251
|
Sinnecker H, Ramaker K, Frey A. Coating with luminal gut-constituents alters adherence of nanoparticles to intestinal epithelial cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2308-15. [PMID: 25551058 PMCID: PMC4273246 DOI: 10.3762/bjnano.5.239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/14/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Anthropogenic nanoparticles (NPs) have found their way into many goods of everyday life. Inhalation, ingestion and skin contact are potential routes for NPs to enter the body. In particular the digestive tract with its huge absorptive surface area provides a prime gateway for NP uptake. Considering that NPs are covered by luminal gut-constituents en route through the gastrointestinal tract, we wanted to know if such modifications have an influence on the interaction between NPs and enterocytes. RESULTS We investigated the consequences of a treatment with various luminal gut-constituents on the adherence of nanoparticles to intestinal epithelial cells. Carboxylated polystyrene particles 20, 100 and 200 nm in size represented our anthropogenic NPs, and differentiated Caco-2 cells served as model for mature enterocytes of the small intestine. Pretreatment with the proteins BSA and casein consistently reduced the adherence of all NPs to the cultured enterocytes, while incubation of NPs with meat extract had no obvious effect on particle adherence. In contrast, contact with intestinal fluid appeared to increase the particle-cell interaction of 20 and 100 nm NPs. CONCLUSION Luminal gut-constituents may both attenuate and augment the adherence of NPs to cell surfaces. These effects appear to be dependent on the particle size as well as on the type of interacting protein. While some proteins will rather passivate particles towards cell attachment, possibly by increasing colloid stability or camouflaging attachment sites, certain components of intestinal fluid are capable to modify particle surfaces in such a way that interactions with cellular surface structures result in an increased binding.
Collapse
Affiliation(s)
- Heike Sinnecker
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany, Member of the German Center for Lung Research
| | - Katrin Ramaker
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany, Member of the German Center for Lung Research
| | - Andreas Frey
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany, Member of the German Center for Lung Research
| |
Collapse
|
252
|
van Hemert S, Breedveld AC, Rovers JMP, Vermeiden JPW, Witteman BJM, Smits MG, de Roos NM. Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front Neurol 2014; 5:241. [PMID: 25484876 PMCID: PMC4240046 DOI: 10.3389/fneur.2014.00241] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that migraine may be associated with gastrointestinal (GI) disorders, including irritable bowel syndrome (IBS), inflammatory bowel syndrome, and celiac disease. Here, an overview of the associations between migraine and GI disorders is presented, as well as possible mechanistic links and clinical implications. People who regularly experience GI symptoms have a higher prevalence of headaches, with a stronger association with increasing headache frequency. Children with a mother with a history of migraine are more likely to have infantile colic. Children with migraine are more likely to have experienced infantile colic compared to controls. Several studies demonstrated significant associations between migraine and celiac disease, inflammatory bowel disease, and IBS. Possible underlying mechanisms of migraine and GI diseases could be increased gut permeability and inflammation. Therefore, it would be worthwhile to investigate these mechanisms further in migraine patients. These mechanisms also give a rationale to investigate the effects of the use of pre- and probiotics in migraine patients.
Collapse
Affiliation(s)
| | - Anne C Breedveld
- Division of Human Nutrition, Wageningen University , Wageningen , Netherlands
| | - Jörgen M P Rovers
- Department of Neurology, Gelderse Vallei Hospital , Ede , Netherlands
| | | | - Ben J M Witteman
- Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital , Ede , Netherlands
| | - Marcel G Smits
- Department of Neurology, Gelderse Vallei Hospital , Ede , Netherlands
| | - Nicole M de Roos
- Division of Human Nutrition, Wageningen University , Wageningen , Netherlands
| |
Collapse
|
253
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
254
|
Julio-Pieper M, Bravo JA, Aliaga E, Gotteland M. Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association. Aliment Pharmacol Ther 2014; 40:1187-201. [PMID: 25262969 DOI: 10.1111/apt.12950] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Central nervous system (CNS) development and physiopathology are greatly affected by environmental stimuli. The intestinal barrier restricts the entrance of toxins, pathogens, and antigens while modulating the expression of various neuroactive compounds. The existence of a rich gut-to-brain communication raises the possibility that intestinal barrier alterations may take part in the pathophysiology of CNS disorders. AIM To review evidence associating intestinal barrier dysfunction with the development of CNS disorders. METHODS Literature search was conducted on PubMed using the following terms: intestinal barrier, intestinal permeability, central nervous system, mental disorders, schizophrenia, autism, stress, anxiety, depression, and neurodegeneration. RESULTS Clinical and animal model studies of the association between intestinal barrier and schizophrenia, autism spectrum disorders, neurodegenerative diseases or depression were reviewed. The majority of reports concentrated on schizophrenia and autism spectrum disorders. About half of these described increased intestinal permeability/mucosal damage in patients compared with healthy controls, with up to 43% of children with autism spectrum disorders and up to 35% of schizophrenia patients displaying abnormally high urinary excretion of the sugars used as permeability markers. However, another substantial group of studies did not find such differences. In autism spectrum disorders, some reports show that the use of diets such as the gluten-free casein-free diet may contribute to the normalisation of lactulose/mannitol ratio, but to date there is no adequately controlled study showing improvement in behavioural symptoms following these dietary interventions. CONCLUSIONS Evidence of altered intestinal permeability in individuals suffering from CNS disorders is limited and cannot be regarded as proven. Moreover the efficacy of targeting gut barrier in the management of neurological and behavioural aspects of CNS disorders has not yet been established, and needs further investigation.
Collapse
Affiliation(s)
- M Julio-Pieper
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
255
|
Kalaitzakis E. Gastrointestinal dysfunction in liver cirrhosis. World J Gastroenterol 2014; 20:14686-14695. [PMID: 25356031 PMCID: PMC4209534 DOI: 10.3748/wjg.v20.i40.14686] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/27/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Patients with liver cirrhosis exhibit several features of gut dysfunction which may contribute to the development of cirrhosis complications as well as have an impact on nutritional status and health-related quality of life. Gastrointestinal symptoms are common in cirrhosis and their pathophysiology probably involves factors related to liver disease severity, psychological distress, and gut dysfunction (e.g., increased gastric sensitivity to distension and delayed gut transit). They may lead to reduced food intake and, thus, may contribute to the nutritional status deterioration in cirrhotic patients. Although tense ascites appears to have a negative impact on meal-induced accommodation of the stomach, published data on gastric accommodation in cirrhotics without significant ascites are not unanimous. Gastric emptying and small bowel transit have generally been shown to be prolonged. This may be related to disturbances in postprandial glucose, insulin, and ghrelin levels, which, in turn, appear to be associated to insulin resistance, a common finding in cirrhosis. Furthermore, small bowel manometry disturbances and delayed gut transit may be associated with the development of small bowel bacterial overgrowth. Finally, several studies have reported intestinal barrier dysfunction in patients with cirrhosis (especially those with portal hypertension), which is related to bacterial translocation and permeation of intestinal bacterial products, e.g., endotoxin and bacterial DNA, thus potentially being involved in the pathogenesis of complications of liver cirrhosis.
