251
|
Butler TM, Boniface CT, Johnson-Camacho K, Tabatabaei S, Melendez D, Kelley T, Gray J, Corless CL, Spellman PT. Circulating tumor DNA dynamics using patient-customized assays are associated with outcome in neoadjuvantly treated breast cancer. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003772. [PMID: 30833418 PMCID: PMC6549569 DOI: 10.1101/mcs.a003772] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Pathological complete response (pCR) is an accurate predictor of good outcome following neoadjuvant chemotherapy (NAC) for locally advanced breast cancer. The presence of circulating-tumor DNA (ctDNA) has recently been reported to be strongly predictive of poor outcome in similar patient groups. We monitored ctDNA levels from 10 women undergoing NAC for locally advanced breast cancer using a patient-specific, hybrid-capture sequencing technique sensitive to the level of one altered allele in 10,000. Plasma was collected prior to the start of NAC, prior to each infusion of NAC, and during follow-up for between 350 and 1150 d after the start of NAC. Prior to the start of NAC, ctDNA was detectable in 3/3 triple negative, 3/3 HER2+, and 2/4 HER2−, ER+ breast cancer patients. Total cell-free DNA levels were considerably higher when patients were on NAC than at other times. ctDNA dynamics during NAC showed that patients with pCR experienced rapid declines in ctDNA levels, whereas patients without pCR typically showed evidence of residual ctDNA after initiation of treatment. Intriguingly, two of three patients that showed marked increases in ctDNA while on NAC experienced rapid recurrences (<2 yr following start of NAC). The third patient that had increases in ctDNA levels while on NAC had low-grade ER+ disease and showed residual ctDNA after surgery, which became undetectable after local radiation. Taken together, these results demonstrate the ability of our approach to sensitively serially monitor ctDNA during NAC, and identifies a need to further investigate the possibility of stratifying patients who need additional treatment or identify therapies that are ineffective.
Collapse
Affiliation(s)
- Timothy M Butler
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA.,Wellcome Trust Sanger Institute, Cancer Ageing and Somatic Mutation, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Christopher T Boniface
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA
| | - Katie Johnson-Camacho
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA
| | - Shaadi Tabatabaei
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA
| | - Daira Melendez
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA
| | - Taylor Kelley
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA
| | - Joe Gray
- Department of Biomedical Engineering, OHSU Portland, Oregon 97201, USA.,Knight Cancer Institute, OHSU Portland, Oregon 97201, USA.,Center for Spatial Systems Biomedicine, OHSU Portland, Oregon 97201, USA
| | - Christopher L Corless
- Knight Cancer Institute, OHSU Portland, Oregon 97201, USA.,Division of Hematology and Medical Oncology, Portland Veterans Affairs Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97201, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU) Portland, Oregon 97201, USA.,Knight Cancer Institute, OHSU Portland, Oregon 97201, USA.,Center for Spatial Systems Biomedicine, OHSU Portland, Oregon 97201, USA
| |
Collapse
|
252
|
Huang M, Wei S. Overview of Molecular Testing of Cytology Specimens. Acta Cytol 2019; 64:136-146. [PMID: 30917368 DOI: 10.1159/000497187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Utilizing cytology specimens for molecular testing has attracted increasing attention in the era of personalized medicine. Cytology specimens are clinically easier to access. The samples can be quickly and completely fixed in a very short time of fixation before tissue degradation occurs, compared to hours or days of fixation in surgical pathology specimens. In addition, cytology specimens can be fixed without formalin, which can significantly damage DNA and RNA. All these factors contribute to the superb quality of DNA and RNA in cytology specimens for molecular tests. STUDY DESIGN We summarize the most pertinent information in the literature regarding molecular testing in the field of cytopathology. RESULTS The first part focuses on the types of cytological specimens that can be used for molecular testing, including the advantages and limitations. The second section describes the common molecular tests and their clinical application. CONCLUSION Various types of cytology specimens are suitable for many molecular tests, which may require additional clinical laboratory validation.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA,
| |
Collapse
|
253
|
Duvvuri B, Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol 2019; 10:502. [PMID: 30941136 PMCID: PMC6433826 DOI: 10.3389/fimmu.2019.00502] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
254
|
Fernandes Marques J, Pereira Reis J, Fernandes G, Hespanhol V, Machado JC, Costa JL. Circulating Tumor DNA: A Step into the Future of Cancer Management. Acta Cytol 2019; 63:456-465. [PMID: 30852572 DOI: 10.1159/000492917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
Liquid biopsy was introduced to the oncology field with the promise of revolutionizing the management of cancer patients, minimizing the exposure to invasive procedures such as tissue biopsy, and providing reliable information regarding therapy response and detection of disease relapse. Despite the significant increase in the number of published studies on circulating tumor DNA (ctDNA) in the past years, the emphasis of most studies is on the development of new technologies or on the clinical utility of ctDNA. This leaves a clear gap of knowledge concerning the biology of ctDNA, such as the fundamental mechanisms through which DNA from tumor cells is released into the circulation. Moreover, considering that ctDNA analysis is now currently being applied in clinical practice, the need for rigorous quality control is arising, and with it the necessity to standardize procedures, from sample collection to data analysis. This review focuses on the main aspects of ctDNA, including approaches currently available to evaluate tumor genetics, as well as the points that still require improvement in order to make liquid biopsy a key player in precision medicine.
Collapse
Affiliation(s)
- Joana Fernandes Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Pereira Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gabriela Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pulmonology, Hospital de São João, Porto, Portugal
| | - Venceslau Hespanhol
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pulmonology, Hospital de São João, Porto, Portugal
| | - José Carlos Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Luís Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,
- Faculty of Medicine, University of Porto, Porto, Portugal,
| |
Collapse
|
255
|
Saarenheimo J, Eigeliene N, Andersen H, Tiirola M, Jekunen A. The Value of Liquid Biopsies for Guiding Therapy Decisions in Non-small Cell Lung Cancer. Front Oncol 2019; 9:129. [PMID: 30891428 PMCID: PMC6411700 DOI: 10.3389/fonc.2019.00129] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted therapies have allowed for an individualized treatment approach in non-small-cell lung cancer (NSCLC). The initial therapeutic decisions and success of targeted therapy depend on genetic identification of personal tumor profiles. Tissue biopsy is the gold standard for molecular analysis, but non-invasive or minimally invasive liquid biopsy methods are also now used in clinical practice, allowing for later monitoring and optimization of the cancer treatment. The inclusion of liquid biopsy in the management of NSCLC provides strong evidence on early treatment response, which becomes a basis for determining disease progression and the need for changes in treatment. Liquid biopsies can drive the decision making for treatment strategies to achieve better patient outcomes. Cell-free DNA and circulating tumor cells obtained from the blood are promising markers for determining patient status. They may improve cancer treatments, allow for better treatment control, enable early interventions, and change decision making from reactive actions toward more predictive early interventions. This review aimed to present current knowledge on and the usefulness of liquid biopsy studies in NSCLC from the perspective of how it has allowed individualized treatments according to gene profiling and how the method may alter the treatment decisions in the future.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland.,Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Natalja Eigeliene
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersen
- Department of Pulmonology, Vasa Central Hospital, Vaasa, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
256
|
