray Photon Spectroscopy (XPS) and Electron Microscopy to understand their physico-chemical properties. Taurine was explored as a capping and stabilizing agent for gold nanospheres, which were evaluated for their toxicity responses towards human liver carcinoma cells (HepG2) via MTT assay.
Collapse
Affiliation(s)
- Akash Kumar
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabojit Das
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
254
|
Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci U S A 2019; 117:103-113. [PMID: 31852822 DOI: 10.1073/pnas.1911734116] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gold nanoparticles are used in an expanding spectrum of biomedical applications. However, little is known about their long-term fate in the organism as it is generally admitted that the inertness of gold nanoparticles prevents their biodegradation. In this work, the biotransformations of gold nanoparticles captured by primary fibroblasts were monitored during up to 6 mo. The combination of electron microscopy imaging and transcriptomics study reveals an unexpected 2-step process of biotransformation. First, there is the degradation of gold nanoparticles, with faster disappearance of the smallest size. This degradation is mediated by NADPH oxidase that produces highly oxidizing reactive oxygen species in the lysosome combined with a cell-protective expression of the nuclear factor, erythroid 2. Second, a gold recrystallization process generates biomineralized nanostructures consisting of 2.5-nm crystalline particles self-assembled into nanoleaves. Metallothioneins are strongly suspected to participate in buildings blocks biomineralization that self-assembles in a process that could be affected by a chelating agent. These degradation products are similar to aurosomes structures revealed 50 y ago in vivo after gold salt therapy. Overall, we bring to light steps in the lifecycle of gold nanoparticles in which cellular pathways are partially shared with ionic gold, revealing a common gold metabolism.
Collapse
|
255
|
Changalvaie B, Han S, Moaseri E, Scaletti F, Truong L, Caplan R, Cao A, Bouchard R, Truskett TM, Sokolov KV, Johnston KP. Indocyanine Green J Aggregates in Polymersomes for Near-Infrared Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46437-46450. [PMID: 31804795 DOI: 10.1021/acsami.9b14519] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical translation of photoacoustic imaging (PAI) has been limited by the lack of near-infrared (NIR) contrast agents with low toxicity required for regulatory approval. Herein, J aggregates of indocyanine green (ICG) with strong NIR absorbance were encapsulated at high loadings within small 77 nm polymersomes (nanocapsules) composed of poly(lactide-co-glycolide-b-poly(ethylene glycol)) (PLGA-b-PEG) bilayers, thus enabling PAI of of breast and ovarian cancer cells with high specificity and a sensitivity at the level of ∼100 total cells. All of the major components of the polymersomes are FDA approved and used in the clinic. During formation of polymersomes with a water-in-oil-in-water double emulsion process, loss of ICG from the ICG J aggregates was minimized by coating them with a layer of branched polyethylenimine and by providing excess "sacrificial" ICG to adsorb at the oil-water interfaces. The encapsulated J aggregates were protected against dissociation by the polymersome shell for 24 h in 100% fetal bovine serum, after which the polymersomes biodegraded and the J aggregates dissociated to ICG monomers.
Collapse
Affiliation(s)
| | - Sangheon Han
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | | | | | | | | | | | - Richard Bouchard
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Konstantin V Sokolov
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | | |
Collapse
|
256
|
Shukla D, Bose S, Choudhury SP, K. Sharma V, Das M, Sabbarwal S, Yadav SK, Kumar M, Parmar AS. Understanding the In Situ Mechanistic Control of Plant‐Derived Carbon Quantum Dots on the Synthesis of Gold Nanoparticles. ChemistrySelect 2019. [DOI: 10.1002/slct.201903634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Devyani Shukla
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Subhaya Bose
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Smarajit P. Choudhury
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Vinay K. Sharma
- Central Institute FacilityIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Megha Das
- Department of ZoologyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Shivesh Sabbarwal
- Department of Chemical EngineeringIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Sanjeev K. Yadav
- Department of ZoologyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Manoj Kumar
- Department of Chemical EngineeringIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Avanish S. Parmar
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
257
|
Bekić M, Tomić S, Rudolf R, Milanović M, Vučević D, Anžel I, Čolić M. The Effect of Stabilisation Agents on the Immunomodulatory Properties of Gold Nanoparticles Obtained by Ultrasonic Spray Pyrolysis. MATERIALS 2019; 12:ma12244121. [PMID: 31835366 PMCID: PMC6947030 DOI: 10.3390/ma12244121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (GNPs) have been investigated extensively as drug carriers in tumour immunotherapy in combination with photothermal therapy. For this purpose, GNPs should be stabilised in biological fluids. The goal of this study was to examine how stabilisation agents influence cytotoxicity and immune response in vitro. Spherical GNPs, 20 nm in size, were prepared by ultrasonic spray pyrolysis (USP). Three types of stabilising agents were used: sodium citrate (SC), polyvinyl-pyrrolidone (PVP), and poly-ethylene glycol (PEG). Pristine, non-stabilised GNPs were used as a control. The culture models were mouse L929 cells, B16F10 melanoma cells and human peripheral blood mononuclear cells (PBMNCs), obtained from healthy donors. Control SC- and PEG-GNPs were non-cytotoxic at concentrations (range 1–100 µg/mL), in contrast to PVP-GNPs, which were cytotoxic at higher concentrations. Control GNPs inhibited the production of IFN-ϒ slightly, and augmented the production of IL-10 by PHA-stimulated PBMNC cultures. PEG-GNPs inhibited the production of pro-inflammatory cytokines (IL-1, IL-6, IL-8, TNF-α) and Th1-related cytokines (IFN-ϒ and IL-12p70), and increased the production of Th2 cytokines (IL-4 and IL-5). SC-PEG inhibited the production of IL-8 and IL-17A. In contrast, PVP-GNPs stimulated the production of pro-inflammatory cytokines, Th1 cytokines, and IL-17A, but also IL-10. When uptake of GNPs by monocytes/macrophages in PBMNC cultures was analysed, the ingestion of PEG- GNPs was significantly lower compared to SC- and PVP-GNPs. In conclusion, stabilisation agents modulate biocompatibility and immune response significantly, so their adequate choice for preparation of GNPs is an important factor when considering the use of GNPs for application in vivo.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (S.T.)
| | - Sergej Tomić
- Institute for Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (S.T.)
| | - Rebeka Rudolf
- Faculty for Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (R.R.); (I.A.)
| | - Marijana Milanović
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, 11000 Belgrade, Serbia; (M.M.); (D.V.)
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, 11000 Belgrade, Serbia; (M.M.); (D.V.)
| | - Ivan Anžel
- Faculty for Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (R.R.); (I.A.)
| | - Miodrag Čolić
- Institute for Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (S.T.)
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, 11000 Belgrade, Serbia; (M.M.); (D.V.)
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Hercegovina
- Correspondence: ; Tel.: +381-11-219-3194
| |
Collapse
|
258
|
Huang J, Yan Y, Xie L, Liu H, Huang C, Lu Q, Qiu X, Zeng H. Probing the Self-Assembly and Nonlinear Friction Behavior of Confined Gold Nano-Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15701-15709. [PMID: 31475530 DOI: 10.1021/acs.langmuir.9b02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For the wide application of nanoparticles (NPs) (e.g., in nanotribology), it is of fundamental and practical importance to understand the self-assembly and lubrication behavior of confined NPs. In this work, a systematic study was conducted to probe the assembly and associated surface forces of spherical gold nanoparticles (Au NPs, diameter ∼5 nm) confined between pairs of mica (negatively charged) and (3-aminopropyl)triethoxysilane modified mica (APTES-mica, positively charged) surfaces using a surface forces apparatus (SFA) under aqueous conditions. It is observed that Au NPs were squeezed out of the confined gap between two mica surfaces during the loading process, resulting from the repulsive electric-double layer force. In contrast, multilayers of Au NPs were confined between two APTES-mica surfaces because of the attractive double-layer force between oppositely charged Au NPs and APTES-mica. Interestingly, the interaction between Au NPs and APTES-mica is stronger than the interactions between Au NPs, resulting in the rearrangement of the confined Au NPs under shearing. Importantly, a large friction coefficient (μ > 0.7) with unexpected nonlinear stick-slip friction was observed when sliding two APTES-mica surfaces with thin layers of Au NPs (∼20 nm) confined in between. The observed stick-slip motion could be explained by the velocity-dependent friction model where a critical shear velocity was required for transiting from stick-slip to smooth sliding. Our study provides useful information on the assembly and interaction forces of confined nanoparticles on charged surfaces, with implications for predicting the behaviors of NPs under confinement in various engineering applications.
