251
|
Mainen ZF, Malinow R, Svoboda K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 1999; 399:151-5. [PMID: 10335844 DOI: 10.1038/20187] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At excitatory synapses in the central nervous system, the number of glutamate molecules released from a vesicle is much larger than the number of postsynaptic receptors. But does release of a single vesicle normally saturate these receptors? Answering this question is critical to understanding how the amplitude and variability of synaptic transmission are set and regulated. Here we describe the use of two-photon microscopy to image transient increases in Ca2+ concentration mediated by NMDA (N-methyl-D-aspartate) receptors in single dendritic spines of CA1 pyramidal neurons in hippocampal slices. To test for NMDA-receptor saturation, we compared responses to stimulation with single and double pulses. We find that a single release event does not saturate spine NMDA receptors; a second release occurring 10 ms later produces approximately 80% more NMDA-receptor activation. The amplitude of spine NMDA-receptor-mediated [Ca2+] transients (and the synaptic plasticity which depends on this) may thus be sensitive to the number of quanta released by a burst of action potentials and to changes in the concentration profile of glutamate in the synaptic cleft.
Collapse
Affiliation(s)
- Z F Mainen
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
252
|
|
253
|
Larkum ME, Zhu JJ, Sakmann B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 1999; 398:338-41. [PMID: 10192334 DOI: 10.1038/18686] [Citation(s) in RCA: 763] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pyramidal neurons in layer 5 of the neocortex of the brain extend their axons and dendrites into all layers. They are also unusual in having both an axonal and a dendritic zone for the initiation of action potentials. Distal dendritic inputs, which normally appear greatly attenuated at the axon, must cross a high threshold at the dendritic initiation zone to evoke calcium action potentials but can then generate bursts of axonal action potentials. Here we show that a single back-propagating sodium action potential generated in the axon facilitates the initiation of these calcium action potentials when it coincides with distal dendritic input within a time window of several milliseconds. Inhibitory dendritic input can selectively block the initiation of dendritic calcium action potentials, preventing bursts of axonal action potentials. Thus, excitatory and inhibitory postsynaptic potentials arising in the distal dendrites can exert significantly greater control over action potential initiation in the axon than would be expected from their electrotonically isolated locations. The coincidence of a single back-propagating action potential with a subthreshold distal excitatory postsynaptic potential to evoke a burst of axonal action potentials represents a new mechanism by which the main cortical output neurons can associate inputs arriving at different cortical layers.
Collapse
Affiliation(s)
- M E Larkum
- Abt. Zellphysiologie, Max-Planck-Institut für Medizinische Forschung, Heidelberg, Germany.
| | | | | |
Collapse
|
254
|
Molitor SC, Manis PB. Voltage-gated Ca2+ conductances in acutely isolated guinea pig dorsal cochlear nucleus neurons. J Neurophysiol 1999; 81:985-98. [PMID: 10085327 DOI: 10.1152/jn.1999.81.3.985] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that voltage-gated Ca2+ conductances (VGCCs) contribute to the responses of dorsal cochlear nucleus (DCN) neurons, little is known about the properties of VGCCs in the DCN. In this study, the whole cell voltage-clamp technique was used to examine the pharmacology and voltage dependence of VGCCs in unidentified DCN neurons acutely isolated from guinea pig brain stem. The majority of cells responded to depolarization with sustained inward currents that were enhanced when Ca2+ was replaced by Ba2+, were blocked partially by Ni2+ (100 microM), and were blocked almost completely by Cd2+ (50 microM). Experiments using nifedipine (10 microM), omegaAga IVA (100 nM) and omegaCTX GVIA (500 nM) demonstrated that a variety of VGCC subtypes contributed to the Ba2+ current in most cells, including the L, N, and P/Q types and antagonist-insensitive R type. Although a large depolarization from rest was required to activate VGCCs in DCN neurons, VGCC activation was rapid at depolarized levels, having time constants <1 ms at 22 degrees C. No fast low-threshold inactivation was observed, and a slow high-threshold inactivation was observed at voltages more positive than -20 mV, indicating that Ba2+ currents were carried by high-voltage activated VGCCs. The VGCC subtypes contributing to the overall Ba2+ current had similar voltage-dependent properties, with the exception of the antagonist-insensitive R-type component, which had a slower activation and a more pronounced inactivation than the other components. These data suggest that a variety of VGCCs is present in DCN neurons, and these conductances generate a rapid Ca2+ influx in response to depolarizing stimuli.
Collapse
Affiliation(s)
- S C Molitor
- Department of Biomedical Engineering, The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
255
|
Abstract
A rapid fluorescence imaging system was developed and utilised to investigate the time-course of intracellular calcium concentration ([Ca2+]i) gradients generated by action potentials in CA1-CA3 pyramidal cells within brain slices of the rat hippocampus. The system, which is based on a fast commercial CCD camera, can acquire hundreds of 128 x 128 pixel images in sequence, with minimal inter-frame interval of 2.5 ms (400 frames/s) and 12 bit/pixel accuracy. By synchronising patch clamp recordings with image capture, the timing of transmembrane potential variation, ionic Ca2+ current and Ca2+ diffusion were resolved at the limit of the relaxation time for the dye-Ca2+ binding reaction (approximately 5 ms at room temperature). Numerical simulations were used to relate measured fluorescence transients to the spatio-temporal distribution of intracellular Ca2+ gradients. The results obtained indicate that dye reaction-diffusion contributes critically to shaping intracellular ion gradients.
Collapse
Affiliation(s)
- M Canepari
- Laboratory of Biophysics and INFM Unit, International School for Advanced Studies, Trieste, Italy
| | | |
Collapse
|
256
|
|
257
|
Tekkök S, Medina I, Krnjević K. Intraneuronal [Ca2+] changes induced by 2-deoxy-D-glucose in rat hippocampal slices. J Neurophysiol 1999; 81:174-83. [PMID: 9914278 DOI: 10.1152/jn.1999.81.1.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Temporary replacement of glucose by 2-deoxyglucose (2-DG; but not sucrose) is followed by long-term potentiation of CA1 synaptic transmission (2-DG LTP), which is Ca2+-dependent and is prevented by dantrolene or N-methyl--aspartate (NMDA) antagonists. To clarify the mechanism of action of 2-DG, we monitored [Ca2+]i while replacing glucose with 2-DG or sucrose. In slices (from Wistar rats) kept submerged at 30 degreesC, pyramidal neurons were loaded with [Ca2+]-sensitive fluo-3 or Fura Red. The fluorescence was measured with a confocal microscope. Bath applications of 10 mM 2-DG (replacing glucose for 15 +/- 0.38 min, means +/- SE) led to a rapid but reversible rise in fluo-3 fluorescence (or drop of Fura Red fluorescence); the peak increase of fluo-3 fluorescence (DeltaF/F0), measured near the end of 2-DG applications, was by 245 +/- 50% (n = 32). Isosmolar sucrose (for 15-40 min) had a smaller but significant effect (DeltaF/F0 = 94 +/- 14%, n = 10). The 2-DG-induced DeltaF/F0 was greatly reduced (to 35 +/- 15%, n = 16) by,-aminophosphono-valerate (50-100 microM) and abolished by 10 microM dantrolene (-4.0 +/- 2.9%, n = 11). A substantial, although smaller effect, of 2-DG persisted in Ca2+-free 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid (EGTA) medium. Two adenosine antagonists, which do not prevent 2-DG LTP, were also tested; 2-DG-induced DeltaF/F0 (fluo-3) was not affected by the A1 antagonist 8-cyclopentyl-3, 7-dihydro-1,3-dipropyl-1H-purine-2,6-dione (DPCPX 50 nM; 287 +/- 38%; n = 20), but it was abolished by the A1/A2 antagonist 8-SPT; 25 +/- 29%, n = 19). These observations suggest that 2-DG releases glutamate and adenosine and that the rise in [Ca2+] may be triggered by a synergistic action of glutamate (acting via NMDA receptors) and adenosine (acting via A2b receptors) resulting in Ca2+ release from a dantrolene-sensitive store. The discrepant effects of sucrose and 8-SPT on DeltaF/F0, on the one hand, and 2-DG LTP, on the other, support other evidence that increases in postsynaptic [Ca2+]i are not essential for 2-DG LTP.
Collapse
Affiliation(s)
- S Tekkök
- Department of Anaesthesia Research and Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
258
|
Sandler VM, Ross WN. Serotonin modulates spike backpropagation and associated [Ca2+]i changes in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 1999; 81:216-24. [PMID: 9914282 DOI: 10.1152/jn.1999.81.1.216] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of serotonin (5-HT) on somatic and dendritic properties was analyzed in pyramidal neurons from the CA1 region in slices from the rat hippocampus. Bath-applied 5-HT (10 microM) hyperpolarized the soma and apical dendrites and caused a conductance increase at both locations. In the dendrites (200-300 microm from the soma) trains of antidromically activated, backpropagating action potentials had lower peak potentials in 5-HT than in normal artificial cerebrospinal fluid. Spike amplitudes were about the same in the two solutions. Similar results were found when the action potentials were evoked synaptically with stimulation in the stratum oriens. In the soma, spike amplitudes increased in 5-HT, with only a small decrease in the peak potential. Calcium concentration measurements, made with bis-fura-2 injected through patch electrodes, showed that the amplitude of the [Ca2+]i changes was reduced at all locations in 5-HT. The reduction of the [Ca2+]i change in the soma was confirmed in slices where cells were loaded with fura-2-AM. The reduction at the soma in 5-HT, where the spike amplitude increased, suggests that the reduction is due primarily to direct modulation of Ca2+ channels. In the dendrites, the reduction is due to a combination of this channel modulation and the lowering of the peak potential of the action potentials.
