251
|
Prenatal nicotine alters the developmental neurotoxicity of postnatal chlorpyrifos directed toward cholinergic systems: better, worse, or just "different?". Brain Res Bull 2014; 110:54-67. [PMID: 25510202 DOI: 10.1016/j.brainresbull.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
Abstract
This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability.
Collapse
|
252
|
De Felice A, Venerosi A, Ricceri L, Sabbioni M, Scattoni ML, Chiarotti F, Calamandrei G. Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicol Teratol 2014; 46:32-9. [DOI: 10.1016/j.ntt.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
253
|
Furlong MA, Engel SM, Barr DB, Wolff MS. Prenatal exposure to organophosphate pesticides and reciprocal social behavior in childhood. ENVIRONMENT INTERNATIONAL 2014; 70:125-31. [PMID: 24934853 PMCID: PMC4144339 DOI: 10.1016/j.envint.2014.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 04/14/2014] [Accepted: 05/12/2014] [Indexed: 05/17/2023]
Abstract
Prenatal exposure to organophosphate pesticides (OPs) has been associated with adverse neurodevelopmental outcomes in childhood, including low IQ, pervasive developmental disorder (PDD), attention problems and ADHD. Many of these disorders involve impairments in social functioning. Thus, we investigated the relationship between biomarkers of prenatal OP exposure and impaired reciprocal social behavior in childhood, as measured by the Social Responsiveness Scale (SRS). Using a multi-ethnic urban prospective cohort of mother-infant pairs in New York City recruited between 1998 and 2002 (n=404) we examined the relation between third trimester maternal urinary levels of dialkylphosphate (ΣDAP) OP metabolites and SRS scores among 136 children who returned for the 7-9year visit. Overall, there was no association between OPs and SRS scores, although in multivariate adjusted models, associations were heterogeneous by race and by sex. Among blacks, each 10-fold increase in total diethylphosphates (ΣDEP) was associated with poorer social responsiveness (β=5.1 points, 95% confidence interval (CI) 0.8, 9.4). There was no association among whites or Hispanics, or for total ΣDAP or total dimethylphosphate (ΣDMP) biomarker levels. Additionally, stratum-specific models supported a stronger negative association among boys for ΣDEPs (β=3.5 points, 95% CI 0.2, 6.8), with no notable association among girls. Our results support an association of prenatal OP exposure with deficits in social functioning among blacks and among boys, although this may be in part reflective of differences in exposure patterns.
Collapse
Affiliation(s)
- Melissa A Furlong
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mary S Wolff
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
254
|
Deshpande LS, Phillips K, Huang B, DeLorenzo RJ. Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 2014; 44:352-7. [PMID: 25172410 DOI: 10.1016/j.neuro.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/15/2023]
Abstract
Organophosphate (OP) compounds, including paraoxon (POX), are similar to nerve agents such as sarin. There is a growing concern that OP agents could be weaponized to cause mass civilian causalities. We have developed a rodent survival model of POX toxicity that is being used to evaluate chronic morbidity and to screen for medical countermeasures against severe OP exposure. It is well known that the survivors of nerve gas and chronic OP exposure exhibit neurobehavioral deficits such as mood changes, depression, and memory impairments. In this study we investigated whether animals surviving severe POX exposure exhibited long-term neurological impairments. POX exposure produced overt signs of cholinergic toxicity. Rats were rescued using an optimized atropine, 2-PAM and diazepam therapy. Surviving rats were studied using established behavioral assays for identifying symptoms of depression and memory impairment 3-months after POX exposure. In the forced swim test, POX rats exhibited increased immobility time indicative of a despair-like state. In the sucrose preference test, POX rats consumed significantly less sucrose water indicating anhedonia-like condition. POX rats also displayed increased anxiety as characterized by significantly lower performance in the open arm of the elevated plus maze. Further, when tested with a novel object recognition paradigm, POX rats exhibited a negative discrimination ratio indicative of impaired recognition memory. The results indicate that this model of survival from severe POX exposure can be employed to study some of the molecular bases for OP-induced chronic behavioral and cognitive comorbidities and develop therapies for their treatment.
Collapse
Affiliation(s)
| | - Kristin Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Beverly Huang
- Department of Neuroscience, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
255
|
Runkle J, Flocks J, Economos J, Tovar-Aguilar JA, McCauley L. Occupational risks and pregnancy and infant health outcomes in Florida farmworkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7820-40. [PMID: 25101767 PMCID: PMC4143835 DOI: 10.3390/ijerph110807820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
The agricultural industry has some of the highest incidence rates and numbers of occupational injuries and illnesses in the United States. Injuries and illnesses in agriculture result from accidents, falls, excessive heat, repetitive motion and adverse pesticide exposure. Women working in agriculture are exposed to the same hazards and risks as their male counterparts, but can face additional adverse impacts on their reproductive health. Yet, few occupational risk assessment studies have considered the reproductive health of female farmworkers. The objective of this community-based participatory research study was to conduct a retrospective, cross-sectional survey to collect information on workplace conditions and behaviors and maternal, pregnancy and infant health outcomes among a sample of female nursery and fernery farmworkers in Central Florida. Survey results showed that nursery workers were more likely to report health symptoms during their pregnancy than fernery workers. We also observed a self-reported increased risk of respiratory illness in the first year of life for infants whose mothers worked in ferneries. Our findings confirm that agricultural work presents potential reproductive hazards for women of childbearing age.