Collapse
Affiliation(s)
- Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering , Shandong University , Jinan 250061 , China
| | - Yonggan Yan
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering , Shandong University , Jinan 250061 , China
| | - Lei Xie
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Hanlian Liu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering , Shandong University , Jinan 250061 , China
| | - Chuanzhen Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering , Shandong University , Jinan 250061 , China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
259
|
Dunning CAS, Bazalova-Carter M. X-Ray Fluorescence Computed Tomography Induced by Photon, Electron, and Proton Beams. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2735-2743. [PMID: 31021762 DOI: 10.1109/tmi.2019.2912137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
X-ray fluorescence CT (XFCT) has shown promise for molecular imaging of gold nanoparticles. To date, XFCT has been induced by kilovoltage photon beams due to the high photoelectric interaction probability. We compare K-shell and L-shell XFCT induced by photon, electron, and proton beams for two phantom sizes. A 2.5 and 5.0-cm diameter phantom with four 5 mm and 10 mm vials, respectively, with gold-solutions of 0.1%-2% by weight were built in TOPAS, a GEANT4-based Monte Carlo simulation tool. The 2.5-cm phantom was imaged with XFCT induced by beams of 7.45×104 81 keV- and 5 MeV-photons, 220 kVp- and 6 MV-photons, 10 MeV- and 100 MeV-electrons, and 100 MeV- and 250 MeV-protons. The doses between each phantom size were equal. First-generation CT geometry with 0.5 mm × 0.5 mm pencil beams with 0.5 mm-translation and 2°-rotation steps over each phantom was modeled. The scattered x-rays were detected on an idealized spherical detector from which the K-shell and L-shell fluorescent x-rays were extracted in 0.5 keV and 0.2 keV bins. XFCT images were generated using iterative reconstruction algorithms. The highest gold sensitivity was seen in the 81 keV-photon K-shell and L-shell images (0.004% and 0.007%) of the 5.0 cm-phantom at 30 mGy. For the 2.5 cm-phantom, the detection limits were 0.006%, 0.62%, and 0.28% for 81 keV-photon K-shell, 100 MeV-electron K-shell, and 100 MeV-proton L-shell images, respectively. The mean imaging dose was approximately 2-3 orders of magnitude higher in electron- and proton-XFCT compared to 81keV-photon XFCT. Our MC study demonstrates that the small-object XFCT imaging achieves the best performance when induced with kilovoltage-photon beams. Due to high imaging doses, electron- and proton-induced XFCT might be feasible for guiding nanoparticle-enhanced charged-particle radiotherapy.
Collapse
|
260
|
Deng L, Liu H, Ma Y, Miao Y, Fu X, Deng Q. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicol Appl Pharmacol 2019; 384:114765. [PMID: 31669777 DOI: 10.1016/j.taap.2019.114765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The physiologically based pharmacokinetic (PBPK) model is a useful tool to predict the pharmacokinetics of various types of nanoparticles (NPs). The endocytosis mechanism plays a key role in pharmacokinetics of NPs. However, the effect of endocytosis mechanism both in the blood and tissue are seldom considered in PBPK model. OBJECTIVES To investigate the biodistribution of intravenously injected pegylated AuNPs in mice and human using PBPK model considering the endocytosis mechanism both in the blood and tissue. METHODS Taking polyethylene glycol-coated gold nanoparticles (AuNPs) as an example, we developed a PBPK model to explore biodistribution of different size AuNPs. In the model, we considered the role of endocytosis mechanism both in the blood and tissue. In addition, the size-dependent permeability coefficient, excretion rate constant, phagocytic capacity, uptake rate, and release rate were derived from literatures. The mice PBPK model was extrapolated to the human by changing physiology parameters and the number of phagocytic cell (PCs). RESULTS AuNPs were primarily distributed in the blood, liver, and spleen regardless of particle size, and almost all captured by the PCs in the liver and spleen, while few was captured in the blood. There are more organ distribution and longer circulation for smaller NPs. The 24-h accumulation of AuNPs decreased with increasing size in the most organ, while the accumulation of AuNPs showed an inverted U-shaped curve in the liver and slight U-shaped curve in the blood. The human results of model-predicted displayed a similar tendency with those in mice. Size, partition coefficients, and body weight were the key factors influencing the organ distribution of AuNPs. CONCLUSIONS The size played an important role on the distribution and accumulation of AuNPs in various tissues. Our PBPK model was well predicted the NPs distribution in mice and human. A better understanding of these mechanisms could provide effective guides for nanomedine delivery.
Collapse
Affiliation(s)
- Linjing Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hui Liu
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yongsheng Ma
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Yufeng Miao
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoli Fu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China; XiangYa School of Public Health, Central South University, Changsha 410008, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Architecture and Art, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
261
|
Muraca F, Alahmari A, Giannone VA, Adumeau L, Yan Y, McCafferty MM, Dawson KA. A Three-Dimensional Cell Culture Platform for Long Time-Scale Observations of Bio-Nano Interactions. ACS NANO 2019; 13:13524-13536. [PMID: 31682422 DOI: 10.1021/acsnano.9b07453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We know surprisingly little about the long-term outcomes for nanomaterials interacting with organisms. To date, most of what we know is derived from in vivo studies that limit the range of materials studied and the scope of advanced molecular biology tools applied. Long-term in vitro nanoparticle studies are hampered by a lack of suitable models, as standard cell culture techniques present several drawbacks, while technical limitations render current three-dimensional (3D) cellular spheroid models less suited. Now, by controlling the kinetic processes of cell assembly and division in a non-Newtonian culture medium, we engineer reproducible cell clusters of controlled size and phenotype, leading to a convenient and flexible long-term 3D culture that allows nanoparticle studies over many weeks in an in vitro setting. We present applications of this model for the assessment of intracellular polymeric and silica nanoparticle persistence and found that hydrocarbon-based polymeric nanoparticles undergo no apparent degradation over long time periods with no obvious biological impact, while amorphous silica nanoparticles degrade at different rates over several weeks, depending on their synthesis method.
Collapse
Affiliation(s)
- Francesco Muraca
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Amirah Alahmari
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Valeria A Giannone
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
- School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Yan Yan
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
- School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Mura M McCafferty
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| |
Collapse
|
262
|
One-pot synthesis and characterization of ovalbumin-conjugated gold nanoparticles: A comparative study of adjuvanticity against the physical mixture of ovalbumin and gold nanoparticles. Int J Pharm 2019; 571:118704. [PMID: 31536763 DOI: 10.1016/j.ijpharm.2019.118704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 11/21/2022]
Abstract
Only few adjuvants are licensed for use in humans and there is a need to develop safe and improved vaccine adjuvants. In this study, we report the one-pot synthesis of antigen ovalbumin (OVA)-conjugated gold nanoparticles (OVA@GNPs). A systematical study was performed by comparing OVA@GNPs with the simple mixture of OVA and gold nanoparticles (OVA+GNPs), including their physiochemical properties through spectrometric and electrophoretic analysis, in vitro stability, cytotoxicity and cellular uptake, and in vivo humoral immune responses following subcutaneous and transcutaneous immunization in mice. The results demonstrate a much stronger interaction between protein and GNPs in OVA@GNPs than OVA+GNPs, which makes OVA@GNPs more stable under in vitro conditions than OVA+GNPs with the ability to induce 4 times higher OVA-specific serum IgG titers following subcutaneous immunization. We also show the dose sparing of OVA@GNPs, as the dosage for aluminum adjuvant required to reach to an equivalent OVA-specific antibody titer was almost five times higher than OVA@GNPs. However, we found that the co-administration of small-sized GNPs had a limited ability for the transcutaneous delivery of OVA. These results demonstrate the potential application of one-pot synthesis approach for producing antigen protein-conjugated gold nanoparticles for vaccine delivery.