Collapse
|
256
|
Song MK, Park MY, Sung MK. 5-Fluorouracil-induced changes of intestinal integrity biomarkers in BALB/c mice. J Cancer Prev 2014; 18:322-9. [PMID: 25337561 PMCID: PMC4189444 DOI: 10.15430/jcp.2013.18.4.322] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background: Intestinal mucositis is a most frequently occurring toxicity in cancer chemotherapy, and consequent malnutrition reduces tolerance to cancer therapies. Therefore it is important to lessen the severity of mucotitis and to develop complementary agents capable of reducing mucotitis-related symptoms. This study was conducted to determine 5-fluorouracil (5-FU) induced intestinal damage to understand intestinal damages due to chemotherapy and to provide information on biomarkers which can be used to screen complementary agents in future studies. Methods: BALB/c mice were divided into three experimental groups and subjected to the intraperitoneal injection of either 100 mg/kg or 200 mg/kg of 5-FU. The third group was used as PBS controls. Body weights and the consistency of the stools were recorded every day, and the animals were sacrificed on the 7th day post 5-FU administration. The expressions of intestinal tight junction proteins and mRNAs of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were determined. Results: The body weight of the animals treated with 5-FU was significantly decreased in a dose-dependent manner. However, mice given 100 mg/kg 5-FU rapidly recovered the original body weight. Symptom of diarrhea was also more severe in 200 mg/kg 5-FU treated group than that of the 100 mg/kg 5-FU treated animals. The expressions of occludin and claudin-1, not ZO-1 protein expressions in 200 mg/kg 5-FU treated animals were significantly reduced compared to those of the control group or 100 mg/kg 5-FU group. The expression of Nuclear factor-kappa B p65 (NF-κB p65) protein and TNF-α mRNA were significantly higher in 5-FU treated group compared to those of control group. No difference was observed with IL-1β expression. Conclusions: These results suggested that selected tight junction proteins and inflammatory cytokines are related to 5-FU induced mucositis, and thereby can be used as targets of developing complementary agents.
Collapse
Affiliation(s)
- Min-Kyung Song
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Mi-Young Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
257
|
Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3:40-6. [PMID: 25462064 PMCID: PMC4297927 DOI: 10.1016/j.redox.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for therapy of ALD.
Collapse
|
258
|
Petschow BW, Blikslager AT, Weaver EM, Campbell JM, Polo J, Shaw AL, Burnett BP, Klein GL, Rhoads JM. Bovine immunoglobulin protein isolates for the nutritional management of enteropathy. World J Gastroenterol 2014; 20:11713-11726. [PMID: 25206275 PMCID: PMC4155361 DOI: 10.3748/wjg.v20.i33.11713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/09/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is responsible for a multitude of digestive and immune functions which depend upon the balanced interaction of the intestinal microbiota, diet, gut barrier function, and mucosal immune response. Disruptions in one or more of these factors can lead to intestinal disorders or enteropathies which are characterized by intestinal inflammation, increased gut permeability, and reduced capacity to absorb nutrients. Enteropathy is frequently associated with human immunodeficiency virus (HIV) infection, inflammatory bowel disease, autoimmune enteropathy, radiation enteritis, and irritable bowel syndrome (IBS), where pathologic changes in the intestinal tract lead to abdominal discomfort, bloating, abnormal bowel function (e.g., diarrhea, urgency, constipation and malabsorption). Unfortunately, effective therapies for the management of enteropathy and restoring intestinal health are still not available. An accumulating body of preclinical studies has demonstrated that oral administration of plasma- or serum-derived protein concentrates containing high levels of immunoglobulins can improve weight, normalize gut barrier function, and reduce the severity of enteropathy in animal models. Recent studies in humans, using serum-derived bovine immunoglobulin/protein isolate, demonstrate that such protein preparations are safe and improve symptoms, nutritional status, and various biomarkers associated with enteropathy. Benefits have been shown in patients with HIV infection or diarrhea-predominant IBS. This review summarizes preclinical and clinical studies with plasma/serum protein concentrates and describes the effects on host nutrition, intestinal function, and markers of intestinal inflammation. It supports the concept that immunoglobulin-containing protein preparations may offer a new strategy for restoring functional homeostasis in the intestinal tract of patients with enteropathy.
Collapse
|
259
|
Quercetin increases claudin-4 expression through multiple transcription factors in intestinal Caco-2 cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
260
|
Zhu C, Guan F, Wang C, Jin LH. The protective effects of Rhodiola crenulata extracts on Drosophila melanogaster gut immunity induced by bacteria and SDS toxicity. Phytother Res 2014; 28:1861-6. [PMID: 25146450 DOI: 10.1002/ptr.5215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Abstract
The aim of this study was to observe the effect of the Rhodiola crenulata extracts on gut immunity of Drosophila melanogaster. Wild-type flies fed standard cornmeal-yeast medium were used as controls. Experimental groups were supplemented with 2.5% R. crenulata aqueous extracts in standard medium. Survival rate was determined by feeding pathogenic microorganisms and toxic compounds. The levels of reactive oxygen species and dead cells were detected by dihydroethidium and 7-amino-actinomycin D staining, respectively. The expression of antimicrobial peptides was evaluated by quantitative polymerase chain reaction, and morphological change of the intestine was imaged by an Axioskop 2 plus microscope. The results demonstrate that R. crenulata increased the survival rates of adult flies and expression of antimicrobial peptide genes after pathogen or toxic compound ingestion. Moreover, decreased levels of reactive oxygen species and epithelial cell death were associated with results in improved intestinal morphology. The pharmacological action of R. crenulata from Tibet was greater than that from Sichuan. These results indicate that the R. crenulata extracts from Tibet had better pharmacological effect on D. melanogaster gut immunity after ingestion of pathogens and toxic compounds. These results may provide the pharmacological basis for prevention of inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Caixia Zhu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, 150040, China; College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | | | | | | |
Collapse
|
261
|
Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr Opin Support Palliat Care 2014; 7:361-7. [PMID: 24157715 PMCID: PMC3819310 DOI: 10.1097/spc.0000000000000017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of Review Cachexia is a complex metabolic syndrome characterized by skeletal muscle and adipose tissue loss and is frequently associated with emaciation, anorexia, systemic inflammation, and metabolic dysfunction. Lack of a clear understanding of the cause of cancer cachexia has impeded progress in identifying effective therapeutic agents. This review summarizes recent publications on the role of gut barrier function, intestinal microbiota, and inflammation in the etiology of cancer cachexia and new therapeutic interventions that may benefit treatment strategies. Recent Findings Significant advances have been made in understanding the composition and metabolic capabilities of the intestinal microbiota and its impact on gut barrier function with implications for certain inflammatory-based diseases. Recent studies reported associations between intestinal permeability and endotoxemia with development of cancer cachexia and other metabolic disorders. Improvements in intestinal function and weight gain along with decreased inflammation have been reported for potential therapeutic agents such as eicosapentaenoic acid, immunoglobulin isolates, and probiotics. Summary Continued progress in the scientific understanding of the complex interplay between the intestinal microbiota, gut barrier function, and host inflammatory responses will uncover new therapeutic targets to help avoid the serious metabolic alterations associated with cachexia.
Collapse
|
262
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
263
|
Sziksz E, Pap D, Veres G, Fekete A, Tulassay T, Vannay &A. Involvement of heat shock proteins in gluten-sensitive enteropathy. World J Gastroenterol 2014; 20:6495-6503. [PMID: 24914370 PMCID: PMC4047334 DOI: 10.3748/wjg.v20.i21.6495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/12/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.
