251
|
Warner LE, Garcia CA, Lupski JR. Hereditary peripheral neuropathies: clinical forms, genetics, and molecular mechanisms. Annu Rev Med 1999; 50:263-75. [PMID: 10073277 DOI: 10.1146/annurev.med.50.1.263] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathies, among the most common genetic disorders in humans, are a complex, clinically and genetically heterogeneous group of disorders that produce progressive deterioration of the peripheral nerves. This group of disorders includes hereditary neuropathy with liability to pressure palsies, Charcot-Marie-Tooth disease, Dejerine-Sottas syndrome, and congenital hypomyelinating neuropathy. Our understanding of these disorders has progressed from the description of the clinical phenotypes and delineation of the electrophysiologic and pathologic features to the identification of disease genes and elucidation of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- L E Warner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
252
|
Zhou L, Kasperek EM, Nicholson BJ. Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels. J Biophys Biochem Cytol 1999; 144:1033-45. [PMID: 10085299 PMCID: PMC2148195 DOI: 10.1083/jcb.144.5.1033] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Suppression of gap-junctional communication by various protein kinases, growth factors, and oncogenes frequently correlates with enhanced mitogenesis. The oncogene v-src appears to cause acute closure of gap junction channels. Tyr265 in the COOH-terminal tail of connexin 43 (Cx43) has been implicated as a potential target of v-src, although v-src action has also been associated with changes in serine phosphorylation. We have investigated the mechanism of this acute regulation through mutagenesis of Cx43 expressed in Xenopus laevis oocyte pairs. Truncations of the COOH-terminal domain led to an almost complete loss of response of Cx43 to v-src, but this was restored by coexpression of the independent COOH-terminal polypeptide. This suggests a ball and chain gating mechanism, similar to the mechanism proposed for pH gating of Cx43, and K+ channel inactivation. Surprisingly, we found that v-src mediated gating of Cx43 did not require the tyrosine site, but did seem to depend on the presence of two potential SH3 binding domains and the mitogen-activated protein (MAP) kinase phosphorylation sites within them. Further point mutagenesis and pharmacological studies in normal rat kidney (NRK) cells implicated MAP kinase in the gating response to v-src, while the stable binding of v-src to Cx43 (in part mediated by SH3 domains) did not correlate with its ability to mediate channel closure. This suggests a common link between closure of gap junctions by v-src and other mitogens, such as EGF and lysophosphatidic acid (LPA).
Collapse
Affiliation(s)
- L Zhou
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
253
|
Willecke K, Kirchhoff S, Plum A, Temme A, Thönnissen E, Ott T. Biological functions of connexin genes revealed by human genetic defects, dominant negative approaches and targeted deletions in the mouse. NOVARTIS FOUNDATION SYMPOSIUM 1999; 219:76-88; discussion 88-96. [PMID: 10207899 DOI: 10.1002/9780470515587.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gap junction channels in mammalian organs can be built up of at least 13 different connexin proteins, most of which are expressed in only few cell types, although many cells express more than one connexin protein. Recently, the consequences of missing or defective connexin proteins were studied in human patients with defects in connexin32 (Cx32; beta 1; X-linked Charcot-Marie-Tooth disease) or in Cx26 (beta 2; non-syndromic sensorineural deafness), and in mice with targeted deletions in the Cx26, Cx32, Cx37 (alpha 4), Cx43 (alpha 1), Cx46 (alpha 3) or Cx50 (alpha 8) genes. Some effects of dominant negative mutations in connexin genes have been characterized in Xenopus oocytes and transfected mammalian cells in culture. Here we review results of these different experimental approaches and report new findings regarding the characterization of Cx40 (alpha 5)- and Cx31 (beta 3)-deficient mice. The phenotypic alterations, caused by different defective connexin genes in mice or humans, are divergent, although in most known cases the viability is not affected. When more than one connexin gene, coexpressed in the same cell, is inactivated, development or maturation can be more severely affected at an earlier stage. Some connexin proteins, if present in the same cell, can partially replace each other in certain functions. Thus, the diversity of connexin proteins in mammalian cells may provide functional overlap and complementation.
Collapse
Affiliation(s)
- K Willecke
- Abt. Molekulargenetik, Universität Bonn, Germany
| | | | | | | | | | | |
Collapse
|
254
|
vom Dahl S, Bode JG, Reinehr RM, Mönnighoff I, Kubitz R, Häussinger D. Release of osmolytes from perfused rat liver on perivascular nerve stimulation: alpha-adrenergic control of osmolyte efflux from parenchymal and nonparenchymal liver cells. Hepatology 1999; 29:195-204. [PMID: 9862867 DOI: 10.1002/hep.510290114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of perivascular nerve stimulation and phenylephrine on osmolyte release were studied in the intact perfused rat liver and isolated liver parenchymal cells (PC) and nonparenchymal cells. In the perfused liver, electrical stimulation of perivascular nerves (20 Hz/2 ms/20 V) led to a phentolamine-sensitive increase of cell hydration by 6.5% +/- 1.2% (n = 3) and a transient phentolamine-sensitive stimulation of taurine and inositol, but not betaine, release. These nerve effects were mimicked by phenylephrine, but not prostaglandin F2alpha, and were not affected by sodium nitroprusside (SNP) or ibuprofen. Nerve stimulation-induced taurine, but not inositol, release was inhibited by 4, 4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS) (50 micromol/L). Single-cell fluorescence studies with isolated liver PC, Kupffer cells (KC), sinusoidal endothelial cells (SEC), and hepatic stellate cells (HSC) revealed that phenylephrine induced an increase in cytosolic free Ca2+ only in PC and HSC, but not in KC and SEC, whereas extracellular uridine triphosphate (UTP) produced Ca2+ transients/oscillations in all liver cell types studied. Phenylephrine had no effect on osmolyte release from isolated KC and SEC, but increased taurine (but not inositol) release from PC and inositol (but not taurine) efflux from HSC. The data suggest that: 1) liver cell hydration and-consecutively-osmolyte content are modulated by hepatic nerves via an alpha-adrenergic mechanism, which does not involve eicosanoids or hemodynamic changes; 2) that PC and HSC are the primary targets for nerve-dependent alpha-adrenergic activation, whereas 3) KC and SEC probably do not express alpha-adrenoceptors coupled to Ca2+ mobilization or osmolyte efflux.