Collapse
Affiliation(s)
- Jennifer Runkle
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA.
| | - Joan Flocks
- Center for Governmental Responsibility, Levin College of Law, University of Florida, Gainesville, FL 32611, USA.
| | | | | | - Linda McCauley
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
256
|
Koutroulakis D, Sifakis S, Tzatzarakis M, Alegakis A, Theodoropoulou E, Kavvalakis M, Kappou D, Tsatsakis A. Dialkyl phosphates in amniotic fluid as a biomarker of fetal exposure to organophosphates in Crete, Greece; association with fetal growth. Reprod Toxicol 2014; 46:98-105. [DOI: 10.1016/j.reprotox.2014.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 01/21/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
257
|
Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:112-21. [PMID: 24980696 DOI: 10.1016/j.bbagrm.2014.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 12/11/2022]
Abstract
The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Laetitia Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Jean Baptiste Fini
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Barbara Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| |
Collapse
|
258
|
Lu MX, Jiang WW, Wang JL, Jian Q, Shen Y, Liu XJ, Yu XY. Persistence and dissipation of chlorpyrifos in Brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS One 2014; 9:e100556. [PMID: 24967589 PMCID: PMC4072623 DOI: 10.1371/journal.pone.0100556] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022] Open
Abstract
The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg(-1)) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg(-1)). The initial foliar deposited concentration of chlorpyrifos (mg kg(-1)) on the six vegetables followed the increasing order of brassica chinensis
Collapse
Affiliation(s)
- Meng-Xiao Lu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Wayne W. Jiang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jia-Lei Wang
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
| | - Qiu Jian
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing, China
| | - Yan Shen
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xian-Jin Liu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xiang-Yang Yu
- Pesticide Biology and Ecology Research Center, Nanjing, Jiangsu, China
- Key Laboratory of Food Safety Monitoring and Management of Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
259
|
Abstract
Rachel Carson's 1962 Silent Spring exposed both observed and potential environmental and health externalities of the increasing organochlorine and organophosphate insecticide use in the United States post-World War II. Silent Spring was a critical component in a popular movement that resulted in increased regulation and the development of safer pesticides. Most changes in pesticide use in the global north have involved pesticide substitutions, although riskier pesticides remain in use. Many ideas in Silent Spring are compatible with the theory of integrated pest management (IPM), and IPM has been broadly embraced in the United States and internationally as a strategy for achieving least-use and/or least-risk pesticide use in agriculture. IPM is a politically feasible policy that purports to reduce pesticide use and/or risk in agriculture but often does not, except in extreme cases of pesticide overuse that result in negative agricultural/economic consequences for growers.
Collapse
Affiliation(s)
- Lynn Epstein
- Department of Plant Pathology, University of California, Davis, California 95616-5720;
| |
Collapse
|
260
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
261
|
Horga G, Kaur T, Peterson BS. Annual research review: Current limitations and future directions in MRI studies of child- and adult-onset developmental psychopathologies. J Child Psychol Psychiatry 2014; 55:659-80. [PMID: 24438507 PMCID: PMC4029914 DOI: 10.1111/jcpp.12185] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The widespread use of Magnetic Resonance Imaging (MRI) in the study of child- and adult-onset developmental psychopathologies has generated many investigations that have measured brain structure and function in vivo throughout development, often generating great excitement over our ability to visualize the living, developing brain using the attractive, even seductive images that these studies produce. Often lost in this excitement is the recognition that brain imaging generally, and MRI in particular, is simply a technology, one that does not fundamentally differ from any other technology, be it a blood test, a genotyping assay, a biochemical assay, or behavioral test. No technology alone can generate valid scientific findings. Rather, it is only technology coupled with a strong experimental design that can generate valid and reproducible findings that lead to new insights into the mechanisms of disease and therapeutic response. METHODS In this review we discuss selected studies to illustrate the most common and important limitations of MRI study designs as most commonly implemented thus far, as well as the misunderstanding that the interpretations of findings from those studies can create for our theories of developmental psychopathologies. RESULTS Common limitations of MRI study designs are in large part responsible thus far for the generally poor reproducibility of findings across studies, poor generalizability to the larger population, failure to identify developmental trajectories, inability to distinguish causes from effects of illness, and poor ability to infer causal mechanisms in most MRI studies of developmental psychopathologies. For each of these limitations in study design and the difficulties they entail for the interpretation of findings, we discuss various approaches that numerous laboratories are now taking to address those difficulties, which have in common the yoking of brain imaging technologies to studies with inherently stronger designs that permit more valid and more powerful causal inferences. Those study designs include epidemiological, longitudinal, high-risk, clinical trials, and multimodal imaging studies. CONCLUSIONS We highlight several studies that have yoked brain imaging technologies to these stronger designs to illustrate how doing so can aid our understanding of disease mechanisms and in the foreseeable future can improve clinical diagnosis, prevention, and treatment planning for developmental psychopathologies.
Collapse
Affiliation(s)
- Guillermo Horga
- Department of Psychiatry; New York State Psychiatric Institute and College of Physicians and Surgeons; Columbia University; New York NY USA
| | - Tejal Kaur
- Department of Psychiatry; New York State Psychiatric Institute and College of Physicians and Surgeons; Columbia University; New York NY USA
| | - Bradley S. Peterson
- Department of Psychiatry; New York State Psychiatric Institute and College of Physicians and Surgeons; Columbia University; New York NY USA
| |
Collapse
|
262
|
Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 2014; 51:791-807. [DOI: 10.1007/s12035-014-8716-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
|
263
|
Muñoz-Quezada MT, Lucero B, Iglesias V, Muñoz MP. Vías de exposición a plaguicidas en escolares de la Provincia de Talca, Chile. GACETA SANITARIA 2014; 28:190-5. [DOI: 10.1016/j.gaceta.2014.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 01/12/2023]
|
264
|
Deshpande LS, Carter DS, Phillips KF, Blair RE, DeLorenzo RJ. Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology 2014; 44:17-26. [PMID: 24785379 DOI: 10.1016/j.neuro.2014.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/23/2023]
Abstract
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague-Dawley rats injected with POX (4mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6-8min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7-10Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2mg/kg, i.p., 2-PAM, 25mg/kg, i.m. and diazepam, 5mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca(2+)]i (Ca(2+) plateau) and significant multifocal neuronal injury. POX SE induced Ca(2+) plateau had its origin in Ca(2+) release from intracellular Ca(2+) stores since inhibition of ryanodine/IP3 receptor lowered elevated Ca(2+) levels post SE. POX SE induced neuronal injury and alterations in Ca(2+) dynamics may underlie some of the long term morbidity associated with OP toxicity.
Collapse
Affiliation(s)
| | - Dawn S Carter
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kristin F Phillips
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert E Blair
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Departments of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
265
|
Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 2014; 3:9. [PMID: 24847438 PMCID: PMC4028099 DOI: 10.1186/2047-9158-3-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and retinal degeneration have been studied extensively and varying molecular mechanisms have been proposed for onset of such diseases. Although genetic analysis of these diseases has also been described, yet the mechanisms governing the extent of vulnerability to such diseases remains unresolved. Recent studies have, therefore, focused on the role of environmental exposure in progression of such diseases especially in the context of prenatal and postnatal life, explaining how molecular mechanisms mediate epigenetic changes leading to degenerative diseases. This review summarizes both the animal and human studies describing various environmental stimuli to which an individual or an animal is exposed during in-utero and postnatal period and mechanisms that promote neurodegeneration. The SNPs mediating gene environment interaction are also described. Further, preventive and therapeutic strategies are suggested for effective intervention.