Collapse
|
264
|
Sequeira IR, Lentle RG, Kruger MC, Hurst RD. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS One 2014; 9:e99256. [PMID: 24901524 PMCID: PMC4047110 DOI: 10.1371/journal.pone.0099256] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/13/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lactulose mannitol ratio tests are clinically useful for assessing disorders characterised by changes in gut permeability and for assessing mixing in the intestinal lumen. Variations between currently used test protocols preclude meaningful comparisons between studies. We determined the optimal sampling period and related this to intestinal residence. METHODS Half-hourly lactulose and mannitol urinary excretions were determined over 6 hours in 40 healthy female volunteers after administration of either 600 mg aspirin or placebo, in randomised order at weekly intervals. Gastric and small intestinal transit times were assessed by the SmartPill in 6 subjects from the same population. Half-hourly percentage recoveries of lactulose and mannitol were grouped on a basis of compartment transit time. The rate of increase or decrease of each sugar within each group was explored by simple linear regression to assess the optimal period of sampling. KEY RESULTS The between subject standard errors for each half-hourly lactulose and mannitol excretion were lowest, the correlation of the quantity of each sugar excreted with time was optimal and the difference between the two sugars in this temporal relationship maximal during the period from 2½-4 h after ingestion. Half-hourly lactulose excretions were generally increased after dosage with aspirin whilst those of mannitol were unchanged as was the temporal pattern and period of lowest between subject standard error for both sugars. CONCLUSION The results indicate that between subject variation in the percentage excretion of the two sugars would be minimised and the differences in the temporal patterns of excretion would be maximised if the period of collection of urine used in clinical tests of small intestinal permeability were restricted to 2½-4 h post dosage. This period corresponds to a period when the column of digesta column containing the probes is passing from the small to the large intestine.
Collapse
Affiliation(s)
- Ivana R. Sequeira
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Roger G. Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Marlena C. Kruger
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Roger D. Hurst
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, New Zealand
| |
Collapse
|
265
|
Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 2014; 5:e1102. [PMID: 24603330 PMCID: PMC3973196 DOI: 10.1038/cddis.2014.70] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 12/30/2022]
Abstract
Systemic inflammatory response syndromes (SIRS) may be caused by both infectious and sterile insults, such as trauma, ischemia-reperfusion or burns. They are characterized by early excessive inflammatory cytokine production and the endogenous release of several toxic and damaging molecules. These are necessary to fight and resolve the cause of SIRS, but often end up progressively damaging cells and tissues, leading to life-threatening multiple organ dysfunction syndrome (MODS). As inflammasome-dependent cytokines such as interleukin-1β are critically involved in the development of MODS and death in SIRS, and ATP is an essential activator of inflammasomes in vitro, we decided to analyze the ability of ATP removal to prevent excessive tissue damage and mortality in a murine LPS-induced inflammation model. Our results indeed indicate an important pro-inflammatory role for extracellular ATP. However, the effect of ATP is not restricted to inflammasome activation at all. Removing extracellular ATP with systemic apyrase treatment not only prevented IL-1β accumulation but also the production of inflammasome-independent cytokines such as TNF and IL-10. In addition, ATP removal also prevented systemic evidence of cellular disintegration, mitochondrial damage, apoptosis, intestinal barrier disruption and even mortality. Although blocking ATP receptors with the broad-spectrum P2 purinergic receptor antagonist suramin imitated certain beneficial effects of apyrase treatment, it could not prevent morbidity or mortality at all. We conclude that removal of systemic extracellular ATP could be a valuable strategy to dampen systemic inflammatory damage and toxicity in SIRS.
Collapse
Affiliation(s)
- A Cauwels
- 1] Inflammation Research Center, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - E Rogge
- 1] Inflammation Research Center, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - B Vandendriessche
- 1] Inflammation Research Center, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - S Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Brouckaert
- 1] Inflammation Research Center, VIB, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
266
|
von Stein P. Inflammatory bowel disease classification through multigene analysis: fact or fiction? Expert Rev Mol Diagn 2014; 9:7-10. [DOI: 10.1586/14737159.9.1.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
267
|
Hemert SV, Ormel G. Influence of the Multispecies Probiotic Ecologic<sup>®</sup> BARRIER on Parameters of Intestinal Barrier Function. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.518187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
268
|
Sinnecker H, Krause T, Koelling S, Lautenschläger I, Frey A. The gut wall provides an effective barrier against nanoparticle uptake. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2092-101. [PMID: 25551037 PMCID: PMC4273221 DOI: 10.3762/bjnano.5.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/23/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The omnipresence of nanoparticles (NPs) in numerous goods has led to a constant risk of exposure and inadvertent uptake for humans. This situation calls for thorough investigation of the consequences of NP intake. As the vast mucosa of the human gastrointestinal tract represents an attractive site of entry, we wanted to take a look on the fate that ingested NPs suffer in the gut. As a model to investigate NP uptake we used the isolated perfused rat small intestine. Differently sized fluorescent latex particles were used as exemplary anthropogenic NPs. RESULTS The particles were administered as bolus into the isolated intestine, and samples from the luminal, vascular and lymphatic compartments were collected over time. NP amounts in the different fluids were determined by fluorescence measurements. No particles could be detected in the vascular and lymphatic system. By contrast a major amount of NPs was found in luminal samples. Yet, a substantial share of particles could not be recovered in the fluid fractions, indicating a sink function of the intestinal tissue for NPs. A histological examination of the gut revealed that virtually no particles adhered to the epithelium or resided in the tissue, the bulk of particles seemed to be trapped in the mucus lining the gut tube. When this mucus was dissolved and removed from the gut almost the entire amount of particles missing could be recovered: over 95% of the given NPs were present in the two fractions, the luminal samples and the dissolved mucus. To foster NP uptake via an extended interaction time with the epithelium, the intestinal peristalsis was decelerated and the duration of the experiment was prolonged. Even under those conditions, no particle fluorescence was detected in the vascular and lymphatic samples. CONCLUSION We could show that after intestinal exposure with a large dose of NPs the vast majority of NPs did obviously not come into contact with the epithelium but was either directly discarded from the gut or trapped in mucus. The healthy small intestinal tract evidently provides an effective barrier against NP uptake whereby the mucus film seems to play an important role.
Collapse
Affiliation(s)
- Heike Sinnecker
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, Borstel, 23845, Germany, Airway Research Center North (ARCN), Member of the German Center for Lung Research
| | - Thorsten Krause
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, Borstel, 23845, Germany, Airway Research Center North (ARCN), Member of the German Center for Lung Research
| | - Sabine Koelling
- Central Laboratory of Analytical Chemistry, Hamburg University of Technology, Eißendorfer Straße 38, Hamburg, 21073, Germany
| | - Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Schwanenweg 21, Kiel, 24105, Germany
| | - Andreas Frey
- Division of Mucosal Immunology & Diagnostics, Priority Program Asthma & Allergy, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 22, Borstel, 23845, Germany, Airway Research Center North (ARCN), Member of the German Center for Lung Research
| |
Collapse
|
269
|
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2013; 25:657-70. [PMID: 24231662 DOI: 10.1681/asn.2013080905] [Citation(s) in RCA: 485] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gut harbors >100 trillion microbial cells, which influence the nutrition, metabolism, physiology, and immune function of the host. Here, we review the quantitative and qualitative changes in gut microbiota of patients with CKD that lead to disturbance of this symbiotic relationship, how this may contribute to the progression of CKD, and targeted interventions to re-establish symbiosis. Endotoxin derived from gut bacteria incites a powerful inflammatory response in the host organism. Furthermore, protein fermentation by gut microbiota generates myriad toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier function in CKD allows translocation of endotoxin and bacterial metabolites to the systemic circulation, which contributes to uremic toxicity, inflammation, progression of CKD, and associated cardiovascular disease. Several targeted interventions that aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb gut-derived uremic toxins have been developed. Indeed, animal and human studies suggest that prebiotics and probiotics may have therapeutic roles in maintaining a metabolically-balanced gut microbiota and reducing progression of CKD and uremia-associated complications. We propose that further research should focus on using this highly efficient metabolic machinery to alleviate uremic symptoms.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington DC
| | | |
Collapse
|
270
|
Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RAE, Kordower JH. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. Mov Disord 2013; 29:999-1009. [PMID: 24898698 DOI: 10.1002/mds.25736] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/20/2013] [Accepted: 10/01/2013] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a multifocal degenerative disorder for which there is no cure. The majority of cases are sporadic with unknown etiology. Recent data indicate that untreated patients with de novo PD have increased colonic permeability and that both de novo and premotor patients have pathological expression of α-synuclein (α-syn) in their colon. Both endpoints potentially can serve as disease biomarkers and even may initiate PD events through gut-derived, lipopolysaccharide (LPS)-induced neuronal injury. Animal models could be ideal for interrogating the potential role of the intestines in the pathogenesis of PD; however, few current animal models of PD encompass these nonmotor features. We sought to establish a progressive model of PD that includes the gastrointestinal (GI) dysfunction present in human patients. C57/BL6 mice were systemically administered one dose of either LPS (2.5 mg/kg) or saline and were sacrificed in monthly intervals (n = 5 mice for 5 months) to create a time-course. Small and large intestinal permeability was assessed by analyzing the urinary output of orally ingested sugar probes through capillary column gas chromatography. α-Syn expression was assessed by counting the number of mildly, moderately, and severely affected myenteric ganglia neurons throughout the GI tract, and the counts were validated by quantitative optical density measurements. Nigrostriatal integrity was assessed by tyrosine hydroxylase immunohistochemistry stereology and densitometry. LPS caused an immediate and progressive increase in α-syn expression in the large intestine but not in the small intestine. Intestinal permeability of the whole gut (large and small intestines) progressively increased between months 2 and 4 after LPS administration but returned to baseline levels at month 5. Selective measurements demonstrated that intestinal permeability in the small intestine remained largely intact, suggesting that gut leakiness was predominately in the large intestine. Phosphorylated serine 129-α-syn was identified in a subset of colonic myenteric neurons at months 4 and 5. Although these changes were observed in the absence of nigrostriatal degeneration, an abrupt but insignificant increase in brainstem α-syn was observed that paralleled the restoration of permeability. No changes were observed over time in controls. LPS, an endotoxin used to model PD, causes sequential increases in α-syn immunoreactivity, intestinal permeability, and pathological α-syn accumulation in the colon in a manner similar to that observed in patients with PD. These features are observed without nigrostriatal degeneration and incorporate PD features before the motor syndrome. This allows for the potential use of this model in testing neuroprotective and disease-modifying therapies, including intestinal-directed therapies to fortify intestinal barrier integrity.