Osumi H, Shinozaki E, Yamaguchi K, Zembutsu H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci 2019; 110:1148-1155. [PMID: 30742729 PMCID: PMC6447957 DOI: 10.1111/cas.13972] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is currently the most common type of cancer in Japan, and its prognosis has improved because of development of diagnosis and advancement in treatments including surgery and chemotherapy. However, because of intratumor heterogeneity and clonal evolution, tumors often develop resistance to treatment. Genotyping tumor tissue in search of somatic genetic alterations for actionable information has become routine examination in clinical practice. However, the inherent molecular heterogeneity of metastatic tumors and the ability of cancer genomes to dynamically evolve are not properly captured by tissue specimens only. Circulating tumor DNA (ctDNA) carrying tumor‐specific genetic or epigenetic alterations is released into the circulation from tumor cells undergoing apoptosis or necrosis. Analysis of ctDNA has the potential to change clinical practice by exploiting blood rather than tissue, as a source of information. Here, we provide an overview of the characteristics of ctDNA and focus on detection methods for ctDNA, and the feasibility of use of ctDNA to monitor tumor dynamics for patients with colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitoshi Zembutsu
- Cancer Precision Medicine Center, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
257
|
Govardhan HB, Khaleel IA, Shubha SA, Manisha R, Nivedita S, Noopur N, Jayashree NP, Fareena T, Sweta K. Cell-Free Circulating Tumor DNA Mutation Profiling for Cervical Carcinoma as Diagnostic Biomarker: A 50-Gene Module to Future Directive. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2019. [DOI: 10.1007/s40944-018-0245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
258
|
Crombie J, Armand P. The Emerging Role of Liquid Biopsies in Lymphoproliferative Disorders. Curr Hematol Malig Rep 2019; 14:11-21. [DOI: 10.1007/s11899-019-0493-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
259
|
Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: A comprehensive review. Clin Genet 2019; 95:643-660. [PMID: 30671931 DOI: 10.1111/cge.13514] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Due to its complexity in nature, effective breast cancer treatment can encounter many challenges. Traditional methods of cancer detection such as tissue biopsy are not comprehensive enough to capture the entire genomic landscape of breast tumors. However, with the introduction of novel techniques, the application of liquid biopsy has been enhanced, enabling the improvement of various aspects of breast cancer management including early diagnosis and screening, prediction of prognosis, early detection of relapse, serial sampling and efficient longitudinal monitoring of disease progress and response to treatment. Various components of tumor cells released into the blood circulation can be analyzed in liquid biopsy sampling, some of which include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free RNA, tumor-educated platelets and exosomes. These components can be utilized for different purposes. As an example, ctDNA can be sequenced for genetic profiling of the tumors to enhance individualized treatment and longitudinal screening. CTC plasma count analysis or ctDNA detection after curative tumor resection surgery could facilitate early detection of minimal residual disease, aiding in the initiation of adjuvant therapy to prevent recurrence. Furthermore, CTC plasma count can be assessed to determine the stage and prognosis of breast cancer. In this review, we discuss the advantages and limitations of the various components of liquid biopsy used in breast cancer diagnosis and will expand on aspects that require further focus in future research.
Collapse
Affiliation(s)
- Sahar Alimirzaie
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Maryam Bagherzadeh
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
260
|
Lam WKJ, Chan KCA, Lo YMD. Plasma Epstein-Barr virus DNA as an archetypal circulating tumour DNA marker. J Pathol 2019; 247:641-649. [PMID: 30714167 PMCID: PMC6594142 DOI: 10.1002/path.5249] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Analysis of circulating tumour DNA (ctDNA), as one type of ‘liquid biopsy’, has recently attracted great attention. Researchers are exploring many potential applications of liquid biopsy in many different types of cancer. In particular, it is of biological interest and clinical relevance to study the molecular characteristics of ctDNA. For such purposes, plasma Epstein–Barr virus (EBV) DNA from patients with nasopharyngeal carcinoma (NPC) would provide a good model to understand the biological properties and clinical applications of ctDNA in general. The strong association between EBV and NPC in endemic regions has made plasma EBV DNA a robust biomarker for this cancer. There are many clinical utilities of plasma EBV DNA analysis in NPC diagnostics. Its role in prognostication and surveillance of recurrence is well established. Plasma EBV DNA has also been validated for screening NPC in a recent large‐scale prospective study. Indeed, plasma EBV DNA could be regarded as an archetypal ctDNA marker. In this review, we discuss the biological properties of plasma EBV DNA from NPC samples and also the clinical applications of plasma EBV DNA analysis in the management of NPC. Of note, the recently reported size analysis of plasma EBV DNA in patients with NPC has highlighted size as an important analytical parameter of ctDNA and demonstrated clinical value in improving the diagnostic performance of an EBV DNA‐based NPC screening test. Such insights into ctDNA analysis (including size profiling) may help its full potential in cancer diagnostics for other types of cancer to be realised. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yuk Ming Dennis Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
261
|
Koldby KM, Mortensen MB, Detlefsen S, Pfeiffer P, Thomassen M, Kruse TA. Tumor-specific genetic aberrations in cell-free DNA of gastroesophageal cancer patients. J Gastroenterol 2019; 54:108-121. [PMID: 30242476 DOI: 10.1007/s00535-018-1508-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
Abstract
The applicability of liquid biopsies is studied intensively in all types of cancer and analysis of circulating tumor DNA (ctDNA) has recently been implemented clinically for mutation detection in lung cancer. ctDNA may provide information about tumor quantity and mutations present in the tumor, and as such have many potential applications in diagnosis and treatment of cancer. It has been suggested that ctDNA analysis may overcome the issue of intra-tumor heterogeneity faced by tissue biopsies and serve as an additional diagnostic tool. Furthermore, liquid biopsies are potentially helpful for monitoring of treatment response as well as detection of minimal residual disease and relapse. Gastroesophageal cancers (GEC) have high mortality rates and the majority of patients present with advanced stage at diagnosis or succumb due to disease recurrence even after radical resection of the primary tumor. Biomarkers that can help optimize treatment strategy are thus highly desirable. The present study is a review of published data on ctDNA in GEC patients. We identified 25 studies in which tumor-specific genetic aberrations were investigated in plasma or serum and discuss these in relation to the methods applied for ctDNA analysis. The methods used for ctDNA detection greatly influence the sensitivity of the analysis and, therefore, the potential clinical applications. We found that studies of ctDNA in GEC, although limited in number, are promising for several applications such as genetic profiling of tumors and monitoring of disease progression. However, more studies are needed to establish if and how this analysis can be clinically implemented.
Collapse
Affiliation(s)
- Kristina Magaard Koldby
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark. .,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark.
| | - Michael Bau Mortensen
- Department of Surgery, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, Odense, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Sdr. Boulevard 29, Odense, Denmark
| |
Collapse
|
262
|
Koessler T, Addeo A, Nouspikel T. Implementing circulating tumor DNA analysis in a clinical laboratory: A user manual. Adv Clin Chem 2019; 89:131-188. [PMID: 30797468 DOI: 10.1016/bs.acc.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liquid biopsy, the analysis of cell-free circulating tumor DNA (ctDNA), is becoming one of the most promising tools in oncology. It has already shown its usefulness in selecting and modulating therapy via remote analysis of the tumor genome and holds important promises in cancer therapy and management, such as assessing the success of key therapeutic steps, monitoring residual disease, early detection of relapses, and establishing prognosis. Yet, ctDNA analysis is technically challenging and its implementation in the laboratory raises multiple strategic and practical issues. As for oncology clinics, integration of this novel test in well-established therapeutic protocols can also pose numerous questions. The current review is intended as a field guide for (1) diagnostic laboratories wishing to implement, validate and possibly accredit ctDNA testing and (2) clinical oncologists interested in integrating the various applications of liquid biopsies in their daily practice. We provide advice and practical recommendations based on our own experience with the technical validations of these methods and on a review of the current literature, with a focus toward gastro-intestinal, lung and breast cancers.