Collapse
|
266
|
Chen XP, Chen WF, Wang DW. Prenatal organophosphates exposure alternates the cleavage plane orientation of apical neural progenitor in developing neocortex. PLoS One 2014; 9:e95343. [PMID: 24740262 PMCID: PMC3989278 DOI: 10.1371/journal.pone.0095343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
- * E-mail:
| | - Wei-Feng Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Da-Wei Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
267
|
Abstract
PURPOSE OF REVIEW The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. RECENT FINDINGS Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. SUMMARY MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.
Collapse
|
268
|
Khan K, Ismail AA, Abdel Rasoul G, Bonner MR, Lasarev MR, Hendy O, Al-Batanony M, Crane AL, Singleton ST, Olson JR, Rohlman DS. Longitudinal assessment of chlorpyrifos exposure and self-reported neurological symptoms in adolescent pesticide applicators. BMJ Open 2014; 4:e004177. [PMID: 24595133 PMCID: PMC3948636 DOI: 10.1136/bmjopen-2013-004177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Occupational exposure of organophosphorus pesticides, such as chlorpyrifos (CPF), in adolescents is of particular concern because of the potential vulnerability of the developing neurological system. The objectives of this study were to examine how neurological symptoms reported over the application season vary across time, whether these effects are reversible postapplication and if there are associations between CPF biomarkers and neurological symptoms in an adolescent study population. SETTING The longitudinal study was conducted in two agricultural districts of Menoufia Governorate, Egypt between April 2010 and January 2011. PARTICIPANTS Male adolescent participants, including CPF applicators (n=57) and non-applicators (n=38), were recruited. PRIMARY AND SECONDARY OUTCOME MEASURES Self-reported data for 25 neurological symptoms were collected at 32 time points over the 8-month period before, during and after the application season. Additionally, urine and blood samples were collected to measure urine trichloro-2-pyridinol (TCPy), a CPF-specific biomarker and blood cholinesterase activity. RESULTS Applicators and non-applicators report the highest numbers of symptoms during the application season, followed by a reduction in symptoms after the application ended. Applicators reported a greater percentage of neurological symptoms, relative to baseline, than non-applicators after accounting for potential covariates. Among the applicators, cumulative TCPy was positively and significantly associated with the average percentage of symptoms (B=4.56, 95% CI 3.29 to 5.84; p<0.001). Significant associations (p=0.03-0.07) between the change in butyrylcholinesterase activity from the preapplication to the postapplication season and several domains of neurological symptoms were also found, even after adjusting for potential covariates. CONCLUSIONS These observations demonstrate changes in the reporting of symptoms across the application season, showing an increase in symptom reporting during application and recovery following the end of pesticide application. These findings reinforce the growing concern regarding the neurotoxic health effects of CPF in adolescent applicators in developing countries and the need for developing and implementing intervention programmes.
Collapse
Affiliation(s)
- Khalid Khan
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Ahmed A Ismail
- Community Medicine and Public Health Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Gaafar Abdel Rasoul
- Community Medicine and Public Health Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Matthew R Bonner
- Department of Social and Preventative Medicine, State University of New York, Buffalo, New York, USA
| | - Michael R Lasarev
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| | - Olfat Hendy
- Clinical Pathology and Hematology and Immunology, Menoufia University, Shebin El-Kom, Egypt
| | - Manal Al-Batanony
- Community Medicine and Public Health Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Alice L Crane
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, USA
| | - Steven T Singleton
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, USA
| | - James R Olson
- Department of Social and Preventative Medicine, State University of New York, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, USA
| | - Diane S Rohlman
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
269
|
Khan K, Ismail AA, Abdel Rasoul G, Bonner MR, Lasarev MR, Hendy O, Al-Batanony M, Crane AL, Singleton ST, Olson JR, Rohlman DS. Longitudinal assessment of chlorpyrifos exposure and self-reported neurological symptoms in adolescent pesticide applicators. BMJ Open 2014. [PMID: 24595133 DOI: 10.1136/bmjo-pen-2013-004177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
OBJECTIVES Occupational exposure of organophosphorus pesticides, such as chlorpyrifos (CPF), in adolescents is of particular concern because of the potential vulnerability of the developing neurological system. The objectives of this study were to examine how neurological symptoms reported over the application season vary across time, whether these effects are reversible postapplication and if there are associations between CPF biomarkers and neurological symptoms in an adolescent study population. SETTING The longitudinal study was conducted in two agricultural districts of Menoufia Governorate, Egypt between April 2010 and January 2011. PARTICIPANTS Male adolescent participants, including CPF applicators (n=57) and non-applicators (n=38), were recruited. PRIMARY AND SECONDARY OUTCOME MEASURES Self-reported data for 25 neurological symptoms were collected at 32 time points over the 8-month period before, during and after the application season. Additionally, urine and blood samples were collected to measure urine trichloro-2-pyridinol (TCPy), a CPF-specific biomarker and blood cholinesterase activity. RESULTS Applicators and non-applicators report the highest numbers of symptoms during the application season, followed by a reduction in symptoms after the application ended. Applicators reported a greater percentage of neurological symptoms, relative to baseline, than non-applicators after accounting for potential covariates. Among the applicators, cumulative TCPy was positively and significantly associated with the average percentage of symptoms (B=4.56, 95% CI 3.29 to 5.84; p<0.001). Significant associations (p=0.03-0.07) between the change in butyrylcholinesterase activity from the preapplication to the postapplication season and several domains of neurological symptoms were also found, even after adjusting for potential covariates. CONCLUSIONS These observations demonstrate changes in the reporting of symptoms across the application season, showing an increase in symptom reporting during application and recovery following the end of pesticide application. These findings reinforce the growing concern regarding the neurotoxic health effects of CPF in adolescent applicators in developing countries and the need for developing and implementing intervention programmes.
