251
|
Marsman D, Belsky DW, Gregori D, Johnson MA, Low Dog T, Meydani S, Pigat S, Sadana R, Shao A, Griffiths JC. Healthy ageing: the natural consequences of good nutrition-a conference report. Eur J Nutr 2018; 57:15-34. [PMID: 29799073 PMCID: PMC5984649 DOI: 10.1007/s00394-018-1723-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many countries are witnessing a marked increase in longevity and with this increased lifespan and the desire for healthy ageing, many, however, suffer from the opposite including mental and physical deterioration, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental for good health, it remains unclear what impact various dietary interventions may have on prolonging good quality of life. Studies which span age, geography and income all suggest that access to quality foods, host immunity and response to inflammation/infections, impaired senses (i.e., sight, taste, smell) or mobility are all factors which can limit intake or increase the body's need for specific micronutrients. New clinical studies of healthy ageing are needed and quantitative biomarkers are an essential component, particularly tools which can measure improvements in physiological integrity throughout life, thought to be a primary contributor to a long and productive life (a healthy "lifespan"). A framework for progress has recently been proposed in a WHO report which takes a broad, person-centered focus on healthy ageing, emphasizing the need to better understand an individual's intrinsic capacity, their functional abilities at various life stages, and the impact by mental, and physical health, and the environments they inhabit.
Collapse
Affiliation(s)
- D Marsman
- Procter & Gamble, Cincinnati, OH, USA
| | - D W Belsky
- Duke University, Raleigh-Durham, NC, USA
| | | | | | - T Low Dog
- Integrative Medicine Concepts, Tucson, AZ, USA
| | | | - S Pigat
- Creme Global, Dublin, Ireland
| | - R Sadana
- World Health Organization, Geneva, Switzerland
| | - A Shao
- Amway/Nutrilite, Buena Park, CA, USA
| | - J C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
252
|
Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, Schaefer J, Sugden K, Williams B, Poulton R, Caspi A. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am J Epidemiol 2018; 187:1220-1230. [PMID: 29149257 PMCID: PMC6248475 DOI: 10.1093/aje/kwx346] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023] Open
Abstract
The geroscience hypothesis posits that therapies to slow biological processes of aging can prevent disease and extend healthy years of life. To test such "geroprotective" therapies in humans, outcome measures are needed that can assess extension of disease-free life span. This need has spurred development of different methods to quantify biological aging. But different methods have not been systematically compared in the same humans. We implemented 7 methods to quantify biological aging using repeated-measures physiological and genomic data in 964 middle-aged humans in the Dunedin Study (New Zealand; persons born 1972-1973). We studied 11 measures in total: telomere-length and erosion, 3 epigenetic-clocks and their ticking rates, and 3 biomarker-composites. Contrary to expectation, we found low agreement between different measures of biological aging. We next compared associations between biological aging measures and outcomes that geroprotective therapies seek to modify: physical functioning, cognitive decline, and subjective signs of aging, including aged facial appearance. The 71-cytosine-phosphate-guanine epigenetic clock and biomarker composites were consistently related to these aging-related outcomes. However, effect sizes were modest. Results suggested that various proposed approaches to quantifying biological aging may not measure the same aspects of the aging process. Further systematic evaluation and refinement of measures of biological aging is needed to furnish outcomes for geroprotector trials.
Collapse
Affiliation(s)
- Daniel W Belsky
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina.,Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, North Carolina.,Social Science Research Institute, Duke University, Durham, North Carolina.,Center for the Study of Aging and Human Development, Duke University, Durham, North Carolina
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,MRC Social, Genetic, and Developmental Psychiatry Center, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Alan A Cohen
- Department of Family Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph A Prinz
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Jonathan Schaefer
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Benjamin Williams
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,MRC Social, Genetic, and Developmental Psychiatry Center, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
253
|
Rožman P. The potential of non-myeloablative heterochronous autologous hematopoietic stem cell transplantation for extending a healthy life span. GeroScience 2018; 40:221-242. [PMID: 29948868 PMCID: PMC6060192 DOI: 10.1007/s11357-018-0027-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex multifactorial process, a prominent component being the senescence of the immune system. Consequently, immune-related diseases develop, including atherosclerosis, cancer, and life-threatening infections, which impact on health and longevity. Rejuvenating the aged immune system could mitigate these diseases, thereby contributing to longevity and health. Currently, an appealing option for rejuvenating the immune system is heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow/peripheral blood stem cells are collected during the youth of an individual, cryopreserved, and re-infused when he or she has reached an older age. After infusion, young hematopoietic stem cells can reconstitute the compromised immune system and improve immune function. Several studies using animal models have achieved substantial extension of the life span of animals treated with haHSCT. Therefore, haHSCT could be regarded as a potential procedure for preventing age-related immune defects and extending healthy longevity. In this review, the pros, cons, and future feasibility of this approach are discussed.
Collapse
Affiliation(s)
- Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000, Ljubljana, Slovenia.
| |
Collapse
|
254
|
Anisimov VN, Sidorenko AV. It is necessary to establish an International Agency for Research on Aging. Aging (Albany NY) 2018; 10:863-867. [PMID: 29754145 PMCID: PMC5990390 DOI: 10.18632/aging.101451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 05/07/2023]
Abstract
The global aging of human population is one of the main challenges and opportunities of the 21st century. Establishing an International Agency for Research on Aging as an entity affiliated to one of the intergovernmental institutions, such as the World Health Organization, can be crucial for promoting international collaboration in gerontology, in particular in a search of effective and safe geroprotectors for humans.
Collapse
Affiliation(s)
- Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg 197758, Russia
| | | |
Collapse
|
255
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
256
|
Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues. Int J Mol Sci 2018; 19:ijms19041140. [PMID: 29642630 PMCID: PMC5979431 DOI: 10.3390/ijms19041140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Collapse
|
257
|
Anisimov VN, Serpov VY, Finagentov AV, Khavinson VK. A New Stage of Development of Gerontology and Geriatrics in Russia: Problems in Creation of a Geriatric-Care System. Part 2. Structure of the System and a Scientific Approach. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
258
|
De Luca M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mech Ageing Dev 2018; 177:66-73. [PMID: 29626500 DOI: 10.1016/j.mad.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an intricate network that provides structural and anchoring support to cells in order to stabilize cell morphology and tissue architecture. The ECM also controls many aspects of the cell's dynamic behavior and fate through its ongoing, bidirectional interaction with cells. These interactions between the cell and components of the surrounding ECM are implicated in several biological processes, including development and adult tissue repair in response to injury, throughout the lifespan of multiple species. The present review gives an overview of the growing evidence that cell-matrix interactions play a pivotal role in the aging process. The focus of the first part of the article is on recent studies using cell-derived decellularized ECM, which strongly suggest that age-related changes in the ECM induce cellular senescence, a well-recognized hallmark of aging. This is followed by a review of findings from genetic studies indicating that changes in genes involved in cell-ECM adhesion and matrix-mediated intracellular signaling cascades affect longevity. Finally, mention is made of novel data proposing an intricate interplay between cell-matrix interactions and the renin-angiotensin system that may have a significant impact on mammalian arterial stiffness with age.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 451-1720 2nd Ave S, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
259
|
Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging. Stem Cell Rev Rep 2018; 13:443-453. [PMID: 28229284 PMCID: PMC5493720 DOI: 10.1007/s12015-017-9728-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.