Collapse
|
263
|
Kumar S, Majhi RK, Singh A, Mishra M, Tiwari A, Chawla S, Guha P, Satpati B, Mohapatra H, Goswami L, Goswami C. Carbohydrate-Coated Gold-Silver Nanoparticles for Efficient Elimination of Multidrug Resistant Bacteria and in Vivo Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42998-43017. [PMID: 31664808 DOI: 10.1021/acsami.9b17086] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multidrug resistant (MDR) bacteria have emerged as a major clinical challenge. The unavailability of effective antibiotics has necessitated the use of emerging nanoparticles as alternatives. In this work, we have developed carbohydrate-coated bimetallic nanoparticles (Au-AgNP, 30-40 nm diameter) that are nontoxic toward mammalian cells yet highly effective against MDR strains as compared to their monometallic counterparts (Ag-NP, Au-NP). The Au-AgNP is much more effective against Gram-negative MDR Escherichia coli and Enterobacter cloacae when compared to most of the potent antibiotics. We demonstrate that in vivo, Au-AgNP is at least 11000 times more effective than Gentamicin in eliminating MDR Methicillin Resistant Staphylococcus aureus (MRSA) infecting mice skin wounds. Au-AgNP is able to heal and regenerate infected wounds faster and in scar-free manner. In vivo results show that this Au-AgNP is very effective antibacterial agent against MDR strains and does not produce adverse toxicity. We conclude that this bimetallic nanoparticle can be safe in complete skin regeneration in bacteria infected wounds.
Collapse
Affiliation(s)
- Satish Kumar
- School of Biotechnology , Kalinga Institute of Industrial Technology , Patia , Bhubaneswar 751024 , India
| | - Rakesh Kumar Majhi
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| | - Abhishek Singh
- School of Biotechnology , Kalinga Institute of Industrial Technology , Patia , Bhubaneswar 751024 , India
| | - Mitali Mishra
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| | - Ankit Tiwari
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| | - Saurabh Chawla
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| | - Puspendu Guha
- Institute of Physics , Sachivalaya Marg , Bhubaneswar , Odisha 751005 , India
| | - Biswarup Satpati
- Surface Physics & Material Science Division , Saha Institute of Nuclear Physics , 1/AF, Bidhannagar , Kolkata 700 064 , India
| | - Harapriya Mohapatra
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| | - Luna Goswami
- School of Biotechnology , Kalinga Institute of Industrial Technology , Patia , Bhubaneswar 751024 , India
- School of Chemical Technology , Kalinga Institute of Industrial Technology , Patia , Bhubaneswar 751024 , India
| | - Chandan Goswami
- School of Biological Sciences , National Institute of Science Education and Research , HBNI, Khordha , Jatni , Odisha 752050 , India
| |
Collapse
|
264
|
Leopold LF, Rugină D, Oprea I, Diaconeasa Z, Leopold N, Suciu M, Coman V, Vodnar DC, Pintea A, Coman C. Warfarin-Capped Gold Nanoparticles: Synthesis, Cytotoxicity, and Cellular Uptake. Molecules 2019; 24:molecules24224145. [PMID: 31731755 PMCID: PMC6891392 DOI: 10.3390/molecules24224145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 11/25/2022] Open
Abstract
Currently, research studies on nanoparticle cytotoxicity, uptake or internalization into the body’s cells are of great interest for the improvement of diagnostic and therapeutic applications. We report here the synthesis and characterization of very stable novel warfarin-capped gold nanoparticles with an average diameter of 54 ± 10 nm which were prepared using sodium warfarin as a reducing agent. The nanoparticles were tested in terms of cytotoxicity and cellular internalization in vitro on two cell lines: normal lung fibroblast HFL-1 and human retinal pigment epithelial D407 cells. Our results showed that the normal lung fibroblast HFL-1 cells were more sensitive to the nanoparticle treatment compared to the human retinal pigment epithelial D407 cells. Moreover, any signs of potential cytotoxicity occurred during the first 24 h of treatment, the cellular viability remaining largely unchanged for longer exposure times. Transmission electron microscopy and dark field hyperspectral imaging revealed that the nanoparticles were effectively delivered and released to the HFL-1 and D407 cells’ cytoplasm. Our results provide valuable information to further investigate sodium warfarin-capped gold nanoparticles for possible biological applications.
Collapse
Affiliation(s)
- Loredana Florina Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Dumitriţa Rugină
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (D.R.); (A.P.)
| | - Ioana Oprea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Maria Suciu
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania;
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 67-103, 400293 Cluj-Napoca, Romania
| | - Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (D.R.); (A.P.)
| | - Cristina Coman
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (L.F.L.); (I.O.); (Z.D.); (D.C.V.)
- Correspondence: ; Tel.: +40-746-959-157
| |
Collapse
|
265
|
Saha T, Houshyar S, Ranjan Sarker S, Ghosh S, Dekiwadia C, Padhye R, Wang X. Surface-Functionalized Polypropylene Surgical Mesh for Enhanced Performance and Biocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:5905-5915. [DOI: 10.1021/acsabm.9b00849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tanushree Saha
- Centre for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, 3056 Victoria, Australia
- School of Engineering, RMIT University, Melbourne, 3000 Victoria, Australia
| | - Shadi Houshyar
- Centre for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, 3056 Victoria, Australia
- School of Engineering, RMIT University, Melbourne, 3000 Victoria, Australia
| | - Satya Ranjan Sarker
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subir Ghosh
- School of Engineering, RMIT University, Melbourne, 3000 Victoria, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, 3000 Victoria, Australia
| | - Rajiv Padhye
- Centre for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, 3056 Victoria, Australia
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, 3056 Victoria, Australia
| |
Collapse
|
266
|
Black phosphorus nanosheets and gemcitabine encapsulated thermo-sensitive hydrogel for synergistic photothermal-chemotherapy. J Colloid Interface Sci 2019; 556:232-238. [DOI: 10.1016/j.jcis.2019.08.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
267
|
|
268
|
Chen W, Ni D, Rosenkrans ZT, Cao T, Cai W. Smart H 2S-Triggered/Therapeutic System (SHTS)-Based Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901724. [PMID: 31763153 PMCID: PMC6864508 DOI: 10.1002/advs.201901724] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Indexed: 05/02/2023]
Abstract
Hydrogen sulfide (H2S) is of vital importance in several biological and physical processes. The significance of H2S-specific detection and monitoring is emphasized by its elevated levels in various diseases such as cancer. Nanotechnology enhances the performance of chemical sensing nanoprobes due to the enhanced efficiency and sensitivity. Recently, extensive research efforts have been dedicated to developing novel smart H2S-triggered/therapeutic system (SHTS) nanoplatforms for H2S-activated sensing, imaging, and therapy. Herein, the latest SHTS-based nanomaterials are summarized and discussed in detail. In addition, therapeutic strategies mediated by endogenous H2S as a trigger or exogenous H2S delivery are also included. A comprehensive understanding of the current status of SHTS-based strategies will greatly facilitate innovation in this field. Lastly, the challenges and key issues related to the design and development of SHTS-based nanomaterials (e.g., morphology, surface modification, therapeutic strategies, appropriate application, and selection of nanomaterials) are outlined.