Collapse
Affiliation(s)
- Khalid Khan
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Medina-Cleghorn D, Heslin A, Morris PJ, Mulvihill MM, Nomura DK. Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides. ACS Chem Biol 2014; 9:423-32. [PMID: 24205821 DOI: 10.1021/cb400796c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We are environmentally exposed to countless synthetic chemicals on a daily basis, with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of using multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals.
Collapse
Affiliation(s)
- Daniel Medina-Cleghorn
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Ann Heslin
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Patrick J. Morris
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Melinda M. Mulvihill
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| |
Collapse
|
271
|
Abstract
Neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments, affect millions of children worldwide, and some diagnoses seem to be increasing in frequency. Industrial chemicals that injure the developing brain are among the known causes for this rise in prevalence. In 2006, we did a systematic review and identified five industrial chemicals as developmental neurotoxicants: lead, methylmercury, polychlorinated biphenyls, arsenic, and toluene. Since 2006, epidemiological studies have documented six additional developmental neurotoxicants-manganese, fluoride, chlorpyrifos, dichlorodiphenyltrichloroethane, tetrachloroethylene, and the polybrominated diphenyl ethers. We postulate that even more neurotoxicants remain undiscovered. To control the pandemic of developmental neurotoxicity, we propose a global prevention strategy. Untested chemicals should not be presumed to be safe to brain development, and chemicals in existing use and all new chemicals must therefore be tested for developmental neurotoxicity. To coordinate these efforts and to accelerate translation of science into prevention, we propose the urgent formation of a new international clearinghouse.
Collapse
Affiliation(s)
- Philippe Grandjean
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark; Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| | | |
Collapse
|
272
|
Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 2014; 43:443-64. [PMID: 24518932 DOI: 10.1093/ije/dyt282] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Over the past 10 years, research into environmental risk factors for autism has grown dramatically, bringing evidence that an array of non-genetic factors acting during the prenatal period may influence neurodevelopment. METHODS This paper reviews the evidence on modifiable preconception and/or prenatal factors that have been associated, in some studies, with autism spectrum disorder (ASD), including nutrition, substance use and exposure to environmental agents. This review is restricted to human studies with at least 50 cases of ASD, having a valid comparison group, conducted within the past decade and focusing on maternal lifestyle or environmental chemicals. RESULTS Higher maternal intake of certain nutrients and supplements has been associated with reduction in ASD risk, with the strongest evidence for periconceptional folic acid supplements. Although many investigations have suggested no impact of maternal smoking and alcohol use on ASD, more rigorous exposure assessment is needed. A number of studies have demonstrated significant increases in ASD risk with estimated exposure to air pollution during the prenatal period, particularly for heavy metals and particulate matter. Little research has assessed other persistent and non-persistent organic pollutants in association with ASD specifically. CONCLUSIONS More work is needed to examine fats, vitamins and other maternal nutrients, as well as endocrine-disrupting chemicals and pesticides, in association with ASD, given sound biological plausibility and evidence regarding other neurodevelopmental deficits. The field can be advanced by large-scale epidemiological studies, attention to critical aetiological windows and how these vary by exposure, and use of biomarkers and other means to understand underlying mechanisms.
Collapse
Affiliation(s)
- Kristen Lyall
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | | | | |
Collapse
|
273
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
274
|
Schmidt RJ, Lyall K, Hertz-Picciotto I. Environment and Autism: Current State of the Science. CUTTING EDGE PSYCHIATRY IN PRACTICE 2014; 1:21-38. [PMID: 27453776 PMCID: PMC4955700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research into environmental risk factors for autism has grown dramatically over the past 10 years, providing evidence that non-genetic factors acting during the prenatal period may influence the underlying neurodevelopmental processes. This paper reviews the evidence on modifiable preconception and/or prenatal factors that have been associated with autism spectrum disorder (ASD), including only human studies with at least 50 cases of ASD, having a valid comparison group, conducted within the past decade, and focusing on maternal lifestyle or environmental chemicals. Consistent results have been reported for an association of higher maternal intake of certain nutrients and supplements with reduction in ASD risk, with the strongest evidence for folic acid supplements. A number of studies have demonstrated significant increases in ASD risk with estimated exposure to air pollution during the prenatal period, particularly for heavy metals and particulate matter. A few studies suggest a link with organophosphate pesticides. More rigorous ascertainment of exposure is needed for studies of substance use; most investigations adjusting for potential confounders, but relying on self-reported use, have shown no links between maternal smoking or alcohol consumption and ASD. Little research has assessed other persistent and non-persistent organic chemical pollutants, such as are found in common household or personal care products, in association with ASD specifically. More work is needed to examine fats, vitamins, and other maternal nutrients, as well as endocrine-disrupting chemicals and pesticides, in association with ASD, given sound biological plausibility and evidence regarding other neurodevelopmental outcomes. In addition, the field could be advanced by the use of large-scale epidemiologic studies, attention to critical etiologic windows and how these vary by exposure, interactions with genetic susceptibility, and a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Rebecca J Schmidt
- Assistant Professor, Department of Public Health Sciences and UC Davis MIND Institute; Scholar, Building Interdisciplinary Research Careers in Women's Health (BIRCWH), School of Medicine
| | - Kristen Lyall
- Postdoctoral research fellow in the Autism Research Training Program of the MIND Institute of UC Davis
| | - Irva Hertz-Picciotto
- Professor and Chief, Division of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine and the UC Davis MIND Institute; Director, Northern California Collaborative Center for the National Children's Study; Deputy Director, UC Davis Children's Center for Environmental Health; Principal Investigator, The CHARGE Study and The MARBLES Study
| |
Collapse
|
275
|
Carr RL, Graves CA, Mangum LC, Nail CA, Ross MK. Low level chlorpyrifos exposure increases anandamide accumulation in juvenile rat brain in the absence of brain cholinesterase inhibition. Neurotoxicology 2013; 43:82-89. [PMID: 24373905 DOI: 10.1016/j.neuro.2013.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5mg/kg CPF by oral gavage. At 4 and 12h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4h, FAAH activity was significantly inhibited at 12h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Casey A Graves
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lee C Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Carole A Nail
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
276
|
González-Alzaga B, Lacasaña M, Aguilar-Garduño C, Rodríguez-Barranco M, Ballester F, Rebagliato M, Hernández AF. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett 2013; 230:104-21. [PMID: 24291036 DOI: 10.1016/j.toxlet.2013.11.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
Agricultural and residential use of organophosphate (OP) pesticides has increased in recent decades after banning some persistent pesticides. Although there is evidence of the effects of OPs on neurodevelopment and behaviour in adults, limited information is available about their effects in children, who might be more vulnerable to neurotoxic compounds. This paper was aimed at analysing the scientific evidence published to date on potential neurodevelopmental and behavioural effects of prenatal and postnatal exposure to OPs. A systematic review was undertaken to identify original articles published up to December 2012 evaluating prenatal or postnatal exposure to OPs in children and effects on neurodevelopment and/or behaviour. Articles were critically compared, focusing on the methodology used to assess exposure and adverse effects, as well as potential contributing factors that may modify both exposure and outcomes, such as genetic susceptibility to certain enzymes involved in OPs metabolisation (e.g. paraoxonase-1) and gender differences. Twenty articles met the inclusion criteria, 7 of which evaluated prenatal exposure to OPs, 8 postnatal exposure and 5 both pre- and postnatal exposure. Most of the studies evaluating prenatal exposure observed a negative effect on mental development and an increase in attention problems in preschool and school children. The evidence on postnatal exposure is less consistent, although 2 studies found an increase in reaction time in schoolchildren. Some paraoxonase-1 polymorphisms could enhance the association between OPs exposure and mental and psychomotor development. A large variability in epidemiological designs and methodologies used for assessing exposure and outcome was observed across the different studies, which made comparisons difficult. Prenatal and to a lesser extent postnatal exposure to OPs may contribute to neurodevelopmental and behavioural deficits in preschool and school children. Standardised methodologies are needed to allow results to be better compared and to perform a quantitative meta-analysis before drawing any final conclusions.