Collapse
|
260
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
261
|
Faye C, McGowan JC, Denny CA, David DJ. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr Neuropharmacol 2018; 16:234-270. [PMID: 28820053 PMCID: PMC5843978 DOI: 10.2174/1570159x15666170818095105] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stress is a common reaction to an environmental adversity, but a dysregulation of the stress response can lead to psychiatric illnesses such as major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety disorders. Yet, not all individuals exposed to stress will develop psychiatric disorders; those with enhanced stress resilience mechanisms have the ability to adapt successfully to stress without developing persistent psychopathology. Notably, the potential to enhance stress resilience in at-risk populations may prevent the onset of stress-induced psychiatric disorders. This novel idea has prompted a number of studies probing the mechanisms of stress resilience and how it can be manipulated. METHODS Here, we review the neurobiological factors underlying stress resilience, with particular focus on the serotoninergic (5-HT), glutamatergic, and γ-Aminobutyric acid (GABA) systems, as well as the hypothalamic-pituitary axis (HPA) in rodents and in humans. Finally, we discuss stress resiliency in the context of aging, as the likelihood of mood disorders increases in older adults. RESULTS Interestingly, increased resiliency has been shown to slow aging and improved overall health and quality of life. Research in the neurobiology of stress resilience, particularly throughout the aging process, is a nascent, yet, burgeoning field. CONCLUSION Overall, we consider the possible methods that may be used to induce resilient phenotypes, prophylactically in at-risk populations, such as in military personnel or in older MDD patients. Research in the mechanisms of stress resilience may not only elucidate novel targets for antidepressant treatments, but also provide novel insight about how to prevent these debilitating disorders from developing.
Collapse
Affiliation(s)
- Charlène Faye
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Josephine C. McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Christine A. Denny
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, Inc., New York, NY, USA
| | - Denis J. David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| |
Collapse
|
262
|
Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. IMMUNITY & AGEING 2018; 15:11. [PMID: 29507595 PMCID: PMC5833087 DOI: 10.1186/s12979-018-0117-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/25/2018] [Indexed: 12/03/2022]
Affiliation(s)
- Giulia Accardi
- 1Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy.,Sezione di Patologia generale, Dipartimento di Biopatologia e Biotecnologie Mediche, Corso Tukory 211, 90134 Palermo, Italy
| | - Calogero Caruso
- 1Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy.,Sezione di Patologia generale, Dipartimento di Biopatologia e Biotecnologie Mediche, Corso Tukory 211, 90134 Palermo, Italy
| |
Collapse
|
263
|
Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci 2018; 39:424-436. [PMID: 29482842 DOI: 10.1016/j.tips.2018.02.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Recent reports indicate that intracellular NAD levels decline in tissues during chronological aging, and that therapies aimed at increasing cellular NAD levels could have beneficial effects in many age-related diseases. The protein CD38 (cluster of differentiation 38) is a multifunctional enzyme that degrades NAD and modulates cellular NAD homeostasis. At the physiological level, CD38 has been implicated in the regulation of metabolism and in the pathogenesis of multiple conditions including aging, obesity, diabetes, heart disease, asthma, and inflammation. Interestingly, many of these functions are mediated by CD38 enzymatic activity. In addition, CD38 has also been identified as a cell-surface marker in hematologic cancers such as multiple myeloma, and a cytotoxic anti-CD38 antibody has been approved by the FDA for use in this disease. Although this is a remarkable development, killing CD38-positive tumor cells with cytotoxic anti-CD38 antibodies is only one of the potential pharmacological uses of targeting CD38. The present review discusses the biology of the CD38 enzyme and the current state of development of pharmacological tools aimed at CD38, and explores how these agents may represent a novel approach for treating human conditions including cancer, metabolic disease, and diseases of aging.
Collapse
Affiliation(s)
- Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jair Machado Espindola Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
264
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell 2018; 20:593-608. [PMID: 28475885 DOI: 10.1016/j.stem.2017.04.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adult stem cells, particularly those resident in tissues with little turnover, are largely quiescent and only activate in response to regenerative demands, while embryonic stem cells continuously replicate, suggesting profoundly different regulatory mechanisms within distinct stem cell types. In recent years, evidence linking metabolism, mitochondrial dynamics, and protein homeostasis (proteostasis) as fundamental regulators of stem cell function has emerged. Here, we discuss new insights into how these networks control potency, self-renewal, differentiation, and aging of highly proliferative embryonic stem cells and quiescent adult stem cells, with a focus on hematopoietic and muscle stem cells and implications for anti-aging research.
Collapse
Affiliation(s)
- Laura García-Prat
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA 94945-1400, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
265
|
Spann SJ, Ottinger MA. Longevity, Metabolic Disease, and Community Health. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 155:1-9. [PMID: 29653677 DOI: 10.1016/bs.pmbts.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the United States, the average lifespan has increased despite the dramatic increase in obesity, diabetes, and other conditions that worsen during aging. As the longevity of US population increases, it is critical to understand the factors that impact aging populations especially as age-related disease and declining health becomes more prevalent. Diabetes related to obesity has become much more prevalent throughout the United States and globally. Further, the prevalence of age-related health problems accelerate in lower income communities with less access to health care. All these factors become critical as individuals age. Furthermore, in communities with less availability to health care, diagnosis may be delayed and treatments are initiated at a much later stage in disease. As such, the costs of medical care skyrocket leading to higher costs both to the community and to taxpayers. This chapter reviews some key health problems and issues in community health and healthy aging, recognizing the importance of organizations and programs that provide education and support to the aging population. Finally, cultural differences in approaches to healthy aging provide important insights and lessons for optimizing quality of life during aging.
Collapse
|
266
|
Gasmi M, Sellami M, Denham J, Padulo J, Kuvacic G, Selmi W, Khalifa R. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition 2018; 51-52:29-37. [PMID: 29571007 DOI: 10.1016/j.nut.2017.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study examined the effect of 12 wk of time-restricted feeding (TRF) on complete blood cell counts, natural killer cells, and muscle performance in 20- and 50-year-old men. METHODS Forty active and healthy participants were randomly divided into young experimental, young control, aged experimental, and aged control group. Experimental groups participated in TRF. Before (P1) and after (P2) TRF, participants performed a maximal exercise test to quantify muscle power. Resting venous blood samples were collected for blood count calculation. RESULTS No changes were identified in muscle power in all groups after TRF (P > 0.05). At P1, red cells, hemoglobin, and hematocrit were significantly higher in young participants compared with elderly participants (P < 0.05). At P2, this age effect was not found in red cells between the young experimental group and the aged experimental group (P > 0.05). At P1, white blood cells and neutrophils were significantly higher in young participants compared with elderly participants (P < 0.05). At P2, only neutrophils decreased significantly (P < 0.05) in experimental groups without significant (P > 0.05) difference among them. Lymphocytes decreased significantly in the aged experimental group at P2 (P < 0.05), whereas NKCD16+ and NKCD56+ decreased significantly in experimental groups at P2 (P < 0.05). TRF had no effect on CD3, CD4+, and CD8+ levels (P > 0.05). CONCLUSION TRF decreases hematocrit, total white blood cells, lymphocytes, and neutrophils in young and older men. TRF may be effective in preventing inflammation by decreasing natural killer cells. As such, TRF could be a lifestyle strategy to reduce systemic low-grade inflammation and age-related chronic diseases linked to immunosenescence, without compromising physical performance.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Maha Sellami
- University of Split, Faculty of Kinesiology, Split, Croatia; Tunisian Research Laboratory Sport Performance Optimization, National Center of Medicine and Science in Sports, Tunis, Tunisia.