Collapse
Affiliation(s)
- S vom Dahl
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
255
|
Scherer SS, Bone LJ, Deschênes SM, Abel A, Balice-Gordon RJ, Fischbeck KH. The role of the gap junction protein connexin32 in the pathogenesis of X-linked Charcot-Marie-Tooth disease. NOVARTIS FOUNDATION SYMPOSIUM 1999; 219:175-85; discussion 185-7. [PMID: 10207904 DOI: 10.1002/9780470515587.ch11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mutations in the gene encoding the gap junction protein connexin32 (Cx32; beta 1) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX), a common form of inherited demyelinating neuropathy. Cx32 is localized to the paranodes and incisures of myelinating Schwann cells, and probably participates in the formation of gap junctions at these locations, thereby allowing the diffusion of ions and small molecules directly across the myelin sheath. In transfected cells different CMTX mutations have different effects on the ability of the mutant protein to form functional gap junctions; some mutant proteins cannot be detected within the cell, other mutant proteins accumulate within the cell but do not reach the cell membrane, while other mutants reach the cell membrane and some of these form functional gap junctions. In transgenic mice two mutants, R142W and 175 frameshift, have similar effects on protein trafficking as in transfected cells: the R142W mutant protein remains in the perinuclear region and does not reach the paranodes or incisures, and the 175 frameshift protein cannot be detected. Thus, different CMTX mutations have different effects on Cx32 protein, and these differences may help to explain the phenotypic differences seen in CMTX kindreds.
Collapse
Affiliation(s)
- S S Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
256
|
Gong X, Agopian K, Kumar NM, Gilula NB. Genetic factors influence cataract formation in alpha 3 connexin knockout mice. DEVELOPMENTAL GENETICS 1999; 24:27-32. [PMID: 10079508 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<27::aid-dvg4>3.0.co;2-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Connexin alpha 3 (Cx46 or Gja3) gene targeted null mice developed lens nuclear cataracts shortly after birth. A large variance in the cataracts was observed in alpha 3 null sibs on a mixed 129SvJae X C57BL/6J F3 background. This suggested that the genetic background might influence the cataract phenotype. Therefore, we placed the alpha 3 null mutation into a 129SvJae background, and also backcrossed the mutation for six generations into 129SvJ and C57BL/6J backgrounds. While alpha 3 nulls on the two 129 backgrounds contained severe cataracts associated with gamma crystallin cleavage, alpha 3 nulls on the C57B16 background had far milder cataracts with no detectable gamma crystallin cleavage. These findings suggest that a genetic modifier exists that influences gamma crystallin stability, and that gamma crystallin breakdown is associated with severe nuclear cataracts.
Collapse
Affiliation(s)
- X Gong
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
257
|
Neuberg DH, Suter U. Connexin32 in hereditary neuropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 468:227-36. [PMID: 10635032 DOI: 10.1007/978-1-4615-4685-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- D H Neuberg
- Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
258
|
Spray D, Kojima T, Scemes E, Suadicani S, Gao Y, Zhao S, Fort A. Chapter 23: “Negative” Physiology: What Connexin-Deficient Mice Reveal about the Functional Roles of Individual Gap Junction Proteins. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
259
|
Houghton FD, Thönnissen E, Kidder GM, Naus CC, Willecke K, Winterhager E. Doubly mutant mice, deficient in connexin32 and -43, show normal prenatal development of organs where the two gap junction proteins are expressed in the same cells. DEVELOPMENTAL GENETICS 1999; 24:5-12. [PMID: 10079506 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<5::aid-dvg2>3.0.co;2-f] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The connexins are a family of proteins that form the intercellular membrane channels of gap junctions. Genes encoding 13 different rodent connexins have been cloned and characterized to date. Connexins vary both in their distribution among adult cell types and in the properties of the channels that they form. In order to explore the functional significance of connexin diversity, several mouse connexin-encoding genes have been disrupted by homologous recombination in embryonic stem cells. Although those experiments have illuminated specific physiological roles for individual connexins, the results have also raised the possibility that connexins may functionally compensate for one another in cells where they are coexpressed. In the present study, we have tested this hypothesis by interbreeding mice carrying null mutations in the genes (Gjb1 and Gja1) encoding connexin32 (beta 1 connexin) and connexin43 (alpha 1 connexin), respectively. We found that fetuses lacking both connexins survive to term but, as expected, the pups die soon thereafter from the cardiac abnormality caused by the absence of connexin43. A survey of the major organ systems of the doubly mutant fetuses, including the thyroid gland, developing teeth, and limbs where these two connexins are coexpressed, failed to reveal any morphological abnormalities not already seen in connexin43 deficient fetuses. Furthermore, the production of thyroxine by doubly mutant thyroids was confirmed by immunocytochemistry. We conclude that, at least as far as the prenatal period is concerned, the normal development of those three organs in fetuses lacking connexin43 cannot simply be explained by the additional presence of connexin32 and vice-versa. Either gap junctional coupling is dispensable in embryonic and fetal cells in which these two connexins are coexpressed, or coupling is provided by yet another connexin when both are absent.
Collapse
Affiliation(s)
- F D Houghton
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
260
|
Nelis E, Haites N, Van Broeckhoven C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mutat 1999; 13:11-28. [PMID: 9888385 DOI: 10.1002/(sici)1098-1004(1999)13:1<11::aid-humu2>3.0.co;2-a] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The peripheral myelin protein 22 gene (PMP22), the myelin protein zero gene (MPZ, P0), and the connexin 32 gene (Cx32, GJB1) code for membrane proteins expressed in Schwann cells of the peripheral nervous system (PNS). The early growth response 2 gene (EGR2) encodes a transcription factor that may control myelination in the PNS. Mutations in the respective genes, located on human chromosomes 17p11.2, 1q22-q23, Xq13.1, and 10q21.1-q22.1, are associated with several inherited peripheral neuropathies. To date, a genetic defect in one of these genes has been identified in over 1,000 unrelated patients manifesting a wide range of phenotypes, i.e., Charcot-Marie-Tooth disease type 1 (CMT1) and type 2 (CMT2), Dejerine-Sottas syndrome (DSS), hereditary neuropathy with liability to pressure palsies (HNPP), and congenital hypomyelination (CH). This large number of genetically defined patients provides an exceptional opportunity to examine the correlation between phenotype and genotype.