Collapse
Affiliation(s)
- Thibaud Koessler
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Alfredo Addeo
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Thierry Nouspikel
- Service of Medical Genetics, Diagnostics Department, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
263
|
Agbor-Enoh S, Wang Y, Tunc I, Jang MK, Davis A, De Vlaminck I, Luikart H, Shah PD, Timofte I, Brown AW, Marishta A, Bhatti K, Gorham S, Fideli U, Wylie J, Grimm D, Goodwin N, Yang Y, Patel K, Zhu J, Iacono A, Orens JB, Nathan SD, Marboe C, Berry GJ, Quake SR, Khush K, Valantine HA. Donor-derived cell-free DNA predicts allograft failure and mortality after lung transplantation. EBioMedicine 2019; 40:541-553. [PMID: 30692045 PMCID: PMC6412014 DOI: 10.1016/j.ebiom.2018.12.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background Allograft failure is common in lung-transplant recipients and leads to poor outcomes including early death. No reliable clinical tools exist to identify patients at high risk for allograft failure. This study tested the use of donor-derived cell-free DNA (%ddcfDNA) as a sensitive marker of early graft injury to predict impending allograft failure. Methods This multicenter, prospective cohort study enrolled 106 subjects who underwent lung transplantation and monitored them after transplantation for the development of allograft failure (defined as severe chronic lung allograft dysfunction [CLAD], retransplantation, and/or death from respiratory failure). Plasma samples were collected serially in the first three months following transplantation and assayed for %ddcfDNA by shotgun sequencing. We computed the average levels of ddcfDNA over three months for each patient (avddDNA) and determined its relationship to allograft failure using Cox-regression analysis. Findings avddDNA was highly variable among subjects: median values were 3·6%, 1·6% and 0·7% for the upper, middle, and low tertiles, respectively (range 0·1%–9·9%). Compared to subjects in the low and middle tertiles, those with avddDNA in the upper tertile had a 6·6-fold higher risk of developing allograft failure (95% confidence interval 1·6–19·9, p = 0·007), lower peak FEV1 values, and more frequent %ddcfDNA elevations that were not clinically detectable. Interpretation Lung transplant patients with early unresolving allograft injury measured via %ddcfDNA are at risk of subsequent allograft injury, which is often clinically silent, and progresses to allograft failure. Fund National Institutes of Health.
Collapse
Affiliation(s)
- Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, MD, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Yan Wang
- University of Maryland Medical Center, Baltimore, MD, United States
| | - Ilker Tunc
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Andrew Davis
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Helen Luikart
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Pali D Shah
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, MD, United States
| | - Irina Timofte
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; University of Maryland Medical Center, Baltimore, MD, United States
| | - Anne W Brown
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Inova Fairfax Hospital, Fairfax, VA, United States
| | - Argit Marishta
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Kenneth Bhatti
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Sasha Gorham
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Ulgen Fideli
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Jennifer Wylie
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - David Grimm
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Natalie Goodwin
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yanqin Yang
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Kapil Patel
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jun Zhu
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States
| | - Aldo Iacono
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; University of Maryland Medical Center, Baltimore, MD, United States
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, MD, United States
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Inova Fairfax Hospital, Fairfax, VA, United States
| | - Charles Marboe
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Department of Pathology, New York Presbyterian University Hospital of Cornell and Columbia, NY, New York, USA
| | - Gerald J Berry
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Stanford University School of Medicine, Palo Alto, CA, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Kiran Khush
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hannah A Valantine
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, MD 20982, United States; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, MD 20982, United States.
| |
Collapse
|
264
|
Ghosh RK, Pandey T, Dey P. Liquid biopsy: A new avenue in pathology. Cytopathology 2019; 30:138-143. [DOI: 10.1111/cyt.12661] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/07/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ratan Kumar Ghosh
- Department of Nephrology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Tushar Pandey
- Department of Pathology Post Graduate Institute of Medical Education and Research Chandigarh India
| | - Pranab Dey
- Department of Cytology and Gynaec Pathology Post Graduate Institute of Medical Education and Research Chandigarh India
| |
Collapse
|
265
|
Delmonico L, Costa MASM, Fournier MV, Romano SDO, Nascimento CMD, Barbosa AS, Moreira ADS, Scherrer LR, Ornellas MHF, Alves G. Mutation profiling in the PIK3CA, TP53, and CDKN2A genes in circulating free DNA and impalpable breast lesions. Ann Diagn Pathol 2019; 39:30-35. [PMID: 30634138 DOI: 10.1016/j.anndiagpath.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 01/05/2023]
Abstract
Breast impalpable lesions have become a clinical dilemma because they are small, presenting a heterogeneous cellular phenotype. The aim of this study was to evaluate the mutational profile of the PIK3CA, TP53, and CDKN2A genes, comparing the mammary tissue with the respective circulating free DNA (cfDNA). The PIK3CA, TP53, and CDKN2A genes were sequenced (PCR-Sanger) in 58 women with impalpable lesions (49 malignant and 9 benign) with the respective cfDNA. The chi-square or Fisher's exact test was used to evaluate statistical significance between the clinical variables and mutational profile. A total of 51 out of 58 samples generated successful mutation profiles in both breast lesion and cfDNA. Of the 37 mutations detected, 10 (27%) and 16 (43%) mutations were detected in benign and malignant breast lesions, respectively, while 2 (5%) and 9 (24%) were found in cfDNA of women with benign and malignant lesions, respectively. The lymph node involvement with mutations in the PIK3CA in malignant lesions (P = 0.001), and the relationship between mutations in PIK3CA, comparing ductal tumors with benign lesions (P = 0.05), were statistically significant. This study detected different mutations in PIK3CA, TP53, and CDKN2A genes, which represent, in part, the heterogeneity of impalpable lesions. The results confirm that more studies should be conducted on the functional role of cfDNA in the impalpable lesions.
Collapse
Affiliation(s)
- Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| | | | | | | | | | | | - Aline Dos Santos Moreira
- Laboratory of Functional Genomics and Bioinformatics, PTDIS/FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | | | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
266
|
Abstract
The field of prenatal screening and diagnosis has undergone enormous progress over the past four decades. Most of this period has been characterized by gradual improvements in the technical and public health aspects of prenatal screening for Down syndrome. Compared to the direct analysis of fetal cells from amniocentesis or chorionic villus sampling, noninvasive approaches using maternal blood or ultrasound have the great advantage of posing no risk of miscarriage to the pregnancy. Recent advances in molecular genetics and DNA sequencing have revolutionized both the accuracy and the range of noninvasive testing for genetic abnormalities using cell-free DNA in maternal plasma. Many of these advances have already been incorporated into clinical care, including diagnosis of fetal blood group and aneuploidy screening. The accelerated pace of these recent developments is creating not just technical and logistical challenges, but is also magnifying the ethical and public policy issues traditionally associated with this field.
Collapse
Affiliation(s)
- Lisa Hui
- Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, VIC, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| |
Collapse
|
267
|
Ultrasensitive Detection of Circulating Tumor DNA in Lymphoma via Targeted Hybridization Capture and Deep Sequencing of Barcoded Libraries. Methods Mol Biol 2019; 1956:383-435. [PMID: 30779047 DOI: 10.1007/978-1-4939-9151-8_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Liquid biopsies are rapidly emerging as powerful tools for the early detection of cancer, noninvasive genomic profiling of localized or metastatic tumors, prompt detection of treatment resistance-associated mutations, and monitoring of therapeutic response and minimal residual disease in patients during clinical follow-up. Growing evidence strongly supports the utility of circulating tumor DNA (ctDNA) as a biomarker for the stratification and clinical management of lymphoma patients. However, ctDNA is diluted by variable amounts of cell-free DNA (cfDNA) shed by nonneoplastic cells causing a background signal of wild-type DNA that limits the sensitivity of methods that rely on DNA sequencing. Here, we describe an error suppression method for single-molecule counting that relies on targeted sequencing of cfDNA libraries constructed with semi-degenerate barcode adapters. Custom pools of biotinylated DNA baits for target enrichment can be designed to specifically track somatic mutations in one patient, survey mutation hotspots with diagnostic and prognostic value or be comprised of comprehensive gene panels with broad patient coverage in lymphoma. Such methods are amenable to track ctDNA levels during longitudinal liquid biopsy testing with high specificity and sensitivity and characterize, in real time, the genetic profiles of tumors without the need of standard invasive biopsies. The analysis of ultra-deep sequencing data according to the bioinformatics pipelines also described in this chapter affords to harness lower limits of detection for ctDNA below 0.1%.