Collapse
Affiliation(s)
- Weiyu Chen
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Dalong Ni
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Zachary T. Rosenkrans
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Tianye Cao
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
| |
Collapse
|
269
|
Liu X, Liao G, Zou L, Zheng Y, Yang X, Wang Q, Geng X, Li S, Liu Y, Wang K. Construction of Bio/Nanointerfaces: Stable Gold Nanoparticle Bioconjugates in Complex Systems. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40817-40825. [PMID: 31556587 DOI: 10.1021/acsami.9b13659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The real application of DNA-functionalized gold nanoparticles (DNA-Au NPs) was limited by decreased stability and irreversible aggregation in high-ionic strength solutions and complex systems. Therefore, exploring a kind of DNA-Au NPs with excellent stability in high-ionic strength solutions and complex systems is challenging and significant. Herein, a novel universal bioconjugate strategy for constructing ultrastable DNA-Au NPs was designed based on the combination of polydopamine (PDA) shell and DNA linker. The obtained DNA-linked Au@polydopamine nanoparticles (DNA-Au@PDA NPs) showed colloidal stability in high-ionic strength solution and complex systems (such as human serum and cell culture supernatant). Moreover, the nanoparticles still maintained good dispersion after multiple freeze-thaw cycles. The high stability of DNA-Au@PDA NPs may be attributed to increasing the electrostatic and steric repulsions among nanoparticles through the effect of both PDA shell and DNA linker on Au@PDA NPs. For investigating the application of such nanoparticles, a highly sensitive assay for miRNA 141 detection was developed using DNA-Au@PDA NPs coupled with dynamic light scattering (DLS). Comparing with the regular DNA-Au NPs, DNA-Au@PDA NPs could detect as low as 50 pM miRNA 141 even in human whole serum. Taken together, the features of Bio/Nanointerface make the nanoparticle suitable for various applications in harsh biological and environmental conditions due to the stability. This work may provide a universal modification method for obtaining stable nanoparticles.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yaqin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , China
| |
Collapse
|
270
|
Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine. Theranostic nanomedicine takes advantage of the high capacity of nanoplatforms to ferry cargo with imaging and therapeutic capabilities. These theranostic nanoplatforms have the potential to play a major role in gene specific treatments. Here we have reviewed recent advances in the use of theranostic nanoplatforms to deliver siRNA, and discussed the opportunities as well as challenges associated with this exciting technology. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesus Pachecho-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
271
|
Li Z, Chen Y, Yang Y, Yu Y, Zhang Y, Zhu D, Yu X, Ouyang X, Xie Z, Zhao Y, Li L. Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019; 7:293. [PMID: 31696114 PMCID: PMC6817476 DOI: 10.3389/fbioe.2019.00293] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Conventional chemotherapy for cancer treatment is usually compromised by shortcomings such as insufficient therapeutic outcome and undesired side effects. The past decade has witnessed the rapid development of combination therapy by integrating chemotherapy with hyperthermia for enhanced therapeutic efficacy. Near-infrared (NIR) light-mediated photothermal therapy, which has advantages such as great capacity of heat ablation and minimally invasive manner, has emerged as a powerful approach for cancer treatment. A variety of nanomaterials absorbing NIR light to generate heat have been developed to simultaneously act as carriers for chemotherapeutic drugs, contributing as heat trigger for drug release and/or inducing hyperthermia for synergistic effects. This review aims to summarize the recent development of advanced nanomaterials in chemo-photothermal combination therapy, including metal-, carbon-based nanomaterials and particularly organic nanomaterials. The potential challenges and perspectives for the future development of nanomaterials-based chemo-photothermal therapy were also discussed.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangjun Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
272
|
Depciuch J, Stec M, Maximenko A, Pawlyta M, Baran J, Parlinska-Wojtan M. Control of Arms of Au Stars Size and its Dependent Cytotoxicity and Photosensitizer Effects in Photothermal Anticancer Therapy. Int J Mol Sci 2019; 20:E5011. [PMID: 31658649 PMCID: PMC6834177 DOI: 10.3390/ijms20205011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022] Open
Abstract
Gold nanostars (AuS NPs) are a very attractive nanomaterial, which is characterized by high effective transduction of the electromagnetic radiation into heat energy. Therefore, AuS NPs can be used as photosensitizers in photothermal therapy (PTT). However, understanding the photothermal conversion efficiency in nanostars is very important to select the most appropriate shape and size of AuS NPs. Therefore, in this article, the synthesis of AuS NPs with different lengths of star arms for potential application in PTT was investigated. Moreover, the formation mechanism of these AuS NPs depending on the reducer concentration is proposed. Transmission electron microscopy (TEM) with selected area diffraction (SEAD) and X-ray diffraction (X-Ray) showed that all the obtained AuS NPs are crystalline and have cores with similar values of the diagonal (parameter d), from 140 nm to 146 nm. However, the widths of the star arm edges (parameter c) and the lengths of the arms (parameter a) vary between 3.75 nm and 193 nm for AuS1 NPs to 6.25 nm and 356 nm for AuS4 NPs. Ultraviolet-visible (UV-Vis) spectra revealed that, with increasing edge widths and lengths of the star arms, the surface plasmon resonance (SPR) peak is shifted to the higher wavelengths, from 640 nm for AuS1 NPs to 770 nm for AuS4 NPs. Moreover, the increase of temperature in the AuS NPs solutions as well as the values of calculated photothermal efficiency grew with the elongation of the star arms. The potential application of AuS NPs in the PTT showed that the highest decrease of viability, around 75%, of cells cultured with AuS NPs and irradiated by lasers was noticed for AuS4 NPs with the longest arms, while the smallest changes were visible for gold nanostars with the shortest arms. The present study shows that photothermal properties of AuS NPs depend on edge widths and lengths of the star arms and the values of photothermal efficiency are higher with the increase of the arm lengths, which is correlated with the reducer concentration.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland.
| | - Malgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, PL-30-663 Krakow, Poland.
| | - Alexey Maximenko
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland.
| | - Miroslawa Pawlyta
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44100 Gliwice, Poland.
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, PL-30-663 Krakow, Poland.
| | | |
Collapse
|
273
|
Nam W, Ren X, Tali SAS, Ghassemi P, Kim I, Agah M, Zhou W. Refractive-Index-Insensitive Nanolaminated SERS Substrates for Label-Free Raman Profiling and Classification of Living Cancer Cells. NANO LETTERS 2019; 19:7273-7281. [PMID: 31525057 DOI: 10.1021/acs.nanolett.9b02864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an ultrasensitive molecular-fingerprint-based technique for label-free biochemical analysis of biological systems. However, for conventional SERS substrates, SERS enhancement factors (EFs) strongly depend on background refractive index (RI), which prevents reliable spatiotemporal SERS analysis of living cells consisting of different extra-/intracellular organelles with a heterogeneous distribution of local RI values between 1.30 and 1.60. Here, we demonstrate that nanolaminated SERS substrates can support uniform arrays of vertically oriented nanogap hot spots with large SERS EFs (>107) insensitive to background RI variations. Experimental and numerical studies reveal that the observed RI-insensitive SERS response is due to the broadband multiresonant optical properties of nanolaminated plasmonic nanostructures. As a proof-of-concept demonstration, we use RI-insensitive nanolaminated SERS substrates to achieve label-free Raman profiling and classification of living cancer cells with a high prediction accuracy of 96%. We envision that RI-insensitive high-performance nanolaminated SERS substrates can potentially enable label-free spatiotemporal biochemical analysis of living biological systems.