Collapse
Affiliation(s)
- E Nelis
- Flanders Interuniversity Institute for Biotechnology (VIB), Born-Bunge Foundation, University of Antwerp, Department of Biochemistry, Belgium
| | | | | |
Collapse
|
261
|
Abstract
Gap junctions are clusters of intercellular channels between adjacent cells. The channels are formed by the direct apposition of oligomeric transmembrane proteins, permitting the direct exchange of ions and small molecules (< 1 kDa) between cells without involvement of the extracellular space. Vertebrate gap junction channels are composed of oligomers of connexins, an enlarging family of proteins consisting of perhaps > 20 members. This article reviews recent advances in understanding the structure of intercellular channels and describes the diverse functions attributable to gap junctions as a result of insights gained from targeted gene disruptions in mice and genetic disease in humans.
Collapse
Affiliation(s)
- A M Simon
- Dept of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
262
|
Stümpel F, Ott T, Willecke K, Jungermann K. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 1998; 28:1616-20. [PMID: 9828226 DOI: 10.1002/hep.510280622] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gap junctions connect neighboring cells via intercellular channels composed of connexins (Cx). Connexin 32 (Cx32) is the main connexin in hepatocytes. Gap junctions propagate a signal from periportal to perivenous hepatocytes generated by electrical stimulation of sympathetic liver nerves. Therefore, it was the aim of this study to examine the involvement of hepatocellular gap junctions in hormonal regulation. In perfused livers from wild-type mice and Cx32-deficient mice, the stimulation of glucose release by varying noradrenaline and glucagon concentrations was investigated. At saturating hormone concentrations, glucose release was the same in wild-type and Cx32-deficient livers. However, glucose output was significantly smaller in Cx32-deficient than wild-type livers at half-maximally effective hormone concentrations. Because the two hormones circulate at less than half-saturating concentrations and because they are degraded during passage of blood through the liver, they lose efficiency from the periportal to the perivenous zone. In wild-type livers, this decrease in efficiency can be partially compensated by intercellular signal propagation through gap junctions, resulting in higher hormone actions than in Cx32-deficient livers. It is concluded that gap junctions are not only involved in intercellular propagation of nervous, but also of hormonal signals from periportal to perivenous hepatocytes.
Collapse
Affiliation(s)
- F Stümpel
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
263
|
Abstract
Hereditary peripheral neuropathies have traditionally been classified by the clinical disease pattern and mode of inheritance. It only recently became possible to provide a more precise subdivision of the diseases by the discovery of distinct genetic defects. Most inherited peripheral neuropathies are caused by distinct mutations in the genes of three well known myelin components, peripheral myelin protein 22, P0 and the gap junction protein connexin 32. The present review addresses the expression and functional roles of these myelin components, as well as the putative pathomechanisms caused by distinct mutations in the corresponding genes. Moreover, the suitability of mutant animals, such as knock-out mice and transgenic rodents, as artificial models for these diseases and their use in the study of possible treatment strategies are discussed.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany.
| | | | | |
Collapse
|
264
|
Pastor A, Kremer M, Möller T, Kettenmann H, Dermietzel R. Dye coupling between spinal cord oligodendrocytes: Differences in coupling efficiency between gray and white matter. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199809)24:1<108::aid-glia11>3.0.co;2-v] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
265
|
Affiliation(s)
- R Dermietzel
- Department of Neuroanatomy/Molecular Brain Research, Ruhr University, Bochum, Germany
| | | |
Collapse
|
266
|
Abstract
Mutations in the gene encoding the gap junction protein connexin32 (Cx32) cause X-linked Charcot-Marie-Tooth disease (CMTX), a common form of inherited demyelinating peripheral neuropathy. To learn more about the pathogenesis of CMTX, we examined the PNS and CNS of cx32-null mice (cx32-/Y males and cx32-/-females) by light and electron microscopy. These mice develop a progressive demyelinating peripheral neuropathy beginning by 3 months of age, and at all ages, motor fibers are more affected than sensory fibers. Like other genes of the X chromosome, the cx32 gene appears to be randomly inactivated, since only some myelinating Schwann cells express Cx32 in heterozygous cx32 +/- females. Heterozygous cx32 +/- females have fewer demyelinated and remyelinated axons than age-matched homozygous cx32-/- females and cx32-/Y males. Although oligodendrocytes also express Cx32, no abnormalities in CNS myelin were found. These findings indicate that a null cx32 allele in myelinating Schwann cells is sufficient to cause an inherited demyelinating neuropathy, so that Cx32 has an essential role in myelinating Schwann cells both in mice and in humans.
Collapse
Affiliation(s)
- S S Scherer
- Department of Neurology, University of Pennsylvania Medical Center, Philidelphia 19104-6077, USA.
| | | | | | | | | | | |
Collapse
|
267
|
Abstract
In the peripheral nervous system (PNS), myelinating Schwann cells express the gap junction protein connexin32 (Cx32) and lower levels of connexin43 (Cx43). Although the function of Cx43 in Schwann cells is not yet known, in adult mammals Cx32 is thought to form reflexive contacts within individual myelinating glial cells and provide direct pathways for intracellular ionic and metabolic exchange from the cell body to the innermost periaxonal cytoplasmic regions. In response to nerve injury, Schwann cells in the degenerating region down-regulate expression of Cx32 and there is increased expression of connexin46 (Cx46) mRNA and protein. The cascade of Schwann cell responses seen after the injury-induced decrease in Cx32, and the observation that dividing Schwann cells express Cx46, and possibly other connexins, and are coupled through gap junction channels, raise the intriguing possibility that there are coordinated changes in Schwann cell proliferation and connexin expression. Moreover, intercellular junctional coupling among cells in general may be important during injury responses. Consistent with this hypothesis, dividing Schwann cells are preferentially coupled through junctional channels as compared to non-dividing cells, which are generally uncoupled. Moreover, the strength of junctional coupling among cultured Schwann cells is modulated by a number of cytokines to which Schwann cells are exposed to in vivo after nerve injury, and Cx46 mRNA and protein levels correlate with the degree of coupling. Other injury-induced cellular changes in connexin expression that may be functionally important during injury responses include a transient increase in Cx43 in endoneurial fibroblasts. This paper reviews what is known about connexin expression and function in the adult mammalian PNS, and focuses on some of the changes that occur following nerve injury. Moreover, evidence that inflammatory cytokines released after injury modulate connexin expression and junctional coupling strength is presented.