Collapse
Affiliation(s)
- V M Sandler
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
259
|
Connor JA, Razani-Boroujerdi S, Greenwood AC, Cormier RJ, Petrozzino JJ, Lin RC. Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J Neurophysiol 1999; 81:299-306. [PMID: 9914290 DOI: 10.1152/jn.1999.81.1.299] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An initial overload of intracellular Ca2+ plays a critical role in the delayed death of hippocampal CA1 neurons that die a few days after transient ischemia. Without direct evidence, the prevailing hypothesis has been that Ca2+ overload may recur until cell death. Here, we report the first measurements of intracellular Ca2+ in living CA1 neurons within brain slices prepared 1, 2, and 3 days after transient (5 min) ischemia. With no sign of ongoing Ca2+ overload, voltage-dependent Ca2+ transients were actually reduced after 2-3 days of reperfusion. Resting Ca2+ levels and recovery rate after loading were similar to neurons receiving no ischemic insult. The tetrodotoxin-insensitive Ca spike, normally generated by these neurons, was absent at 2 days postischemia, as was a large fraction of Ca2+-dependent spike train adaptation. These surprising findings may lead to a new perspective on delayed neuronal death and intervention.
Collapse
Affiliation(s)
- J A Connor
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131-5223, USA
| | | | | | | | | | | |
Collapse
|
260
|
Sciancalepore M, Savić N, Györi J, Cherubini E. Facilitation of miniature GABAergic currents by ruthenium red in neonatal rat hippocampal neurons. J Neurophysiol 1998; 80:2316-22. [PMID: 9819245 DOI: 10.1152/jn.1998.80.5.2316] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The whole cell configuration of the patch-clamp technique was used to study the modulation gamma-aminobutyric acid (GABA)-mediated postsynaptic currents by ruthenium red in CA3 hippocampal neurons in slices obtained from postnatal (P) days P6-P10 old rats. In the presence of kynurenic acid (1 mM), ruthenium red (100 microM) completely blocked stimulus-elicited GABA-mediated postsynaptic currents and reduced by 50% the amplitude of the spontaneous ones. Ruthenium red (100 microM) increased the frequency but not the amplitude of miniature GABAergic currents recorded in the presence of tetrodotoxin (1 microM) and kynurenic acid (1 mM), an effect that was prevented by heparin (100 microM). Ruthenium red did not modify the kinetics of miniature postsynaptic currents and the currents induced by exogenous application of GABA (10 microM) in the presence of tetrodotoxin, suggesting that its action was presynaptic in origin. The effects of ruthenium red on quantal GABA release was independent of external calcium. In a nominally Ca2+-free solution the potentiating effect induced by this polyvalent cation on miniature postsynaptic currents was still present. Intracellular calcium stores were not involved in ruthenium red action, because this polyvalent cation was able to facilitate miniature currents also in the presence of thapsigargin (10-20 microM). These results indicate that ruthenium red has a dual action on GABA release from GABAergic interneurons: it reduces the amplitude of spontaneous events and increases the frequency of miniature currents. The former effect is calcium-dependent, whereas the latter is calcium independent.
Collapse
Affiliation(s)
- M Sciancalepore
- Neuroscience Programme and Istituto Nazionale Fisica della Materia Unit, International School for Advanced Studies, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
261
|
Abstract
Neuronal calcium stores associated with specialized intracellular organelles, such as endoplasmic reticulum and mitochondria, dynamically participate in generation of cytoplasmic calcium signals which accompany neuronal activity. They fulfil a dual role in neuronal Ca2+ homeostasis being involved in both buffering the excess of Ca2+ entering the cytoplasm through plasmalemmal channels and providing an intracellular source for Ca2+. Increase of Ca2+ content within the stores regulates the availability and magnitude of intracellular calcium release, thereby providing a mechanism which couples the neuronal activity with functional state of intracellular Ca2+ stores. Apart of 'classical' calcium stores (endoplasmic reticulum and mitochondria) other organelles (e.g. nuclear envelope and neurotransmitter vesicles) may potentially act as a functional Ca2+ storage compartments. Calcium ions released from internal stores participate in many neuronal functions, and might be primarily involved in regulation of various aspects of neuronal plasticity.
Collapse
Affiliation(s)
- A J Verkhratsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
262
|
Tombaugh GC. Intracellular pH buffering shapes activity-dependent Ca2+ dynamics in dendrites of CA1 interneurons. J Neurophysiol 1998; 80:1702-12. [PMID: 9772233 DOI: 10.1152/jn.1998.80.4.1702] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated calcium (Ca) channels are highly sensitive to cytosolic H+, and Ca2+ influx through these channels triggers an activity-dependent fall in intracellular pH (pHi). In principle, this acidosis could act as a negative feedback signal that restricts excessive Ca2+ influx. To examine this possibility, whole cell current-clamp recordings were taken from rat hippocampal interneurons, and dendritic Ca2+ transients were monitored fluorometrically during spike trains evoked by brief depolarizing pulses. In cells dialyzed with elevated internal pH buffering (high beta), trains of >15 action potentials (Aps) provoked a significantly larger Ca2+ transient. Voltage-clamp analysis of whole cell Ca currents revealed that differences in cytosolic pH buffering per se did not alter baseline Ca channel function, although deliberate internal acidification by 0.3 pH units blunted Ca currents by approximately 20%. APs always broadened during a spike train, yet this broadening was significantly greater in high beta cells during rapid but not slow firing rates. This effect of internal beta on spike repolarization could be blocked by cadmium. High beta also 1) enhanced the slow afterhyperpolarization (sAHP) seen after a spike train and 2) accelerated the decay of an early component of the sAHP that closely matched a sAHP conductance that could be blocked by apamin. Both of these effects on the sAHP could be detected at high but not low firing rates. These data suggest that activity-dependent pHi shifts can blunt voltage-gated Ca2+ influx and retard submembrane Ca2+ clearance, suggesting a novel feedback mechanism by which Ca2+ signals are shaped and coupled to the level of cell activity.
Collapse
Affiliation(s)
- G C Tombaugh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
263
|
Mackenzie PJ, Murphy TH. High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. J Neurophysiol 1998; 80:2089-101. [PMID: 9772263 DOI: 10.1152/jn.1998.80.4.2089] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By using a combination of Ca2+ imaging and current-clamp recording, we previously reported that action potential (AP) conduction is reliably observed from the soma to axonal terminals in cultured cortical neurons. To extend these studies, we evaluated Ca2+ influx evoked by Na+ APs as a marker of AP conduction under conditions that are expected to lower the conduction safety factor to explore mechanisms of axonal and dendritic excitability. As expected, reducing the extracellular Na+ concentration from 150 to approximately 60 mM decreased the amplitude of APs recorded in the soma but surprisingly did not influence axonal conduction, as monitored by measuring Ca2+ transients. Furthermore, reliable axonal conduction was observed in dilute (20 nM) tetrodotoxin (TTX), despite a similar reduction in AP amplitude. In contrast, the Ca2+ transient measured along dendrites was markedly reduced in low Na+, although still mediated by TTX-sensitive Na+ channels. Dendritic action-potential evoked Ca2+ transients were also markedly reduced in 20 nM TTX. These data provide further evidence that strongly excitable axons are functionally compartmentalized from weakly excitable dendrites. We conclude that modulation of Na+ currents or membrane potential by neurotransmitters or repetitive firing is more likely to influence neuronal firing before AP generation than the propagation of signals to axonal terminals. In contrast, the relatively low safety factor for back-propagating APs in dendrites would suggest a stronger effect of Na+ current modulation.
Collapse
Affiliation(s)
- P J Mackenzie
- Kinsmen Laboratory of Neurological Research, Departments of Psychiatry and Physiology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | |
Collapse
|
264
|
Aizenman CD, Manis PB, Linden DJ. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 1998; 21:827-35. [PMID: 9808468 DOI: 10.1016/s0896-6273(00)80598-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long-term potentiation and depression (LTP and LTD) in excitatory synapses can coexist, the former being triggered by stimuli that produce strong postsynaptic excitation and the latter by stimuli that produce weaker postsynaptic excitation. It has not been determined whether these properties also apply to LTP and LTD in the inhibitory synapses between Purkinje neurons and the neurons of the deep cerebellar nuclei (DCN), a site that has been implicated in certain types of motor learning. DCN cells exhibit a prominent rebound depolarization (RD) and associated spike burst upon release from hyperpolarization. In these cells, LTP can be elicited by short, high-frequency trains of inhibitory postsynaptic potentials (IPSPs), which reliably evoke an RD. LTD is induced if the same protocol is applied with conditions where the amount of postsynaptic excitation is reduced. The polarity of the change in synaptic strength is correlated with the amount of RD-evoked spike firing during the induction protocol. Thus, some important computational principles that govern the induction of use-dependent change in excitatory synaptic efficacy also apply to inhibitory synapses.