| | - Joshua Denham
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Johnny Padulo
- University of Split, Faculty of Kinesiology, Split, Croatia; Tunisian Research Laboratory Sport Performance Optimization, National Center of Medicine and Science in Sports, Tunis, Tunisia; University e-campus, Novedrate, Italy
| | - Goran Kuvacic
- University of Split, Faculty of Kinesiology, Split, Croatia
| | - Walid Selmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Riadh Khalifa
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| |
Collapse
|
267
|
Vasto S, Accardi G, Aiello A, Di Gaudio F, Barera A, Indelicato S, Galimberti D, Italiano E, Monastero R, Rizzo C, Caruso C, Candore G. Dietary Supplements as Surrogate of Mediterranean Diet in Healthy Smoking Subjects. Rejuvenation Res 2018; 21:37-43. [DOI: 10.1089/rej.2017.1950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology “Alberto Monroy”, National Research Council, Palermo, Italy
| | - Giulia Accardi
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Anna Aiello
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Francesca Di Gaudio
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Institute for the Study of Nanostructured Materials, National Research Council, Palermo, Italy
- Quality Control Laboratories and Chemical Risk, University Hospital Paolo Giaccone, Palermo, Italy
| | - Annalisa Barera
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Serena Indelicato
- Quality Control Laboratories and Chemical Risk, University Hospital Paolo Giaccone, Palermo, Italy
| | | | - Emilio Italiano
- Operative Unit of Urology, Hospital “Villa Sofia-Cervello,” Piazzetta Salerno, Palermo, Italy
| | - Roberto Monastero
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Claudia Rizzo
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
- Italian Association of Anti-Ageing Physicians, Milan, Italy
| | - Giuseppina Candore
- General Pathology Unit, Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
268
|
Ng LT, Gruber J, Moore PK. Is there a role of H 2S in mediating health span benefits of caloric restriction? Biochem Pharmacol 2018; 149:91-100. [PMID: 29360438 DOI: 10.1016/j.bcp.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) is a dietary regimen that aims to reduce the intake of total calories while maintaining adequate supply of key nutrients so as to avoid malnutrition. CR is one of only a small number of interventions that show promising outcomes on health span and lifespan across different species. There is growing interest in the development of compounds that might replicate CR-related benefits without actually restricting food intake. Hydrogen sulfide (H2S) is produced inside the bodies of many animals, including humans, by evolutionarily conserved H2S synthesizing enzymes. Endogenous H2S is increasingly recognized as an important gaseous signalling molecule involved in diverse cellular and molecular processes. However, the specific role of H2S in diverse biological processes remains to be elucidated and not all its biological effects are beneficial. Nonetheless, recent evidence suggests that the biological functions of H2S intersect with the network of evolutionarily conserved nutrient sensing and stress response pathways that govern organismal responses to CR. Induction of H2S synthesizing enzymes appears to be a conserved and essential feature of the CR response in evolutionarily distant organisms, including nematodes and mice. Here we review the evidence for a role of H2S in CR and lifespan modulation. H2S releasing drugs, capable of controlled delivery of exogenous H2S, are currently in clinical development. These findings suggest such H2S releasing drugs as a promising novel avenue for the development of CR mimetic compounds.
Collapse
Affiliation(s)
- Li Theng Ng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Yale-NUS College, Science Division, Singapore.
| | - Philip Keith Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
269
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
270
|
Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging. Mol Neurobiol 2018; 55:6881-6893. [DOI: 10.1007/s12035-018-0891-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
|
271
|
Gaur U, Fan X, Yang M. Rapamycin slows down gut aging. Aging (Albany NY) 2018; 8:833-4. [PMID: 27191225 PMCID: PMC4931834 DOI: 10.18632/aging.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
272
|
Houston M, Minich D, Sinatra ST, Kahn JK, Guarneri M. Recent Science and Clinical Application of Nutrition to Coronary Heart Disease. J Am Coll Nutr 2018; 37:169-187. [PMID: 29313752 DOI: 10.1080/07315724.2017.1381053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the greatest threats to mortality in industrialized societies continues to be coronary heart disease (CHD). Moreover, the ability to decrease the incidence of CHD has reached a limit utilizing traditional diagnostic evaluations and prevention and treatment strategies for the top five cardiovascular risk factors (hypertension, diabetes mellitus, dyslipidemia, obesity, and smoking). It is well known that about 80% of CHD can be prevented with optimal nutrition, coupled with exercise, weight management, mild alcohol intake, and smoking cessation. Among all of these factors, optimal nutrition provides the basic foundation for prevention and treatment of CHD. Numerous prospective nutrition clinical trials have shown dramatic reductions in the incidence of CHD. As nutritional science and nutrigenomics research continues, our ability to adjust the best nutrition with an individualized approach is emerging. This article reviews the role of nutrition in the prevention and treatment of CHD and myocardial infarction (MI).
Collapse
Affiliation(s)
- Mark Houston
- a Associate Clinical Professor of Medicine, Vanderbilt University Medical School, Director, Hypertension Institute and Vascular Biology, Medical Director of Division of Human Nutrition, Saint Thomas Medical Group, Saint Thomas Hospital , Nashville , Tennessee , USA
| | - Deanna Minich
- b University of Western States, Institute for Functional Medicine , Seattle , Washington , USA
| | - Stephen T Sinatra
- c Assistant Clinical Professor of Medicine, University of Connecticut Medical School , Farmington , Connecticut , USA
| | - Joel K Kahn
- d Clinical Professor of Medicine, Wayne State University School of Medicine, Kahn Center for Cardiac Longevity , Bloomfield Township , Michigan , USA
| | - Mimi Guarneri
- e Director, Guarneri Integrative Health, Inc., La Jolla, California at Pacific Pearl , La Jolla , California , USA
| |
Collapse
|
273
|
Kyriazis M. Four Principles Regarding an Effective Treatment of Aging. Curr Aging Sci 2018; 11:149-154. [PMID: 30362423 PMCID: PMC6388426 DOI: 10.2174/1874609811666181025170059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
The question whether aging is a disease or not, has been asked by many professionals who are involved in the study of age-related degeneration. However, not only an agreement on this remains elusive, but also effective clinical treatments against human aging have not been forthcoming. In this Opinion paper I suggest that the complexity involved in aging is such that we need to remodel our thinking to involve a much more 'systems-oriented' approach. I explore four main principles which should be employed by those who are working on finding treatments against agerelated degeneration. First, I discuss the problems encountered in translating laboratory research into effective therapies for humans. Second, I propose that a 'systems-thinking' method needs to be more extensively employed, instead of relying exclusively on the current reductionist one. Third, it is submitted that we must learn from the history of life-extension research, and not blindly follow contemporary paradigms, which may lead us into yet more 'dead ends' with regards to therapies. Finally, I suggest that, we may need to employ certain universal notions and use these in order to gain insights into the mechanics of a possible therapy against age-related degeneration. Examples may be the principle of hormesis, those of degeneracy, exaptation, and others from cybernetic or systems science domains. By using this four-pronged approach we liberate our thinking from the shackles of existing common mistakes and fallacies, and we open the way for a fresh approach that may lead us towards entirely new paradigms for providing clinically effective therapies against agerelated degeneration.