Collapse
Affiliation(s)
| | - M Lacasaña
- Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | | | - M Rodríguez-Barranco
- Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - F Ballester
- CIBER of Epidemiology and Public Health (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Spain
| | - M Rebagliato
- CIBER of Epidemiology and Public Health (CIBERESP), Spain; Department of Medicine, University Jaume I, Castelló de la Plana, Spain
| | - A F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| |
Collapse
|
277
|
Slotkin TA, Card J, Seidler FJ. Prenatal dexamethasone, as used in preterm labor, worsens the impact of postnatal chlorpyrifos exposure on serotonergic pathways. Brain Res Bull 2013; 100:44-54. [PMID: 24280657 DOI: 10.1016/j.brainresbull.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022]
Abstract
This study explores how glucocorticoids sensitize the developing brain to the organophosphate pesticide, chlorpyrifos. Pregnant rats received a standard therapeutic dose (0.2mg/kg) of dexamethasone on gestational days 17-19; pups were given subtoxic doses of chlorpyrifos on postnatal days 1-4 (1mg/kg, <10% cholinesterase inhibition). We evaluated serotonin (5HT) synaptic function from postnatal day 30 to day 150, assessing the expression of 5HT receptors and the 5HT transporter, along with 5HT turnover (index of presynaptic impulse activity) in brain regions encompassing all the 5HT projections and cell bodies. These parameters are known targets for neurodevelopmental effects of dexamethasone and chlorpyrifos individually. In males, chlorpyrifos evoked overall elevations in the expression of 5HT synaptic proteins, with a progressive increase from adolescence to adulthood; this effect was attenuated by prenatal dexamethasone treatment. The chlorpyrifos-induced upregulation was preceded by deficits in 5HT turnover, indicating that the receptor upregulation was an adaptive response to deficient presynaptic activity. Turnover deficiencies were magnified by dexamethasone pretreatment, worsening the functional impairment caused by chlorpyrifos. In females, chlorpyrifos-induced receptor changes reflected relative sparing of adverse effects compared to males. Nevertheless, prenatal dexamethasone still worsened the 5HT turnover deficits and reduced 5HT receptor expression in females, demonstrating the same adverse interaction. Glucocorticoids are used in 10% of U.S. pregnancies, and are also elevated in maternal stress; accordingly, our results indicate that this group represents a large subpopulation that may have heightened vulnerability to developmental neurotoxicants such as the organophosphates.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
278
|
Oxime-type acetylcholinesterase reactivators in pregnancy: an overview. Arch Toxicol 2013; 88:575-84. [DOI: 10.1007/s00204-013-1160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
279
|
Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: significance for maternal stress and preterm labor. Neurotoxicol Teratol 2013; 41:35-42. [PMID: 24177596 DOI: 10.1016/j.ntt.2013.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
Abstract
Glucocorticoids are the consensus treatment given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so human developmental coexposures to these two agents are common. This study explores how prenatal dexamethasone exposure modifies the neurobehavioral teratology of chlorpyrifos, one of the most widely used organophosphates. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. Dexamethasone did not alter brain chlorpyrifos concentrations, nor did either agent alone or in combination affect brain thyroxine levels. Assessments were carried out from adolescence through adulthood encompassing T-maze alternation, Figure 8 maze (locomotor activity, habituation), novelty-suppressed feeding and novel object recognition tests. For behaviors where chlorpyrifos or dexamethasone individually had small effects, the dual exposure produced larger, significant effects that reflected additivity (locomotor activity, novelty-suppressed feeding, novel object recognition). Where the individual effects were in opposite directions or were restricted to only one agent, we found enhancement of chlorpyrifos' effects by prenatal dexamethasone (habituation). Finally, for behaviors where controls displayed a normal sex difference in performance, the combined treatment either eliminated or reversed the difference (locomotor activity, novel object recognition). Combined exposure to dexamethasone and chlorpyrifos results in a worsened neurobehavioral outcome, providing a proof-of-principle that prenatal glucocorticoids can create a subpopulation with enhanced vulnerability to environmental toxicants.