Collapse
Affiliation(s)
- C D Aizenman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
265
|
Koester HJ, Sakmann B. Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci U S A 1998; 95:9596-601. [PMID: 9689126 PMCID: PMC21384 DOI: 10.1073/pnas.95.16.9596] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We compared the transient increase of Ca2+ in single spines on basal dendrites of rat neocortical layer 5 pyramidal neurons evoked by subthreshold excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (APs) by using calcium fluorescence imaging. AP-evoked Ca2+ transients were detected in both the spines and in the adjacent dendritic shaft, whereas Ca2+ transients evoked by single EPSPs were largely restricted to a single active spine head. Calcium transients elicited in the active spines by a single AP or EPSP, in spines up to 80 micro(m) for the soma, were of comparable amplitude. The Ca2+ transient in an active spine evoked by pairing an EPSP and a back-propagating AP separated by a time interval of 50 ms was larger if the AP followed the EPSP than if it preceded it. This difference reflected supra- and sublinear summation of Ca2+ transients, respectively. A comparable dependence of spinous Ca2+ transients on relative timing was observed also when short bursts of APs and EPSPs were paired. These results indicate that the amplitude of the spinous Ca2+ transients during coincident pre- and postsynaptic activity depended critically on the relative order of subthreshold EPSPs and back-propagating APs. Thus, in neocortical neurons the amplitude of spinous Ca2+ transients could encode small time differences between pre- and postsynaptic activity.
Collapse
Affiliation(s)
- H J Koester
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
266
|
Yasuda H, Kinoshita S, Tsumoto T. Localized contribution of N-methyl-D-aspartate receptors to synaptic input-induced rise of calcium in apical dendrites of layer II/III neurons in rat visual cortex. Neuroscience 1998; 85:1011-24. [PMID: 9681942 DOI: 10.1016/s0306-4522(97)00671-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To examine the role of N-methyl-D-aspartate receptors in the synaptic input-induced increase in Ca2+ in layer II/III neurons of visual cortex, Ca2+ imaging with a relatively low-affinity indicator was carried out simultaneously with whole-cell recordings of synaptic activity in cortical slices of young rats. Electrical stimulation of layer IV elicited excitatory postsynaptic potentials that generated action potentials concomitantly with a marked rise of Ca2+ signal in apical dendrites of 24 pyramidal cell-like neurons. Dendritic regions about 50 microm from the soma (peak regions) consistently showed the strongest increase in signal. The application of an N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonovalerate, reduced the Ca2+ signal in peak regions but did not in other regions in nine of the 15 neurons tested. In all the dendritic regions in which Ca2+ signal was measured, the magnitude of the increase in signal was related linearly to the number of action potentials, suggesting that voltage-dependent Ca2+ channels activated by action potentials may also be involved in the increase. In 25 of 33 neurons which were voltage-clamped at 80 mV and perfused with the Mg2+-free solution, layer IV stimulation could induce a local rise in Ca2+ signal in apical dendrites. This rise was blocked by the N-methyl-D-aspartate receptor antagonist almost completely. Such an antagonist-sensitive Ca2+ rise was still seen even when the membrane potential was held at +10 mV when voltage-dependent Ca2+ channels were expected not to be activated by excitatory synaptic inputs. These results suggest that N-methyl-D-aspartate receptors are involved in the synaptic input-induced rise in Ca2+ at postsynaptic sites in apical dendrites of layer II/III neurons, and the increase may be boosted through voltage-dependent Ca2+ channels activated by action potentials.
Collapse
Affiliation(s)
- H Yasuda
- Department of Neurophysiology, Biomedical Research Center, Osaka University Medical School, Suita City, Japan
| | | | | |
Collapse
|
267
|
Larkum ME, Launey T, Dityatev A, Lüscher HR. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J Neurophysiol 1998; 80:924-35. [PMID: 9705479 DOI: 10.1152/jn.1998.80.2.924] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We examined the attenuation and integration of spontaneous excitatory postsynaptic potentials (sEPSPs) in the dendrites of presumed motoneurons (MNs) of organotypic rat spinal cord cultures. Simultaneous whole cell recordings in current-clamp mode were made from either the soma and a dendrite or from two dendrites. Direct comparison of the two voltage recordings revealed that the membrane potentials at the two recording sites followed each other very closely except for the fast-rising phases of the EPSPs. The dendritic recording represented a low-pass filtered version of the somatic recording and vice versa. A computer-assisted method was developed to fit the sEPSPs with a generalized alpha-function for measuring their amplitudes and rise times (10-90%). The mean EPSP peak attenuation between the two recording electrodes was determined by a maximum likelihood analysis that extracted populations of similar amplitude ratios from the fitted events at each electrode. For each pair of recordings, the amplitude attenuation ratio for EPSP traveling from dendrite to soma was larger than that traveling from soma to dendrite. The linear relation between mean ln attenuation and distance between recording electrodes was used to map 1/e attenuations into units of distance (micron). For EPSPs with typical time course traveling from the somatic to the dendritic recording electrode, the mean 1/e attenuation corresponded to 714 micron for EPSPs traveling in the opposite direction, the mean 1/e attenuation corresponded to 263 micron. As predicted from cable analysis, fast EPSPs attenuated more in both the somatofugal and somatopetal direction than did slow EPSPs. For EPSPs with rise times shorter than approximately 2.0 ms, the attenuation factor increased steeply. Compartmental computer modeling of the experiments with biocytin-filled and reconstructed MNs that used passive membrane properties revealed amplitude attenuation ratios of the EPSP traveling in both the somatofugal and somatopetal direction that were comparable to those observed in real experiments. The modeling of a barrage of sEPSPs further confirmed that the somato-dendritic compartments of a MN are virtually isopotential except for the fast-rising phase of EPSPs. Large, transient differences in membrane potential are locally confined to the site of EPSP generation. Comparing the modeling results with the experiments suggests that the observed attenuation ratios are adequately explained by passive membrane properties alone.
Collapse
Affiliation(s)
- M E Larkum
- Department of Physiology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
268
|
Traub RD, Spruston N, Soltesz I, Konnerth A, Whittington MA, Jefferys GR. Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog Neurobiol 1998; 55:563-75. [PMID: 9670218 DOI: 10.1016/s0301-0082(98)00020-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons are extraordinarily complicated devices, in which physical and chemical processes are intercoupled, in spatially non-uniform manner, over distances of millimeters or more, and over time scales of < 1 msec up to the lifetime of the animal. The fact that neuronal populations generating most brain activities of interest are very large-perhaps many millions of cells-makes the task of analysis seem hopeless. Yet, during at least some population activities, neuronal networks oscillate synchronously. The emergence of such oscillations generates precise temporal relationship between neuronal inputs and outputs, thus rendering tractable the analysis of network function at a cellular level. We illustrate this idea with a review of recent data and a network model of synchronized gamma frequency (> 20 Hz) oscillations in vitro, and discuss how these and other oscillations may relate to recent data on back-propagating, action potentials, dendritic Ca2+ transients, long-term potentiation and GABAA receptor-mediated synaptic potentials.
Collapse
Affiliation(s)
- R D Traub
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
| | | | | | | | | | | |
Collapse
|
269
|
Lüscher HR, Larkum ME. Modeling action potential initiation and back-propagation in dendrites of cultured rat motoneurons. J Neurophysiol 1998; 80:715-29. [PMID: 9705463 DOI: 10.1152/jn.1998.80.2.715] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regardless of the site of current injection, action potentials usually originate at or near the soma and propagate decrementally back into the dendrites. This phenomenon has been observed in neocortical pyramidal cells as well as in cultured motoneurons. Here we show that action potentials in motoneurons can be initiated in the dendrite as well, resulting in a biphasic dendritic action potential. We present a model of spinal motoneurons that is consistent with observed physiological properties of spike initiation in the initial segment/axon hillock region and action potential back-propagation into the dendritic tree. It accurately reproduces the results presented by Larkum et al. on motoneurons in organotypic rat spinal cord slice cultures. A high Na+-channel density of Na = 700 mS/cm2 at the axon hillock/initial segment region was required to secure antidromic invasion of the somato-dendritic membrane, whereas for the orthodromic direction, a Na+-channel density of Na = 1,200 mS/cm2 was required. A "weakly" excitable (Na = 3 mS/cm2) dendritic membrane most accurately describes the experimentally observed attenuation of the back-propagated action potential. Careful analysis of the threshold conditions for action potential initiation at the initial segment or the dendrites revealed that, despite the lower voltage threshold for spike initiation in the initial segment, an action potential can be initiated in the dendrite before the initial segment fires a spike. Spike initiation in the dendrite depends on the passive cable properties of the dendritic membrane, its Na+-channel density, and local structural properties, mainly the diameter of the dendrites. Action potentials are initiated more easily in distal than in proximal dendrites. Whether or not such a dendritic action potential invades the soma with a subsequent initiation of a second action potential in the initial segment depends on the actual current source-load relation between the action potential approaching the soma and the electrical load of the soma together with the attached dendrites.