Collapse
Affiliation(s)
- Leo P Kelly
- Department of Neurosurgery, Rush University, Chicago, Illinois, USA; Department of Pharmacology, The Graduate College, Rush University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
271
|
Li X, Wang C, Nie J, Lv D, Wang T, Xu Y. Toll-like receptor 4 increases intestinal permeability through up-regulation of membrane PKC activity in alcoholic steatohepatitis. Alcohol 2013; 47:459-65. [PMID: 23871536 DOI: 10.1016/j.alcohol.2013.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 02/06/2023]
Abstract
Intestinal hyperpermeability is a causal factor for the development of alcoholic endotoxemia and steatohepatitis. However, the mechanisms governing this link remain unknown. The purpose of this study was to determine whether toll-like receptor 4 (TLR4) is involved in ethanol's deleterious effects on the intestinal barrier. Caco-2 cells were incubated in vitro with 1-10% ethanol. The results indicated that ethanol had a dose-dependent effect in increasing TLR4 expression and intercellular permeability. Then the effects of TLR4 on protein kinase C (PKC) and the intercellular junction protein occludin were assessed with and without pretreatment with a TLR4 inhibitor. The results indicated that TLR4 increased nonspecific PKC activity and reduced the expression of phosphorylated occludin in the membrane, which increased intercellular permeability. These effects were prevented by pretreatment with TLR4 mAb. Wild-type C57BL/6 mice were fed an ethanol or isocaloric liquid diet for 6 weeks. Hepatitis was diagnosed by the presence of an associated elevated blood endotoxin level. Chronic ethanol treatment significantly elevated blood endotoxin levels, intestinal permeability, and the expression of TLR4 in the ileum and colon. Moreover, ethanol exposure reduced the distribution of phosphorylated occludin in the intestinal epithelium because of PKC activation. In conclusion, chronic ethanol exposure induces a high response of TLR4 to lipopolysaccharide (LPS), and TLR4 increases intestinal permeability through down-regulation of phosphorylated occludin expression in the intestinal epithelial barrier, accompanied by membrane PKC hyperactivity.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, PR China
| | | | | | | | | | | |
Collapse
|
272
|
Järvinen KM, Konstantinou GN, Pilapil M, Arrieta MC, Noone S, Sampson HA, Meddings J, Nowak-Węgrzyn A. Intestinal permeability in children with food allergy on specific elimination diets. Pediatr Allergy Immunol 2013; 24:589-95. [PMID: 23909601 PMCID: PMC3774110 DOI: 10.1111/pai.12106] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Children with food allergy have been shown to have increased small intestinal permeability (IP) following ingestion of the offending food as well as during elimination diets. We investigated IP in asymptomatic food allergic children during an elimination diet to identify clinical characteristics associated with altered IP. METHODS Urinary recovery ratios of lactulose and mannitol (L/M) were determined 5 h following ingestion of 7.5 g of lactulose and 2 g of mannitol in 131 cow's milk and egg allergic children. An L/M ratio of ≥0.025 was considered abnormal based upon previously established laboratory internal references. A chart review was conducted to assess the clinical characteristics of these patients. RESULTS A total of 50 (38%) of the 131 children (median 6.7, range 4.8-8.9 yr; 66.2% male) with food allergy had elevated IP while asymptomatic on strict elimination diets. Age and height negatively correlated with IP. However, in the regression model analysis, abnormal IP was associated with shorter stature independently of age. Otherwise, food allergic patients with increased IP were comparable in gender, nutritional status, age of onset of food allergy, history of reactions, atopic diseases, and family history of food allergies to those with normal IP. CONCLUSIONS Elevated IP was found in about one-third of asymptomatic food allergic children on elimination diets and was associated with shorter stature. Our results suggest that increased IP may be an intrinsic trait in a subset of food allergic children. However, large, prospective studies are necessary to determine the role of impaired intestinal barrier in food allergy.
Collapse
Affiliation(s)
- Kirsi M Järvinen
- Division of Allergy & Immunology and Center for Immunology & Microbial Diseases, Albany Medical College, Albany, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, Vitaterna MH, Song S, Turek FW, Keshavarzian A. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation. PLoS One 2013; 8:e67102. [PMID: 23825629 PMCID: PMC3688973 DOI: 10.1371/journal.pone.0067102] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
The circadian clock orchestrates temporal patterns of physiology and behavior relative to the environmental light:dark cycle by generating and organizing transcriptional and biochemical rhythms in cells and tissues throughout the body. Circadian clock genes have been shown to regulate the physiology and function of the gastrointestinal tract. Disruption of the intestinal epithelial barrier enables the translocation of proinflammatory bacterial products, such as endotoxin, across the intestinal wall and into systemic circulation; a process that has been linked to pathologic inflammatory states associated with metabolic, hepatic, cardiovascular and neurodegenerative diseases – many of which are commonly reported in shift workers. Here we report, for the first time, that circadian disorganization, using independent genetic and environmental strategies, increases permeability of the intestinal epithelial barrier (i.e., gut leakiness) in mice. Utilizing chronic alcohol consumption as a well-established model of induced intestinal hyperpermeability, we also found that both genetic and environmental circadian disruption promote alcohol-induced gut leakiness, endotoxemia and steatohepatitis, possibly through a mechanism involving the tight junction protein occludin. Circadian organization thus appears critical for the maintenance of intestinal barrier integrity, especially in the context of injurious agents, such as alcohol. Circadian disruption may therefore represent a previously unrecognized risk factor underlying the susceptibility to or development of alcoholic liver disease, as well as other conditions associated with intestinal hyperpermeability and an endotoxin-triggered inflammatory state.