Collapse
|
274
|
Abstract
Numerous approaches have been taken in the hunt for human disease genes. The identification of such genes not only provides a great deal of information about the mechanism of disease development, but also provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the nonmammalian model organism C. elegans for the identification of human disease genes. Studies utilizing this relatively simple organism offer a good balance between the ability to recapitulate many aspects of human disease, while still offering an abundance of powerful cell biological, genetic, and genomic tools for disease gene discovery. C. elegans and other nonmammalian models have produced, and will continue to produce, key insights into human disease pathogenesis.
Collapse
Affiliation(s)
- Javier Apfeld
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Scott Alper
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
275
|
Clark RI, Walker DW. Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cell Mol Life Sci 2018; 75:93-101. [PMID: 29026921 PMCID: PMC5754256 DOI: 10.1007/s00018-017-2671-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Studies in mammals, including humans, have reported age-related changes in microbiota dynamics. A major challenge, however, is to dissect the cause and effect relationships involved. Invertebrate model organisms such as the fruit fly Drosophila and the nematode Caenorhabditis elegans have been invaluable in studies of the biological mechanisms of aging. Indeed, studies in flies and worms have resulted in the identification of a number of interventions that can slow aging and prolong life span. In this review, we discuss recent work using invertebrate models to provide insight into the interplay between microbiota dynamics, intestinal homeostasis during aging and life span determination. An emerging theme from these studies is that the microbiota contributes to cellular and physiological changes in the aging intestine and, in some cases, age-related shifts in microbiota dynamics can drive health decline in aged animals.
Collapse
Affiliation(s)
- Rebecca I Clark
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
276
|
Eissenberg JC. Hungering for Immortality. MISSOURI MEDICINE 2018; 115:12-17. [PMID: 30228670 PMCID: PMC6139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Beyond avoiding risky behavior-smoking, substance abuse, obesity-and embracing healthy habits like exercise, a balanced diet, and non-obese body weight, are there things we each do today to significantly extend our lifespan? Caloric restriction is the only behavioral intervention consistently shown to extend both mean and maximal lifespan across a wide range of species. In most cases, the lifespan extension is accompanied by a marked delay in the onset of age-associated disease and infirmity.
Collapse
Affiliation(s)
- Joel C. Eissenberg
- Joel C. Eissenberg, PhD, is a Professor and Associate Dean for Research, Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
277
|
Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Br J Pharmacol 2017; 174:1177-1194. [PMID: 28500635 DOI: 10.1111/bph.13779] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Ruth Andrew
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
278
|
Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells. Oncotarget 2017; 7:11945-58. [PMID: 26943583 PMCID: PMC4914260 DOI: 10.18632/oncotarget.7858] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/14/2016] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell senescence is characterized by acquisition of senescence-associated secretory phenotype (SASP), able to promote inflammaging and cancer progression. Emerging evidence suggest that preventing SASP development could help to slow the rate of aging and the progression of age-related diseases, including cancer. Aim of this study was to evaluate whether and how adalimumab, a monoclonal antibody directed against tumor necrosis factor-α (TNF-α), a major SASP component, can prevent the SASP. A three-pronged approach has been adopted to assess the if adalimumab is able to: i) modulate a panel of classic and novel senescence- and SASP-associated markers (interleukin [IL]-6, senescence associated-β-galactosidase, p16/Ink4a, plasminogen activator inhibitor 1, endothelial nitric oxide synthase, miR-146a-5p/Irak1 and miR-126-3p/Spred1) in human umbilical vein endothelial cells (HUVECs); ii) reduce the paracrine effects of senescent HUVECs' secretome on MCF-7 breast cancer cells, through wound healing and mammosphere assay; and iii) exert significant decrease of miR-146a-5p and increase of miR-126-3p in circulating angiogenic cells (CACs) from psoriasis patients receiving adalimumab in monotherapy.TNF-α blockade associated with adalimumab induced significant reduction in released IL-6 and significant increase in eNOS and miR-126-3p expression levels in long-term HUVEC cultures.A significant reduction in miR-146a-5p expression levels both in long-term HUVEC cultures and in CACs isolated from psoriasis patients was also evident. Interestingly, conditioned medium from senescent HUVECs treated with adalimumab was less consistent than medium from untreated cells in inducing migration- and mammosphere- promoting effects on MCF-7 cells.Our findings suggest that adalimumab can induce epigenetic modifications in cells undergoing senescence, thus contributing to the attenuation of SASP tumor-promoting effects.
Collapse
|
279
|
Ross CN, Austad S, Brasky K, Brown CJ, Forney LJ, Gelfond JA, Lanford R, Richardson A, Tardif SD. The development of a specific pathogen free (SPF) barrier colony of marmosets ( Callithrix jacchus) for aging research. Aging (Albany NY) 2017; 9:2544-2558. [PMID: 29227963 PMCID: PMC5764392 DOI: 10.18632/aging.101340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
A specific pathogen free (SPF) barrier colony of breeding marmosets (Callithrix jacchus) was established at the Barshop Institute for Longevity and Aging Studies. Rodent and other animal models maintained as SPF barrier colonies have demonstrated improved health and lengthened lifespans enhancing the quality and repeatability of aging research. The marmosets were screened for two viruses and several bacterial pathogens prior to establishing the new SPF colony. Twelve founding animals successfully established a breeding colony with increased reproductive success, improved health parameters, and increased median lifespan when compared to a conventionally housed, open colony. The improved health and longevity of marmosets from the SPF barrier colony suggests that such management can be used to produce a unique resource for future studies of aging processes in a nonhuman primate model.