Collapse
Affiliation(s)
- H R Lüscher
- Department of Physiology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
270
|
Fierro L, DiPolo R, Llano I. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol 1998; 510 ( Pt 2):499-512. [PMID: 9705999 PMCID: PMC2231061 DOI: 10.1111/j.1469-7793.1998.499bk.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The mechanisms governing the return of intracellular calcium (Cai2+) to baseline levels following depolarization-evoked [Ca2+]i rises were investigated in Purkinje cell somata using tight-seal whole-cell recordings and fura-2 microfluorometry, for peak [Ca2+]i ranging from 50 nm to 2 microM. 2. Cai2+ decay was well fitted by a double exponential with time constants of O.6 and 3 s. Both time constants were independent of peak [Ca2+]i but the contribution of the faster component increased with [Ca2+]i. 3. Thapsigargin (10 microM) and cyclopiazonic acid (50 microM) prolonged Cai2+ decay indicating that sarco-endoplasmic reticulum Ca2+ (SERCA) pumps contribute to Purkinje cell Cai2+ clearance. 4. A modest participation in clearance was found for the plasma membrane Ca2+ (PMCA) pumps using 5,6-succinimidyl carboxyeosin (40 microM). 5. The Na(+)-Ca2+ exchanger also contributed to the clearance process, since replacement of extracellular Na+ by Li+ slowed Cai2+ decay. 6. Carbonyl cyanide m-chlorophenylhydrazone (CCCP, 2 microM) and rotenone (10 microM) increased [Ca2+]i and elicited large inward currents at -60 mV. Both effects were also obtained with CCCP in the absence of external Ca2+, suggesting that mitochondrial Ca2+ uptake uncouplers release Ca2+ from intracellular stores and may alter the membrane permeability to Ca2+. These effects were irreversible and impeded tests on the role of mitochondria in Cai2+ clearance. 7. The relative contribution of the clearance systems characterized in this study varied as a function of [Ca2+]i. At 0.5 microM Cai2+, SERCA pumps and the Na(+)-Ca2+ exchanger contribute equally to removal and account for 78% of the process. Only 45% of the removal at 2 microM Cai2+ can be explained by these systems. In this high [Ca2+]i range the major contribution is that of SERCA pumps (21%) and of the Na(+)-Ca2+ exchanger (18%), whereas the contribution of PMCA pumps is only 6%.
Collapse
Affiliation(s)
- L Fierro
- Arbeitsgruppe Zelluläre Neurobiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | | | | |
Collapse
|
271
|
Markram H, Roth A, Helmchen F. Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci 1998; 5:331-48. [PMID: 9663555 DOI: 10.1023/a:1008891229546] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Action potentials evoke calcium transients in dendrites of neocortical pyramidal neurons with time constants of < 100 ms at physiological temperature. This time period may not be sufficient for inflowing calcium ions to equilibrate with all present Ca2+-binding molecules. We therefore explored nonequilibrium dynamics of Ca2+ binding to numerous Ca2+ reaction partners within a dendritelike compartment using numerical simulations. After a brief Ca2+ influx, the reaction partner with the fastest Ca2+ binding kinetics initially binds more Ca2+ than predicted from chemical equilibrium, while companion reaction partners bind less. This difference is consolidated and may result in bypassing of slow reaction partners if a Ca2+ clearance mechanism is active. On the other hand, slower reaction partners effectively bind Ca2+ during repetitive calcium current pulses or during slower Ca2+ influx. Nonequilibrium Ca2+ distribution can further be enhanced through strategic placement of the reaction partners within the compartment. Using the Ca2+ buffer EGTA as a competitor of fluo-3, we demonstrate competitive Ca2+ binding within dendrites experimentally. Nonequilibrium calcium dynamics is proposed as a potential mechanism for differential and conditional activation of intradendritic targets.
Collapse
Affiliation(s)
- H Markram
- Department of Neurobiology, Weizmann Institute, Rehovot, Israel.
| | | | | |
Collapse
|
272
|
Affiliation(s)
- M J Berridge
- The Babraham Institute, Babraham Laboratory of Molecular Signalling, Cambridge, United Kingdom
| |
Collapse
|
273
|
Murchison D, Griffith WH. Increased calcium buffering in basal forebrain neurons during aging. J Neurophysiol 1998; 80:350-64. [PMID: 9658056 DOI: 10.1152/jn.1998.80.1.350] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increased calcium buffering in basal forebrain neurons during aging. J. Neurophysiol. 80: 350-364, 1998. Alterations of neuronal calcium (Ca2+) homeostasis are thought to underlie many age-related changes in the nervous system. Basal forebrain neurons are susceptible to changes associated with aging and to related dysfunctions such as Alzheimer's disease. It recently was shown that neurons from the medial septum and nucleus of the diagonal band (MS/nDB) of aged (24-27 mo) F344 rats have an increased current influx through voltage-gated Ca2+ channels (VGCCs) relative to those of young (1-4. 5 mo) rats. Possible age-related changes in Ca2+ buffering in these neurons have been investigated using conventional whole cell and perforated-patch voltage clamp combined with fura-2 microfluorimetric techniques. Basal intracellular Ca2+ concentrations ([Ca2+]i), Ca2+ influx, Ca2+ transients (Delta[Ca2+]i), and time course of Delta[Ca2+]i were quantitated, and rapid Ca2+ buffering values were calculated in MS/nDB neurons from young and aged rats. The involvement of the smooth endoplasmic reticulum (SER) was examined with the SER Ca2+ uptake blocker, thapsigargin. An age-related increase in rapid Ca2+ buffering and Delta[Ca2+]i time course was observed, although basal [Ca2+]i was unchanged with age. The SER and endogenous diffusible buffering mechanisms were found to have roles in Ca2+ buffering, but they did not mediate the age-related changes. These findings suggest a model in which some aging central neurons could compensate for increased Ca2+ influx with greater Ca2+ buffering.
Collapse
Affiliation(s)
- D Murchison
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
274
|
Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. J Neurosci 1998. [PMID: 9592109 DOI: 10.1523/jneurosci.18-11-04325.1998] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
first distinguished "simple" from "complex" cells in visual cortex and proposed a processing hierarchy in which rows of LGN cells are pooled to drive oriented simple cell subunits, which are pooled in turn to drive complex cells. Although parsimonious and highly influential, the pure hierarchical model has since been challenged by results indicating that many complex cells receive excitatory monosynaptic input from LGN cells or do not depend on simple cell input. Alternative accounts of complex cell orientation tuning remain scant, however, and the function of monosynaptic LGN contacts onto complex cell dendrites remains unknown. We have used a biophysically detailed compartmental model to investigate whether nonlinear integration of LGN synaptic inputs within the dendrites of individual pyramidal cells could contribute to complex-cell receptive field structure. We show that an isolated cortical neuron with "active" dendrites, driven only by excitatory inputs from overlapping ON- and OFF-center LGN subfields, can produce clear phase-invariant orientation tuning-a hallmark response characteristic of a complex cell. The tuning is shown to depend critically both on the spatial arrangement of LGN synaptic contacts across the complex cell dendritic tree, established by a Hebbian developmental principle, and on the physiological efficacy of excitatory voltage-dependent dendritic ion channels. We conclude that unoriented LGN inputs to a complex cell could contribute in a significant way to its orientation tuning, acting in concert with oriented inputs to the same cell provided by simple cells or other complex cells. As such, our model provides a novel, experimentally testable hypothesis regarding the basis of orientation tuning in the complex cell population, and more generally underscores the potential importance of nonlinear intradendritic subunit processing in cortical neurophysiology.
Collapse
|
275
|
Mel BW, Ruderman DL, Archie KA. Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. J Neurosci 1998; 18:4325-34. [PMID: 9592109 PMCID: PMC6792789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1997] [Revised: 03/09/1998] [Accepted: 03/12/1998] [Indexed: 02/07/2023] Open
Abstract
first distinguished "simple" from "complex" cells in visual cortex and proposed a processing hierarchy in which rows of LGN cells are pooled to drive oriented simple cell subunits, which are pooled in turn to drive complex cells. Although parsimonious and highly influential, the pure hierarchical model has since been challenged by results indicating that many complex cells receive excitatory monosynaptic input from LGN cells or do not depend on simple cell input. Alternative accounts of complex cell orientation tuning remain scant, however, and the function of monosynaptic LGN contacts onto complex cell dendrites remains unknown. We have used a biophysically detailed compartmental model to investigate whether nonlinear integration of LGN synaptic inputs within the dendrites of individual pyramidal cells could contribute to complex-cell receptive field structure. We show that an isolated cortical neuron with "active" dendrites, driven only by excitatory inputs from overlapping ON- and OFF-center LGN subfields, can produce clear phase-invariant orientation tuning-a hallmark response characteristic of a complex cell. The tuning is shown to depend critically both on the spatial arrangement of LGN synaptic contacts across the complex cell dendritic tree, established by a Hebbian developmental principle, and on the physiological efficacy of excitatory voltage-dependent dendritic ion channels. We conclude that unoriented LGN inputs to a complex cell could contribute in a significant way to its orientation tuning, acting in concert with oriented inputs to the same cell provided by simple cells or other complex cells. As such, our model provides a novel, experimentally testable hypothesis regarding the basis of orientation tuning in the complex cell population, and more generally underscores the potential importance of nonlinear intradendritic subunit processing in cortical neurophysiology.