Collapse
Affiliation(s)
- Keith C. Summa
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| | - Robin M. Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Christopher B. Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Maliha Shaikh
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Kate Cavanaugh
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Yueming Tang
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Shiwen Song
- American Society for Clinical Pathology, Chicago, Illinois, United States of America
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, United States of America
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
274
|
Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis. PLoS One 2013; 8:e62792. [PMID: 23717394 PMCID: PMC3661585 DOI: 10.1371/journal.pone.0062792] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/25/2013] [Indexed: 12/13/2022] Open
Abstract
Background Patients admitted to the intensive care unit with alcohol use disorders have increased morbidity and mortality. The purpose of this study was to determine how chronic alcohol ingestion alters the host response to sepsis in mice. Methods Mice were randomized to receive either alcohol or water for 12 weeks and then subjected to cecal ligation and puncture. Mice were sacrificed 24 hours post-operatively or followed seven days for survival. Results Septic alcohol-fed mice had a significantly higher mortality than septic water-fed mice (74% vs. 41%, p = 0.01). This was associated with worsened gut integrity in alcohol-fed mice with elevated intestinal epithelial apoptosis, decreased crypt proliferation and shortened villus length. Further, alcohol-fed mice had higher intestinal permeability with decreased ZO-1 and occludin protein expression in the intestinal tight junction. The frequency of splenic and bone marrow CD4+ T cells was similar between groups; however, splenic CD4+ T cells in septic alcohol-fed mice had a marked increase in both TNF and IFN-γ production following ex vivo stimulation. Neither the frequency nor function of CD8+ T cells differed between alcohol-fed and water-fed septic mice. NK cells were decreased in both the spleen and bone marrow of alcohol-fed septic mice. Pulmonary myeloperoxidase levels and BAL levels of G-CSF and TFG-β were higher in alcohol-fed mice. Pancreatic metabolomics demonstrated increased acetate, adenosine, xanthine, acetoacetate, 3-hydroxybutyrate and betaine in alcohol-fed mice and decreased cytidine, uracil, fumarate, creatine phosphate, creatine, and choline. Serum and peritoneal cytokines were generally similar between alcohol-fed and water-fed mice, and there were no differences in bacteremia, lung wet to dry weight, or pulmonary, liver or splenic histology. Conclusions When subjected to the same septic insult, mice with chronic alcohol ingestion have increased mortality. Alterations in intestinal integrity, the host immune response, and pancreatic metabolomics may help explain this differential response.
Collapse
|
275
|
Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur J Gastroenterol Hepatol 2013; 25:271-81. [PMID: 23169309 DOI: 10.1097/meg.0b013e32835b5803] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with long-standing inflammatory bowel disease (IBD) are at a higher risk of developing colorectal cancer (CRC). This risk increases with the longer duration of colitis, greater extent of inflammation, a family history of CRC, severity of bowel inflammation, and a coexistent primary sclerosing cholangitis. The cornerstone for comprehending the development of CRC in IBD and hence early detection is based on the understanding of the molecular pathways of IBD itself. At a molecular level, the pathogenesis of CRC is related to understanding the inflammatory changes and involves multiple inter-related pathways including (i) genetic alterations (e.g. chromosomal and microsatellite instability and hypermethylation), (ii) mucosal inflammatory mediators (e.g. COX-2, interleukin-6, interleukin-23, tumor necrosis factor-α, nuclear factor-κB, and chemokines), (iii) changes in the expression of receptors on the epithelial cells, and (iv) oxidant stress, mucosal breakdown, and intestinal microbiota. The aim of this review is to provide an evidence-based approach for the role of chronic inflammatory mechanisms and the molecular basis of these mechanisms in the development of CRC. Therefore, understanding the molecular basis of CRC is an important step for the identification of new biomarkers that can help in the early detection of CRC in these patients.
Collapse
|
276
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 891] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
277
|
Gonzalez-Quintela A, Alonso M, Campos J, Vizcaino L, Loidi L, Gude F. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One 2013; 8:e54600. [PMID: 23349936 PMCID: PMC3551812 DOI: 10.1371/journal.pone.0054600] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 01/03/2023] Open
Abstract
Background and Aim Assessment of serum concentration of lipopolysaccharide (LPS)-binding protein (LBP) has been suggested as a useful biomarker to indicate activation of innate immune responses to microbial products. We investigated LBP concentrations and associations with demographics, lifestyle factors, and common metabolic abnormalities in adults. We also examined if LBP concentrations were associated with common polymorphisms in genes coding for LBP (rs2232618), CD14 (rs2569190), and TLR4 (rs4986790), the molecules responsible for the innate immune response to LPS, or serum levels of soluble CD14 (sCD14) and proinflammatory cytokines. Methods Serum LBP was measured with a commercial immunoassay in a random sample of the adult population (n = 420, 45% males, age 18–92 years) from a single municipality. Results Serum LBP concentrations increased with age (P<0.001) and were higher in individuals who were overweight or obese than in normal-weight individuals (P<0.001). Similarly, LBP concentrations were higher in individuals with metabolic syndrome than in individuals without it (P<0.001). Among metabolic syndrome components, LBP concentrations were independently associated with abdominal obesity (P = 0.002) and low concentrations of HDL-cholesterol (P<0.001). Serum LBP concentrations tended to be independently associated with smoking (P = 0.05), but not with alcohol consumption. Likewise, there was not significant association between LBP concentrations and gene polymorphisms. Concentrations of LBP significantly correlated with serum levels of proinflammatory cytokines (IL-6 and IL-8), sCD14, and with liver enzymes. Conclusions Serum LBP concentrations increased with age. Overweight, obesity, and having metabolic syndrome (particularly, low HDL cholesterol levels) were associated with higher LBP concentrations. These findings are consistent with microbial exposure playing a role in these inflammatory, metabolic abnormalities.
Collapse
Affiliation(s)
- Arturo Gonzalez-Quintela
- Department of Internal Medicine, Complejo Hospitalario Universitario, Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
278
|
Hemert SV, Verwer J, Schütz B. Clinical Studies Evaluating Effects of Probiotics on Parameters of Intestinal Barrier Function. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.32032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
279
|
Peng JH, Cui T, Huang F, Chen L, Zhao Y, Xu L, Xu LL, Feng Q, Hu YY. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression. J Pharmacol Exp Ther 2012; 344:646-54. [PMID: 23277536 DOI: 10.1124/jpet.112.201137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Puerarin, an isoflavone component extracted from Kudzu (Pueraria lobata), has been demonstrated to alleviate alcohol-related disorders. Our study examined whether puerarin ameliorates chronic alcoholic liver injury through inhibition of endotoxin gut leakage, the subsequent Kupffer cell activation, and endotoxin receptors expression. Rats were provided with the Liber-DeCarli liquid diet for 8 weeks. Puerarin (90 mg/kg or 180 mg/kg daily) was orally administered from the beginning of the third week until the end of the experiment. Chronic alcohol intake caused increased serum alanine aminotransferase, aspartate aminotransferase, hepatic gamma-glutamyl transpeptidase, and triglyceride levels as well as fatty liver and neutrophil infiltration in hepatic lobules as determined by biochemical and histologic assays. A significant increase of liver tumor necrosis factor α was detected by enzyme-linked immunosorbent assay. These pathologic effects correlated with increased endotoxin level in portal vein and upregulated protein expression of hepatic CD68, lipopolysaccharide-binding protein, CD14, Toll-like receptor 2, and Toll-like receptor 4. Meanwhile, the intestinal microvilli were observed to be sparse, shortened, and irregularity in distribution under the transmission electron microscope in conjunction with the downregulated intestinal zonula occludens-1 protein expression. These hepatic pathologic changes were significantly inhibited in puerarin-treated animals as were the endotoxin levels and hepatic CD68 and endotoxin receptors. Moreover, the pathologic changes in intestinal microvillus and the decreased intestinal zonula occludens-1 were also ameliorated with puerarin treatment. These results thus demonstrate that puerarin inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression is involved in the alleviation of chronic alcoholic liver injury in rats.