Collapse
Affiliation(s)
- Wonil Nam
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Xiang Ren
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Seied Ali Safiabadi Tali
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Parham Ghassemi
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Inyoung Kim
- Department of Statistics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Masoud Agah
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
274
|
Yang Z, Zheng J, Chan CF, Wong IL, Heater BS, Chow LM, Lee MM, Chan MK. Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection. Biomaterials 2019; 217:119286. [DOI: 10.1016/j.biomaterials.2019.119286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/15/2022]
|
275
|
Wang Y, Ma S, Dai Z, Rong Z, Liu J. Facile in situ synthesis of ultrasmall near-infrared-emitting gold glyconanoparticles with enhanced cellular uptake and tumor targeting. NANOSCALE 2019; 11:16336-16341. [PMID: 31455962 DOI: 10.1039/c9nr03821c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The simultaneous possession of high tumor-targeting efficiency, long blood circulation, and low normal-tissue retention is critical for future clinically translatable nanomedicines. Herein, we reported a facile in situ glycoconjugation strategy for the synthesis of near-infrared (NIR)-emitting gold glyconanoparticles (AuGNPs, ∼2.4 nm) using 1-thio-β-d-glucose as both the surface ligand and the reducing agent in the presence of a gold precursor. The ultrasmall AuGNPs showed similar low healthy organ retention to that of the renal-clearable ultrasmall nonglyconanoparticles, but ∼10 and 2.5 times higher in vitro and in vivo tumor-targeting efficiencies, respectively, were observed. This facile glycoconjugation strategy of ultrasmall AuGNPs was found to show activity towards glucose transporters in the cancer cells and prolonged blood circulation with both renal and hepatobiliary clearance pathways, which synergistically enhanced the tumor targeting of the ultrasmall AuGNPs. This discovery provides a smart strategy for the improvement in tumor targeting by ultrasmall NPs and further strengthens our understanding of glycoconjugation in designing future clinically translatable nanomedicines.
Collapse
Affiliation(s)
- Yaping Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhiyi Dai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
276
|
Taylor ER, Cavuoto S, Beal DM, Caujolle S, Podoleanu A, Serpell CJ. Development of Gold-PAGE: towards the electrophoretic analysis of sulphurous biopolymers. J Mater Chem B 2019; 7:5156-5160. [PMID: 31364683 DOI: 10.1039/c9tb00665f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The prevalence, distinctive reactivity and biological significance of sulphur-based groups in proteins and nucleic acids means that analysis of sulphur is of prime importance in biochemistry, biotechnology, and medicine. We report steps in the development of a method to aid in the detection of these moieties using gold nanoparticles as adjuncts in polyacrylamide gel electrophoresis (Gold-PAGE).
Collapse
Affiliation(s)
- Emerald R Taylor
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Silvia Cavuoto
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - David M Beal
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Sophie Caujolle
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Christopher J Serpell
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
277
|
Bailly AL, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R, Al-Kattan A, Kabashin AV, Braguer D, Esteve MA. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 2019; 9:12890. [PMID: 31501470 PMCID: PMC6734012 DOI: 10.1038/s41598-019-48748-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Capable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model. Our data show that AuNPd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. Our results demonstrate that laser-synthesized AuNP are safe for biological systems, which promises their successful biomedical applications.
Collapse
Affiliation(s)
- Anne-Laure Bailly
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Florian Correard
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anton Popov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Bio-nanophotonics Lab., 115409, Moscow, Russia
| | - Gleb Tselikov
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
| | - Florence Chaspoul
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Romain Appay
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Ahmed Al-Kattan
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France
| | - Andrei V Kabashin
- Aix Marseille Univ, CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), Bio-nanophotonics Lab., 115409, Moscow, Russia.
| | - Diane Braguer
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Marie-Anne Esteve
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France.
| |
Collapse
|
278
|
Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Mikrochim Acta 2019; 186:667. [PMID: 31485856 DOI: 10.1007/s00604-019-3755-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/10/2019] [Indexed: 01/08/2023]
Abstract
This review (with 116 refs.) summarizes the state of the art in resonance Rayleigh scattering (RRS)-based analytical methods. Following an introduction into the fundamentals of RRS and on the preparation of metal nanoparticles, a first large section covers RRS detection methods based on the use of gold nanoparticles, with subsections on proteins (albumin, bovine serum albumin and ovalbumin, glycoproteins, folate receptors, iron binding-proteins, G-proteins-coupled receptors, transmembrane proteins, epidermal growth factor receptors), on pesticides, saccharides, vitamins, heavy metal ions (such as mercury, silver, chromium), and on cationic dyes. This is followed by a section on RRS methods based on the use of silver nanoparticles, with subsections on the detection of nucleic acids and insecticides. Several Tables are presented where an RRS method is compared to the performance of other methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Change in the resonance Rayleigh scattering (RRS) intensity when mixing the nanoparticles with the specific analyte.
Collapse
|
279
|
Yuan M, Wang Y, Hwang D, Longtin JP. Thermocouple-tip-exposing temperature assessment technique for evaluating photothermal conversion efficiency of plasmonic nanoparticles at low laser power density. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:094902. [PMID: 31575270 DOI: 10.1063/1.5109117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
A new thermocouple (TC) tip-exposing temperature assessment technique that combines experimental temperature measurements with a numerical model of the photothermal conversion efficiency η is presented. The proposed technique is designed to evaluate η for a gold-coated superparamagnetic iron oxide nanoparticle (SPIO-Au NP) solution (26 nm, 12-70 ppm) at low continuous wave laser power (103 mW, 532 nm) irradiation in a convenient manner under ambient conditions. The TC tip temperature is measured during the first 30 s of the laser exposure, and the results are combined with a finite element model to simulate the temperature rise of the NP solution for a given concentration. The value of η is adjusted in the model until the model agrees with the measured transient TC temperature rise. Values of η = 1.00 were observed for all concentrations. Theoretical predictions of η derived by Mie theory confirmed the near unity conversion efficiency of the as-synthesized SPIO-Au NPs. Advantages of the current technique include co-locating the TC tip in the geometric center of the laser-heated region, rather than outside of this region. In addition, the technique can be done under ambient room conditions using unmodified commercially available hardware.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77840-3123, USA
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77840-3123, USA
| | - David Hwang
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794-2300, USA
| | - Jon P Longtin
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794-2300, USA
| |
Collapse
|
280
|
Dey A, Manna S, Adhikary J, Chattopadhyay S, De S, Chattopadhyay D, Roy S. Biodistribution and toxickinetic variances of chemical and green Copper oxide nanoparticles in vitro and in vivo. J Trace Elem Med Biol 2019; 55:154-169. [PMID: 31345354 DOI: 10.1016/j.jtemb.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
In this study, chemical (S1) and green (S2) Copper Oxide nanoparticles (NPs) were synthesized to determine their biodistribution and toxicokinetic variances in vitro and in vivo. Both NPs significantly released Copper ions (Cu) in lymphocytes and were primarily deposited in the mononuclear phagocyte system (MPS) such as the liver and spleen in mice. In particular, S2NPs seemed to be prominently stored in the spleen, whereas the S1NPs were widely stored in more organs including the liver, heart, lungs, kidney and intestine. The circulation in the blood and fecal excretions both showed higher S2NPs contents respectively. Measurements of cell viability, Hemolysis assay, Reactive Oxygen Species (ROS) generation, biochemical estimation and apoptotic or necrotic study in lymphocytes after 24 h and measurements of body and organ weight, serum chemistry evaluation, cytokines level, protein expressions and histopathology of Balb/C mice after 15 days indicated significant toxicity difference between the S1NPs and S2NPs. Our observations proved that the NPs physiochemical properties influence toxicity and Biodistribution profiles in vitro and in vivo.