Collapse
Affiliation(s)
- K J Chandross
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Laboratory of Developmental Neurogenetics, Bethesda, Maryland 20892-4160, USA.
| |
Collapse
|
268
|
Gap junctions in health and disease. Med Mol Morphol 1998. [DOI: 10.1007/bf01553778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
269
|
Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142:1095-104. [PMID: 9722620 PMCID: PMC2132877 DOI: 10.1083/jcb.142.4.1095] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/1998] [Revised: 06/18/1998] [Indexed: 02/08/2023] Open
Abstract
The Schwann cell myelin sheath is a multilamellar structure with distinct structural domains in which different proteins are localized. Intracellular dye injection and video microscopy were used to show that functional gap junctions are present within the myelin sheath that allow small molecules to diffuse between the adaxonal and perinuclear Schwann cell cytoplasm. Gap junctions are localized to periodic interruptions in the compact myelin called Schmidt-Lanterman incisures and to paranodes; these regions contain at least one gap junction protein, connexin32 (Cx32). The radial diffusion of low molecular weight dyes across the myelin sheath was not interrupted in myelinating Schwann cells from cx32-null mice, indicating that other connexins participate in forming gap junctions in these cells. Owing to the unique geometry of myelinating Schwann cells, a gap junction-mediated radial pathway may be essential for rapid diffusion between the adaxonal and perinuclear cytoplasm, since this radial pathway is approximately one million times faster than the circumferential pathway.
Collapse
Affiliation(s)
- R J Balice-Gordon
- Department of Neuroscience, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.
| | | | | |
Collapse
|
270
|
Krufka A, Johnson RG, Wylie CC, Heasman J. Evidence that dorsal-ventral differences in gap junctional communication in the early Xenopus embryo are generated by beta-catenin independent of cell adhesion effects. Dev Biol 1998; 200:92-102. [PMID: 9698459 DOI: 10.1006/dbio.1998.8951] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gap junctional communication (GJC) is regulated in the early Xenopus embryo and quantitative differences in junctional communication correlate with the specification of the dorsal-ventral axis. To address the mechanism that is responsible for regulating this differential communication, we investigated the function of beta-catenin during the formation of the dorsal-ventral axis in Xenopus embryos by blocking its synthesis with antisense oligodeoxynucleotides. This method has previously been shown to reduce the level of beta-catenin in the early embryo, prior to zygotic transcription, and to inhibit the formation of the dorsal axis (Heasman et al., 1994, Cell 79, 791-803). We show here that antisense inhibition of beta-catenin synthesis also reduces GJC among cells in the dorsal hemisphere of 32-cell embryos to levels similar to those observed among ventral cells. Full-length beta-catenin mRNA can restore elevated levels of dorsal GJC when injected into beta-catenin-deficient oocytes, demonstrating the specificity of the beta-catenin depletion with the antisense oligonucleotides. Thus, endogenous beta-catenin is required for the observed differential GJC. This regulation of GJC is the earliest known action of the dorsal regulator, beta-catenin, in Xenopus development. Two lines of evidence, presented here, indicate that beta-catenin acts within the cytoplasm to regulate GJC, rather than through an effect on cell adhesion. First, when EP-cadherin is overexpressed and increased adhesion is observed, embryos display both a ventralized phenotype and reduced dye transfer. Second, a truncated form of beta-catenin (i.e., the ARM region), that lacks the cadherin-binding domain, restores dorsal GJC to beta-catenin-depleted embryos. Thus, beta-catenin appears to regulate GJC independent of its role in cell-cell adhesion, by acting within the cytoplasm through a signaling mechanism.
Collapse
Affiliation(s)
- A Krufka
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | | | | | | |
Collapse
|
271
|
Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 1998. [PMID: 9592087 DOI: 10.1523/jneurosci.18-11-04063.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMTX) is associated with mutations in the gene encoding connexin32 (Cx32), which is expressed in Schwann cells. We have compared the functional properties of 11 Cx32 mutations with those of the wild-type protein by testing their ability to form intercellular channels in the paired oocyte expression system. Although seven mutations were functionally incompetent, four others were able to generate intercellular currents of the same order of magnitude as those induced by wild-type Cx32 (Cx32wt). In homotypic oocyte pairs, CMTX mutations retaining functional activity induced the development of junctional currents that exhibited changes in the sensitivity and kinetics of voltage dependence with respect to that of Cx32wt. The four mutations were also capable of interacting in heterotypic configuration with the wild-type protein, and in one case the result was a marked rectification of junctional currents in response to voltage steps of opposite polarity. In addition, the functional CMTX mutations displayed the same selective pattern of compatibility as Cx32wt, interacting with Cx26, Cx46, and Cx50 but failing to do so with Cx40. Although the functional mutations exhibited sensitivity to cytoplasmic acidification, which induced a >/=80% decrease in junctional currents, both the rate and extent of channel closure were enhanced markedly for two of them. Together, these results indicate that the functional consequences of CMTX mutations of Cx32 are of two drastically distinct kinds. The presence of a functional group of mutations suggests that a selective deficit of Cx32 channels may be sufficient to impair the homeostasis of Schwann cells and lead to the development of CMTX.