Collapse
|
280
|
Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, Iglesias V, Alvarado S, Concha C, Rojas E, Vega C. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology 2013; 39:158-68. [PMID: 24121005 DOI: 10.1016/j.neuro.2013.09.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/16/2022]
Abstract
Many studies have investigated the neurodevelopmental effects of prenatal and early childhood exposures to organophosphate (OP) pesticides among children, but they have not been collectively evaluated. The aim of the present article is to synthesize reported evidence over the last decade on OP exposure and neurodevelopmental effects in children. The Data Sources were PubMed, Web of Science, EBSCO, SciVerse Scopus, SpringerLink, SciELO and DOAJ. The eligibility criteria considered were studies assessing exposure to OP pesticides and neurodevelopmental effects in children from birth to 18 years of age, published between 2002 and 2012 in English or Spanish. Twenty-seven articles met the eligibility criteria. Studies were rated for evidential consideration as high, intermediate, or low based upon the study design, number of participants, exposure measurement, and neurodevelopmental measures. All but one of the 27 studies evaluated showed some negative effects of pesticides on neurobehavioral development. A positive dose-response relationship between OP exposure and neurodevelopmental outcomes was found in all but one of the 12 studies that assessed dose-response. In the ten longitudinal studies that assessed prenatal exposure to OPs, cognitive deficits (related to working memory) were found in children at age 7 years, behavioral deficits (related to attention) seen mainly in toddlers, and motor deficits (abnormal reflexes) seen mainly in neonates. No meta-analysis was possible due to different measurements of exposure assessment and outcomes. Eleven studies (all longitudinal) were rated high, 14 studies were rated intermediate, and two studies were rated low. Evidence of neurological deficits associated with exposure to OP pesticides in children is growing. The studies reviewed collectively support the hypothesis that exposure to OP pesticides induces neurotoxic effects. Further research is needed to understand effects associated with exposure in critical windows of development.
Collapse
Affiliation(s)
- María Teresa Muñoz-Quezada
- Faculty of Health Sciences, Catholic University of Maule, Avda. San Miguel 3605, Talca, Región del Maule, Chile.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Berman T, Goldsmith R, Göen T, Spungen J, Novack L, Levine H, Amitai Y, Shohat T, Grotto I. Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: demographic and dietary predictors. ENVIRONMENT INTERNATIONAL 2013; 60:183-189. [PMID: 24064379 DOI: 10.1016/j.envint.2013.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/30/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Exposure to organophosphate pesticides (OPs) in agricultural and urban populations has been associated with a range of adverse health effects. The purpose of the current study was to estimate exposure to OPs in the general adult population in Israel and to determine dietary and demographic predictors of exposure. We measured six non-specific organophosphate pesticide metabolites (dialkyl phosphates) in urine samples collected from 247 Israeli adults from the general population. We collected detailed demographic and dietary data from these individuals, and explored associations between demographic and dietary characteristics and urinary dialkyl phosphate concentrations. OP metabolites were detectable in all urine samples. Concentrations of several dialkyl phosphate metabolites (dimethylphosphate, dimethylthiophosphate, diethylphosphate) were high in our study population relative to the general populations in the US and Canada and were comparable to those reported in 2010 in France. Total dialkyl phosphates were higher in individuals with fruit consumption above the 75th percentile. In a multivariate analysis, total molar dialkyl phosphate concentration increased with age and was higher in individuals with high income compared to individuals with the lowest income. Total diethyl metabolite concentrations were higher in females and in study participants whose fruit consumption was above the 75th percentile. In conclusion, we found that levels of exposure to OP pesticides were high in our study population compared to the general population in the US and Canada and that intake of fruits is an important source of exposure.
Collapse
Affiliation(s)
- T Berman
- Public Health Services, Ministry of Health, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Slotkin TA, Cooper EM, Stapleton HM, Seidler FJ. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:284-287. [PMID: 23686008 PMCID: PMC3745805 DOI: 10.1016/j.etap.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 05/04/2023]
Abstract
Although organophosphate pesticides are not usually characterized as "endocrine disruptors," recent work points to potential, long-term reductions of circulating thyroid hormones after developmental exposures to chlorpyrifos that are devoid of observable toxicity. We administered chlorpyrifos to developing rats on gestational days 17-20 or postnatal days 1-4, regimens that produce distinctly different, sex-selective effects on neurobehavioral performance. The prenatal regimen produced a small, but statistically significant reduction in brain thyroxine levels from juvenile stages through adulthood; in contrast, postnatal exposure produced a transient elevation in young adulthood. However, in neither case did we observe the sex-selectivity noted earlier for neurobehavioral outcomes of these specific treatment regimens, or as reported earlier for effects on serum T4 in developing mice. Thus, although chlorpyrifos has the potential to disrupt thyroid status sufficiently to alter brain thyroid hormone levels, the effect is small, and any potential contribution to neurobehavioral abnormalities remains to be proven.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina USA.
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, Durham, North Carolina USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
283
|
Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex Differences and Effects of Estrogenic Compounds on the Expression of Inflammatory Molecules by Astrocytes Exposed to the Insecticide Dimethoate. Neurotox Res 2013; 25:271-85. [DOI: 10.1007/s12640-013-9417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
|
284
|
Fortenberry GZ, Meeker JD, Sánchez BN, Barr DB, Panuwet P, Bellinger D, Schnaas L, Solano-González M, Ettinger AS, Hernandez-Avila M, Hu H, Tellez-Rojo MM. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health 2013; 217:405-12. [PMID: 24001412 DOI: 10.1016/j.ijheh.2013.07.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/17/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is the most commonly diagnosed and studied cognitive and behavioral disorder in school-age children. The etiology of ADHD and ADHD-related behavior is unclear, but genetic and environmental factors, such as pesticides, have been hypothesized. The objective of this study was to investigate the relationship between in utero exposure to chlorpyrifos, chlorpyrifos-methyl, and/or 3,5,6-trichloro-2-pyridinol (TCPY) and ADHD in school-age Mexican children using TCPY as a biomarker of exposure. The temporal reliability of repeated maternal urinary TCPY concentrations across trimesters was also explored (N=21). To explore associations with ADHD-related outcomes in children, third trimester urinary TCPY concentrations in were measured in 187 mother-child pairs from a prospective birth cohort. Child neurodevelopment in children 6-11 years of age was assessed using Conners' Parental Rating Scales-Revised (CRS-R), Conners' Continuous Performance Test (CPT), and Behavior Assessment System for Children-2 (BASC-2). Multivariable linear regression models were used to test relationships for all children combined and also stratified by sex. Intraclass correlation coefficients (ICC) calculations were based on a random effects model. The ICC was 0.41 for uncorrected TCPY, and ranged from 0.29 to 0.32 for specific gravity-corrected TCPY. We did not observe any statistically significant associations between tertiles of maternal TCPY concentrations and ADHD-related outcomes in children. However, compared to the lowest tertile we found suggestive evidence for increased ADHD index in the highest TCPY tertile in boys (β=5.55 points; 95% CI (-0.19, 11.3); p=0.06) and increased attention problems for the middle tertile in girls (β=5.81 points; 95% CI (-0.75, 12.4); p=0.08). Considering the continued widespread agricultural and possible residential use of chlorpyrifos and chlorpyrifos-methyl in Mexico and the educational implications of cognitive and behavior deficits, these relationships deserve further study.