Collapse
Affiliation(s)
- Jing-Hua Peng
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 2012; 109:21528-33. [PMID: 23236133 DOI: 10.1073/pnas.1215849110] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by a growing risk of disease and death, yet the underlying pathophysiology is poorly understood. Indeed, little is known about how the functional decline of individual organ systems relates to the integrative physiology of aging and probability of death of the organism. Here we show that intestinal barrier dysfunction is correlated with lifespan across a range of Drosophila genotypes and environmental conditions, including mitochondrial dysfunction and dietary restriction. Regardless of chronological age, intestinal barrier dysfunction predicts impending death in individual flies. Activation of inflammatory pathways has been linked to aging and age-related diseases in humans, and an age-related increase in immunity-related gene expression has been reported in Drosophila. We show that the age-related increase in expression of antimicrobial peptides is tightly linked to intestinal barrier dysfunction. Indeed, increased antimicrobial peptide expression during aging can be used to identify individual flies exhibiting intestinal barrier dysfunction. Similarly, intestinal barrier dysfunction is more accurate than chronological age in identifying individual flies with systemic metabolic defects previously linked to aging, including impaired insulin/insulin-like growth factor signaling, as evidenced by a reduction in Akt activation and up-regulation of dFOXO target genes. Thus, the age-dependent loss of intestinal integrity is associated with altered metabolic and immune signaling and, critically, is a harbinger of death. Our findings suggest that intestinal barrier dysfunction may be an important factor in the pathophysiology of aging in other species as well, including humans.
Collapse
|
281
|
Bifidobacteria may be beneficial to intestinal microbiota and reduction of bacterial translocation in mice following ischaemia and reperfusion injury. Br J Nutr 2012; 109:1990-8. [PMID: 23122253 DOI: 10.1017/s0007114512004308] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of the present study was to determine the effect of peroral bifidobacteria on the intestinal microbiota, barrier function and bacterial translocation (BT) in a mouse model of ischaemia and reperfusion (I/R) injury. A total of twenty-four male BALB/c mice were randomly allocated into three groups: (1) sham-operated, (2) I/R and (3) I/R injury and bifidobacteria pretreatment (109 colony-forming units/d). Bifidobacteria were administered daily intragastrically for 2 weeks before induction of I/R. Subsequently, samples of caecal content, intestinal mucosa, ileal segments, blood, mesenteric lymph nodes (MLN) and distant organs (liver, spleen and kidney) were prepared for examination. In the I/R model, barrier dysfunction (caecal microbiota dysbiosis, disruption of tight junction (TJ), increased epithelial cell apoptosis, disruption of mucosa and multiple erosions) in the intestine was observed, associated with increased BT to extraintestinal sites. The ratio of BT to MLN and distant organs in mice exposed to I/R injury was 62·5 %, which was significantly higher than the sham-operated group. However, pretreatment of animals with bifidobacteria prevented I/R-induced BT, reduced pro-inflammatory cytokine release, the levels of endotoxin, intestinal epithelial cell apoptosis, disruption of TJ and increased the concentration of SCFA, resulting in recovered microbiota and mucosal integrity. Bifidobacteria may be beneficial in reducing BT in I/R injury of mice. Therefore, peroral administration of bifidobacteria is a potential strategy to prevent I/R-induced BT and intestinal barrier dysfunction.
Collapse
|
282
|
Koh YY, Jeon WK, Cho YK, Kim HJ, Chung WG, Chon CU, Oh TY, Shin JH. The effect of intestinal permeability and endotoxemia on the prognosis of acute pancreatitis. Gut Liver 2012; 6:505-11. [PMID: 23170158 PMCID: PMC3493734 DOI: 10.5009/gnl.2012.6.4.505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/29/2011] [Accepted: 02/06/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Early intestinal mucosal damage plays an important role in severe acute pancreatitis (AP). Previous studies have shown that intestinal permeability (IP), serum endotoxin and cytokines contribute to the early intestinal barrier dysfunction in AP. This study explored the predictive capacity of IP, endotoxemia and cytokines as prognostic indicators in AP patients. METHODS Eighty-seven AP patients were included in the study. The patients were classified into three groups according to the Balthazar computed tomography severity index (CTSI). We compared the biochemical parameters, including IP, serum endotoxin level and cytokine level among the three groups. The associations of IP with serum endotoxin, cytokines, CTSI, and other widely used biochemical parameters and scoring systems were also examined. RESULTS IP, serum endotoxin, interleukin (IL-6) and tumor necrosis factor (TNF)-α had a positive correlation with the CTSI of AP. Endotoxin, IL-6, TNF-α, CTSI, the Ranson/APACHE II score, the duration of hospital stay, complications and death significantly affect IP in the AP patients. CONCLUSIONS We believe that IP with subsidiary measurements of serum endotoxin, IL-6 and TNF-α may be reliable markers for predicting the prognosis of AP. Further studies that can restore and preserve gut barrier function in AP patients are warranted.
Collapse
Affiliation(s)
- Young Yool Koh
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr 2012; 31:735-40. [DOI: 10.1016/j.clnu.2012.02.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 02/09/2012] [Accepted: 02/17/2012] [Indexed: 01/20/2023]
|
284
|
Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res 2012; 32:637-47. [PMID: 23084636 DOI: 10.1016/j.nutres.2012.07.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/16/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
Recently, increased attention has been paid to the link between gut microbial composition and obesity. Gut microbiota is a source of endotoxins whose increase in plasma is related to obesity and insulin resistance through increased intestinal permeability in animal models; however, this relationship still needs to be confirmed in humans. That intestinal permeability is subject to change and that it might be the interface between gut microbiota and endotoxins in the core of metabolic dysfunctions reinforce the need to understand the mechanisms involved in these aspects to direct more efficient therapeutic approaches. Therefore, in this review, we focus on the emerging link between obesity and increased intestinal permeability, including the possible factors that contribute to increased intestinal permeability in obese subjects. We address the concept of intestinal permeability, how it is measured, and the intestinal segments that may be affected. We then describe 3 factors that may have an influence on intestinal permeability in obesity: microbial dysbiosis, dietary pattern (high-fructose and high-fat diet), and nutritional deficiencies. Gaps in the current knowledge of the role of Toll-like receptors ligands to induce insulin resistance, the routes for lipopolysaccharide circulation, and the impact of altered intestinal microbiota in obesity, as well as the limitations of current permeability tests and other potential useful markers, are discussed. More studies are needed to reveal how changes occur in the microbiota. The factors such as changes in the dietary pattern and the improvement of nutritional deficiencies appear to influence intestinal permeability, and impact metabolism must be examined. Also, additional studies are necessary to better understand how probiotic supplements, prebiotics, and micronutrients can improve stress-induced gastrointestinal barrier dysfunction and the influence these factors have on host defense. Hence, the topics presented in this review may be beneficial in directing future studies that assess gut barrier function in obesity.
Collapse
|
285
|
Abstract
Autoimmune diseases (ADs) are chronic, often debilitating and potentially life-threatening conditions that collectively affect up to 23.5 million Americans, and their incidence is rising.1 They are heterogeneous in pathology but share common etiopathogenic factors such as intestinal hyperpermeability.2 Although up to 100 ADs have been identified, there are likely more.1 Genetics plays a clear role in the predisposition for the development and phenotype of AD, but various combinations of factors, such as toxins, endogenous hormone imbalances, microbes (including of GI origin), infections, stress and food antigens, are involved in disease expression.2–5 Standard treatments include NSAIDs, steroids, antineoplastic agents and tumor necrosis factor-alpha antagonists. These tools have potentially devastating side effects and are often applied regardless of the diagnosis. Frequently, they are only modestly effective in relieving symptoms and limiting the advancing disease process. Direct health-care costs of AD are estimated at around 100 billion dollars per year in the United States. By comparison, cancer care costs about 57 billion dollars per year.1 The rising incidence of this debilitating and costly group of conditions dictates that safe, alternative approaches to treatment be considered now.