Collapse
|
268
|
Abstract
Urine could be a convenient source of biomarkers for different diseases and clinical applications, mostly for cancer diagnosis, prognosis, treatment monitoring, and prenatal diagnosis. The ultra-noninvasive sampling and the possibility to analyze large volume are the main undisputed advantages of urine-based protocols. Recent and comprehensive studies showed that urinary cell-free DNA (ucfDNA) is informative to identify the genomic signature of patients, resulting in a huge tool to track the tumor evolution and for personalized medicine in urological and non-urological cancer.In this chapter, we reported the main published evidences on ucfDNA, with the aim at discussing its promising and translatable role in clinical practices.
Collapse
Affiliation(s)
- Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
269
|
Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev Mol Med 2018; 20:e6. [PMID: 30558693 DOI: 10.1017/erm.2018.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circulating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called 'liquid biopsy', as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.
Collapse
|
270
|
Newell C, Hume S, Greenway SC, Podemski L, Shearer J, Khan A. Plasma-derived cell-free mitochondrial DNA: A novel non-invasive methodology to identify mitochondrial DNA haplogroups in humans. Mol Genet Metab 2018; 125:332-337. [PMID: 30361042 DOI: 10.1016/j.ymgme.2018.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial diseases are a clinically heterogeneous group of diseases caused by mutations in either nuclear or mitochondrial DNA (mtDNA). The diagnosis is challenging and has frequently required a tissue biopsy to obtain a sufficient quantity of mtDNA. Less-invasive sources mtDNA, such as peripheral blood leukocytes, urine sediment, or buccal swab, contain a lower quantity of mtDNA compared to tissue sources which may reduce sensitivity. Cellular apoptosis of tissues and hematopoetic cells releases fragments of DNA and mtDNA into the circulation and these molecules can be extracted from plasma as cell-free DNA (cfDNA). However, entire mtDNA has not been successfully identified from the cell free fraction previously. We hypothesized that the circular nature of mtDNA would prevent its degradation and a higher sensitivity method, such as next generation sequencing, could identify intact cf-mtDNA from human plasma. METHODS Plasma was obtained from patients with mitochondrial disease diagnosed from skeletal muscle biopsy (n = 7) and healthy controls (n = 7) using a specially cfDNA collection tube (Streck Inc.; La Vista, NE). To demonstrate the presence of mtDNA within these samples, we amplified the isolated DNA using custom PCR primers specific to overlapping fragments of mtDNA. cfDNA samples were then sequenced using the Illumina MiSeq sequencing platform. RESULTS We confirmed the presence of mtDNA, demonstrating that the full mitochondrial genome is in fact present within the cell-free plasma fraction of human blood. Sequencing identified the mitochondrial haplogroup matching with the tissue specimen for all patients. CONCLUSION We report the existence of full length mtDNA in cell-free human plasma that was successfully used to perform haplogroup matching. Clinical applications for this work include patient monitoring for heteroplasmy status after mitochondrially-targeted therapies or haplogroup monitoring as a measure of stem cell transplantation.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Stacey Hume
- Department of Medical Genetics, University of Alberta, Alberta, Canada
| | - Steven C Greenway
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Lynn Podemski
- Department of Medical Genetics, University of Alberta, Alberta, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
271
|
Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation. J Immunol Methods 2018; 463:27-38. [DOI: 10.1016/j.jim.2018.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
272
|
Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet 2018; 228-229:169-179. [PMID: 29625863 PMCID: PMC6598437 DOI: 10.1016/j.cancergen.2018.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain mutations corresponding to the patient's tumour, for instance specific TP53 alleles. Profiling of cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due to advances in the sensitivity of molecular biology techniques and development of next generation sequencing technologies, as this allows tumour mutations to be identified and tracked non-invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of analysis, and the potential clinical uses of these techniques, as well as the on-going clinical development of ctDNA assays.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana W Y Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
273
|
Brien ME, Baker B, Duval C, Gaudreault V, Jones RL, Girard S. Alarmins at the maternal-fetal interface: involvement of inflammation in placental dysfunction and pregnancy complications 1. Can J Physiol Pharmacol 2018; 97:206-212. [PMID: 30485131 DOI: 10.1139/cjpp-2018-0363] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is known to be associated with placental dysfunction and pregnancy complications. Infections are well known to be a cause of inflammation but they are frequently undetectable in pregnancy complications. More recently, the focus has been extended to inflammation of noninfectious origin, namely caused by endogenous mediators known as "damage-associated molecular patterns (DAMPs)" or alarmins. In this manuscript, we review the mechanism by which inflammation, sterile or infectious, can alter the placenta and its function. We discuss some classical DAMPs, such as uric acid, high mobility group box 1 (HMGB1), cell-free fetal deoxyribonucleic acid (DNA) (cffDNA), S100 proteins, heat shock protein 70 (HSP70), and adenosine triphosphate (ATP) and their impact on the placenta. We focus on the main placental cells (i.e., trophoblast and Hofbauer cells) and describe the placental response to, and release of, DAMPs. We also covered the current state of knowledge about the role of DAMPs in pregnancy complications including preeclampsia, fetal growth restriction, preterm birth, and stillbirth and possible therapeutic strategies to preserve placental function.
Collapse
Affiliation(s)
- Marie-Eve Brien
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Bernadette Baker
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Cyntia Duval
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Virginie Gaudreault
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Rebecca L Jones
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Sylvie Girard
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
274
|
Sacher AG. Fundamental Concepts in the Application of Plasma Genotyping (Liquid Biopsy) to EGFR Mutation Detection in Non–Small-Cell Lung Cancer. JCO Precis Oncol 2018; 2:1-12. [DOI: 10.1200/po.17.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma genotyping has rapidly evolved from an investigational technology into a standard-of-care tool used to direct therapy in metastatic non–small-cell lung cancer (NSCLC). Multiple testing platforms exist for plasma genotyping, each with unique test characteristics and scientific validation. The optimal use and interpretation of plasma genotyping requires understanding of cell-free DNA biology, the assay characteristics of the available testing technologies, and the application of testing in each clinical scenario. Current recommendations for plasma genotyping in metastatic NSCLC are limited to patients with newly diagnosed disease and those with acquired resistance to targeted therapy, in particular, epidermal growth factor receptor (EGFR) kinase inhibitors. In newly diagnosed metastatic NSCLC, under certain circumstances, plasma genotyping is useful for the detection of targetable genomic alterations or nontargetable driver alterations (eg, KRAS) that are mutually exclusive with targetable alterations. In patients with acquired resistance to therapy, such as EGFR T790M-mediated acquired resistance to EGFR kinase inhibitors, plasma genotyping may detect resistance mutations missed by standard tissue genotyping because of tumor heterogeneity. In both scenarios, the high specificity and positive predictive value of validated plasma genotyping assays allow for the reliable selection of therapy on the basis of a positive plasma genotyping result. However, the modest sensitivity of these assays requires that negative results be confirmed by tissue genotyping with repeat biopsy, if necessary. There is considerable potential for plasma genotyping in the detection of early-stage disease, for patients at risk for disease recurrence, and as an integrated biomarker of therapeutic response in clinical trials of novel therapies.