Collapse
Affiliation(s)
- Aditi Dey
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community health, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Subhankar Manna
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community health, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Jaydeep Adhikary
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| | - Sourav Chattopadhyay
- Molecular Genetics and Therapeutics Lab, Indian Institute of Technology, Kanpur, India
| | - Sriparna De
- Department of Polymer Science and Technology, USCTA, University of Calcutta, 92 A.P.C road, Kolkata, 700009, West Bengal, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, USCTA, University of Calcutta, 92 A.P.C road, Kolkata, 700009, West Bengal, India.
| | - Somenath Roy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community health, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
281
|
Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol 2019; 38:357-384. [PMID: 31462100 DOI: 10.1177/1091581819863130] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potential applications of gold nanoparticles in biomedicine have increasingly been reported on account of the ease of synthesis, bioinert characteristics, optical properties, chemical stability, high biocompatibility, and specificity. The safety of these particles remains a great concern, as there are differences among toxicity study protocols used. This article focuses on integrating results of research on the toxicological behavior of gold nanoparticles. This can be influenced by the physicochemical properties, including size, shape, surface charge, and other factors, such as methods used in the synthesis of gold nanoparticles, models used, dose, in vivo route of administration, and interference of gold nanoparticles with in vitro toxicity assay systems. Several researchers have reported toxicological studies with regard to gold nanoparticles, using various in vitro, in vivo, and in ovo models. The conflicting results concerning the toxicity of gold nanoparticles should thus be addressed to justify the safe use of gold nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa.,Department of Chemical Sciences, Biochemistry program, Afe Babalola University, Ado Ekiti, Nigeria
| | - Hajierah Davids
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Lynn Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
282
|
Kumar P, Shivam P, Mandal S, Prasanna P, Kumar S, Prasad SR, Kumar A, Das P, Ali V, Singh SK, Mandal D. Synthesis, characterization, and mechanistic studies of a gold nanoparticle-amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int J Nanomedicine 2019; 14:6073-6101. [PMID: 31686803 PMCID: PMC6709383 DOI: 10.2147/ijn.s196421] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background Amphotericin B (AmB) as a liposomal formulation of AmBisome is the first line of treatment for the disease, visceral leishmaniasis, caused by the parasite Leishmania donovani. However, nephrotoxicity is very common due to poor water solubility and aggregation of AmB. This study aimed to develop a water-soluble covalent conjugate of gold nanoparticle (GNP) with AmB for improved antileishmanial efficacy and reduced cytotoxicity. Methods Citrate-reduced GNPs (~39 nm) were functionalized with lipoic acid (LA), and the product GNP-LA (GL ~46 nm) was covalently conjugated with AmB using carboxyl-to-amine coupling chemistry to produce GNP-LA-AmB (GL-AmB ~48 nm). The nanoparticles were characterized by dynamic light scattering, transmission electron microscopy (TEM), and spectroscopic (ultraviolet–visible and infrared) methods. Experiments on AmB uptake of macrophages, ergosterol depletion of drug-treated parasites, cytokine ELISA, fluorescence anisotropy, flow cytometry, and gene expression studies established efficacy of GL-AmB over standard AmB. Results Infrared spectroscopy confirmed the presence of a covalent amide bond in the conjugate. TEM images showed uniform size with smooth surfaces of GL-AmB nanoparticles. Efficiency of AmB conjugation was ~78%. Incubation in serum for 72 h showed <7% AmB release, indicating high stability of conjugate GL-AmB. GL-AmB with AmB equivalents showed ~5-fold enhanced antileishmanial activity compared with AmB against parasite-infected macrophages ex vivo. Macrophages treated with GL-AmB showed increased immunostimulatory Th1 (IL-12 and interferon-γ) response compared with standard AmB. In parallel, AmB uptake was ~5.5 and ~3.7-fold higher for GL-AmB-treated (P<0.001) macrophages within 1 and 2 h of treatment, respectively. The ergosterol content in GL-AmB-treated parasites was ~2-fold reduced compared with AmB-treated parasites. Moreover, GL-AmB was significantly less cytotoxic and hemolytic than AmB (P<0.01). Conclusion GNP-based delivery of AmB can be a better, cheaper, and safer alternative than available AmB formulations.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Pushkar Shivam
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| |
Collapse
|
283
|
Pourshohod A, Jamalan M, Zeinali M, Ghanemi M, kheirollah A. Enhancement of X-ray radiotherapy by specific delivery of ZHER2 affibody-conjugated gold nanoparticles to HER2-positive malignant cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
284
|
Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted Gold Nanocluster-Enhanced Radiotherapy of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900968. [PMID: 31265213 PMCID: PMC6707872 DOI: 10.1002/smll.201900968] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/14/2019] [Indexed: 05/02/2023]
Abstract
For over a hundred years, X-rays have been a main component of the radiotherapeutic approaches to treat cancer. Yet, to date, no radiosensitizer has been developed to selectively target prostate cancer. Gold has excellent X-ray absorptivity and is used as a radiotherapy enhancing material. In this work, ultrasmall Au25 nanoclusters (NCs) are developed for selective prostate cancer targeting, radiotherapy enhancement, and rapid clearance from the body. Targeted-Au25 NCs are rapidly and selectively taken up by prostate cancer in vitro and in vivo and also have fast renal clearance. When combined with X-ray irradiation of the targeted cancer tissues, radiotherapy is significantly enhanced. The selective targeting and rapid clearance of the nanoclusters may allow reductions in radiation dose, decreasing exposure to healthy tissue and making them highly attractive for clinical translation.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xinning Wang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sophia Zeng
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James P Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
285
|
Long-term biodistribution and toxicity of curcumin capped iron oxide nanoparticles after single-dose administration in mice. Life Sci 2019; 230:76-83. [DOI: 10.1016/j.lfs.2019.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 02/01/2023]
|
286
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
287
|
Huang Y, Li M, Huang D, Qiu Q, Lin W, Liu J, Yang W, Yao Y, Yan G, Qu N, Tuchin VV, Fan S, Liu G, Zhao Q, Chen X. Depth-Resolved Enhanced Spectral-Domain OCT Imaging of Live Mammalian Embryos Using Gold Nanoparticles as Contrast Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902346. [PMID: 31304667 DOI: 10.1002/smll.201902346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
High-resolution and real-time visualization of the morphological changes during embryonic development are critical for studying congenital anomalies. Optical coherence tomography (OCT) has been used to investigate the process of embryogenesis. However, the structural visibility of the embryo is decreased with the depth due to signal roll-off and high light scattering. To overcome these obstacles, in this study, combined is a spectral-domain OCT (SD-OCT) with gold nanorods (GNRs) for 2D/3D imaging of live mouse embryos. Inductively coupled plasma mass spectrometry is used to confirm that GNRs can be effectively delivered to the embryos during ex vivo culture. OCT signal, image contrast, and penetration depth are all enhanced on the embryos with GNRs. These results show that after GNR treatment, more accurate spatial localization and better contrasting of the borders among organs can be observed on E9.5 and E10.5 mouse embryos. Furthermore, the strong optical absorbance of GNRs results in much clearer 3D images of the embryos, which can be used for calculating the heart areas and volumes of E9.5 and E10.5 embryos. These findings provide a promising strategy for monitoring organ development and detecting congenital structural abnormalities in mice.
Collapse
Affiliation(s)
- Yali Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Minghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qi Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenzhen Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiyan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wensheng Yang
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, 361000, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guoliang Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ning Qu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Science, Saratov, 410028, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Shanhui Fan
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
288
|
Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci Rep 2019; 9:10176. [PMID: 31308463 PMCID: PMC6629650 DOI: 10.1038/s41598-019-46671-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is among the most challenging human diseases. Nanotechnology has incontestable promising outcomes in inflammatory bowel diseases. This study aimed to investigate the therapeutic effect of naked gold nanoparticles (AuNPs) on dextran sodium sulphate (DSS) induced ulcerative colitis in mice. We also examined the expression of interleukin-17 (IL-17) following AuNPs treatment. Mice were randomly divided into control, DSS and DSS+ AuNPs groups. Severity of colitis was assessed by disease activity index (DAI) measurement. At the end of the experiment, the final body weights were recorded. The colon was dissected and processed for histopathological examinations by light and electron microscopes. Colon homogenates were prepared for assay of tissue malondialdehyde (MDA) and real-time PCR analysis of IL-17A. Immunohistochemical localization of IL-17A was carried out. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) detector were used to detect the presence of AuNPs in the colonic tissue of DSS+ AuNPs groups. Our results showed that AuNPs effectively targeted the colonic tissue, and reduced changes induced by DSS. The underlying mechanisms could be related to anti-oxidant effect (as evident by decreasing tissue MDA) and anti-inflammatory potential of AuNPs. Our study draws attention to as a novel therapeutic strategy for treating UC.