Collapse
Affiliation(s)
- Kara Fitzgerald
- Kara Fitzgerald, ND, is coauthor of Case Studies in Integrative and Functional Medicine and is on faculty for the Institute for Functional Medicine, Gig Harbor, Washington
| | | | | |
Collapse
|
286
|
Noda S, Tanabe S, Suzuki T. Differential effects of flavonoids on barrier integrity in human intestinal Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4628-4633. [PMID: 22506771 DOI: 10.1021/jf300382h] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Flavonoids, present in fruits, vegetables, and teas, provide beneficial effects for our health. We investigated the effect of a number of flavonoids on tight junction (TJ) barrier integrity in human intestinal Caco-2 cells. Transepithelial electrical resistance (TER; a TJ integrity marker) across cell monolayers was measured in cells incubated with flavonoids for 24 h. Chrysin decreased the TER, indicating a decrease in TJ integrity. Daidzein, hesperetin, naringenin, and morin increased the TER, indicating increased TJ integrity. Luteolin and genistein increased or normalized the TER after a transient decrease. Immunoblot analysis revealed that these changes in TER were caused by modification of the cytoskeletal association and expression of TJ proteins, zonula occludens (ZO)-1, ZO-2, occludin, junctional adhesion molecule-1, and/or claudins. Our results suggest that various flavonoids participate in the regulation of intestinal TJ barrier integrity and that this regulation may partially contribute to the flavonoid-mediated biological effects on our health.
Collapse
Affiliation(s)
- Sakino Noda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | |
Collapse
|
287
|
Li N, Ma L, Liu X, Shaw L, Calzi SL, Grant MB, Neu J. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice. J Pediatr Gastroenterol Nutr 2012; 54:499-504. [PMID: 22020559 PMCID: PMC3749514 DOI: 10.1097/mpg.0b013e3182330867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Supplementation studies of glutamine, arginine, and docosahexaenoic acid (DHA) have established the safety of each of these nutrients in neonates; however, the potential for a more stable and soluble dipeptide, arginyl-glutamine (Arg-Gln) or DHA with anti-inflammatory properties, to exert benefits on hyperoxia-induced intestinal injury has not been investigated. Arg-Gln dipeptide has been shown to prevent retinal damage in a rodent model of oxygen-induced injury. The objective of the present study was to investigate whether Arg-Gln dipeptide or DHA could also attenuate markers of injury and inflammation to the small intestine in this same model. METHODS Seven-day-old mouse pups were placed with their dams in 75% oxygen for 5 days. After 5 days of hyperoxic exposure (P7-P12), pups were removed from hyperoxia and allowed to recover in atmospheric conditions for 5 days (P12-P17). Mouse pups received Arg-Gln (5g·kg·day) or DHA (5g·kg·day) or vehicle orally started on P12 through P17. Distal small intestine (DSI) histologic changes, myeloperoxidase (MPO), lactate dehydrogenase (LDH), inflammatory cytokines, and tissue apoptosis were evaluated. RESULTS Hyperoxic mice showed a greater distortion of overall villus structure and with higher injury score (P<0.05). Arg-Gln dipeptide and DHA supplementation groups were more similar to the room air control group. Supplementation of Arg-Gln or DHA reduced hyperoxia-induced MPO activity (P<0.05). Supplementation of Arg-Gln or DHA returned LDH activity to the levels of control. Hyperoxia induced apoptotic cell death in DSIs, and both Arg-Gln and DHA reversed this effect (P<0.05). CONCLUSIONS Supplementation with either Arg-Gln or DHA may limit some inflammatory and apoptotic processes involved in hyperoxic-induced intestinal injury in neonatal mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Liya Ma
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Xueyan Liu
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Lynn Shaw
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Sergio Li Calzi
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Maria B. Grant
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
288
|
Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.12.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
289
|
Wijtten PJA, Langhout DJ, Verstegen MWA. Small intestine development in chicks after hatch and in pigs around the time of weaning and its relation with nutrition: A review. ACTA AGR SCAND A-AN 2012. [DOI: 10.1080/09064702.2012.676061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
290
|
Abstract
OBJECTIVE We used meta-analysis to test hypotheses concerning whether adult celiac disease is reliably linked with anxiety and/or depression. METHOD We examined published reports on anxiety and depression in adult celiac disease. RESULTS Eighteen studies on depression and eleven studies on anxiety in adult celiac disease met selection criteria. They show that depression is reliably more common and/or more severe in adults with celiac disease than in healthy adults (overall meta-analysis effect size: 0.97). The fail-safe margin of unpublished reports that would be required to negate the finding exceeds 8000. Adults with celiac disease do not, however, differ reliably in terms of depression from adults with other physical illnesses, nor do they differ reliably from healthy adults or adults with other physical illnesses in terms of anxiety. CONCLUSION Depression is common in adult celiac disease and resembles the condition in other physical illnesses. We view the findings as support for the notion that non-specific mechanisms mediate emotional disorders in adult celiac disease.
Collapse
Affiliation(s)
- D F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University, Risskov, Denmark.
| | | |
Collapse
|
291
|
Tolstanova G, Deng X, French SW, Lungo W, Paunovic B, Khomenko T, Ahluwalia A, Kaplan T, Dacosta-Iyer M, Tarnawski A, Szabo S, Sandor Z. Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice. J Transl Med 2012; 92:9-21. [PMID: 21894149 DOI: 10.1038/labinvest.2011.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of endothelial damage and increased vascular permeability (VP) in the pathogenesis of ulcerative colitis (UC) has not been investigated. We examined using functional, morphologic, and molecular biologic studies whether and to what extent the endothelial barrier dysfunction precedes enhanced epithelial permeability (EP) and the development of mucosal lesions during the early stages of experimental UC. We showed that in rats with iodoacetamide (IA)-induced UC increased colonic VP occurs early (ie, 2.6-fold increase at 15 min, P<0.01) preceding changes in epithelial barrier permeability. EP was unchanged at 15 and 30 min after IA administration and was increased 1.9-fold at 1 h and 6.7-fold at 2 h (both P<0.001) after IA. In the dextran sodium sulfate-induced slowly developing UC, colonic VP was significantly increased in 2 days (P<0.05) and EP only in 4 days (P<0.05). Mucosal endothelial injury led to hypoxia (P<0.05) of colonic surface epithelial cells 30 min after IA administration that was associated with increased expressions of transcription factors hypoxia-inducible factor-1α and early growth response-1. Electron and light microscopy demonstrated areas of colonic mucosa with perivascular edema covered by intact layer of surface epithelial cells in both rat and mouse models of UC. This is the first demonstration in four models of UC that endothelial damage, increased colonic VP, perivascular edema, and epithelial hypoxia precede epithelial barrier dysfunction that is followed by erosions, ulceration, and inflammation in UC.