Collapse
Affiliation(s)
- Adrian G. Sacher
- Adrian G. Sacher, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario
| |
Collapse
|
275
|
Lu W, Burton L, Larkin J, Chapman PB, Ascierto PA, Ribas A, Robert C, Sosman JA, McArthur GA, Chang I, Caro I, Penuel E, Yan Y, Wongchenko MJ. Elevated Levels of BRAFV600 Mutant Circulating Tumor DNA and Circulating Hepatocyte Growth Factor Are Associated With Poor Prognosis in Patients With Metastatic Melanoma. JCO Precis Oncol 2018; 2:1-17. [DOI: 10.1200/po.17.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose We performed a retrospective exploratory analysis to evaluate the prognostic and predictive effect of two circulating biomarkers, BRAFV600 mutant circulating tumor DNA (ctDNA) and circulating hepatocyte growth factor (cHGF), in metastatic melanoma. Materials and Methods This study evaluated patients from BRIM-3, a phase III trial comparing vemurafenib and dacarbazine in 675 patients with BRAFV600 mutated advanced melanoma. ctDNA was measured using droplet digital polymerase chain reaction, and cHGF was measured by enzyme-linked immunosorbent assay. Overall survival (OS) was estimated using the Kaplan-Meier method, and hazard ratios (HRs) were estimated using Cox proportional hazards modeling. Partitioning analysis was used to group patients into risk categories. Results Patients with elevated levels of baseline BRAFV600 ctDNA had significantly shorter median OS than those with undetectable levels of ctDNA (vemurafenib arm, 9.9 v 21.4 months, respectively, and dacarbazine arm: 6.1 v 21.0 months, respectively). Median OS was also shorter in patients with high levels of cHGF compared with those with low cHGF (vemurafenib arm, 11.9 v 17.3 months, respectively, and dacarbazine arm, 6.1 v 14.4 months, respectively). In a multivariable proportional hazards model with adjustment for lactate dehydrogenase, Eastern Cooperative Oncology Group status, disease stage, and treatment, ctDNA and cHGF were both independent prognostic factors for OS, (HR, 1.75; 95% CI, 1.35 to 2.28 for high v undetectable ctDNA; HR, 1.24; 95% CI, 1.00 to 1.53 for high v low cHGF). Using partitioning analysis, we found that patients with elevated ctDNA combined with elevated cHGF constituted the highest risk group with significantly shorter OS. Conclusion Here, we report that BRIM-3 patients with high levels of ctDNA and cHGF have worse OS regardless of treatment and that these factors are independent prognostic markers for metastatic melanoma.
Collapse
Affiliation(s)
- William Lu
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Luciana Burton
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - James Larkin
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Paul B. Chapman
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Paolo A. Ascierto
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Antoni Ribas
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Caroline Robert
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Jeffrey A. Sosman
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Grant A. McArthur
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Ilsung Chang
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Ivor Caro
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Elicia Penuel
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Yibing Yan
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Matthew J. Wongchenko
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| |
Collapse
|
276
|
Cell-free DNA release under psychosocial and physical stress conditions. Transl Psychiatry 2018; 8:236. [PMID: 30374018 PMCID: PMC6206142 DOI: 10.1038/s41398-018-0264-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
The understanding of mechanisms linking psychological stress to disease risk depend on reliable stress biomarkers. Circulating cell-free DNA (cfDNA) has emerged as a potential biomarker of cellular stress, aging, inflammatory processes, and cell death. Recent studies indicated that psychosocial stress and physical exercise might also influence its release. We compared the effects of acute psychosocial and physical exercise stress on cfDNA release by exposing 20 young, healthy men to both an acute psychosocial laboratory stressor and an acute physical exercise stressor. Venous blood and saliva samples were collected before and after stress exposure. Cell-free DNA was extracted from plasma and quantified by qPCR. Furthermore, cfDNA fragment length was analyzed and cfDNA methylation patterns were assayed across time. In addition, release of stress hormones and subjective stress responses were measured. Results showed a twofold increase of cfDNA after TSST and fivefold increase after exhaustive treadmill exercise, with an overabundance of shorter cfDNA fragments after physical exhaustion. Interestingly, cell-free mitochondrial DNA showed similar increase after both stress paradigms. Furthermore, cfDNA methylation signatures-used here as a marker for diverse cellular origin-were significantly different post stress tests. While DNA methylation decreased immediately after psychosocial stress, it increased after physical stress, suggesting different cellular sources of active DNA release. In summary, our results suggest stimulus and cell-specific regulation of cfDNA release. Whereas the functional role of stress-associated cfDNA release remains elusive, it might serve as a valuable biomarker in molecular stress research as a part of the psychophysiological stress response.
Collapse
|
277
|
Fettke H, Kwan EM, Azad AA. Cell-free DNA in cancer: current insights. Cell Oncol (Dordr) 2018; 42:13-28. [PMID: 30367445 DOI: 10.1007/s13402-018-0413-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The field of liquid biopsies in oncology is rapidly expanding, with the application of cell-free circulating tumour DNA (ctDNA) showing promise in this era of precision medicine. Compared with traditional clinical and radiographic tumour monitoring methods, the analysis of ctDNA provides a minimally-invasive and technically feasible approach to assess temporal and spatial molecular evolutions of the tumour landscape. The constantly advancing technological platforms available for ctDNA extraction and analysis allow greater analytical sensitivities than ever before. The potential translational impact of ctDNA as a blood-based biomarker for the identification, characterization and monitoring of cancer has been demonstrated in numerous proof-of-concept studies, with ctDNA analysis beginning to be applied clinically across multiple facets of oncology. CONCLUSIONS In this review we discuss the biology, recent advancements, technical considerations and clinical implications of ctDNA in the context of cancer, and highlight important challenges and future directions for the integration of ctDNA into standardised patient care.
Collapse
Affiliation(s)
- Heidi Fettke
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia.,Department of Medical Oncology, Monash Health, Melbourne, Australia
| |
Collapse
|
278
|
Regner A, Meirelles LDS, Ikuta N, Cecchini A, Simon D. Prognostic utility of circulating nucleic acids in acute brain injuries. Expert Rev Mol Diagn 2018; 18:925-938. [PMID: 30307786 DOI: 10.1080/14737159.2018.1535904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute brain injuries represent major causes of morbidity and mortality worldwide. Nevertheless, therapeutic options are centered mainly on supportive care, and accurate prognosis prediction following traumatic brain injury (TBI) or stroke remains a challenge in clinical settings. Areas covered: Circulating DNA and RNA have shown potential as predictive molecules in acute brain injuries. In particular, plasma cell-free DNA (cfDNA) levels have been correlated to severity, mortality, and outcome after TBI and stroke. The real-time quantitative polymerase chain reaction (qPCR) is the most widely used technique for determination of cfDNA in brain injuries; however, to consider the use of cfDNA in emergency settings, a quicker and easier methodology for detection should be established. A recent study proposed detection of cfDNA applying a rapid fluorescent test that showed compatible results with qPCR. Expert commentary: As a promising perspective, detection of cfDNA levels using simple, rapid, and cheap methodology has potential to translate to clinic as a point-of-care marker, supporting the clinical decision-making in emergency care settings. Conversely, miRNA profiles may be used as signatures to determine the type and severity of injuries. Additionally, in the future, some miRNAs may constitute innovative neurorestorative therapies without the common hurdles associated with cell therapy.