Collapse
|
289
|
Zhu Y, Xu H, Wei X, He H. Single-Cell Detection and Photostimulation on a Microfluidic Chip Aided with Gold Nanorods. Cytometry A 2019; 97:39-45. [PMID: 31282093 DOI: 10.1002/cyto.a.23855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023]
Abstract
Gold nanorods (GNRs) can be easily designed and synthesized to respond to photons in the near infrared (NIR) band. The photostimulation by laser irradiation can be mediated and enhanced by GNRs to introduce localized damage to cells for photodynamic/photothermal therapy (PDT or PTT). In this study, we show that cells stained with GNRs can be detected and stimulated simultaneously by short flashes of femtosecond-laser irradiation on a microfluidic system effectively. In the relatively high-throughput cell flow, the two-photon luminescence from GNRs can be excited and detected. The GNRs also mediate and enhance the transient photostimulation of the cells. After photostimulation, cells can remain alive, go to apoptosis, or necrosis, respectively. The stimulation effect is strongly dependent on the photon density and stimulation duration. We found the cells remain alive, go to apoptosis or necrosis, dependent on the GNR staining, the laser illumination pattern and duration. Hence, our system provides a simple and effective method for high-throughput cell stimulation and analysis on chip. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Physics, Foshan University, Foshan, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
290
|
Romashchenko AV, Sharapova MB, Morozova КN, Kiseleva EV, Kuper KE, Petrovskii DV. The role of olfactory transport in the penetration of manganese oxide nanoparticles from blood into the brain. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is no doubt that various nanoparticles (NPs) can enter the brain from the nasal cavity. It is assumed that NPs can penetrate from blood into the central nervous system (CNS) only by breaking the blood–brain barrier (BBB). The accumulation of NPs in CNS can provoke many neurological diseases; therefore, the understanding of its mechanisms is of both academic and practical interest. Although hitting from the surface of the lungs into the bloodstream, NPs can accumulate in various mucous membranes, including the nasal mucosa. Thus, we cannot rule out the ability of NPs to be transported from the bloodstream to the brain through the olfactory uptake. To test this hypothesis, we used paramagnetic NPs of manganese oxide (Mn3O4-NPs), whose accumulation patterns in the mouse brain were recorded using T1-weighted magnetic resonance imaging. The effect of intranasal application of endocytosis and axonal transport inhibitors on the brain accumulation patterns of intranasally or intravenously injected Mn3O4-NPs was evaluated. A comparative analysis of the results showed that the transport of Mn3O4-NPs from the nasal cavity to the brain is more efficient than their local permeation through BBB into CNS from the bloodstream, for example with the accumulation of Mn3O4NPs in the dentate gyrus of the hippocampus, and through the capture and transport of NPs from the blood by olfactory epithelium cells. Also, experiments with the administration of chlorpromazine, a specific inhibitor of clathrin-dependent endocytosis, and methyl-β-cyclodextrin, inhibitor of the lipid rafts involved in the capture of substances by endothelium cells, showed differences in the mechanisms of NP uptake from the nasal cavity and from the bloodstream. In this study, we show a significant contribution of axonal transport to NP accumulation patterns in the brain, both from the nasal cavity and from the vascular bed. This explains the accumulation of different sorts of submicron particles (neurotropic viruses, insoluble xenobiotics, etc.), unable to pass BBB, in the brain. The results will add to the understanding of the pathogenesis of various neurodegenerative diseases and help studying the side effects of therapeutics administered intravenously.
Collapse
Affiliation(s)
- A. V. Romashchenko
- Institute of Cytology and Genetics, SB RAS;
The Institute of Computational Technologies, SB RAS
| | | | | | | | | | | |
Collapse
|
291
|
Wu F, Chen L, Yue L, Wang K, Cheng K, Chen J, Luo X, Zhang T. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21408-21416. [PMID: 31120723 DOI: 10.1021/acsami.9b06866] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared (NIR)-absorbing organic nanoparticles (ONPs) are emerging candidates for "one-for-all" theranostic nanomaterials with considerations of safety and formulation in mind. However, facile fabrication methods and improvements in the photothermal conversion efficiency (PCE) and photostability are likely needed before a clinically viable set of candidates emerges. Herein, a new organic compound, [porphyrin-diketopyrrolopyrrole (Por-DPP)] with the donor-acceptor structure was synthesized, where porphyrin was used as a donor unit while diketopyrrolopyrrole was used as an acceptor unit. Por-DPP exhibited efficient absorption extending from visible to NIR regions. After self-assembling into nanoparticles (NPs) (∼120 nm), the absorption spectrum of Por-DPP NPs broadened and red-shifted to some extent, relative to that of organic molecules. Furthermore, the architecture of NPs enhanced the acceptor-donor structure, leading to emission quenching and facilitating nonradiative thermal generation. The PCE of Por-DPP NPs was measured and calculated to be 62.5%, higher than most of ONPs. Under 808 nm laser irradiation, the Por-DPP NPs possessed a distinct photothermal therapy (PTT) effect in vitro and can damage cancer cells efficiently in vivo without significant side effects after phototherapy. Thus, the small-molecule porphyrin-based ONPs with high PCE demonstrated promising application in photoacoustic imaging-guided PTT.
Collapse
Affiliation(s)
- Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Liangliang Yue
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Kai Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , P. R. China
| | - Kai Cheng
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , Hubei , P. R. China
| | - Jun Chen
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430073 , Hubei , P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430072 , P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
292
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
293
|
Leite PEC, Pereira MR, Harris G, Pamies D, Dos Santos LMG, Granjeiro JM, Hogberg HT, Hartung T, Smirnova L. Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Part Fibre Toxicol 2019; 16:22. [PMID: 31159811 PMCID: PMC6545685 DOI: 10.1186/s12989-019-0307-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background The blood brain barrier (BBB) is the bottleneck of brain-targeted drug development. Due to their physico-chemical properties, nanoparticles (NP) can cross the BBB and accumulate in different areas of the central nervous system (CNS), thus are potential tools to carry drugs and treat brain disorders. In vitro systems and animal models have demonstrated that some NP types promote neurotoxic effects such as neuroinflammation and neurodegeneration in the CNS. Thus, risk assessment of the NP is required, but current 2D cell cultures fail to mimic complex in vivo cellular interactions, while animal models do not necessarily reflect human effects due to physiological and species differences. Results We evaluated the suitability of in vitro models that mimic the human CNS physiology, studying the effects of metallic gold NP (AuNP) functionalized with sodium citrate (Au-SC), or polyethylene glycol (Au-PEG), and polymeric polylactic acid NP (PLA-NP). Two different 3D neural models were used (i) human dopaminergic neurons differentiated from the LUHMES cell line (3D LUHMES) and (ii) human iPSC-derived brain spheroids (BrainSpheres). We evaluated NP uptake, mitochondrial membrane potential, viability, morphology, secretion of cytokines, chemokines and growth factors, and expression of genes related to ROS regulation after 24 and 72 h exposures. NP were efficiently taken up by spheroids, especially when PEGylated and in presence of glia. AuNP, especially PEGylated AuNP, effected mitochondria and anti-oxidative defense. PLA-NP were slightly cytotoxic to 3D LUHMES with no effects to BrainSpheres. Conclusions 3D brain models, both monocellular and multicellular are useful in studying NP neurotoxicity and can help identify how specific cell types of CNS are affected by NP. Electronic supplementary material The online version of this article (10.1186/s12989-019-0307-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paulo Emílio Corrêa Leite
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.
| | | | - Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,Department of Physiology, University of Lausanne, Lausanne, CH-1015, USA
| | - Lisia Maria Gobbo Dos Santos
- Department of Chemistry, National Institute of Quality Control in Health - INCQS/Fiocruz, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - José Mauro Granjeiro
- Directory of Metrology Applied to Life Sciences - Dimav, National Institute of Metrology Quality and Technology - INMETRO, Av. Nossa Senhora das Graças 50, LABET - Dimav, Predio 27, Duque de Caxias, Xerem, Rio de Janeiro, 25250-020, Brazil.,Dental School, Fluminense Federal University, Niteroi, Rio de Janeiro, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.,University of Konstanz, Biology, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
294
|
Lolicato F, Joly L, Martinez-Seara H, Fragneto G, Scoppola E, Baldelli Bombelli F, Vattulainen I, Akola J, Maccarini M. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805046. [PMID: 31012268 DOI: 10.1002/smll.201805046] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Indexed: 05/23/2023]
Abstract
Understanding the molecular mechanisms governing nanoparticle-membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse-grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di-stearoyl-phosphatidylcholine (DSPC) and anionic di-stearoyl-phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC-DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP-membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse-grained MD simulations as a lipid-crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.