Collapse
Affiliation(s)
- Ganna Tolstanova
- Diagnostic and Molecular Medicine, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Abstract
Gastrointestinal commensal microbes usually exist in mutualistic relationship with their mammalian host. This relationship exists even though the mammalian host immune system is equipped with exquisite sensors for microbial chemical structures which trigger powerful immune defense mechanisms. Such beneficial mutualism is specifically maintained at the gut mucosal interface by a variety of physical and bioactive barriers as well as specific immunregulatory mechanisms. In addition, there is a strict compartmentalization between systemic and gut mucosal immunity--at least in inbred mice--which focuses adaptive immunity to gut microbes specifically to the gut tissue and the gut lumen. Only in circumstances of increased gut microbial exposure due to elevated gut epithelial permeability, due to genetic deficiencies in local defense mechanisms, due to imbalances in local immune regulation or in case of gastrointestinal pathogenic bacterial infections this compartmentalization is broken and systemic immune responses to gut microbes are induced, which manifest for example as systemic antibody responses specific for gut microbial antigens. Here we briefly discuss the abundance of systemic antibody responses to commensal gut bacteria in healthy humans and how it is altered in situations with chronic enteropathies such as in inflammatory bowel disease and HIV-1 infection or infection with gut bacterial pathogens.
Collapse
|
293
|
Abstract
AbstractThe skin of persons with atopic dermatitis (AD) is very susceptible to cutaneous infection, and some yeast species may also aggravate AD. The total yeast population of an AD patient’s skin and its relation with individual age and body part remains poorly characterized. The aim of this study was to clarify the differences in cutaneous yeast flora by age and body parts of AD patients.By swabbing affected body parts (hands, legs, face, neck or trunk), 241 samples were collected from patients with AD (132 children and 109 adults), and as controls, 40 samples were taken from healthy individuals (20 children, 20 adults).In all, 89 (36.9%) of samples were positive; the yeast isolated belonged to three genera: Candida (27.4%), Malassezia (6.6%), and Rhodotorula (2.9%). Cutaneous colonization with yeasts was two-fold higher in the adults than in children (P<0.0001). The distribution of the yeast species was dependent on the body part sampled: Malassezia predominated in the face, neck, and trunk regions (P=0.0047); Candida more frequently colonized hands and legs (P=0.0029).Our study showed that cutaneous yeast flora and distribution of yeast species depends significantly on the age of the AD patient and the body part affected by atopic dermatitis.
Collapse
|
294
|
Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One 2011; 6:e28032. [PMID: 22145021 PMCID: PMC3228722 DOI: 10.1371/journal.pone.0028032] [Citation(s) in RCA: 619] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha–synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects. Trial Registration Clinicaltrials.govNCT01155492
Collapse
|
295
|
The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011; 2011:161358. [PMID: 22114588 PMCID: PMC3205659 DOI: 10.1155/2011/161358] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/20/2011] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal (GI) dysfunction has been reported in a substantial number of children with autism spectrum disorders (ASD). Activation of the mucosal immune response and the presence of abnormal gut microbiota are repeatedly observed in these children. In children with ASD, the presence of GI dysfunction is often associated with increased irritability, tantrums, aggressive behaviour, and sleep disturbances. Moreover, modulating gut bacteria with short-term antibiotic treatment can lead to temporary improvement in behavioral symptoms in some individuals with ASD. Probiotics can influence microbiota composition and intestinal barrier function and alter mucosal immune responses. The administration of probiotic bacteria to address changes in the microbiota might, therefore, be a useful novel therapeutic tool with which to restore normal gut microbiota, reduce inflammation, restore epithelial barrier function, and potentially ameliorate behavioural symptoms associated with some children with ASD. In this review of the literature, support emerges for the clinical testing of probiotics in ASD, especially in the context of addressing GI symptoms.
Collapse
|
296
|
Piret JP, Vankoningsloo S, Mejia J, Noël F, Boilan E, Lambinon F, Zouboulis CC, Masereel B, Lucas S, Saout C, Toussaint O. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 2011; 6:789-803. [PMID: 22023055 DOI: 10.3109/17435390.2011.625127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The potential toxic effects of copper oxide (CuO) nanoparticles (NPs) were studied on differentiated Caco-2 cell monolayers, a classical in vitro model of human small intestine epithelium. Two types of CuO NPs, with different specific surface area, different sizes as raw material but the same hydrodynamic diameter in suspension, differentially disturbed the monolayer integrity, were cytotoxic and triggered an increase of the abundance of several transcripts coding for pro-inflammatory cytokines and chemokines. Specific surface area was not a major variable explaining the increased toxicity when intestinal epithelium is exposed to rod-shaped CuO NPs, compared with spherical CuO NPs. The results suggest that release of Cu(II) cations and shape of these CuO NPs are likely to be implicated in the toxicity of these CuO NPs.
Collapse
Affiliation(s)
- Jean-Pascal Piret
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
The protective effect of supplemental calcium on colonic permeability depends on a calcium phosphate-induced increase in luminal buffering capacity. Br J Nutr 2011; 107:950-6. [DOI: 10.1017/s0007114511003977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.
Collapse
|
298
|
Multiple transverse colonic perforations associated with slow-release nonsteroidal anti-inflammatory drugs and corticosteroids: a case report. Case Rep Crit Care 2011; 2011:824639. [PMID: 24826325 PMCID: PMC4010013 DOI: 10.1155/2011/824639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
The patient was a 36-year-old woman with sarcoidosis and Sjogren's syndrome, and had been prescribed slow-release diclofenac sodium and prednisolone for the treatment of pain associated with uveitis and erythema nodosum. She was admitted to our emergency center with abdominal pain and distention. A chest X-ray showed free air under the diaphragm on both sides, and an emergency laparotomy was performed for suspected panperitonitis associated with intestinal perforation. Laparotomy revealed several perforations on the antimesenteric aspect of the transverse colon. The resected specimen showed 11 punched-out ulcerations, many of which were up to 10 mm in diameter. The microscopic findings were non-specific, with leukocytic infiltration around the perforations. She showed good postoperative recovery, as evaluated on day 42. The present case highlights the need for exercising caution while prescribing slow-release nonsteroidal anti-inflammatory drugs with corticosteroids to patients with autoimmune diseases, as such treatment may exacerbate intestinal epithelial abnormalities.
Collapse
|
299
|
Kosik-Bogacka DI, Baranowska-Bosiacka I, Noceń I, Jakubowska K, Chlubek D. Hymenolepis diminuta: Activity of anti-oxidant enzymes in different parts of rat gastrointestinal tract. Exp Parasitol 2011; 128:265-71. [DOI: 10.1016/j.exppara.2011.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 11/28/2022]
|
300
|
Flammarion S, Santos C, Guimber D, Jouannic L, Thumerelle C, Gottrand F, Deschildre A. Diet and nutritional status of children with food allergies. Pediatr Allergy Immunol 2011; 22:161-5. [PMID: 20561235 DOI: 10.1111/j.1399-3038.2010.01028.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to assess the food intakes and nutritional status of children with food allergies following an elimination diet. We conducted a cross sectional study including 96 children (mean age 4.7 ± 2.5 years) with food allergies and 95 paired controls (mean age 4.7 ± 2.7 years) without food allergies. Nutritional status was assessed using measurements of weight and height and Z scores for weight-for-age, height-for-age and weight-for-height. Nutrient intakes assessment was based on a 3-day diet record. Children with food allergies had weight-for-age and height-for-age Z scores lower than controls (0.1 versus 0.6 and 0.2 versus 0.8 respectively). Children with 3 or more food allergies were smaller than those with 2 or less food allergies (p = 0.04). A total of 62 children with food allergies and 52 controls completed usable diet records. Energy, protein and calcium intakes were similar in the two groups. Children with food allergies were smaller for their age than controls even when they received similar nutrient intakes. Nutritional evaluation is essential for the follow up of children with food allergies.
Collapse
Affiliation(s)
- Sophie Flammarion
- Unité de pneumologie et allergologie pédiatriques, département de pédiatrie, hópital Jeanne de Flandre, CHRU de Lille, Lille, France
| | | | | | | | | | | | | |
Collapse
|