Collapse
Affiliation(s)
- Andrea Regner
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Lindolfo da Silva Meirelles
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Nilo Ikuta
- b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Andre Cecchini
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil.,c Neurosurgery Service , Cristo Redentor Hospital , Porto Alegre , Brazil
| | - Daniel Simon
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| |
Collapse
|
279
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed the field of medical oncology; the introduction of patient-tailored therapies has significantly improved all measurable outcomes. Liquid biopsy is a revolutionary technique that is opening previously unexpected perspectives. It consists of the detection and isolation of circulating tumor cells, circulating tumor DNA and exosomes, as a source of genomic and proteomic information in patients with cancer. Many technical hurdles have been resolved thanks to newly developed techniques and next-generation sequencing analyses, allowing a broad application of liquid biopsy in a wide range of settings. Initially correlated to prognosis, liquid biopsy data are now being studied for cancer diagnosis, hopefully including screenings, and most importantly for the prediction of response or resistance to given treatments. In particular, the identification of specific mutations in target genes can aid in therapeutic decisions, both in the appropriateness of treatment and in the advanced identification of secondary resistance, aiming to early diagnose disease progression. Still application is far from reality but ongoing research is leading the way to a new era in oncology. This review summarizes the main techniques and applications of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
280
|
Identification of a de novo fetal variant in osteogenesis imperfecta by targeted sequencing-based noninvasive prenatal testing. J Hum Genet 2018; 63:1129-1137. [PMID: 30131598 DOI: 10.1038/s10038-018-0489-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 11/08/2022]
Abstract
Noninvasive prenatal testing (NIPT), which involves analysis of circulating cell-free fetal DNA (cffDNA) from maternal plasma, is highly effective for detecting feto-placental chromosome aneuploidy. However, recent studies suggested that coverage-based shallow-depth NIPT cannot accurately detect smaller single or multi-loci genetic variants. To assess the fetal genotype of any locus using maternal plasma, we developed a novel genotyping algorithm named pseudo tetraploid genotyping (PTG). We performed paired-end captured sequencing of the plasma cell-free DNA (cfDNA), in which case a phenotypically healthy woman is suspected to be carrying a fetus with genetic defect. After a series of independent filtering of 111,407 SNPs, we found one variant in COL1A1 graded with high pathogenic potential which might cause osteogenesis imperfecta (OI). Then, we verified this mutation by Sanger sequencing of fetal and parental blood cells. In addition, we evaluated the accuracy and detection rate of the PTG algorithm through direct sequencing of the genomic DNA from maternal and fetal blood cells. Collectively, our study developed an intuitive and cost-effective method for the noninvasive detection of pathogenic mutations, and successfully identified a de novo variant in COL1A1 (c.2596 G > A, p.Gly866Ser) in the fetus implicated in OI.
Collapse
|
281
|
Raja R, Kuziora M, Brohawn PZ, Higgs BW, Gupta A, Dennis PA, Ranade K. Early Reduction in ctDNA Predicts Survival in Patients with Lung and Bladder Cancer Treated with Durvalumab. Clin Cancer Res 2018; 24:6212-6222. [DOI: 10.1158/1078-0432.ccr-18-0386] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/15/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022]
|
282
|
Agbor-Enoh S, Chan JL, Singh A, Tunc I, Gorham S, Zhu J, Pirooznia M, Corcoran PC, Thomas ML, Lewis BGT, Jang MK, Ayares DL, Horvath KA, Mohiuddin MM, Valantine H. Circulating cell-free DNA as a biomarker of tissue injury: Assessment in a cardiac xenotransplantation model. J Heart Lung Transplant 2018; 37:967-975. [PMID: 29933912 PMCID: PMC6707066 DOI: 10.1016/j.healun.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Observational studies suggest that cell-free DNA (cfDNA) is a biomarker of tissue injury in a range of conditions including organ transplantation. However, the lack of model systems to study cfDNA and its relevance to tissue injury has limited the advancements in this field. We hypothesized that the predictable course of acute humoral xenograft rejection (AHXR) in organ transplants from genetically engineered donors provides an ideal system for assessing circulating cfDNA as a marker of tissue injury. METHODS Genetically modified pig donor hearts were heterotopically transplanted into baboons (n = 7). Cell-free DNA was extracted from pre-transplant and post-transplant baboon plasma samples for shotgun sequencing. After alignment of sequence reads to pig and baboon reference sequences, we computed the percentage of xenograft-derived cfDNA (xdcfDNA) relative to recipient by counting uniquely aligned pig and baboon sequence reads. RESULTS The xdcfDNA percentage was high early post-transplantation and decayed exponentially to low stable levels (baseline); the decay half-life was 3.0 days. Post-transplantation baseline xdcfDNA levels were higher for transplant recipients that subsequently developed graft loss than in the 1 animal that did not reject the graft (3.2% vs 0.5%). Elevations in xdcfDNA percentage coincided with increased troponin and clinical evidence of rejection. Importantly, elevations in xdcfDNA percentage preceded clinical signs of rejection or increases in troponin levels. CONCLUSION Cross-species xdcfDNA kinetics in relation to acute rejection are similar to the patterns in human allografts. These observations in a xenotransplantation model support the body of evidence suggesting that circulating cfDNA is a marker of tissue injury.
Collapse
Affiliation(s)
- Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua L Chan
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Avneesh Singh
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ilker Tunc
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sasha Gorham
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Zhu
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland
| | - Billeta G T Lewis
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Keith A Horvath
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Hannah Valantine
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
283
|
|
284
|
Awomolo A, Palomares K, Garcia GH, Rosen T, Duzyj C, Ashkinadze E. Trends in invasive prenatal diagnostic testing at a single institution. Prenat Diagn 2018; 38:735-739. [PMID: 29845619 DOI: 10.1002/pd.5290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE As diagnostic methodologies evolve, we sought to determine whether invasive testing rates would decline, whether there would be a shift in indications for invasive testing, and whether the diagnostic yield would increase. METHODS We conducted a retrospective, observational study from 2006 through 2015. We quantified the number of invasive procedures per year and examined what percentage of these procedures yielded abnormal results. We also examined the indications for testing and determined the trend of these indications during the study period. RESULTS The number of amniocenteses showed a steady decline (P < .05). The number of CVS procedures has increased and was recently equivalent to amniocentesis. The percentage of abnormal results steadily increased from 11.4% to 27.0% (P < .001). The abnormal aneuploidy screening indication remained constant over time. Advanced maternal age (AMA) as the sole indication substantially declined from 42.3% to 15.52% (P < .001). Testing for a known single gene disorder steadily increased from 3.0% to 9.20% (P = .018). CONCLUSION Our study showed a significant decline in the number of amniocenteses, a steady increase in the percentage of abnormal results from invasive testing, and a decline in AMA as the sole indication for invasive testing.
Collapse
Affiliation(s)
- Adeola Awomolo
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kristy Palomares
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Guadalupe Herrera Garcia
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Todd Rosen
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christina Duzyj
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Elena Ashkinadze
- Department of Obstetrics and Gynecology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
285
|
Xiao D, Ling KHJ, Custodio J, Majeed SR, Tarnowski T. Quantitation of intracellular triphosphate metabolites of antiretroviral agents in peripheral blood mononuclear cells (PBMCs) and corresponding cell count determinations: review of current methods and challenges. Expert Opin Drug Metab Toxicol 2018; 14:781-802. [DOI: 10.1080/17425255.2018.1500552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Deqing Xiao
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, CA, USA
| | - Kah Hiing John Ling
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, CA, USA
| | - Joseph Custodio
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, CA, USA
| | - Sophia R. Majeed
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, CA, USA
| | - Thomas Tarnowski
- Department of Clinical Pharmacology, Gilead Sciences, Inc, Foster City, CA, USA
| |
Collapse
|
286
|
Lehmann-Werman R, Magenheim J, Moss J, Neiman D, Abraham O, Piyanzin S, Zemmour H, Fox I, Dor T, Grompe M, Landesberg G, Loza BL, Shaked A, Olthoff K, Glaser B, Shemer R, Dor Y. Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA. JCI Insight 2018; 3:120687. [PMID: 29925683 DOI: 10.1172/jci.insight.120687] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 01/14/2023] Open
Abstract
Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.
Collapse
Affiliation(s)
- Roni Lehmann-Werman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofri Abraham
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilana Fox
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Talya Dor
- Neuropediatric Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Markus Grompe
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Giora Landesberg
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Li Loza
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Abraham Shaked
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Kim Olthoff
- Penn Transplant Institute, University of Pennsylvania, Pennsylvania, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
287
|
Cabanero M, Tsao MS. Circulating tumour DNA in EGFR-mutant non-small-cell lung cancer. ACTA ACUST UNITED AC 2018; 25:S38-S44. [PMID: 29910646 DOI: 10.3747/co.25.3761] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of targeted therapy in non-small-cell lung cancer (nsclc) has made the routine molecular diagnosis of EGFR mutations crucial for optimal patient management. Obtaining tumour tissue for biomarker testing, especially in the setting of re-biopsy, can present many challenges. A potential alternative source of tumour dna is circulating cell-free tumour-derived dna (ctdna). Although ctdna is present in low quantities in plasma, the convenience of sample acquisition and the increasing reliability of detection methods make this approach a promising one. The various performance characteristics of both digital and nondigital platforms are still variable, and a standardized approach is needed that will make those platforms reliable clinical tools for the detection of EGFR sensitizing mutations and resistance mutations, including the T790M resistance mutation. Information derived from ctdna can be used to assess tumour burden, to identify genomic-based resistance mechanisms, and to track dynamic changes during therapy.