Collapse
Affiliation(s)
- B W Mel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
| | | | | |
Collapse
|
276
|
Schiller J, Schiller Y, Clapham DE. NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1998; 1:114-8. [PMID: 10195125 DOI: 10.1038/363] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long-term potentiation (LTP) of synaptic strength can be induced by synchronous pre- and postsynaptic activation, and a rise in postsynaptic calcium is essential for induction of LTP. Calcium can enter through both voltage-dependent Ca2+ channels and NMDA-type glutamate receptors, but the relative contributions of these pathways is not known. We have examined this issue in layer V cortical pyramidal neurons, using focal flash photolysis of caged glutamate to mimic synaptic input and two-photon, laser-scanning microscopy to measure calcium levels in dendritic spines. Most of the calcium entry in response to glutamate alone was via voltage-dependent Ca2+ channels, and NMDA receptors accounted for less than 20% of total Ca2+ entry. When glutamate was paired with postsynaptic action potentials, however, the NMDA-receptor-dependent component was selectively amplified. The same is likely to occur during paired physiological pre- and postsynaptic activation, providing a mechanism for the input specificity and Hebbian behavior of LTP.
Collapse
Affiliation(s)
- J Schiller
- Department of Pharmacology, Mayo-Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
277
|
Tóth TI, Crunelli V. Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model. Neuroscience 1998; 84:1223-32. [PMID: 9578408 DOI: 10.1016/s0306-4522(97)00584-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent experiments have produced direct evidence on the existence of various dendritic voltage-gated ion channels, indicating that these neuronal components are not just a passive medium for the propagation of synaptic excitation but a putative source of neuronal excitability that is reflected in the activity patterns occurring on the soma. In order to study possible changes in neuronal excitability when the distribution of dendritic voltage-activated channels is non-uniform, and the dendritic geometry is not necessarily cylindric, we have developed a neuron model that incorporates two voltage-activated currents [I(Na) and I(K)], and in which space-dependent distributions of the system parameters can be treated in a mathematically simple and efficient way. Simulation results with the model showed that both linearly and exponentially tapering geometries led to marked anisotropy of the propagation of excitation, favouring the soma-to-dendrite direction. Exponentially decaying densities of dendritic voltage-activated channels, with appropriate choice of the parameters, induced bistable behaviour between the normal resting state and an intrinsic, sustained oscillation with cylindric as well as linear and exponential tapering dendritic geometry. Bistability could not be evoked when the model was reduced to a space-independent one (point-like soma). These results suggest that both tapering dendritic geometry and inhomogeneous distribution of ion channels may crucially affect the propagation and integration of synaptic potentials, and that changes in dendritic channel densities might underlie pathological electrophysiological activities.
Collapse
Affiliation(s)
- T I Tóth
- Physiology Unit, School of Molecular and Medical Biosciences University of Wales Cardiff, UK
| | | |
Collapse
|
278
|
Pineda JC, Waters RS, Foehring RC. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J Neurophysiol 1998; 79:2522-34. [PMID: 9582225 DOI: 10.1152/jn.1998.79.5.2522] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage-activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between approximately 80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.
Collapse
Affiliation(s)
- J C Pineda
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
279
|
Abstract
In this work, we present a quantitative theory of temporal spike-frequency adaptation in cortical pyramidal cells. Our model pyramidal neuron has two-compartments (a "soma" and a "dendrite") with a voltage-gated Ca2+ conductance (gCa) and a Ca2+-dependent K+ conductance (gAHP) located at the dendrite or at both compartments. Its frequency-current relations are comparable with data from cortical pyramidal cells, and the properties of spike-evoked intracellular [Ca2+] transients are matched with recent dendritic [Ca2+] imaging measurements. Spike-frequency adaptation in response to a current pulse is characterized by an adaptation time constant tauadap and percentage adaptation of spike frequency Fadap [% (peak - steady state)/peak]. We show how tauadap and Fadap can be derived in terms of the biophysical parameters of the neural membrane and [Ca2+] dynamics. Two simple, experimentally testable, relations between tauadap and Fadap are predicted. The dependence of tauadap and Fadap on current pulse intensity, electrotonic coupling between the two compartments, gAHP as well the [Ca2+] decay time constant tauCa, is assessed quantitatively. In addition, we demonstrate that the intracellular [Ca2+] signal can encode the instantaneous neuronal firing rate and that the conductance-based model can be reduced to a simple calcium-model of neuronal activity that faithfully predicts the neuronal firing output even when the input varies relatively rapidly in time (tens to hundreds of milliseconds). Extensive simulations have been carried out for the model neuron with random excitatory synaptic inputs mimicked by a Poisson process. Our findings include 1) the instantaneous firing frequency (averaged over trials) shows strong adaptation similar to the case with current pulses; 2) when the gAHP is blocked, the dendritic gCa could produce a hysteresis phenomenon where the neuron is driven to switch randomly between a quiescent state and a repetitive firing state. The firing pattern is very irregular with a large coefficient of variation of the interspike intervals (ISI CV > 1). The ISI distribution shows a long tail but is not bimodal. 3) By contrast, in an intrinsically bursting regime (with different parameter values), the model neuron displays a random temporal mixture of single action potentials and brief bursts of spikes. Its ISI distribution is often bimodal and its power spectrum has a peak. 4) The spike-adapting current IAHP, as delayed inhibition through intracellular Ca2+ accumulation, generates a "forward masking" effect, where a masking input dramatically reduces or completely suppresses the neuronal response to a subsequent test input. When two inputs are presented repetitively in time, this mechanism greatly enhances the ratio of the responses to the stronger and weaker inputs, fulfilling a cellular form of lateral inhibition in time. 5) The [Ca2+]-dependent IAHP provides a mechanism by which the neuron unceasingly adapts to the stochastic synaptic inputs, even in the stationary state following the input onset. This creates strong negative correlations between output ISIs in a frequency-dependent manner, while the Poisson input is totally uncorrelated in time. Possible functional implications of these results are discussed.
Collapse
Affiliation(s)
- X J Wang
- Center for Complex Systems and Department of Physics, Brandeis University, Waltham, Massachusetts 02254, USA
| |
Collapse
|
280
|
Abstract
One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.
Collapse
Affiliation(s)
- T Budde
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany.
| | | | | |
Collapse
|
281
|
Hatton GI, Li Z. Intrinsic controls of intracellular calcium and intercellular communication in the regulation of neuroendocrine cell activity. Cell Mol Neurobiol 1998; 18:13-28. [PMID: 9524727 DOI: 10.1023/a:1022519008991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The magnocellular hypothalamoneurohypophysial system, consisting chiefly of the supraoptic and paraventricular nuclei and their axonal projections to the pituitary neural lobe, has become a model for the study of neuroendocrine cell morphology, function, and plasticity. 2. Decades of research have produced a wealth of knowledge about the physiological conditions that activate this system, the peripheral target tissues affected by its outputs, and its capacity to undergo use-dependent, reversible reorganization. 3. Earlier research on the neural control of this system concentrated largely on the synaptic inputs that influence the activity of these magnocellular neurons and, while that task is still far from completed, methods have now been developed that permit insights to be gained into the control exercised by intrinsic cellular and molecular mechanisms. 4. This article reviews the current state of knowledge of roles played by these intrinsic mechanisms, including influences of intracellular calcium buffering, calcium release from internal stores and intercellular communication through gap junctions, in the control of neuroendocrine cell activity.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
282
|
Abstract
Synaptic activity-dependent changes in the spatio-temporal distribution of calcium ions regulate important neuronal functions such as dendritic integration and synaptic plasticity, but the processes that terminate the free Ca2+ transients associated with these changes remain unclear. We have characterized at the electron microscopic level the intracellular compartments involved in buffering free Ca2+ transients in dendritic cytoplasm of CA3 neurons by measuring the larger changes in the concentrations of total Ca that persist for several minutes after neuronal activity. Quantitative energy-dispersive x-ray microanalysis of cryosections from hippocampal slice cultures rapidly frozen 3 min after afferent synaptic activity identified a subset of dendritic endoplasmic reticulum (ER) as a high-capacity Ca2+ buffer. Calcium sequestration by cisterns of this subset of ER was graded, reversible, and dependent on a thapsigargin-sensitive Ca2+-ATPase. Sequestration was so robust that after repetitive high-frequency stimulation the Ca content of responsive ER cisterns increased as much as 20-fold. These results demonstrate that a subpopulation of ER is the major dendritic Ca sequestration compartment in the minutes after neuronal activity.
Collapse
|
283
|
Chen H, Lambert NA. Inhibition of dendritic calcium influx by activation of G-protein-coupled receptors in the hippocampus. J Neurophysiol 1997; 78:3484-8. [PMID: 9405566 DOI: 10.1152/jn.1997.78.6.3484] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gi proteins inhibit voltage-gated calcium channels and activate inwardly rectifying K+ channels in hippocampal pyramidal neurons. The effect of activation of G-protein-coupled receptors on action potential-evoked calcium influx was examined in pyramidal neuron dendrites with optical and extracellular voltage recording. We tested the hypotheses that 1) activation of these receptors would inhibit calcium channels in dendrites; 2) hyperpolarization resulting from K+ channel activation would deinactivate low-threshold, T-type calcium channels on dendrites, increasing calcium influx mediated by these channels; and 3) activation of these receptors would inhibit propagation of action potentials into dendrites, and thus indirectly decrease calcium influx. Activation of adenosine receptors, which couple to Gi proteins, inhibited calcium influx in cell bodies and proximal dendrites without inhibiting action-potential propagation into the proximal dendrites. Inhibition of dendritic calcium influx was not changed in the presence of 50 microM nickel, which preferentially blocks T-type channels, suggesting influx through these channels is not increased by activation of G-proteins. Adenosine inhibited propagation of action potentials into the distal branches of pyramidal neuron dendrites, leading to a three- to fourfold greater inhibition of calcium influx in the distal dendrites than in the soma or proximal dendrites. These results suggest that voltage-gated calcium channels are inhibited in pyramidal neuron dendrites, as they are in cell bodies and terminals and thatG-protein-mediated inhibition of action-potential propagation can contribute substantially to inhibition of dendritic calcium influx.