Collapse
Affiliation(s)
- Gamola Z Fortenberry
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - David Bellinger
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lourdes Schnaas
- Division of Research on Public Health, National Institute of Perinatology, Mexico City, Mexico
| | - Maritsa Solano-González
- Center for Evaluation Research and Surveys, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Adrienne S Ettinger
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | | | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Martha Maria Tellez-Rojo
- Division of Statistics, Center for Surveys and Evaluation Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| |
Collapse
|
285
|
Carr RL, Adams AL, Kepler DR, Ward AB, Ross MK. Induction of endocannabinoid levels in juvenile rat brain following developmental chlorpyrifos exposure. Toxicol Sci 2013; 135:193-201. [PMID: 23761300 DOI: 10.1093/toxsci/kft126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) play vital roles during nervous system development. The degradation of 2-AG and AEA is mediated by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. These enzymes are inhibited following developmental chlorpyrifos (CPF) exposure. To investigate whether this inhibition is persistent or whether accumulation of endocannabinoids in the brain occurs, 10-day-old rat pups were orally exposed daily for 7 days to either corn oil or increasing dosages of CPF (1, 2.5, or 5mg/kg), and forebrains were collected at 4, 12, 24, and 48h following the last administration. All dosages inhibited cholinesterase (ChE), FAAH, and MAGL, and elevated AEA and 2-AG levels with the greatest effect occurring at 12h with ChE, FAAH, AEA, and 2-AG and at 4h with MAGL. With the high dosage, return to control levels occurred with 2-AG (48h) only. With the medium dosage, return to control levels occurred with MAGL, 2-AG, and AEA (48h) but not with ChE or FAAH. With the low dosage, return to control levels occurred with MAGL (12h), ChE and 2-AG (24h), and AEA (48h) but not with FAAH. With the lowest dosage, peak inhibition of FAAH (52%) is greater than that of ChE (24%) and that level of FAAH inhibition is sufficient to induce a persistent pattern of elevated AEA. It is possible that this pattern of elevation could alter the appropriate development of neuronal brain circuits.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762-6100, USA.
| | | | | | | | | |
Collapse
|
286
|
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 2013; 4:5. [PMID: 23514128 PMCID: PMC3618244 DOI: 10.1186/2042-6410-4-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, F-78352, France.
| | | | | | | | | |
Collapse
|
287
|
Prenatal Exposures to Environmental Chemicals and Children's Neurodevelopment: An Update. Saf Health Work 2013; 4:1-11. [PMID: 23515885 PMCID: PMC3601292 DOI: 10.5491/shaw.2013.4.1.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 01/17/2023] Open
Abstract
This review surveys the recent literature on the neurodevelopmental impacts of chemical exposures during pregnancy. The review focuses primarily on chemicals of recent concern, including phthalates, bisphenol-A, polybrominated diphenyl ethers, and perfluorinated compounds, but also addresses chemicals with longer histories of investigation, including air pollutants, lead, methylmercury, manganese, arsenic, and organophosphate pesticides. For some chemicals of more recent concern, the available literature does not yet afford strong conclusions about neurodevelopment toxicity. In such cases, points of disagreement among studies are identified and suggestions provided for approaches to resolution of the inconsistencies, including greater standardization of methods for expressing exposure and assessing outcomes.
Collapse
|
288
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Karin M. Streifel
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Paula E. Goines
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| |
Collapse
|
289
|
Naseh M, Vatanparast J, Baniasadi M, Hamidi GA. Alterations in nitric oxide synthase-expressing neurons in the forebrain regions of rats after developmental exposure to organophosphates. Neurotoxicol Teratol 2013; 37:23-32. [PMID: 23416429 DOI: 10.1016/j.ntt.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 12/15/2022]
Abstract
Several mechanisms have been addressed as contributors to the long lasting behavioral deficits after developmental exposure to organophosphate (OP) compounds. Here, the effects of developmental exposure to two common OP insecticides, chlorpyrifos (CPF) and diazinon (DZN), on nitric oxide synthase (NOS)-expressing neurons in the rat forebrain are reported. A daily dose of 1mg/kg of either CPF or DZN was administered to rats during gestational days 15-18 or postnatal days (PND) 1-4. We then assessed NADPH-diaphorase and neuronal NOS (nNOS) immunohistochemistry in forebrain sections on different postnatal days. Prenatal exposure to CPF and DZN induced a transient reduction of NADPH-d(+)/nNOS-immunoreactive (IR) neurons in most cortical regions on PND 4 but exceptionally increased them in the entorhinal/piriform cortex. On PND 15, NADPH-d(+)/nNOS-IR neurons showed morphological abnormalities within entorhinal/piriform cortex of the rats that gestationally exposed to CPF. Postnatal exposure to CPF and DZN did not induce widespread effects on the number of NADPH-d(+)/nNOS-IR neurons on PNDs 7 and 15 but significantly reduced them in most cortical regions and hippocampal subfields on PND 60. The OPs affected NADPH-d(+)/nNOS-IR neurons in a sex independent manner and apparently spared them in the striatum. While the NADPH-d reactivity of microvessels was normally diminished by age, OP treated rats evidently preserved the NADPH-d reactivity of microvessels in the cerebral cortex and hippocampus. The effects of OPs on NADPH-d(+)/nNOS-IR neurons may contribute to the long-lasting behavioral outcomes and expand the neurotransmitter system that need to be considered in OP neurotoxicity evaluations.