Collapse
Affiliation(s)
- M Cabanero
- Princess Margaret Cancer Centre, University Health Network, and.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | - M S Tsao
- Princess Margaret Cancer Centre, University Health Network, and.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| |
Collapse
|
288
|
Li TT, Liu H, Yu J, Shi GY, Zhao LY, Li GX. Prognostic and predictive blood biomarkers in gastric cancer and the potential application of circulating tumor cells. World J Gastroenterol 2018; 24:2236-2246. [PMID: 29881233 PMCID: PMC5989238 DOI: 10.3748/wjg.v24.i21.2236] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/27/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC), with its high incidence and mortality rates, is a highly fatal cancer that is common in East Asia particularly in China. Its recurrence and metastasis are the main causes of its poor prognosis. Circulating tumor cells (CTCs) or other blood biomarkers that are released into the circulating blood stream by tumors are thought to play a crucial role in the recurrence and metastasis of gastric cancer. Therefore, the detection of CTCs and other blood biomarkers has an important clinical significance; in fact, they can help predict the prognosis, assess the staging, monitor the therapeutic effects and determine the drug susceptibility. Recent research has identified many blood biomarkers in GC, such as various serum proteins, autoantibodies against tumor associated antigens, and cell-free DNAs. The analysis of CTCs and circulating cell-free tumor DNA (ctDNA) in the peripheral blood of patients with gastric cancer is called as liquid biopsy. These blood biomarkers provide the disease status for individuals and have clinical meaning. In this review, we focus on the recent scientific advances regarding CTCs and other blood biomarkers, and discuss their origins and clinical meaning.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Guang-Yao Shi
- Division of Cardiology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong Province, China
| | - Li-Ying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Guo-Xin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
289
|
Isbell JM, Jones DR, Li BT. Circulating tumor DNA: A promising biomarker to guide postoperative treatment and surveillance of non–small cell lung cancer. J Thorac Cardiovasc Surg 2018; 155:2628-2631. [DOI: 10.1016/j.jtcvs.2017.12.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023]
|
290
|
Gala-Lopez BL, Neiman D, Kin T, O'Gorman D, Pepper AR, Malcolm AJ, Pianzin S, Senior PA, Campbell P, Glaser B, Dor Y, Shemer R, Shapiro AMJ. Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation. Transplantation 2018; 102:978-985. [PMID: 29329189 DOI: 10.1097/tp.0000000000002083] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Optimizing engraftment and early survival after clinical islet transplantation is critical to long-term function, but there are no reliable, quantifiable measures to assess beta cell death. Circulating cell-free DNA (cfDNA) derived from beta cells has been identified as a novel biomarker to detect cell loss and was recently validated in new-onset type 1 diabetes and in islet transplant patients. METHODS Herein we report beta cell cfDNA measurements after allotransplantation in 37 subjects and the correlation with clinical outcomes. RESULTS A distinctive peak of cfDNA was observed 1 hour after transplantation in 31 (83.8%) of 37 subjects. The presence and magnitude of this signal did not correlate with transplant outcome. The 1-hour signal represents dead beta cells carried over into the recipient after islet isolation and culture, combined with acute cell death post infusion. Beta cell cfDNA was also detected 24 hours posttransplant (8/37 subjects, 21.6%). This signal was associated with higher 1-month insulin requirements (P = 0.04), lower 1-month stimulated C-peptide levels (P = 0.01), and overall worse 3-month engraftment, by insulin independence (receiver operating characteristic-area under the curve = 0.70, P = 0.03) and beta 2 score (receiver operating characteristic-area under the curve = 0.77, P = 0.006). CONCLUSIONS cfDNA-based estimation of beta cell death 24 hours after islet allotransplantation correlates with clinical outcome and could predict early engraftment.
Collapse
Affiliation(s)
- Boris L Gala-Lopez
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program (CNTRP)
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tatsuya Kin
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Doug O'Gorman
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Pepper
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Malcolm
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Pianzin
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Peter A Senior
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Patricia Campbell
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - A M James Shapiro
- Department of Surgery and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Medicine and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program (CNTRP)
| |
Collapse
|
291
|
Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, Korach A, Glaser B, Shemer R, Landesberg G, Dor Y. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun 2018; 9:1443. [PMID: 29691397 PMCID: PMC5915384 DOI: 10.1038/s41467-018-03961-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/23/2018] [Indexed: 02/01/2023] Open
Abstract
Detection of cardiomyocyte death is crucial for the diagnosis and treatment of heart disease. Here we use comparative methylome analysis to identify genomic loci that are unmethylated specifically in cardiomyocytes, and develop these as biomarkers to quantify cardiomyocyte DNA in circulating cell-free DNA (cfDNA) derived from dying cells. Plasma of healthy individuals contains essentially no cardiomyocyte cfDNA, consistent with minimal cardiac turnover. Patients with acute ST-elevation myocardial infarction show a robust cardiac cfDNA signal that correlates with levels of troponin and creatine phosphokinase (CPK), including the expected elevation-decay dynamics following coronary angioplasty. Patients with sepsis have high cardiac cfDNA concentrations that strongly predict mortality, suggesting a major role of cardiomyocyte death in mortality from sepsis. A cfDNA biomarker for cardiomyocyte death may find utility in diagnosis and monitoring of cardiac pathologies and in the study of normal human cardiac physiology and development. The detection of cardiomyocyte death is a critical aspect in the diagnosis and monitoring of heart diseases. Here the authors show that cardiomyocyte-specific methylation patterns of circulating cell-free DNA may serve as a biomarker of cardiac cell death in infarcted and septic patients.
Collapse
Affiliation(s)
- Hai Zemmour
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - David Planer
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Dan Gilon
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Amit Korach
- Department of Cardio-Thoracic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Giora Landesberg
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
292
|
Clausen FB. Lessons learned from the implementation of non-invasive fetalRHDscreening. Expert Rev Mol Diagn 2018; 18:423-431. [DOI: 10.1080/14737159.2018.1461562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Frederik Banch Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
293
|
The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: A systematic review. Cancer Treat Rev 2018; 66:56-63. [PMID: 29684744 DOI: 10.1016/j.ctrv.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Blood-based biomarkers are a neglected resource in bladder cancer, where the mainstay of focus has been on urinary biomarkers. However, blood-based biomarkers are gaining popularity in other solid cancers, particularly circulating tumour cells (CTCs) and circulating nucleic acids. In this systematic review, we identify and discuss the diagnostic value of CTC, cell-free DNA and RNA based biomarkers in bladder cancer. METHODS A MEDLINE/Pubmed systematic search was performed using the following keywords: (bladder cancer) AND (blood OR plasma OR serum) AND biomarker AND (DNA OR RNA OR cfDNA OR cell-free DNA OR RNA OR CTC). All studies including blood-based biomarkers based on DNA, RNA and CTCs were reviewed. Of the included studies, studies reporting sensitivity, specificity and/or AUC/ROC values were further described. RESULTS Systematic searched yielded 47 studies that were eligible, of which 21, 19 and 3 studies reported DNA, RNA and CTC biomarkers respectively. 15 of these studies included sensitivity, specificity and/or AUC/ROC values. Biomarkers sensitivity and specificity ranged widely at 2.4-97.6% and 43.3-100% respectively. Median number of patients recruited in the studies was 56 (IQR 41-90). Only 3 studies included an independent validation cohort. The highest sensitivity and specificity pairing achieved in the validation cohort was 80.0% and 89.1% respectively. CONCLUSIONS This systematic review provides a comprehensive overview of the blood-based CTC and nucleic acid biomarkers that have been investigated. An overlap in interest of targets between studies suggests that these could be promising biomarkers, but few biomarkers achieve high sensitivity and specificity, and fewer still have been validated independently.