Collapse
|
272
|
Grazul-Bilska AT, Redmer DA, Bilski JJ, Jablonka-Shariff A, Doraiswamy V, Reynolds LP. Gap junctional proteins, connexin 26, 32, and 43 in sheep ovaries throughout the estrous cycle. Endocrine 1998; 8:269-79. [PMID: 9741832 DOI: 10.1385/endo:8:3:269] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ovarian follicles from days 13, 14, 15, and 16 and corpora lutea (CL) from days 2, 4, 8, 12, and 15 of the estrous cycle were evaluated for the presence of connexins by immunohistochemistry. In addition, CL from days 5, 10, and 15 of the estrous cycle were used for immunofluorescent detection of Cx43 followed by image analysis, and for Western immunoblot. In all tissues, staining for all connexins appeared punctate, indicating the presence of assembled gap junctions. Cx26 was present in the ovarian surface epithelium, stroma, and blood vessels within the stroma and hilus, and in the CL. In healthy antral follicles, Cx26 was present only in the theca layer, whereas Cx43 was present in granulosa and theca layers. In the majority of atretic follicles, connexins were not detected, but in 13% of the atretic follicles, Cx43 was present in the theca layer. Cx32 was detected in the blood vessels of ovarian stroma and in the CL, and Cx43 was detected in the CL. Localization and/or expression of connexins depended on stage of luteal development. Western analysis demonstrated that expression of Cx32 in luteal tissues was similar across the estrous cycle. The area of positive staining for Cx43 and expression of Cx43 in luteal tissues decreased (p < 0.05) as the estrous cycle progressed. The pattern of expression of connexins indicates that gap junctional proteins may be important in the regulation of folliculogenesis and follicular atresia, as well as growth, differentiation, and regression of the CL.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Cell Biology Center, Biotechnology Institute, Department of Animal and Range Sciences, North Dakota State University, Fargo 58105, USA.
| | | | | | | | | | | |
Collapse
|
273
|
Martini R, Carenini S. Formation and maintenance of the myelin sheath in the peripheral nerve: roles of cell adhesion molecules and the gap junction protein connexin 32. Microsc Res Tech 1998; 41:403-15. [PMID: 9672423 DOI: 10.1002/(sici)1097-0029(19980601)41:5<403::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Based on previous in vitro studies, the cell adhesion molecules L1, N-CAM, MAG, and P0, which all belong to the immunoglobulin (Ig)-superfamily, have been suggested to mediate myelin formation in the peripheral nervous system. Unexpectedly, studies in mice deficient for the corresponding molecules revealed that only P0 plays pivotal roles during the formation of peripheral nerve myelin in vivo, while L1-, N-CAM-, and MAG-deficient mice develop myelin of normal ultrastructure. However, MAG turned out to be important for the maintenance of myelin, as reflected by degeneration of myelin and axons in MAG-deficient mice older than 6 months. The MAG-mediated maintenance of myelin is backed up by N-CAM, since mice deficient in both MAG and N-CAM show an earlier and more prominent myelin degeneration than MAG single mutants. Another peripheral nerve component involved in the maintenance of myelinated fibers is connexin 32 (Cx32), a gap junction channel protein that does not belong to the Ig-superfamily. Mice deficient in Cx32 initially form normal myelin, which then develops blown-up periaxonal collars and abnormally shaped non-compacted regions followed by myelin and axonal degeneration. Our findings strongly support the view that very few myelin components are necessary for myelin formation whereas the maintenance of myelin is much more sensitive to molecular alterations. In addition, it became evident that myelin molecules can fulfill functionally overlapping roles that ensure that myelination takes place even under conditions in which there is a deficiency in the normal molecular components of myelin.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany
| | | |
Collapse
|
274
|
Eugenín EA, González H, Sáez CG, Sáez JC. Gap junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G1109-16. [PMID: 9696712 DOI: 10.1152/ajpgi.1998.274.6.g1109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Because hepatocytes communicate via gap junctions, it has been proposed that Ca2+ waves propagate through this pathway and in the process activate Ca2+-dependent cellular responses. We testedthis hypothesis by measuring vasopressin-induced glycogenolysis in short-term cultures of rat hepatocytes. A 15-min vasopressin (10(-8) M) stimulation induced a reduction of glycogen content that reached a maximum 1-3 h later. Gap junction blockers, octanol or 18alpha-glycyrrhetinic acid, reduced the effect by 70%. The glycogenolytic response induced by Ca2+ ionophore 8-bromo-A-21387, which acts on each hepatocyte, was not affected by gap junction blockers. Moreover, the vasopressin-induced glycogenolysis was lower (70%) in dispersed than in reaggregated hepatocytes and in dispersed hepatocytes was not affected by gap junction blockers. In hepatocytes reaggregated in the presence of a synthetic peptide homologous to a domain of the extracellular loop 1 of the main hepatocyte gap junctional protein, vasopressin-induced glycogenolysis and incidence of dye coupling were drastically reduced. Moreover, gap junctional communication was detected between reaggregated cells, suggesting that hepatocytes with different vasopressin receptor densities become coupled to each other. The vasopressin-induced effect was not affected by suramin, ruling out ATP as a paracrine mediator. We propose that gap junctions allow for a coordinated vasopressin-induced glycogenolytic response despite the heterogeneity among hepatocytes.
Collapse
Affiliation(s)
- E A Eugenín
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiogo, Chile
| | | | | | | |
Collapse
|
275
|
Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P. Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol 1998; 141:1267-75. [PMID: 9606217 PMCID: PMC2137182 DOI: 10.1083/jcb.141.5.1267] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Revised: 04/29/1998] [Indexed: 02/07/2023] Open
Abstract
To determine whether junctional communication between pancreatic acinar cells contributes to their secretory function in vivo, we have compared wild-type mice, which express the gap junctional proteins connexin32 (Cx32) and connexin26, to mice deficient for the Cx32 gene. Pancreatic acinar cells from Cx32 (-/-) mice failed to express Cx32 as evidenced by reverse transcription-PCR and immunolabeling and showed a marked reduction (4.8- and 25-fold, respectively) in the number and size of gap junctions. Dye transfer studies showed that the extent of intercellular communication was inhibited in Cx32 (-/-) acini. However, electrical coupling was detected by dual patch clamp recording in Cx32 (-/-) acinar cell pairs. Although wild-type and Cx32 (-/-) acini were similarly stimulated to release amylase by carbamylcholine, Cx32 (-/-) acini showed a twofold increase of their basal secretion. This effect was caused by an increase in the proportion of secreting acini, as detected with a reverse hemolytic plaque assay. Blood measurements further revealed that Cx32 (-/-) mice had elevated basal levels of circulating amylase. The results, which demonstrate an inverse relationship between the extent of acinar cell coupling and basal amylase secretion in vivo, support the view that the physiological recruitment of secretory acinar cells is regulated by gap junction mediated intercellular communication.