Collapse
Affiliation(s)
- Fabio Lolicato
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014, Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Loic Joly
- Laboratory of Supramolecular and BioNano Materials, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131, Milano, Italy
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014, Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
- MEMPHYS-Center for Biomembrane Physics
| | - Jaakko Akola
- Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Marco Maccarini
- Laboratoire TIMC-IMAG, Université Grenoble Alpes, Domaine de la Merci, 38706, La Tronche Cedex, France
| |
Collapse
|
295
|
Ring HC, Israelsen NM, Bang O, Haedersdal M, Mogensen M. Potential of contrast agents to enhance in vivo confocal microscopy and optical coherence tomography in dermatology: A review. JOURNAL OF BIOPHOTONICS 2019; 12:e201800462. [PMID: 30851078 DOI: 10.1002/jbio.201800462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Distinction between normal skin and pathology can be a diagnostic challenge. This systematic review summarizes how various contrast agents, either topically delivered or injected into the skin, affect distinction between skin disease and normal skin when imaged by optical coherence tomography (OCT) and confocal microscopy (CM). A systematic review of in vivo OCT and CM studies using exogenous contrast agents on healthy human skin or skin disease was performed. In total, nine CM studies and one OCT study were eligible. Four contrast agents aluminum chloride (AlCl) n = 2, indocyanine green (ICG) n = 3, sodium fluorescein n = 3 and acetic acid n = 1 applied to CM in variety of skin diseases. ICG, acetic acid and AlCl showed promise to increase contrast of tumor nests in keratinocyte carcinomas. Fluorescein and ICG enhanced contrast of keratinocytes and adnexal structures. In OCT of healthy skin gold nanoshells, increased contrast of natural skin openings. Contrast agents may improve delineation and diagnosis of skin cancers; ICG, acetic acid and AlCl have potential in CM and gold nanoshells facilitate visualization of adnexal skin structures in OCT. However, as utility of bedside optical imaging increases, further studies with robust methodological quality are necessary to implement contrast agents into routine dermatological practice.
Collapse
Affiliation(s)
- Hans C Ring
- Department of Dermatology, Bispebjerg Hospital, Nielsine Nielsens Vej 9, 2400 København NV, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels M Israelsen
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ole Bang
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Bispebjerg Hospital, Nielsine Nielsens Vej 9, 2400 København NV, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mogensen
- Department of Dermatology, Bispebjerg Hospital, Nielsine Nielsens Vej 9, 2400 København NV, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
296
|
Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. Plasmonic Heating of Nanostructures. Chem Rev 2019; 119:8087-8130. [PMID: 31125213 DOI: 10.1021/acs.chemrev.8b00738] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The absorption of light by plasmonic nanostructures and their associated temperature increase are exquisitely sensitive to the shape and composition of the structure and to the wavelength of light. Therefore, much effort is put into synthesizing novel nanostructures for optimized interaction with the incident light. The successful synthesis and characterization of high quality and biocompatible plasmonic colloidal nanoparticles has fostered numerous and expanding applications, especially in biomedical contexts, where such particles are highly promising for general drug delivery and for tomorrow's cancer treatment. We review the thermoplasmonic properties of the most commonly used plasmonic nanoparticles, including solid or composite metallic nanoparticles of various dimensions and geometries. Common methods for synthesizing plasmonic particles are presented with the overall goal of providing the reader with a guide for designing or choosing nanostructures with optimal thermoplasmonic properties for a given application. Finally, the biocompatibility and biological tolerance of structures are critically discussed along with novel applications of plasmonic nanoparticles in the life sciences.
Collapse
Affiliation(s)
| | - Akbar Samadi
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | - Henrik Klingberg
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
297
|
Han J, Liang G, Xing D. A pH-Sensitive Zwitterionic Iron Complex Probe with High Biocompatibility for Tumor-Specific Magnetic Resonance Imaging. Chemistry 2019; 25:8353-8362. [PMID: 30939221 DOI: 10.1002/chem.201901117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Accurate diagnosis of tumor characteristics, including its location and boundary, is of immense value to subsequent therapy. Activatable magnetic resonance imaging (MRI) contrast agents that respond to tumor-specific microenvironments, such as the redox state, pH, and enzyme activity, enable better mapping of tumor tissue. However, the practical application of most reported activatable agents is hampered by problems including potential toxicity, inefficient elimination, and slow activation. In this study, we developed a zwitterionic iron complex (Fe-ZDS) as a positive MRI contrast agent for tumor-specific imaging. Fe-ZDS could dissociate in weakly acidic solution rapidly, accompanied by clear longitudinal relaxivity (r1 ) enhancement, which enabled the complex to act as a pH-sensitive contrast agent for tumor-specific MR imaging. In vivo experiments showed that Fe-ZDS rapidly enhanced the tumor-to-normal contrast ratio by >40 %, which assisted in distinguishing the tumor boundary. Furthermore, Fe-ZDS circulated freely in the bloodstream and was excreted relatively safely via kidneys owing to its zwitterionic nature. Therefore, Fe-ZDS is an ideal candidate for a tumor-specific MRI contrast agent and holds considerable potential for clinical translation.
Collapse
Affiliation(s)
- Jiamei Han
- MOE Key Laboratory of Laser Life Science &, Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, P.R. China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science &, Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, P.R. China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science &, Institute of Laser Life Science, South China Normal University, Guangzhou, 510631, P.R. China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, P.R. China
| |
Collapse
|
298
|
Belousov AV, Morozov VN, Krusanov GA, Kolyvanova MA, Shtil AA. The Effect of Gold Nanoparticle Surface Modification with Polyethylene Glycol on the Absorbed Dose Distribution upon Irradiation with 137Cs and 60Co Photons. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
299
|
Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications. Prog Polym Sci 2019; 92:135-157. [PMID: 32831422 PMCID: PMC7441850 DOI: 10.1016/j.progpolymsci.2019.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.
Collapse
Affiliation(s)
- Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Roberto Portillo Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Emad Mogadam
- Department of Internal Medicine, Huntington Hospital, Pasadena, CA, 91105, USA
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chu Hsiang Yu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - William Kimball
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
300
|
Li B, Lane LA. Probing the biological obstacles of nanomedicine with gold nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1542. [PMID: 30084539 PMCID: PMC6585966 DOI: 10.1002/wnan.1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Despite massive growth in nanomedicine research to date, the field still lacks fundamental understanding of how certain physical and chemical features of a nanoparticle affect its ability to overcome biological obstacles in vivo and reach its intended target. To gain fundamental understanding of how physical and chemical parameters affect the biological outcomes of administered nanoparticles, model systems that can systematically manipulate a single parameter with minimal influence on others are needed. Gold nanoparticles are particularly good model systems in this case as one can synthetically control the physical dimensions and surface chemistry of the particles independently and with great precision. Additionally, the chemical and physical properties of gold allow particles to be detected and quantified in tissues and cells with high sensitivity. Through systematic biological studies using gold nanoparticles, insights toward rationally designed nanomedicine for in vivo imaging and therapy can be obtained. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Bin Li
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| | - Lucas A. Lane
- Department of Biomedical Engineering, College of Engineering and Applied SciencesNanjing UniversityNanjingJiangsuChina
| |
Collapse
|