Collapse
Affiliation(s)
- H Chen
- Department of Pharmacology and Toxicology, Medical College of Georgia and Veterans Affairs Medical Center, Augusta, Georgia 30912-2300, USA
| | | |
Collapse
|
284
|
Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS, Andrews SB. Activity-dependent calcium sequestration in dendrites of hippocampal neurons in brain slices. J Neurosci 1997; 17:8729-38. [PMID: 9348342 PMCID: PMC6573076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synaptic activity-dependent changes in the spatio-temporal distribution of calcium ions regulate important neuronal functions such as dendritic integration and synaptic plasticity, but the processes that terminate the free Ca2+ transients associated with these changes remain unclear. We have characterized at the electron microscopic level the intracellular compartments involved in buffering free Ca2+ transients in dendritic cytoplasm of CA3 neurons by measuring the larger changes in the concentrations of total Ca that persist for several minutes after neuronal activity. Quantitative energy-dispersive x-ray microanalysis of cryosections from hippocampal slice cultures rapidly frozen 3 min after afferent synaptic activity identified a subset of dendritic endoplasmic reticulum (ER) as a high-capacity Ca2+ buffer. Calcium sequestration by cisterns of this subset of ER was graded, reversible, and dependent on a thapsigargin-sensitive Ca2+-ATPase. Sequestration was so robust that after repetitive high-frequency stimulation the Ca content of responsive ER cisterns increased as much as 20-fold. These results demonstrate that a subpopulation of ER is the major dendritic Ca sequestration compartment in the minutes after neuronal activity.
Collapse
Affiliation(s)
- L D Pozzo-Miller
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
285
|
Carmant L, Woodhall G, Ouardouz M, Robitaille R, Lacaille JC. Interneuron-specific Ca2+ responses linked to metabotropic and ionotropic glutamate receptors in rat hippocampal slices. Eur J Neurosci 1997; 9:1625-35. [PMID: 9283817 DOI: 10.1111/j.1460-9568.1997.tb01520.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamate-mediated regulation of intracellular Ca2+ levels was examined in different populations of CA1 interneurons, using confocal microscopy and the Ca2+ indicator fluo 3-AM in rat hippocampal slices. Interneurons in basal [stratum oriens/alveus (OA)] and apical [strata radiatum and lacunosum-moleculare (R/LM)] dendritic layers responded heterogeneously to glutamate. In control medium, OA interneurons responded mostly with oscillatory Ca2+ responses, which consisted of a large Ca2+ transient and successive smaller elevations. R/LM interneurons responded mostly with biphasic responses, characterized by an initial large transient and a secondary prolonged elevation. Other interneurons in both R/LM and OA responded with transient elevations in Ca2+ levels. Ionotropic glutamate receptor antagonists (+/-)2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitro-quinoxaline-2,3-dione reduced peak Ca2+ responses in OA and R/LM cells, and blocked biphasic responses in R/LM interneurons. The metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-carboxyphenylglycine reduced peak Ca2+ responses only in OA interneurons, and prevented oscillatory responses. In low Ca2+ medium, peak responses were reduced in R/LM but not in OA interneurons, and oscillatory responses were absent. Combination of ionotropic and metabotropic receptor antagonists blocked all glutamate-evoked Ca2+ responses. Activation of different types of glutamate receptors may thus produce heterogeneous Ca2+ signals in subpopulations of CA1 interneurons. Ionotropic receptors may generate biphasic responses in interneurons in apical dendritic layers, whereas combined activation of metabotropic and ionotropic receptors may trigger oscillatory responses in interneurons of basal dendritic layers. These heterogeneous Ca2+ responses indicate that glutamate-mediated Ca2+ processes and second messenger systems differ in subpopulations of hippocampal interneurons and suggest possible postsynaptic functional specialization of interneurons.
Collapse
Affiliation(s)
- L Carmant
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
286
|
Schwindt PC, Crill WE. Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+-dependent conductances in rat neocortical pyramidal neurons. J Neurophysiol 1997; 78:187-98. [PMID: 9242273 DOI: 10.1152/jn.1997.78.1.187] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The axial current transmitted to the soma during the long-lasting iontophoresis of glutamate at a distal site on the apical dendrite was measured by somatic voltage clamp of rat neocortical pyramidal neurons. Evidence for voltage- and Ca2+-gated channels in the apical dendrite was sought by examining the modification of this transmitted current resulting from the alteration of membrane potential and the application of channel-blocking agents. After N-methyl-D-aspartate receptor blockade, iontophoresis of glutamate on the soma evoked a current whose amplitude decreased linearly with depolarization to an extrapolated reversal potential near 0 mV. Under the same conditions, glutamate iontophoresis on the apical dendrite 241-537 microm from the soma resulted in a transmitted axial current that increased with depolarization over the same range of membrane potential (about -90 to -40 mV). Current transmitted from dendrite to soma was thus amplified during depolarization from resting potential (about -70 mV) and attenuated during hyperpolarization. After Ca2+ influx was blocked to eliminate Ca2+-dependent K+ currents, application of 10 mM tetraethylammonium chloride (TEA) altered the amplitude and voltage dependence of the transmitted current in a manner consistent with the reduction of dendritic voltage-gated K+ current. We conclude that dendritic, TEA-sensitive, voltage-gated K+ channels can be activated by tonic dendritic depolarization. The most prominent effects of blocking Ca2+ influx resembled those elicited by TEA application, suggesting that these effects were caused predominantly by blockade of a dendritic Ca2+-dependent K+ current. When cells were impaled with microelectrodes containing ethylene glycol-bis(beta-amino-ethyl ether)-N,N',N'-tetraacetic acid to prevent a rise in intracellular Ca2+ concentration, blockade of Ca2+ influx altered the tonic transmitted current in different manner consistent with the blockade of an inward dendritic current carried by high-threshold-activated Ca2+ channels. We conclude that the primary effect of Ca2+ influx during tonic dendritic depolarization is the activation of a dendritic Ca2+-dependent K+ current. The hyperpolarizing attenuation of transmitted current was unaffected by blocking all known voltage-gated inward currents except the hyperpolarization-activated cation current (Ih). Extracellular Cs+ (3 mM) reversibly abolished both the hyperpolarizing attenuation of transmitted current and Ih measured at the soma. We conclude that activation of Ih by hyperpolarization of the proximal apical dendrite would cause less axial current to arrive at the soma from a distal site than in a passive dendrite. Several functional implications of dendritic K+ and Ih channels are discussed.
Collapse
Affiliation(s)
- P C Schwindt
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-7290, USA
| | | |
Collapse
|
287
|
Garaschuk O, Yaari Y, Konnerth A. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 1997; 502 ( Pt 1):13-30. [PMID: 9234194 PMCID: PMC1159569 DOI: 10.1111/j.1469-7793.1997.013bl.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The properties of ryanodine-sensitive Ca2+ stores in CA1 pyramidal cells were investigated in rat hippocampal slices by using whole-cell patch-clamp recordings combined with fura-2-based fluorometric digital imaging of cytoplasmic Ca2+ concentration ([Ca2+]i). 2. Brief pressure applications of caffeine onto the somata of pyramidal cells caused large transient increases in [Ca2+]i (Ca2+ transients) of 50-600 nM above baseline. 3. The Ca2+ transients evoked by caffeine at -60 mV were not associated with an inward current, persisted after blocking voltage-activated Ca2+ currents and were completely blocked by bath-applied ryanodine. Similar transients were also evoked at +60 mV. Thus, these transients reflect Ca2+ release from intracellular ryanodine-sensitive Ca2+ stores. 4. The Ca2+ transients evoked by closely spaced caffeine pulses rapidly decreased in amplitude, indicating progressive depletion of the Ca2+ stores. The amplitude of the Ca2+ transients recovered spontaneously with an exponential time constant of 59 s. Recovery was accelerated by depolarization-induced elevations in [Ca2+]i and blocked by cyclopiazonic acid (CPA) and thapsigargin, indicating that store refilling is mediated by endoplasmic reticulum Ca(2+)-ATPases. 5. Even without prior store depletion the caffeine-induced Ca2+ transients disappeared after 6 min exposure to CPA, suggesting that ryanodine-sensitive Ca2+ stores are maintained at rest by continuous Ca2+ sequestration. 6. Caffeine-depleted Ca2+ stores did not refill in Ca(2+)-free saline, suggesting that the refilling of the stores depends upon Ca2+ influx through a 'capacitative-like' transmembrane influx pathway operating at resting membrane potential. The refilling of the stores was also blocked by Ni2+ and gallopamil (D600). 7. Elevations of basal [Ca2+]i produced by bath-applied KCl markedly potentiated (up to 6-fold) the caffeine-induced Ca2+ transients. The degree of potentiation was positively related to the increase in basal [Ca2+]i. The Ca2+ transients remained potentiated up to 9 min after reversing the KCl-induced [Ca2+]i increase. Thus, the ryanodine-sensitive Ca2+ stores can 'overcharge' when challenged with an increase in [Ca2+]i and slowly discharge excess Ca2+ after basal [Ca2+]i returns to its resting level. 8. Pressure applications of caffeine onto pyramidal cell dendrites evoked local Ca2+ transients similar to those separately evoked in the respective somata. Thus, dendritic ryanodine-sensitive Ca2+ stores are also loaded at rest and can function as independent compartments. 9. In conclusion, the ryanodine-sensitive Ca2+ stores in hippocampal pyramidal neurones contain a releasable pool of Ca2+ that is maintained by a Ca2+ entry pathway active at subthreshold membrane potentials. Ca2+ entry through voltage-gated Ca2+ channels transiently overcharges the stores. Thus, by acting as powerful buffers at rest and as regulated sources during activity, Ca2+ stores may control the waveform of physiological Ca2+ signals in CA1 hippocampal pyramidal neurones.