Collapse
Affiliation(s)
- Corinna N. Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, TX 78224, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
| | - Steven Austad
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kathy Brasky
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Larry J. Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jonathan A. Gelfond
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Suzette D. Tardif
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, TX 78245, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
280
|
Collet TH, Sonoyama T, Henning E, Keogh JM, Ingram B, Kelway S, Guo L, Farooqi IS. A Metabolomic Signature of Acute Caloric Restriction. J Clin Endocrinol Metab 2017; 102:4486-4495. [PMID: 29029202 PMCID: PMC5718701 DOI: 10.1210/jc.2017-01020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022]
Abstract
CONTEXT The experimental paradigm of acute caloric restriction (CR) followed by refeeding (RF) can be used to study the homeostatic mechanisms that regulate energy homeostasis, which are relevant to understanding the adaptive response to weight loss. OBJECTIVE Metabolomics, the measurement of hundreds of small molecule metabolites, their precursors, derivatives, and degradation products, has emerged as a useful tool for the study of physiology and disease and was used here to study the metabolic response to acute CR. PARTICIPANTS, DESIGN, AND SETTING We used four ultra high-performance liquid chromatography-tandem mass spectrometry methods to characterize changes in carbohydrates, lipids, amino acids, and steroids in eight normal weight men at baseline, after 48 hours of CR (10% of energy requirements) and after 48 hours of ad libitum RF in a tightly controlled environment. RESULTS We identified a distinct metabolomic signature associated with acute CR characterized by the expected switch from carbohydrate to fat utilization with increased lipolysis and β-fatty acid oxidation. We found an increase in ω-fatty acid oxidation and levels of endocannabinoids, which are known to promote food intake. These changes were reversed with RF. Several plasmalogen phosphatidylethanolamines (endogenous antioxidants) significantly decreased with CR (all P ≤ 0.0007). Additionally, acute CR was associated with an increase in the branched chain amino acids (all P ≤ 1.4 × 10-7) and dehydroepiandrosterone sulfate (P = 0.0006). CONCLUSIONS We identified a distinct metabolomic signature associated with acute CR. Further studies are needed to characterize the mechanisms that mediate these changes and their potential contribution to the adaptive response to dietary restriction.
Collapse
Affiliation(s)
- Tinh-Hai Collet
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Takuhiro Sonoyama
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | | | - Sarah Kelway
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Lining Guo
- Metabolon, Inc., Durham, North Carolina 27713
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
281
|
Aging Schwann cells: mechanisms, implications, future directions. Curr Opin Neurobiol 2017; 47:203-208. [DOI: 10.1016/j.conb.2017.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
282
|
Eitan E, Tosti V, Suire CN, Cava E, Berkowitz S, Bertozzi B, Raefsky SM, Veronese N, Spangler R, Spelta F, Mustapic M, Kapogiannis D, Mattson MP, Fontana L. In a randomized trial in prostate cancer patients, dietary protein restriction modifies markers of leptin and insulin signaling in plasma extracellular vesicles. Aging Cell 2017; 16:1430-1433. [PMID: 28921841 PMCID: PMC5676054 DOI: 10.1111/acel.12657] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Caitlin N. Suire
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Edda Cava
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Sean Berkowitz
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Beatrice Bertozzi
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
| | - Sophia M. Raefsky
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Nicola Veronese
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of Medicine (DIMED)Geriatrics DivisionUniversity of Padova35128PadovaItaly
| | - Ryan Spangler
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Francesco Spelta
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of MedicineUniversity of Verona37129VeronaItaly
| | - Maja Mustapic
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
| | - Mark P. Mattson
- Laboratory of NeurosciencesNational Institute on Aging, NIH251 Bayview BoulevardBaltimoreMD21224USA
- Department of NeuroscienceJohns Hopkins University School of Medicine725 N. Wolfe StreetBaltimoreMD21205USA
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Sciences and Center for Human NutritionWashington University School of MedicineSt. LouisMO63110USA
- Department of Clinical and Experimental SciencesBrescia University25121BresciaItaly
- CEINGE Biotecnologie Avanzate80122NapoliItaly
| |
Collapse
|
283
|
Hastings WJ, Shalev I, Belsky DW. Translating Measures of Biological Aging to Test Effectiveness of Geroprotective Interventions: What Can We Learn from Research on Telomeres? Front Genet 2017; 8:164. [PMID: 29213278 PMCID: PMC5702647 DOI: 10.3389/fgene.2017.00164] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Intervention studies in animals suggest molecular changes underlying age-related disease and disability can be slowed or reversed. To speed translation of these so-called "geroprotective" therapies to prevent age-related disease and disability in humans, biomarkers are needed that can track changes in the rate of human aging over the course of intervention trials. Algorithm methods that measure biological processes of aging from combinations of DNA methylation marks or clinical biomarkers show promise. To identify next steps for establishing utility of these algorithm-based measures of biological aging for geroprotector trials, we considered the history a candidate biomarker of aging that has received substantial research attention, telomere length. Although telomere length possesses compelling biology to recommend it as a biomarker of aging, mixed research findings have impeded clinical and epidemiologic translation. Strengths of telomeres that should be established for algorithm biomarkers of aging are correlation with chronological age across the lifespan, prediction of disease, disability, and early death, and responsiveness to risk and protective exposures. Key challenges in telomere research that algorithm biomarkers of aging must address are measurement precision and reliability, establishing links between longitudinal rates of change across repeated measurements and aging outcomes, and clarity over whether the biomarker is a causal mechanism of aging. These strengths and challenges suggest a research agenda to advance translation of algorithm-based aging biomarkers: establish validity in young-adult and midlife individuals; test responsiveness to exposures that shorten or extend healthy lifespan; and conduct repeated-measures longitudinal studies to test differential rates of change.
Collapse
Affiliation(s)
- Waylon J Hastings
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA, United States
| | - Idan Shalev
- Department of Biobehavioral Health, Pennsylvania State University, State College, PA, United States
| | - Daniel W Belsky
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States.,Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| |
Collapse
|
284
|
Negi H, Saikia SK, Pandey R. 3β-Hydroxy-urs-12-en-28-oic Acid Modulates Dietary Restriction Mediated Longevity and Ameliorates Toxic Protein Aggregation in C. elegans. J Gerontol A Biol Sci Med Sci 2017; 72:1614-1619. [PMID: 28673026 PMCID: PMC5861981 DOI: 10.1093/gerona/glx118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 01/09/2023] Open
Abstract
Species from lower invertebrates to a spectrum of mammals show antiaging health benefits of phytochemical(s). Here, we explored the pro-longevity effects of a natural triterpenoid, ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) in Caenorhabditis elegans with maximal life span being evident at 25 µM UA. Similar to eat-2 mutants, UA uptake by worm results in reduced fat storage and attenuation of reactive oxygen species (ROS), independent of superoxide dismutase(s) activation. The genetic requirements for UA-mediated longevity are quite similar to dietary restriction (DR) achieved through SKN-1/NRF-2 exhibiting upregulation of downstream target genes gcs-1 and daf-9. Longevity mechanism was independent of PHA-4/FOXA and attributed to partial dependence on sir-2.1. Altogether, our study suggests differential use of UA-elicited signaling cascades in nutrient sensing for longevity. Both the redox state and the proteostasis of an organism play critical role in aging and disease resistance. Interestingly, we observed a reduction of toxic protein aggregation in transgenic polyglutamine (polyQ) C. elegans model and UA-mediated JNK-1 (c-Jun-NH2-terminal kinase) activation in wild-type animals. Thus, our study demonstrates a small extent of prevention against proteotoxic stress by UA coupled with positive aspects of DR-mediated longevity.