Collapse
|
294
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
295
|
Kageyama SI, Nihei K, Karasawa K, Sawada T, Koizumi F, Yamaguchi S, Kato S, Hojo H, Motegi A, Tsuchihara K, Akimoto T. Radiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patients. Oncotarget 2018; 9:19368-19378. [PMID: 29721209 PMCID: PMC5922403 DOI: 10.18632/oncotarget.25053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
We investigated the plasma levels of tumor-specific cell-free DNA (cfDNA) in 17 stage I–II (early) and IV (advanced) non-small cell lung cancer (NSCLC) patients who underwent radiotherapy. Digital polymerase chain reaction (PCR) and targeted sequencing showed that total and tumor-specific cfDNA levels increased in response to radiotherapy in both early- and advanced-stage NSCLC patients. We detected high copy numbers of epidermal growth factor receptor mutations (L858R and T790M) in the cfDNA samples from stage IV NSCLC patients who underwent stereotactic body radiation therapy to treat brain metastasis related to tyrosine kinase inhibitor (TKI) treatment failure. In conclusion, our study demonstrates that radiotherapy increases tumoral cfDNA levels in the plasma and shows potential to serve as an indicator for diagnosing drug-resistant tumor-related gene mutations in early-stage NSCLC patients or those undergoing molecular targeted therapy.
Collapse
Affiliation(s)
| | - Keiji Nihei
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | | | - Takeshi Sawada
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Fumiaki Koizumi
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Shigeo Yamaguchi
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Shunsuke Kato
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Hidehiro Hojo
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Atsuhi Motegi
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | | | - Tetsuo Akimoto
- National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
296
|
Romero R. A Profile of Dennis Lo, DM, DPhil, FRCP, FRCPath, FRS. Am J Obstet Gynecol 2018; 218:371-378. [PMID: 29598980 DOI: 10.1016/j.ajog.2018.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD and Detroit, MI.
| |
Collapse
|
297
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid Biopsy zur Überwachung von Melanompatienten. J Dtsch Dermatol Ges 2018; 16:405-416. [DOI: 10.1111/ddg.13461_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/21/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Maria Rita Gaiser
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Nikolas von Bubnoff
- Klinik für Hämatologie; Onkologie und Stammzelltransplantation; Universitätsklinikum Freiburg; Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK); Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Deutschland
| | - Christoffer Gebhardt
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Jochen Sven Utikal
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
298
|
Zhang S, Han S, Zhang M, Wang Y. Non-invasive prenatal paternity testing using cell-free fetal DNA from maternal plasma: DNA isolation and genetic marker studies. Leg Med (Tokyo) 2018; 32:98-103. [PMID: 29626747 DOI: 10.1016/j.legalmed.2018.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 03/01/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022]
Abstract
Invasive prenatal paternity tests can result in miscarriage and congenital malformations; therefore, a non-invasive method of testing is preferable. However, little progress could be made in this field until the introduction of cell-free fetal DNA (cffDNA) in 2009. In this review, two aspects regarding the history and development of non-invasive prenatal paternity testing (NIPAT) are summarized: (1) extraction and enrichment of cffDNA and (2) genetic marker-based studies. Although column-based kits are used widely for NIPAT, some researchers have suggested that an automated method, such as magnetic extraction, generally has a higher cffDNA yield than that of manual column-based extraction; therefore, its popularity might increase in the near future. In addition, size- and methylation-based enrichment methods are expected to perform better than formaldehyde-based methods. On the other hand, single nucleotide polymorphism-based techniques have contributed to NIPAT, whereas the application of short tandem repeat testing has so far been restricted to pregnant women bearing male fetuses only. Additional methods and techniques are expected to be innovated to facilitate the forensic practice of NIPAT.
Collapse
Affiliation(s)
- Shanshan Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Shuyi Han
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| | - Maoxiu Zhang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Yunshan Wang
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, No. 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|
299
|
Gray KJ, Wilkins-Haug LE. Have we done our last amniocentesis? Updates on cell-free DNA for Down syndrome screening. Pediatr Radiol 2018; 48:461-470. [PMID: 29550862 PMCID: PMC7088458 DOI: 10.1007/s00247-017-3958-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
Prenatal aneuploidy screening changed significantly in 2012 when cell-free fetal deoxyribonucleic acid (DNA) was introduced as a noninvasive prenatal test. A noninvasive prenatal test detects cell free fragments of fetal DNA from the placenta circulating in maternal blood that coexist with cell-free DNA (cfDNA) of maternal origin. Using next-generation sequencing, the noninvasive prenatal test compares maternal and fetal cfDNA ratios for chromosomes of interest (i.e., 21, 18, 13, X, and Y) to assess chromosomal aneuploidy. Compared to traditional screening using ultrasound and serum markers, the noninvasive prenatal test has superior test characteristics, including a higher detection rate and positive predictive value, and a lower false-positive rate. The noninvasive prenatal test is already used for primary screening in high-risk women and is rapidly expanding to all women. Given its increasing use, understanding the noninvasive prenatal test's limitations is critical. Discordant results (i.e. noninvasive prenatal test is positive for aneuploidy with a normal fetal karyotype) can occur because of biological processes such as aneuploidy confined to the placenta, a vanished twin, maternal aneuploidy or maternal cancer. Use of the noninvasive prenatal test for screening beyond the most common aneuploidies is not recommended. The noninvasive prenatal test is a major advance in prenatal aneuploidy screening but it is not diagnostic and does not replace invasive testing (i.e. chorionic villous sampling or amniocentesis) for confirmation of fetal chromosomal disorders.
Collapse
Affiliation(s)
- Kathryn J Gray
- Division of Maternal-Fetal Medicine, Brigham & Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
| | - Louise E Wilkins-Haug
- Division of Maternal-Fetal Medicine, Brigham & Women's Hospital, 75 Francis St., Boston, MA, 02115, USA.
| |
Collapse
|
300
|
Clinical utility of circulating cell-free Epstein-Barr virus DNA in patients with gastric cancer. Oncotarget 2018; 8:28796-28804. [PMID: 28430637 PMCID: PMC5438692 DOI: 10.18632/oncotarget.15675] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Recent comprehensive molecular subtyping of gastric cancer (GC) identified Epstein-Barr virus (EBV)-positive tumors as a subtype with distinct salient molecular and clinical features. In this study, we aimed to determine the potential utility of circulating cell-free EBV DNA as a biomarker for the detection and/or monitoring of therapeutic response in patients with EBV-associated gastric carcinoma (EBVaGC). The EBV genes-to-ribonuclease P RNA component H1 ratios (EBV ratios) in the GC tumors and plasma samples were determined by quantitative real-time polymerase chain reaction in 153 patients with GC, including 14 patients with EBVaGC diagnosed by the conventional method. Circulating cell-free EBV DNA was detected in 14 patients with GC: the sensitivity and specificity of detection were 71.4% (10/14) and 97.1% (135/139), respectively. Plasma EBV ratios were significantly correlated with the size of EBVaGC tumors, and the plasma EBV DNA detected before surgery in EBVaGC cases disappeared after surgery. Patients with EBVaGC may have a better prognosis, but circulating cell-free EBV DNA had no or little impact on prognosis. In addition, repeated assessment of the plasma EBV ratio in EBVaGC showed a decrease and increase in plasma EBV DNA after treatment and during tumor progression/recurrence, respectively. These results suggest the potential utility of circulating cell-free DNA to reveal EBV DNA for the identification of the EBVaGC subtype and/or for real-time monitoring of tumor progression as well as treatment response in patients with EBVaGC.
Collapse
|