Collapse
Affiliation(s)
- O Garaschuk
- I Physiologisches Institut, Universität des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
288
|
Experimental neuronal protection in cerebral ischaemia Part II: Potential neuroprotective drugs. J Clin Neurosci 1997; 4:290-310. [DOI: 10.1016/s0967-5868(97)90096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1996] [Accepted: 06/04/1996] [Indexed: 01/01/2023]
|
289
|
Dual role of ryanodine-sensitive calcium stores in central neurons. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02461229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
290
|
Abstract
Recent studies have identified various forms of active dendritic signals that may contribute to neuronal integration. One of the most remarkable findings is the demonstration of highly localized Ca2+ transients that are limited to small dendritic segments and even to single dendritic spines. In addition, through use of the powerful two-photon excitation imaging technique, it has been possible to reveal the existence of dendritic Ca2+ signals under in vivo conditions. Finally, active backpropagation of action potentials into dendrites has been shown to boost dendritic Ca2+ signals supralinearly and, thus, to contribute to the induction of long-term potentiation.
Collapse
Affiliation(s)
- J Eilers
- I. Physiologisches Institut, Universit-at des Saarlandes, 66421 Homburg, Germany.
| | | |
Collapse
|
291
|
Abstract
Currently, it is believed that cell-cell communications occur in the thalamic reticular nucleus (RT) during thalamocortical operations, but the anatomical substrate underlying these intrinsic interactions has not been characterized fully in the rat yet. To further our knowledge on this issue, we stained juxtacellularly rat RT neurons with biocytin or Neurobiotin and examined their intrinsic axon collaterals and "axon-like processes" at both light and electron microscopic levels. Of 111 tracer-filled RT cells for which the axon could be followed from its origin up to the thalamus, 12 displayed short-range, poorly ramifying varicose local axon collaterals, which remained undistinguishable from parent distal dendrites, raising the question as to whether their varicosities were presynaptic terminals. Correlated light and electron microscopic observations of the proximal part of these intrinsic varicose axonal segments revealed that their varicosities and intervaricose segments were, in fact, postsynaptic structures contacted by a large number of boutons that, for the most, formed asymmetric synapses and were nonimmunoreactive for GABA. Similarly, the so-called "axon-like processes" stemming from the soma or dendrites also were identified as postsynaptic structures. Two unexpected observations were made in the course of this analysis. First, the hillock and initial segment of some RT axons were found to receive asymmetric synaptic inputs from GABA-negative terminals. Second, examination of serial ultrathin sections of dendritic bundles cut in their longitudinal plane revealed the existence of several short symmetric dendrodendritic synapses and numerous puncta adhaerentia between component dendrites. In conclusion, dendrodendritic junctions might be a prominent anatomical substrate underlying interneuronal communications in the RT of the adult rat. Furthermore, excitatory axoaxonic synapses on the axon hillock, initial segment, and local axon collaterals might represent a powerful synaptic drive for synchronizing the firing of RT neurons. Future studies are essential to verify whether excitatory axoaxonic synapses with the axon hillock are a general feature in the RT.
Collapse
|
292
|
Pinault D, Smith Y, Deschênes M. Dendrodendritic and axoaxonic synapses in the thalamic reticular nucleus of the adult rat. J Neurosci 1997; 17:3215-33. [PMID: 9096155 PMCID: PMC6573646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1996] [Revised: 01/21/1997] [Accepted: 01/28/1997] [Indexed: 02/04/2023] Open
Abstract
Currently, it is believed that cell-cell communications occur in the thalamic reticular nucleus (RT) during thalamocortical operations, but the anatomical substrate underlying these intrinsic interactions has not been characterized fully in the rat yet. To further our knowledge on this issue, we stained juxtacellularly rat RT neurons with biocytin or Neurobiotin and examined their intrinsic axon collaterals and "axon-like processes" at both light and electron microscopic levels. Of 111 tracer-filled RT cells for which the axon could be followed from its origin up to the thalamus, 12 displayed short-range, poorly ramifying varicose local axon collaterals, which remained undistinguishable from parent distal dendrites, raising the question as to whether their varicosities were presynaptic terminals. Correlated light and electron microscopic observations of the proximal part of these intrinsic varicose axonal segments revealed that their varicosities and intervaricose segments were, in fact, postsynaptic structures contacted by a large number of boutons that, for the most, formed asymmetric synapses and were nonimmunoreactive for GABA. Similarly, the so-called "axon-like processes" stemming from the soma or dendrites also were identified as postsynaptic structures. Two unexpected observations were made in the course of this analysis. First, the hillock and initial segment of some RT axons were found to receive asymmetric synaptic inputs from GABA-negative terminals. Second, examination of serial ultrathin sections of dendritic bundles cut in their longitudinal plane revealed the existence of several short symmetric dendrodendritic synapses and numerous puncta adhaerentia between component dendrites. In conclusion, dendrodendritic junctions might be a prominent anatomical substrate underlying interneuronal communications in the RT of the adult rat. Furthermore, excitatory axoaxonic synapses on the axon hillock, initial segment, and local axon collaterals might represent a powerful synaptic drive for synchronizing the firing of RT neurons. Future studies are essential to verify whether excitatory axoaxonic synapses with the axon hillock are a general feature in the RT.
Collapse
Affiliation(s)
- D Pinault
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Département de Physiologie, Faculté de Médecine, Université Laval, Québec, Canada, G1J 1Z4
| | | | | |
Collapse
|
293
|
Abstract
The responses of neurons in the visual cortex to stimuli presented within their receptive fields can be markedly modulated by stimuli presented in surrounding regions that do not themselves evoke responses. This modulation depends on the relative orientation and direction of motion of the centre and surround stimuli, and it has been suggested that local cortical circuits linking cells with similar stimulus selectivities underlie these phenomena. However, the functional relevance and nature of these integrative processes remain unclear. Here we investigate how such integration depends on the relative activity levels of neurons at different points across the cortex by varying the relative contrast of stimuli over the receptive field and surrounding regions. We show that simply altering the balance of the excitation driving centre and surround regions can dramatically change the sign and stimulus selectivity of these contextual effects. Thus, the way that single neurons integrate information across the visual field depends not only on the precise form of stimuli at different locations, but also crucially on their relative contrasts. We suggest that these effects reflect a complex gain-control mechanism that regulates cortical neuron responsiveness, which permits dynamic modification of response properties of cortical neurons.
Collapse
Affiliation(s)
- J B Levitt
- Department of Visual Science, Institute of Ophthalmology, University College London, UK.
| | | |
Collapse
|
294
|
Schwindt PC, Crill WE. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J Neurophysiol 1997; 77:2466-83. [PMID: 9163370 DOI: 10.1152/jn.1997.77.5.2466] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Iontophoresis of glutamate at sites on the apical dendrite 278-555 microm from the somata of rat neocortical pyramidal neurons evoked low-threshold, small, slow spikes and/or large, fast spikes in 71% of recorded cells. The amplitude of the small, slow spikes recorded at the soma averaged 9.1 mV, and their apparent threshold was <10 mV positive to resting potential. Both their amplitude and their apparent threshold decreased as the iontophoretic site was moved farther from the soma. These spikes were not abolished by somatic hyperpolarization. When the somata of cells displaying these small spikes were voltage clamped at membrane potentials that prevented somatic or axonic firing, corresponding current spikes could be evoked all-or-none by dendritic depolarization, indicating that the small, slow spikes arose in the dendrite. Similar responses were not observed during somatic depolarization evoked by current pulses or glutamate iontophoresis. These small, slow spikes were abolished by blocking voltage-gated Ca2+ channels but not by blocking Na+ channels or N-methyl-D-aspartate receptors. We conclude that these Ca2+ spikes occurred in a spatially restricted region of the dendrite and were not actively propagated to the soma. In the presence of 10 mM tetraethylammonium chloride, the amplitudes of the iontophoretically evoked Ca2+ spikes were large, similar to those of the Ca2+ spikes evoked by somatic current injection, but their apparent thresholds were 63% lower. We conclude that dendritic K+ channels normally prevent the active propagation of Ca2+ spikes along the dendrite. In 36% of recorded cells dendritic glutamate iontophoresis evoked a Na+ spike with an apparent threshold 63% lower than those evoked by somatic current injection or somatic glutamate iontophoresis. Blockade of these low-threshold Na+ spikes by pharmacological or electrophysiological means often revealed underlying small dendritic Ca2+ spikes. When cells displaying the low-threshold Na+ spikes were voltage clamped at membrane potentials that prevented firing of the soma or axon, corresponding tetrodotoxin-sensitive current spikes could be evoked all-or-none by dendritic depolarization. We conclude that these low-threshold Na+ spikes were initiated in the dendrite, probably by local Ca2+ spikes, and subsequently propagated actively to the soma. Most cells displaying dendritic Na+ spikes fired multiple bursts of action potentials during tonic dendritic depolarization, whereas somatic depolarization of the same cells evoked only regular firing. We discuss the implications of dendritic Ca2+ and Na+ spikes for synaptic integration and neural input-output relations.