Collapse
Affiliation(s)
- M Chanson
- Department of Pediatrics, University of Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
276
|
Ressot C, Gomès D, Dautigny A, Pham-Dinh D, Bruzzone R. Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 1998; 18:4063-75. [PMID: 9592087 PMCID: PMC6792797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Revised: 03/18/1998] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMTX) is associated with mutations in the gene encoding connexin32 (Cx32), which is expressed in Schwann cells. We have compared the functional properties of 11 Cx32 mutations with those of the wild-type protein by testing their ability to form intercellular channels in the paired oocyte expression system. Although seven mutations were functionally incompetent, four others were able to generate intercellular currents of the same order of magnitude as those induced by wild-type Cx32 (Cx32wt). In homotypic oocyte pairs, CMTX mutations retaining functional activity induced the development of junctional currents that exhibited changes in the sensitivity and kinetics of voltage dependence with respect to that of Cx32wt. The four mutations were also capable of interacting in heterotypic configuration with the wild-type protein, and in one case the result was a marked rectification of junctional currents in response to voltage steps of opposite polarity. In addition, the functional CMTX mutations displayed the same selective pattern of compatibility as Cx32wt, interacting with Cx26, Cx46, and Cx50 but failing to do so with Cx40. Although the functional mutations exhibited sensitivity to cytoplasmic acidification, which induced a >/=80% decrease in junctional currents, both the rate and extent of channel closure were enhanced markedly for two of them. Together, these results indicate that the functional consequences of CMTX mutations of Cx32 are of two drastically distinct kinds. The presence of a functional group of mutations suggests that a selective deficit of Cx32 channels may be sufficient to impair the homeostasis of Schwann cells and lead to the development of CMTX.
Collapse
Affiliation(s)
- C Ressot
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, F-75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
277
|
Dermietzel R. Gap junction wiring: a 'new' principle in cell-to-cell communication in the nervous system? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:176-83. [PMID: 9651521 DOI: 10.1016/s0165-0173(97)00031-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review gives an updated excerpt of recent advances in our understanding of brain gap junctions. It starts with a brief description of the principle molecular composition of gap junctions before specific issues concerning brain tissues are addressed. The following questions and matters are subjected to a detailed analysis: First, why are there so many gap junctions in the brain? Second, what is the functional significance of the cellular diversity of brain gap junctions? Third, how do astrocytic gap junctions mediate intercellular volume transmission (IVT), and what does IVT mean for glial-neuronal interaction? Fourth, how frequent are interneuronal gap junctions; and what is their functional significance in brain development and in interrelated chemical-electrotonic transmission at mixed synapses.
Collapse
Affiliation(s)
- R Dermietzel
- Institute of Anatomy, University of Regensburg, Universitätsstr. 31, 93052 Regensburg, Germany.
| |
Collapse
|
278
|
Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141:397-408. [PMID: 9548718 PMCID: PMC2148457 DOI: 10.1083/jcb.141.2.397] [Citation(s) in RCA: 401] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Occludin is the only known integral membrane protein of tight junctions (TJs), and is now believed to be directly involved in the barrier and fence functions of TJs. Occludin-deficient embryonic stem (ES) cells were generated by targeted disruption of both alleles of the occludin gene. When these cells were subjected to suspension culture, they aggregated to form simple, and then cystic embryoid bodies (EBs) with the same time course as EB formation from wild-type ES cells. Immunofluorescence microscopy and ultrathin section electron microscopy revealed that polarized epithelial (visceral endoderm-like) cells were differentiated to delineate EBs not only from wild-type but also from occludin-deficient ES cells. Freeze fracture analyses indicated no significant differences in number or morphology of TJ strands between wild-type and occludin-deficient epithelial cells. Furthermore, zonula occludens (ZO)-1, a TJ-associated peripheral membrane protein, was still exclusively concentrated at TJ in occludin-deficient epithelial cells. In good agreement with these morphological observations, TJ in occludin-deficient epithelial cells functioned as a primary barrier to the diffusion of a low molecular mass tracer through the paracellular pathway. These findings indicate that there are as yet unidentified TJ integral membrane protein(s) which can form strand structures, recruit ZO-1, and function as a barrier without occludin.
Collapse
Affiliation(s)
- M Saitou
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Steinberg TH. Gap junction function: the messenger and the message. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:851-4. [PMID: 9546343 PMCID: PMC1858255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T H Steinberg
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
280
|
Abstract
Gene targeting technology in mice by homologous recombination has become an important method to generate loss-of-function of genes in a predetermined locus. Although the inactivation is limited to irreversible alteration of chromosomal DNA and a surprising variety of genes have given unexpected and disappointing results, modification of the basic technology now provides additional choices for a more specific and variety of manipulations of the mouse genome. This includes conditional cell-type specific gene targeting, knockin technique and the induction of the specific balanced chromosomal translocations. In the past decade this technique not only generated a wealth of knowledge concerning the roles of growth factors, oncogenes, hormone receptors and Hox genes but also helped to produce animal models for several human genetic disorders. In the future it may provide more powerful and necessary tools to dissect the psychiatric disorders, understanding the complex central nervous system and to correct the inherited disorders.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, Missouri 48309, USA
| |
Collapse
|
281
|
Affiliation(s)
- C Huxley
- Imperial College School of Medicine at St Mary's, London, UK
| |
Collapse
|
282
|
Gabriel HD, Jung D, Bützler C, Temme A, Traub O, Winterhager E, Willecke K. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol 1998; 140:1453-61. [PMID: 9508777 PMCID: PMC2132681 DOI: 10.1083/jcb.140.6.1453] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mice that harbor a targeted homozygous defect in the gene coding for the gap junctional protein connexin26 died in utero during the transient phase from early to midgestation. From day 10 post coitum onwards, development of homozygous embryos was retarded, which led to death around day 11 post coitum. Except for growth retardation, no gross morphological alterations were detected between homozygous connexin26-defective embryos and wild-type littermates. At day 9 postcoitum, when chorioallantoic placenta started to function, connexin26 was weakly expressed in the yolk sac epithelium, between syncytiotrophoblasts I and II in the labyrinth region of the placenta, and in the skin of the embryo. At day 10 post coitum, expression of connexin26 in the placenta was much stronger than at the other locations. To analyze involvement of connexin26 in the placental transfer of nutrients, we have measured embryonic uptake of the nonmetabolizable glucose analogue 3-O-[14C]methylglucose, injected into the maternal tail vein. At day 10 post coitum, viable, homozygous connexin26-defective embryos accumulated only approximately 40% of the radioactivity measured in wild-type and heterozygous littermates of the same size. We conclude that the uptake of glucose, and presumably other nutrients as well, from maternal blood into connexin26-deficient mouse embryos was severely impaired and apparently not sufficient to support the rapid organogenesis during midgestation. Our results suggest that connexin26 gap junction channels likely fulfill an essential role in the transfer of maternal nutrients and embryonic waste products between syncytiotrophoblast I and II in the labyrinth layer of the mouse placenta.