Collapse
Affiliation(s)
- Hema Negi
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shilpi Khare Saikia
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
285
|
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 2017; 12:1887-1902. [PMID: 29184395 PMCID: PMC5685139 DOI: 10.2147/cia.s126458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complexity of aging is hard to be captured. However, apart from its tissue-specific features, a structural and functional progressive decline of the whole organism that leads to death, often preceded by a phase of chronic morbidity, characterizes the common process of aging. Therefore, the research goal of scientists in the field moved from the search for strategies able to extend longevity to those ensuring healthy aging associated with a longer lifespan referred to as “healthspan”. The aging process is plastic and can be tuned by multiple mechanisms including dietary and genetic interventions. To date, the most robust approach, efficient in warding off the cellular markers of aging, is calorie restriction (CR). Here, after a preliminary presentation of the major debate originated by CR, we concisely overviewed the recent results of CR treatment on humans. We also provided an update on the molecular mechanisms involved by CR and the effects on some of the age-associated cellular markers. We finally reviewed a number of tested CR mimetics and concluded with an evaluation of future applications of such dietary approach.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | |
Collapse
|
286
|
Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 2017; 455:62-74. [PMID: 27825999 PMCID: PMC5419884 DOI: 10.1016/j.mce.2016.11.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariana G Tarragó
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eduardo N Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
287
|
de Medina P. Xenohormesis in early life: New avenues of research to explore anti-aging strategies through the maternal diet. Med Hypotheses 2017; 109:126-130. [DOI: 10.1016/j.mehy.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023]
|
288
|
Khan SS, Shah SJ, Klyachko E, Baldridge AS, Eren M, Place AT, Aviv A, Puterman E, Lloyd-Jones DM, Heiman M, Miyata T, Gupta S, Shapiro AD, Vaughan DE. A null mutation in SERPINE1 protects against biological aging in humans. SCIENCE ADVANCES 2017; 3:eaao1617. [PMID: 29152572 PMCID: PMC5687852 DOI: 10.1126/sciadv.aao1617] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/10/2017] [Indexed: 05/06/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been shown to be a key component of the senescence-related secretome and a direct mediator of cellular senescence. In murine models of accelerated aging, genetic deficiency and targeted inhibition of PAI-1 protect against aging-like pathology and prolong life span. However, the role of PAI-1 in human longevity remains unclear. We hypothesized that a rare loss-of-function mutation in SERPINE1 (c.699_700dupTA), which encodes PAI-1, could play a role in longevity and metabolism in humans. We studied 177 members of the Berne Amish community, which included 43 carriers of the null SERPINE1 mutation. Heterozygosity was associated with significantly longer leukocyte telomere length, lower fasting insulin levels, and lower prevalence of diabetes mellitus. In the extended Amish kindred, carriers of the null SERPINE1 allele had a longer life span. Our study indicates a causal effect of PAI-1 on human longevity, which may be mediated by alterations in metabolism. Our findings demonstrate the utility of studying loss-of-function mutations in populations with geographic and genetic isolation and shed light on a novel therapeutic target for aging.
Collapse
Affiliation(s)
- Sadiya S. Khan
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanjiv J. Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ekaterina Klyachko
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Abigail S. Baldridge
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mesut Eren
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aaron T. Place
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Abraham Aviv
- Center for Human Development and Aging, New Jersey Medical School, Newark, NJ 07103, USA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald M. Lloyd-Jones
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Meadow Heiman
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - Toshio Miyata
- Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - Douglas E. Vaughan
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
289
|
Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017; 6:31268. [PMID: 29027899 PMCID: PMC5685485 DOI: 10.7554/elife.31268] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
Metformin, a widely used first-line drug for treatment of type 2 diabetes (T2D), has been shown to extend lifespan and delay the onset of age-related diseases. However, its primary locus of action remains unclear. Using a pure in vitro reconstitution system, we demonstrate that metformin acts through the v-ATPase-Ragulator lysosomal pathway to coordinate mTORC1 and AMPK, two hubs governing metabolic programs. We further show in Caenorhabditis elegans that both v-ATPase-mediated TORC1 inhibition and v-ATPase-AXIN/LKB1-mediated AMPK activation contribute to the lifespan extension effect of metformin. Elucidating the molecular mechanism of metformin regulated healthspan extension will boost its therapeutic application in the treatment of human aging and age-related diseases.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuhui Ou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shumei Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Wa Shao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
290
|
Budinger GRS, Kohanski RA, Gan W, Kobor MS, Amaral LA, Armanios M, Kelsey KT, Pardo A, Tuder R, Macian F, Chandel N, Vaughan D, Rojas M, Mora AL, Kovacs E, Duncan SR, Finkel T, Choi A, Eickelberg O, Chen D, Agusti A, Selman M, Balch WE, Busse P, Lin A, Morimoto R, Sznajder JI, Thannickal VJ. The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. J Gerontol A Biol Sci Med Sci 2017; 72:1492-1500. [PMID: 28498894 PMCID: PMC5861849 DOI: 10.1093/gerona/glx090] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/10/2017] [Indexed: 12/31/2022] Open
Abstract
Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor.
Collapse
Affiliation(s)
- GR Scott Budinger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Ronald A Kohanski
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Weiniu Gan
- Division of Lung Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael S Kobor
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Luis A Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karl T Kelsey
- Departments of Epidemiology, Laboratory Medicine & Pathology, Brown University, Providence, Rhode Island
| | - Annie Pardo
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, México
| | - Rubin Tuder
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado at Denver Health Sciences Center, Denver, Colorado
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Navdeep Chandel
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Douglas Vaughan
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ana L Mora
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elizabeth Kovacs
- Department of Surgery, University of Colorado at Denver Health Sciences Center, Denver, Colorado
| | | | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Augustine Choi
- Weill Cornell Medical College, Division of Pulmonary and Critical Care Medicine, Weill Department of Medicine, New York, New York
| | - Oliver Eickelberg
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, California
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, CIBERES, Spain
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, México
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Anning Lin
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Richard Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois
| | - Jacob I Sznajder
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
291
|
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39:46-58. [PMID: 27810402 DOI: 10.1016/j.arr.2016.10.005] [Citation(s) in RCA: 698] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Humans in modern societies typically consume food at least three times daily, while laboratory animals are fed ad libitum. Overconsumption of food with such eating patterns often leads to metabolic morbidities (insulin resistance, excessive accumulation of visceral fat, etc.), particularly when associated with a sedentary lifestyle. Because animals, including humans, evolved in environments where food was relatively scarce, they developed numerous adaptations that enabled them to function at a high level, both physically and cognitively, when in a food-deprived/fasted state. Intermittent fasting (IF) encompasses eating patterns in which individuals go extended time periods (e.g., 16-48h) with little or no energy intake, with intervening periods of normal food intake, on a recurring basis. We use the term periodic fasting (PF) to refer to IF with periods of fasting or fasting mimicking diets lasting from 2 to as many as 21 or more days. In laboratory rats and mice IF and PF have profound beneficial effects on many different indices of health and, importantly, can counteract disease processes and improve functional outcome in experimental models of a wide range of age-related disorders including diabetes, cardiovascular disease, cancers and neurological disorders such as Alzheimer's disease Parkinson's disease and stroke. Studies of IF (e.g., 60% energy restriction on 2days per week or every other day), PF (e.g., a 5day diet providing 750-1100kcal) and time-restricted feeding (TRF; limiting the daily period of food intake to 8h or less) in normal and overweight human subjects have demonstrated efficacy for weight loss and improvements in multiple health indicators including insulin resistance and reductions in risk factors for cardiovascular disease. The cellular and molecular mechanisms by which IF improves health and counteracts disease processes involve activation of adaptive cellular stress response signaling pathways that enhance mitochondrial health, DNA repair and autophagy. PF also promotes stem cell-based regeneration as well as long-lasting metabolic effects. Randomized controlled clinical trials of IF versus PF and isoenergetic continuous energy restriction in human subjects will be required to establish the efficacy of IF in improving general health, and preventing and managing major diseases of aging.