Collapse
Affiliation(s)
- P C Schwindt
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-7290, USA
| | | |
Collapse
|
295
|
Zhou Q, Godwin DW, O'Malley DM, Adams PR. Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol 1997; 77:2816-25. [PMID: 9163395 DOI: 10.1152/jn.1997.77.5.2816] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thalamic neurons have two firing modes: "tonic" and "burst." During burst mode, both low-threshold (LT) and high-threshold (HT) calcium channels are activated, while in tonic mode, only the HT-type of calcium channel is activated. The calcium signals associated with each firing mode were investigated in rat thalamic slices using whole cell patch clamping and confocal calcium imaging. Action potentials were induced by direct current injection into thalamic relay cells loaded with a fluorescent calcium indicator. In both tonic and burst firing modes, large calcium signals were recorded throughout the soma and proximal dendrites. To map the distribution of the channels mediating these calcium fluxes, LT and HT currents were independently activated using specific voltage-clamp protocols. We focused on the proximal region of the cell (up to 50 microm from the soma) because it appeared to be well clamped. For a voltage pulse of a given size, the largest calcium signals were observed in the proximal dendrites with smaller signals occurring in the soma and nucleus. This was true for both LT and HT signals. Rapid imaging, using one-dimensional linescans, was used to more precisely localize the calcium influx. For both LT and HT channels, calcium influx occurred simultaneously throughout all imaged regions including the soma and proximal dendrites. The presence of sizable calcium signals in the dendrites, soma, and nucleus during both firing modes, and the presence of LT calcium channels in the proximal dendrite where sensory afferents synapse, have implications for both the electrical functioning of relay cells and the transmission of sensory information to cortex.
Collapse
Affiliation(s)
- Q Zhou
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA
| | | | | | | |
Collapse
|
296
|
Kavalali ET, Zhuo M, Bito H, Tsien RW. Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 1997; 18:651-63. [PMID: 9136773 DOI: 10.1016/s0896-6273(00)80305-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendritic arbors are critical for the information processing capability of central neurons, but quantitative analysis of their membrane properties has been hampered by their geometrical complexity. Here, we have focused on an important source of Ca2+ entry in dendrites, the voltage-gated Ca2+ channels, by applying the whole-cell voltage-clamp technique to isolated dendritic segments ("dendrosomes") from rat hippocampal neurons. We found that low voltage-activated T-type Ca2+ channels provide a significantly larger fraction of the Ca2+ influx in dendrites than their counterparts in cell bodies. Surprisingly, 60%-70% of the high voltage-activated Ca2+ current in dendrosomes was N and P/Q type, and these channels were susceptible to neurotransmitter inhibition, suggesting a novel physiological role for G protein-regulated Ca2+ channel modulation in controlling dendritic excitability and Ca2+ signaling.
Collapse
Affiliation(s)
- E T Kavalali
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, California 94305-5426, USA
| | | | | | | |
Collapse
|
297
|
Khiroug L, Giniatullin R, Talantova M, Nistri A. Role of intracellular calcium in fast and slow desensitization of P2-receptors in PC12 cells. Br J Pharmacol 1997; 120:1552-60. [PMID: 9113378 PMCID: PMC1564621 DOI: 10.1038/sj.bjp.0701060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Combined whole-cell patch clamp recording and confocal laser scanning microscopy of [Ca2+]i transients were performed on single PC12 cells to study any correlation between membrane currents induced by ATP and elevation in [Ca2+]i. ATP was applied by pressure from micropipettes near the recorded PC12 cells continuously superfused at a fast rate. 2. Brief (20 ms) pulses of ATP elicited monophasic inward currents and [Ca2+]i increases. Long applications (2 s) of ATP (5 mM) evoked peak currents which rapidly faded during the pulse and were followed by a large rebound current, interpreted as due to rapid desensitization and recovery of P2-receptors. The associated [Ca2+]i increase grew monotonically to a peak reached only after the occurrence of the current rebound, indicating that it is unlikely this cation has a role in fast desensitization. 3. Both membrane currents and [Ca2+]i transients were linearly dependent on holding membrane potential, suggesting that Ca2+ influx is the predominant cause of [Ca2+]i elevation. This view was supported by experiments carried out in Ca(2+)-free solution. 4. Brief pulses of ATP applied after a desensitizing pulse (2 s) of the same elicited smaller inward currents and [Ca2+]i rises indicating a role for [Ca2+]i in controlling slow desensitization of P2-receptors. 5. This notion was confirmed in experiments with various [Ca2+]i chelators which differentially affected slow desensitization in relation to their buffering capacity, while sparing fast receptor desensitization. 6. These results suggest a role for [Ca2+]i in slow rather than fast desensitization of P2-receptors, thus proposing this divalent cation as an intracellular factor able to provide an efficient and reversible control over receptor activity induced by ATP.
Collapse
Affiliation(s)
- L Khiroug
- Biophysics Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
298
|
Facilitation of N-type calcium current is dependent on the frequency of action potential-like depolarizations in dissociated cholinergic basal forebrain neurons of the guinea pig. J Neurosci 1997. [PMID: 9030622 DOI: 10.1523/jneurosci.17-05-01625.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-dependent inhibition of high voltage-activated (HVA) calcium currents by G-proteins can be transiently relieved (facilitated) by strong depolarizing prepulses. However, with respect to the physiological significance of facilitation, it remains to be established if it can be induced by action potentials (AP) in central neurons. With the use of whole-cell recordings of dissociated cholinergic basal forebrain neurons of the guinea pig, it is shown that the GTPgammaS-inhibited HVA currents that occur through N-ethylmaleimide (NEM)-sensitive Gi-Go subtypes of G-proteins can be facilitated. Furthermore, although different types of HVA channels are present in these neurons, facilitation occurred mostly through disinhibition of the N-type current. On the basis of data indicating that the recovery from facilitation was relatively slow, we tested if more physiological stimuli that crudely mimicked APs (2 msec long depolarizations to 40 mV from a holding of -50 mV) potentially could induce facilitation of HVA currents inhibited by GTPgammaS and cholinergic agonists. Indeed, evidence is provided that the extent of facilitation is dependent on both the number and frequency of AP-like depolarizations. These results suggest that firing rates and patterns of discharge of neurons could influence their responsiveness to transmitters acting on N-type HVA calcium channels.
Collapse
|
299
|
Williams S, Serafin M, Mühlethaler M, Bernheim L. Facilitation of N-type calcium current is dependent on the frequency of action potential-like depolarizations in dissociated cholinergic basal forebrain neurons of the guinea pig. J Neurosci 1997; 17:1625-32. [PMID: 9030622 PMCID: PMC6573384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1996] [Revised: 12/09/1996] [Accepted: 12/23/1996] [Indexed: 02/03/2023] Open
Abstract
Voltage-dependent inhibition of high voltage-activated (HVA) calcium currents by G-proteins can be transiently relieved (facilitated) by strong depolarizing prepulses. However, with respect to the physiological significance of facilitation, it remains to be established if it can be induced by action potentials (AP) in central neurons. With the use of whole-cell recordings of dissociated cholinergic basal forebrain neurons of the guinea pig, it is shown that the GTPgammaS-inhibited HVA currents that occur through N-ethylmaleimide (NEM)-sensitive Gi-Go subtypes of G-proteins can be facilitated. Furthermore, although different types of HVA channels are present in these neurons, facilitation occurred mostly through disinhibition of the N-type current. On the basis of data indicating that the recovery from facilitation was relatively slow, we tested if more physiological stimuli that crudely mimicked APs (2 msec long depolarizations to 40 mV from a holding of -50 mV) potentially could induce facilitation of HVA currents inhibited by GTPgammaS and cholinergic agonists. Indeed, evidence is provided that the extent of facilitation is dependent on both the number and frequency of AP-like depolarizations. These results suggest that firing rates and patterns of discharge of neurons could influence their responsiveness to transmitters acting on N-type HVA calcium channels.
Collapse
Affiliation(s)
- S Williams
- Département de Physiologie, Centre Médical Universitaire, 1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
300
|
Stuart G, Spruston N, Sakmann B, Häusser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 1997; 20:125-31. [PMID: 9061867 DOI: 10.1016/s0166-2236(96)10075-8] [Citation(s) in RCA: 518] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most neurons in the mammalian CNS encode and transmit information via action potentials. Knowledge of where these electrical events are initiated and how they propagate within neurons is therefore fundamental to an understanding of neuronal function. While work from the 1950s suggested that action potentials are initiated in the axon, many subsequent investigations have suggested that action potentials can also be initiated in the dendrites. Recently, experiments using simultaneous patch-pipette recordings from different locations on the same neuron have been used to address this issue directly. These studies show that the site of action potential initiation is in the axon, even when synaptic activation is powerful enough to elicit dendritic electrogenesis. Furthermore, these and other studies also show that following initiation, action potentials actively backpropagate into the dendrites of many neuronal types, providing a retrograde signal of neuronal output to the dendritic tree.
Collapse
Affiliation(s)
- G Stuart
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|