Collapse
Affiliation(s)
- H D Gabriel
- Institut für Genetik, Abt. Molekulargenetik, Universität Bonn, 53117 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
283
|
Müller HW, Suter U, Van Broeckhoven C, Hanemann CO, Nelis E, Timmerman V, Sancho S, Barrio L, Bolhuis P, Dermietzel R, Frank M, Gabreëls-Festen A, Gillen C, Haites N, Levi G, Mariman E, Martini R, Nave K, Rautenstrauss B, Schachner M, Schenone A, Schneider C, Schröder M, Willecke K, Haneman O. Advances in Charcot-Marie-Tooth disease research: cellular function of CMT-related proteins, transgenic animal models, and pathomechanisms. The European CMT Consortium. Neurobiol Dis 1997; 4:215-20. [PMID: 9361297 DOI: 10.1006/nbdi.1997.0148] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The First Workshop of the European Consortium on Charcot-Marie-Tooth (CMT) disease brought together neuroscientists, molecular and cell biologists, neuropathologists, neurologists, and geneticists with a common interest in the understanding of the fundamental mechanisms that underlie the pathogenesis of CMT. The interdisciplinary group of 25 expert scientists discussed recent advances in (i) molecular genetics and histopathology of CMT, (ii) development of suitable animal models, (iii) understanding of the cellular function of CMT-related proteins, and (iv) studies using nerve biopsies from CMT patients. In this minireview, we summarize the key findings presented and discuss their impact on CMT research.
Collapse
Affiliation(s)
- H W Müller
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Makarenkova H, Becker DL, Tickle C, Warner AE. Fibroblast growth factor 4 directs gap junction expression in the mesenchyme of the vertebrate limb Bud. J Cell Biol 1997; 138:1125-37. [PMID: 9281589 PMCID: PMC2136758 DOI: 10.1083/jcb.138.5.1125] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1996] [Revised: 06/27/1997] [Indexed: 02/05/2023] Open
Abstract
Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell-cell communication and polarizing signaling are intimately connected.
Collapse
Affiliation(s)
- H Makarenkova
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
285
|
Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol 1997; 7:713-6. [PMID: 9285723 DOI: 10.1016/s0960-9822(06)00302-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Connexins are subunits of gap junction channels, which mediate the direct transfer of ions, second messenger molecules and other metabolites between contacting cells. Gap junctions are thought to be involved in tissue homeostasis, embryonic development and the control of cell proliferation [1,2]. It has also been suggested that the loss of intercellular communication via gap junctions may contribute to multistage carcinogenesis [3-5]. We have previously shown that transgenic mice that lack connexin32 (Cx32), the major gap junction protein expressed in hepatocytes, express lower levels of a second hepatic gap junction protein, Cx26, suggesting that Cx32 has a stabilizing effect on Cx26 [6]. Here, we report that male and female one-year-old mice deficient for Cx32 had 25-fold more and 8-fold more spontaneous liver tumors than wild-type mice, respectively. Incorporation of bromodeoxyuridine (BrdU) into the liver was higher for Cx32-deficient mice than for wild-type mice, suggesting that their hepatocyte proliferation rate was higher. Furthermore, intraperitoneal injection, two weeks after birth, of the carcinogen diethylnitrosamine (DEN) led, after one year, both to more liver tumors in Cx32-deficient mice than in controls, and to accelerated tumor growth. Loss of Cx32 protein from hepatic gap junctions is therefore likely to cause enhanced clonal survival and expansion of mutated ('initiated') cells, which results in a higher susceptibility to hepatic tumors. Our results demonstrate that functional gap junctions inhibit the development of spontaneous and chemically induced tumors in mouse liver.
Collapse
Affiliation(s)
- A Temme
- Institut für Genetik, Abt. Molekulargenetik, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
286
|
Bani-Yaghoub M, Bechberger JF, Naus CC. Reduction of connexin43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. J Neurosci Res 1997; 49:19-31. [PMID: 9211986 DOI: 10.1002/(sici)1097-4547(19970701)49:1<19::aid-jnr3>3.0.co;2-g] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gap junctions are plasma membrane specializations that allow direct communication among adjoining cells. We used a human pluripotential teratocarcinoma cell line, NTera-2/clone D1 (NT2/D1), as a model to study gap junctions in CNS neurons and their neuronal precursors. These cells were differentiated following retinoic acid (RA) treatment for 4 weeks and antiproliferative agents for 3 weeks, respectively, to yield post-mitotic CNS neuronal (NT2-N) cells. The cytoplasmic RNA was isolated from NT2/D1 cells both before and during RA treatment and from differentiated neurons (NT2-N cells). These RNA samples were examined using Northern blot analysis with cDNA probes specific for connexin26, -32, and -43. Connexin26 and -32 mRNAs were absent in NT2/D1 and NT2-N cells. Connexin43 mRNA was expressed at high levels in NT2/D1 cells before RA treatment, but it decreased significantly during RA induction. There was no detectable connexin43 mRNA in NT2-N cells. Western blot analysis confirmed the expression of connexin43 protein in NT2/D1 cells before and during RA treatment. The protein profile detected in Western blot analysis indicated two bands representing different phosphorylation states of connexin43. Our immunocytochemistry results did not show connexin26 and -32 immunoreactivity in NT2/D1 and NT2-N cells. However, we detected connexin43 immunoreactivity in NT2/D1 cells with a decreasing pattern upon RA induction. Both Western blotting and immunocytochemistry confirmed the absence of connexin43 protein in NT2-N cells. NT2/D1 cells passed calcein readily to an average of 18 cells, confirming the functionality of gap junctions in these cells. The extent of dye-coupling decreased about 78% when NT2/D1 cells were RA treated for 4 weeks. NT2-N differentiated neurons did not pass dye to the adjacent cells. We conclude that both connexin43 expression and dye coupling capacity decrease during neuronal differentiation of NT2/D1 cells.