Collapse
|
292
|
Florian MC, Klenk J, Marka G, Soller K, Kiryakos H, Peter R, Herbolsheimer F, Rothenbacher D, Denkinger M, Geiger H. Expression and Activity of the Small RhoGTPase Cdc42 in Blood Cells of Older Adults Are Associated With Age and Cardiovascular Disease. J Gerontol A Biol Sci Med Sci 2017; 72:1196-1200. [PMID: 28498918 DOI: 10.1093/gerona/glx091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
The small RhoGTPase Cdc42 is mechanistically linked to aging of multiple tissues and to rejuvenation of hematopoietic stem cells in mice. However, data validating Cdc42 activity and expression as biomarker for aging in humans are still missing. Here, we hypothesized that Cdc42 might serve as a novel biomarker of aging in older adults and therefore we determined Cdc42 activity and expression levels in peripheral blood cells from a cohort of 196 donors. We investigated the association of these parameters with both chronological and biological aging. We also tested in this cohort of older adults a recently published algorithm determining chronological age based on DNA methylation profiles. A positive correlation with chronological age was found for both the level of Cdc42 mRNA and the level of active Cdc42 protein (the GTP bound form). Notably, the level of Cdc42 mRNA as well as total protein showed a specific strong association to cardiovascular disease and Cdc42 mRNA levels also to a history of myocardial infarction. In summary, these data validate Cdc42 as a blood biomarker of both chronological aging as well as aging-associated diseases like cardiovascular disease and myocardial infarction.
Collapse
Affiliation(s)
| | - Jochen Klenk
- Institute of Epidemiology and Medical Biometry, Ulm University, Germany.,Department of Clinical Gerontology, Robert Bosch Hospital Stuttgart, Germany
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Germany
| | - Hady Kiryakos
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Germany
| | - Richard Peter
- Institute for History, Theory and Ethics in Medicine
| | | | | | - Michael Denkinger
- AGAPLESION Bethesda Clinic, Geriatric Medicine, Ulm University, Germany.,Geriatric Center Ulm/Alb-Donau, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Ohio
| |
Collapse
|
293
|
George C, Gontier G, Lacube P, François JC, Holzenberger M, Aïd S. The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. Brain 2017; 140:2012-2027. [PMID: 28595357 DOI: 10.1093/brain/awx132] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusive. Here, we showed that genetically ablating IGF1R in neurons of the ageing brain efficiently protects from neuroinflammation, anxiety and memory impairments induced by intracerebroventricular injection of amyloid-β oligomers. In our mutant mice, the suppression of IGF1R signalling also invariably led to small neuronal soma size, indicative of profound changes in cellular homeodynamics. To gain insight into transcriptional signatures leading to Alzheimer's disease-relevant neuronal defence, we performed genome-wide microarray analysis on laser-dissected hippocampal CA1 after neuronal IGF1R knockout, in the presence or absence of APP/PS1 transgenes. Functional analysis comparing neurons in early-stage Alzheimer's disease with IGF1R knockout neurons revealed strongly convergent transcriptomic signatures, notably involving neurite growth, cytoskeleton organization, cellular stress response and neurotransmission. Moreover, in Alzheimer's disease neurons, a high proportion of genes responding to Alzheimer's disease showed a reversed differential expression when IGF1R was deleted. One of the genes consistently highlighted in genome-wide comparison was the neurofilament medium polypeptide Nefm. We found that NEFM accumulated in hippocampus in the presence of amyloid pathology, and decreased to control levels under IGF1R deletion, suggesting that reorganized cytoskeleton likely plays a role in neuroprotection. These findings demonstrated that significant resistance of the brain to amyloid-β can be achieved lifelong by suppressing neuronal IGF1R and identified IGF-dependent molecular pathways that coordinate an intrinsic program for neuroprotection against proteotoxicity. Our data also indicate that neuronal defences against Alzheimer's disease rely on an endogenous gene expression profile similar to the neuroprotective response activated by genetic disruption of IGF1R signalling. This study highlights neuronal IGF1R signalling as a relevant target for developing Alzheimer's disease prevention strategies.
Collapse
Affiliation(s)
- Caroline George
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Géraldine Gontier
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Philippe Lacube
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Jean-Christophe François
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Martin Holzenberger
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| | - Saba Aïd
- INSERM, Centre de Recherche Saint-Antoine, 75012 Paris, France.,Sorbonne Universités, UPMC - Université Pierre et Marie Curie, 75012 Paris, France
| |
Collapse
|
294
|
Wang YW, He SJ, Feng X, Cheng J, Luo YT, Tian L, Huang Q. Metformin: a review of its potential indications. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2421-2429. [PMID: 28860713 PMCID: PMC5574599 DOI: 10.2147/dddt.s141675] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metformin is the most commonly prescribed drug for type 2 diabetes mellitus. In recent years, in addition to glucose lowering, several studies have presented evidence suggesting some potential role for metformin, such as antitumor effect, antiaging effect, cardiovascular protective effect, neuroprotective effect or an optional treatment for polycystic ovary syndrome. This paper will critically review the role of metformin to provide reference for doctors and researchers.
Collapse
Affiliation(s)
- Yi-Wei Wang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Si-Jia He
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao Feng
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jin Cheng
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yun-Tao Luo
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qian Huang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
295
|
Singh P, Ramachandran SK, Zhu J, Kim BC, Biswas D, Ha T, Iglesias PA, Li R. Sphingolipids facilitate age asymmetry of membrane proteins in dividing yeast cells. Mol Biol Cell 2017; 28:2712-2722. [PMID: 28768828 PMCID: PMC5620378 DOI: 10.1091/mbc.e17-05-0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 01/20/2023] Open
Abstract
One proposed mechanism of cellular aging is the gradual loss of certain cellular components that are insufficiently renewed. In an earlier study, multidrug resistance transporters (MDRs) were postulated to be such aging determinants during the yeast replicative life span (RLS). Aged MDR proteins were asymmetrically retained by the aging mother cell and did not diffuse freely into the bud, whereas newly synthesized MDR proteins were thought to be deposited mostly in the bud before cytokinesis. In this study, we further demonstrate the proposed age asymmetry of MDR proteins in dividing yeast cells and investigate the mechanism that controls diffusive properties of MDR proteins to maintain this asymmetry. We found that long-chain sphingolipids, but not the septin/endoplasmic reticulum-based membrane diffusion barrier, are important for restricting MDR diffusion. Depletion of sphingolipids or shortening of their long acyl chains resulted in an increase in the lateral mobility of MDR proteins, causing aged MDR protein in the mother cell to enter the bud. We used a mathematical model to understand the effect of diminished MDR age asymmetry on yeast cell aging, the result of which was qualitatively consistent with the observed RLS shortening in sphingolipid mutants.