Collapse
Affiliation(s)
- Maryam Naseh
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|
290
|
Slotkin TA, Card J, Infante A, Seidler FJ. Prenatal dexamethasone augments the sex-selective developmental neurotoxicity of chlorpyrifos: implications for vulnerability after pharmacotherapy for preterm labor. Neurotoxicol Teratol 2013; 37:1-12. [PMID: 23416428 DOI: 10.1016/j.ntt.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are routinely given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so coexposures to these two agents are pervasive. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of dexamethasone and chlorpyrifos given individually. Dexamethasone did not enhance the systemic toxicity of chlorpyrifos, as evidenced by weight gain and measurements of cholinesterase inhibition during chlorpyrifos treatment. Nevertheless, it enhanced the loss of presynaptic ACh function selectively in females, who ordinarily show sparing of organophosphate developmental neurotoxicity relative to males. Females receiving the combined treatment showed decrements in choline transporter binding and choline acetyltransferase activity that were unique (not found with either treatment alone), as well as additive decrements in nicotinic receptor binding. On the other hand, males given dexamethasone showed no augmentation of the effects of chlorpyrifos. Our findings indicate that prior dexamethasone exposure could create a subpopulation that is especially vulnerable to the adverse effects of organophosphates or other developmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
291
|
Mullins RJ, Xu S, Pereira EFR, Mamczarz J, Albuquerque EX, Gullapalli RP. Delayed hippocampal effects from a single exposure of prepubertal guinea pigs to sub-lethal dose of chlorpyrifos: a magnetic resonance imaging and spectroscopy study. Neurotoxicology 2013; 36:42-8. [PMID: 23411083 DOI: 10.1016/j.neuro.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/09/2023]
Abstract
This study was designed to test the hypothesis that in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) can detect in adulthood the neurotoxic effects of a single exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos. Twelve female guinea pigs were given either a single dose of chlorpyrifos (0.6×LD50 or 300mg/kg, sc) or peanut oil (vehicle; 0.5ml/kg, sc) at 35-40 days of age. One year after the exposure, the animals were tested in the Morris water maze. Three days after the end of the behavioral testing, the metabolic and structural integrity of the brain of the animals was examined by means of MRI/MRS. In the Morris water maze, the chlorpyrifos-exposed guinea pigs showed significant memory deficit. Although no significant anatomical differences were found between the chlorpyrifos-exposed guinea pigs and the control animals by in vivo MRI, the chlorpyrifos-exposed animals showed significant decreases in hippocampal myo-inositol concentration using MRS. The present results indicate that a single sub-lethal exposure of prepubertal guinea pigs to the organophosphorus pesticide chlorpyrifos can lead to long-term memory deficits that are accompanied by significant reductions in the levels of hippocampal myo-inositol.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | |
Collapse
|
292
|
Approaching chlorpyrifos bioelimination at bench scale bioreactor. Bioprocess Biosyst Eng 2013; 36:1303-9. [DOI: 10.1007/s00449-012-0876-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 11/26/2022]
|
293
|
Schuurmans C, Kurrasch DM. Neurodevelopmental consequences of maternal distress: what do we really know? Clin Genet 2012; 83:108-17. [PMID: 23140231 DOI: 10.1111/cge.12049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A simple internet search of 'maternal stress and pregnancy' turns up hundreds of hits explaining that an adverse intrauterine environment can affect fetal development and potentially lead to various learning, behavioral, and mood disorders in childhood, as well as complex diseases such as obesity and cardiovascular conditions later in life. Indeed, a growing body of literature now links several intrauterine challenges, including maternal obesity and stress, with adverse developmental outcomes in the child. Over the past 5 years, nearly 5000 publications have explored the consequences of maternal distress on young offspring, a marked increase from the 475 published studies over a comparable period 20 years ago. Yet, despite this explosion of research and widespread warnings to pregnant mothers, we still lack a basic understanding of the pathophysiology linking adverse maternal health to the onset of disease in the child, especially regarding how prenatal and perinatal challenges might affect brain development. Recent studies have begun to explore the cellular basis of the abnormal brain cytoarchitecture associated with fetal exposure to intrauterine challenges. Here, our goal is to review the scientific evidence that maternal distress interferes with key neurodevelopmental steps, as an entry point toward mapping the pathophysiology of pre- and perinatal stress on the unborn child's brain.
Collapse
Affiliation(s)
- C Schuurmans
- Department of Biochemistry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
294
|
Sex dimorphic behaviors as markers of neuroendocrine disruption by environmental chemicals: The case of chlorpyrifos. Neurotoxicology 2012; 33:1420-1426. [DOI: 10.1016/j.neuro.2012.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022]
|
295
|
Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 2012; 7:e47205. [PMID: 23056611 PMCID: PMC3466218 DOI: 10.1371/journal.pone.0047205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022] Open
Abstract
Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.
Collapse
Affiliation(s)
- Shaohua Chen
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chenglan Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chuyan Peng
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongmei Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
296
|
Schug TT, Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. PPTOX III: environmental stressors in the developmental origins of disease--evidence and mechanisms. Toxicol Sci 2012; 131:343-50. [PMID: 22956631 DOI: 10.1093/toxsci/kfs267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fetal and early postnatal development constitutes the most vulnerable time period of human life in regard to adverse effects of environmental hazards. Subtle effects during development can lead to functional deficits and increased disease risk later in life. The hypothesis stating that environmental exposures leads to altered programming and, thereby, to increased susceptibility to disease or dysfunction later in life has garnered much support from both experimental and epidemiological studies. Similar observations have been made on the long-term impact of nutritional unbalance during early development. In an effort to bridge the fields of nutritional and environmental developmental toxicity, the Society of Toxicology sponsored this work. This report summarizes novel findings in developmental toxicity as reported by select invited experts and meeting attendees. Recommendations for the application and improvement of current and future research efforts are also presented.
Collapse
Affiliation(s)
- Thaddeus T Schug
- Division of Extramural Research and Training, Cellular, Organ and Systems Pathobiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
297
|
Reply to Juberg: Using the biologically based dose response to compare exposures across species. Proc Natl Acad Sci U S A 2012. [DOI: 10.1073/pnas.1209095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
298
|
Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 2012; 34:505-12. [PMID: 22796634 DOI: 10.1016/j.ntt.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on models relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuritogenesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent.
Collapse
|
299
|
Differentiating experimental animal doses from human exposures to chlorpyrifos. Proc Natl Acad Sci U S A 2012; 109:E2195; author reply E2196. [PMID: 22797900 DOI: 10.1073/pnas.1208081109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
300
|
Potera C. Newly discovered mechanism for chlorpyrifos effects on neurodevelopment. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:a270-1. [PMID: 22759680 PMCID: PMC3404674 DOI: 10.1289/ehp.120-a270a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|