Collapse
Affiliation(s)
- M Bani-Yaghoub
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Canada
| | | | | |
Collapse
|
287
|
Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 1997. [PMID: 9169515 DOI: 10.1523/jneurosci.17-12-04545.1997] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations affecting the connexin 32 (Cx32) gene are associated with the X-linked form of the hereditary peripheral neuropathy Charcot-Marie-Tooth disease (CMTX). We show that Cx32-deficient mice develop a late-onset progressive peripheral neuropathy with abnormalities comparable to those associated with CMTX, thus providing proof of the critical role of Cx32 in the maintenance of peripheral nerve myelin and an animal model for CMTX. Frequently observed features include abnormally thin myelin sheaths, cellular onion bulb formation reflecting myelin degeneration-induced Schwann cell proliferation, and enlarged periaxonal collars while nerve conductance properties are altered only slightly. These observations are consistent with earlier hypotheses suggesting a function of Cx32 as a channel-forming protein that facilitates the communication between the abaxonal and adaxonal aspects of Schwann cell cytoplasm.
Collapse
|
288
|
Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek J, Toyka KV, Suter U, Martini R. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 1997; 17:4545-51. [PMID: 9169515 PMCID: PMC6573343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Revised: 03/19/1997] [Accepted: 03/31/1997] [Indexed: 02/04/2023] Open
Abstract
Mutations affecting the connexin 32 (Cx32) gene are associated with the X-linked form of the hereditary peripheral neuropathy Charcot-Marie-Tooth disease (CMTX). We show that Cx32-deficient mice develop a late-onset progressive peripheral neuropathy with abnormalities comparable to those associated with CMTX, thus providing proof of the critical role of Cx32 in the maintenance of peripheral nerve myelin and an animal model for CMTX. Frequently observed features include abnormally thin myelin sheaths, cellular onion bulb formation reflecting myelin degeneration-induced Schwann cell proliferation, and enlarged periaxonal collars while nerve conductance properties are altered only slightly. These observations are consistent with earlier hypotheses suggesting a function of Cx32 as a channel-forming protein that facilitates the communication between the abaxonal and adaxonal aspects of Schwann cell cytoplasm.
Collapse
Affiliation(s)
- P Anzini
- Department of Neurobiology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Dermietzel R, Farooq M, Kessler J, Althaus H, Hertzberg E, Spray D. Oligodendrocytes express gap junction proteins connexin32 and connexin45. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199706)20:2<101::aid-glia2>3.0.co;2-c] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
290
|
Abstract
Connexin proteins make intercellular channels - gap junctions - which provide a direct pathway for cell-cell signaling in vertebrates. Studies of mice lacking connexin genes have demonstrated the need for intercellular transfer of messenger molecules and are uncovering the specific functions of each connexin.
Collapse
Affiliation(s)
- S M Nicholson
- Institut Pasteur, 25 rue du Docteur Roux, F-75724, Paris, CEDEX 15, France.
| | | |
Collapse
|
291
|
Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199704)19:4<298::aid-glia3>3.0.co;2-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
292
|
Bone LJ, Deschênes SM, Balice-Gordon RJ, Fischbeck KH, Scherer SS. Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 1997; 4:221-30. [PMID: 9361298 DOI: 10.1006/nbdi.1997.0152] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutations in the gap junction gene connexin32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. More than 130 different mutations have been described, affecting all portions of the Cx32 protein. In transfected cells, the mutant Cx32 proteins encoded by some Cx32 mutations fall to reach the cell surface; other mutant proteins reach the cell surface, but only one of these forms functional gap junctions. In peripheral nerve, Cx32 is localized to incisures and paranodes, regions of noncompact myelin within the myelin sheath. This localization suggests that Cx32 forms "reflexive" gap junctions that allow ions and small molecules to diffuse directly across the myelin sheath, which is a thousandfold shorter distance than the circumferential pathway through the Schwann cell cytoplasm. Cx32 mutations may interrupt this shorter pathway or have other toxic effects, thereby injuring myelinating Schwann cells and their axons.
Collapse
Affiliation(s)
- L J Bone
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
293
|
Affiliation(s)
- S S Scherer
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia 19104-6077, USA
| |
Collapse
|
294
|
Abstract
1. Cloning and sequencing of cDNA encoding gap junction proteins (connexins) has allowed analysis of tissue- and stage-specific patterns of expression as well as the manipulation of expression of both wild-type and mutant connexin proteins. 2. These studies reveal that the 13 rodent connexins have different biophysical properties, such as unitary conductance and permeability/selectivity, are differentially sensitive to various gating stimuli and couple to one another with variable affinity. Moreover, the physiological roles of gap junction channels are being revealed, as both genetic and epigenetic human diseases are ascribed to aberrant gap junction expression, and as animal models are generated by genetic manipulation. 3. This symposium brought together physiological insights achieved through the use of molecular techniques, resulting in novel appreciation of the roles of gap junction channels in normal and pathological tissue function.
Collapse
Affiliation(s)
- D C Spray
- Albert Einstein College of Medicine, Department of Neuroscience, Bronx, New York 10461, USA
| |
Collapse
|