Collapse
Affiliation(s)
- Pushpendra Singh
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sree Kumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jin Zhu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Howard Hughes Medical Institute, Baltimore, MD 21218.,Division of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Debojyoti Biswas
- Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Howard Hughes Medical Institute, Baltimore, MD 21218
| | - Pablo A Iglesias
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
296
|
Belsky DW, Caspi A, Cohen HJ, Kraus WE, Ramrakha S, Poulton R, Moffitt TE. Impact of early personal-history characteristics on the Pace of Aging: implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell 2017; 16:644-651. [PMID: 28401731 PMCID: PMC5506399 DOI: 10.1111/acel.12591] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 11/30/2022] Open
Abstract
Therapies to extend healthspan are poised to move from laboratory animal models to human clinical trials. Translation from mouse to human will entail challenges, among them the multifactorial heterogeneity of human aging. To inform clinical trials about this heterogeneity, we report how humans' pace of biological aging relates to personal-history characteristics. Because geroprotective therapies must be delivered by midlife to prevent age-related disease onset, we studied young-adult members of the Dunedin Study 1972-73 birth cohort (n = 954). Cohort members' Pace of Aging was measured as coordinated decline in the integrity of multiple organ systems, by quantifying rate of decline across repeated measurements of 18 biomarkers assayed when cohort members were ages 26, 32, and 38 years. The childhood personal-history characteristics studied were known predictors of age-related disease and mortality, and were measured prospectively during childhood. Personal-history characteristics of familial longevity, childhood social class, adverse childhood experiences, and childhood health, intelligence, and self-control all predicted differences in cohort members' adulthood Pace of Aging. Accumulation of more personal-history risks predicted faster Pace of Aging. Because trials of anti-aging therapies will need to ascertain personal histories retrospectively, we replicated results using cohort members' retrospective personal-history reports made in adulthood. Because many trials recruit participants from clinical settings, we replicated results in the cohort subset who had recent health system contact according to electronic medical records. Quick, inexpensive measures of trial participants' early personal histories can enable clinical trials to study who volunteers for trials, who adheres to treatment, and who responds to anti-aging therapies.
Collapse
Affiliation(s)
- Daniel W. Belsky
- Department of MedicineDuke University School of MedicineDurhamNCUSA
- Social Science Research InstituteDuke UniversityDurhamNCUSA
- Center for the Study of Aging and Human DevelopmentDuke UniversityDurhamNCUSA
| | - Avshalom Caspi
- Department of Psychology and NeuroscienceDuke UniversityDurhamNCUSA
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNCUSA
- Center for Genomic and Computational BiologyDuke UniversityDurhamNCUSA
- MRC Social, Genetic, and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Harvey J. Cohen
- Department of MedicineDuke University School of MedicineDurhamNCUSA
- Center for the Study of Aging and Human DevelopmentDuke UniversityDurhamNCUSA
| | - William E. Kraus
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research UnitDepartment of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research UnitDepartment of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Terrie E. Moffitt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNCUSA
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNCUSA
- Center for Genomic and Computational BiologyDuke UniversityDurhamNCUSA
- MRC Social, Genetic, and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
297
|
Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16:624-633. [PMID: 28544158 PMCID: PMC5506433 DOI: 10.1111/acel.12601] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.
Collapse
Affiliation(s)
- Sadiya S. Khan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Benjamin D. Singer
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Douglas E. Vaughan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| |
Collapse
|
298
|
Vaiserman A, Lushchak O. Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. J Transl Med 2017; 15:160. [PMID: 28728596 PMCID: PMC5520340 DOI: 10.1186/s12967-017-1259-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Background Most modern societies undergo rapid population aging. The rise in life expectancy, nevertheless, is not accompanied, to date, by the same increment of healthspan. Efforts to increase healthspan by means of supplements and pharmaceuticals targeting aging-related pathologies are presently in spotlight of a new branch in geriatric medicine, geroscience, postulating that aging could be manipulated in such a way that will in parallel allow delay the onset of all age-associated chronic disorders. Discussion Currently, the concept of the “longevity dividend” has been developed pointed out that the extension of healthspan by slowing the rate of aging is the most efficient way to combat various aging-related chronic illnesses and disabling conditions than combating them one by one, what is the present-day approach in a generally accepted disease-based paradigm. The further elaboration of pharmaceuticals specifically targeted at age-associated disorders (commonly referred to as ‘anti-aging drugs’) is currently one of the most extensively developed fields in modern biogerontology. Some classes of chemically synthesized compounds and nutraceuticals such as calorie restriction mimetics, autophagy inductors, senolytics and others have been identified as having potential for anti-aging intervention through their possible effects on basic processes underlying aging. In modern pharmaceutical industry, development of new classes of anti-aging medicines is apparently one of the most hopeful directions since potential target group may include each adult individual. Summary Implementation of the geroscience-based approaches into healthcare policy and practice would increase the ratio of healthy to unhealthy population due to delaying the onset of age-associated chronic pathologies. That might result in decreasing the biological age and increasing the age of disability, thus increasing the age of retirement and enhancing income without raising taxes. Economic, social and ethical aspects of applying the healthspan- and lifespan-promoting interventions, however, have to be comprehensively debated prior to their implementation in public health practice.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya St. 67, Kiev, 04114, Ukraine.
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
299
|
Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 2017; 61:389-399. [PMID: 28698312 DOI: 10.1042/ebc20160091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Dramatic increases in human lifespan and declining population growth are monumental achievements but these same achievements have also led to many societies today ageing at a faster rate than ever before. Extending healthy lifespan (healthspan) is a key translational challenge in this context. Disease-centric approaches to manage population ageing risk are adding years to life without adding health to these years. The growing consensus that ageing is driven by a limited number of interconnected processes suggests an alternative approach. Instead of viewing each age-dependent disease as the result of an independent chain of events, this approach recognizes that most age-dependent diseases depend on and are driven by a limited set of ageing processes. While the relative importance of each of these processes and the best intervention strategies targeting them are subjects of debate, there is increasing interest in providing preventative intervention options to healthy individuals even before overt age-dependent diseases manifest. Elevated oxidative damage is involved in the pathophysiology of most age-dependent diseases and markers of oxidative damage often increase with age in many organisms. However, correlation is not causation and, sadly, many intervention trials of supposed antioxidants have failed to extend healthspan and to prevent diseases. This does not, however, mean that reactive species (RS) and redox signalling are unimportant. Ultimately, the most effective antioxidants may not turn out to be the best geroprotective drugs, but effective geroprotective interventions might well turn out to also have excellent, if probably indirect, antioxidant efficacy.
Collapse
|
300
|
Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, Di Biase S, Caraglia M, Pazienza V, Vinciguerra M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol 2017; 233:1202-1212. [PMID: 28471474 DOI: 10.1002/jcp.25987] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Masaryk University, Brno, Czech Republic
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Carlo Cervi
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), California
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| |
Collapse
|