251
|
Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol Cell 2011; 42:172-84. [PMID: 21419681 PMCID: PMC3115569 DOI: 10.1016/j.molcel.2011.03.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 01/26/2011] [Accepted: 03/03/2011] [Indexed: 12/29/2022]
Abstract
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs (miRNAs) from pre-miRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage and an N-terminal helicase motif, whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.
Collapse
Affiliation(s)
- Elif Sarinay Cenik
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ryuya Fukunaga
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Gang Lu
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robert Dutcher
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yeming Wang
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M. Tanaka Hall
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Phillip D. Zamore
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
252
|
Miranda E, Forafonov F, Tavassoli A. Deciphering interactions used by the influenza virus NS1 protein to silence the host antiviral sensor protein RIG-I using a bacterial reverse two-hybrid system. MOLECULAR BIOSYSTEMS 2011; 7:1042-5. [PMID: 21264376 DOI: 10.1039/c0mb00318b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The majority of biological processes are controlled and regulated by an intricate network of thousands of interacting proteins. Identifying and understanding the key components of these protein networks, especially those that play a critical role in disease, is a challenge that promises to dramatically alter our current approach to healthcare. To facilitate this process, we have developed a method for the rapid construction of a chromosomally integrated, bacterial reverse two-hybrid system (RTHS) that enables the identification of interacting protein partners. Chromosomal integration of the RTHS enables stable protein expression, free of plasmid copy-number effects, as well as eliminating false positives arising from plasmid ejection. We have utilized this approach to identify the interactions used by the influenza virus NS1 protein to silence the host's antiviral defences.
Collapse
Affiliation(s)
- Elena Miranda
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
253
|
Yu M, Levine SJ. Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine Growth Factor Rev 2011; 22:63-72. [PMID: 21466970 PMCID: PMC3109132 DOI: 10.1016/j.cytogfr.2011.02.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Double-stranded RNA (dsRNA), the genetic material for many RNA viruses, induces robust host immune responses via pattern recognition receptors, which include Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I-like receptors (RLRs) and the multi-protein NLRP3 inflammasome complex. The engagement of dsRNA receptors or inflammasome activation by viral dsRNA initiates complex intracellular signaling cascades that play essential roles in inflammation and innate immune responses, as well as the resultant development of adaptive immunity. This review focuses on signaling pathways mediated by TLR3, RLRs and the NLRP3 inflammasome, as well as the potential use of agonists and antagonists that target these pathways to treat disease.
Collapse
Affiliation(s)
- Man Yu
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | | |
Collapse
|
254
|
Hwang W, Arluison V, Hohng S. Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing. Nucleic Acids Res 2011; 39:5131-9. [PMID: 21357187 PMCID: PMC3130260 DOI: 10.1093/nar/gkr075] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hfq is a key regulator involved in multiple aspects of stress tolerance and virulence of bacteria. There has been an intriguing question as to how this RNA chaperone achieves two completely opposite functions—annealing and unwinding—for different RNA substrates. To address this question, we studied the Hfq-mediated interaction of fragments of a non-coding RNA, DsrA, with its mRNA target rpoS by using single-molecule fluorescence techniques. These experiments permitted us to observe the mechanistic steps of Hfq-mediated RNA annealing/unwinding at the single-molecule level, for the first time. Our real-time observations reveal that, even if the ring-shaped Hfq displays multiple binding sites for its interaction with RNA, the regulatory RNA and the mRNA compete for the same binding site. The competition makes the RNA-Hfq interaction dynamic and, surprisingly, increases the overall annealing efficiency by properly aligning the two RNAs. We furthermore reveal that when Hfq specifically binds to only one of the two RNAs, the unwinding process dominates over the annealing process, thus shedding a new light on the substrate selectivity for annealing or unwinding. Finally, our results demonstrate for the first time that a single Hfq hexamer is sufficient to facilitate sRNA–mRNA annealing.
Collapse
Affiliation(s)
- Wonseok Hwang
- Department of Physics and Astronomy,Seoul National University, Seoul 151-747, Korea
| | | | | |
Collapse
|
255
|
Marq JB, Hausmann S, Veillard N, Kolakofsky D, Garcin D. Short double-stranded RNAs with an overhanging 5' ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J Biol Chem 2011; 286:6108-16. [PMID: 21159780 PMCID: PMC3057789 DOI: 10.1074/jbc.m110.186262] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/14/2010] [Indexed: 12/24/2022] Open
Abstract
Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- From the Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Stéphane Hausmann
- From the Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolas Veillard
- From the Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Daniel Kolakofsky
- From the Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Dominique Garcin
- From the Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| |
Collapse
|
256
|
Liu HM, Gale M. Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity. Gastroenterol Res Pract 2011; 2010:548390. [PMID: 21274284 PMCID: PMC3026989 DOI: 10.1155/2010/548390] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 11/06/2010] [Indexed: 12/20/2022] Open
Abstract
Exposure to hepatitis C virus (HCV) usually results in persistent infection that often develops into chronic liver disease. Interferon-alpha (IFN) treatment comprises the foundation of current approved therapy for chronic HCV infection but is limited in overall efficacy. IFN is a major effector of innate antiviral immunity and is naturally produced in response to viral infection when viral pathogen-associated molecular patterns (PAMPs) are recognized as nonself and are bound by cellular pathogen recognition receptors (PRRs), including Toll-like receptors (TLRs) and the RIG-I-like receptors (RLRs). Within hepatocytes, RIG-I is a major PRR of HCV infection wherein PAMP interactions serve to trigger intracellular signaling cascades in the infected hepatocyte to drive IFN production and the expression of interferon-stimulated genes (ISGs). ISGs function to limit virus replication, modulate the immune system, and to suppress virus spread. However, studies of HCV-host interactions have revealed several mechanisms of innate immune regulation and evasion that feature virus control of PRR signaling and regulation of hepatic innate immune programs that may provide a molecular basis for viral persistence.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650, USA
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650, USA
| |
Collapse
|
257
|
Matsumiya T, Imaizumi T, Yoshida H, Satoh K. Antiviral signaling through retinoic acid-inducible gene-I-like receptors. Arch Immunol Ther Exp (Warsz) 2011; 59:41-8. [PMID: 21234810 DOI: 10.1007/s00005-010-0107-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
The innate immune system is essential for the first line of host defense against micropathogens. In virus-infected cells, exposed viral nucleotides are sensed by pattern recognition receptors (PRRs), resulting in the induction of type I interferon. Retinoic acid-inducible gene-I-like receptors (RLRs) are a member of PRRs and are known to be crucial molecules in innate immune responses. Upon viral recognition, RLRs recruit their specific adaptor molecules, leading to the activation of antiviral signaling molecules including interferon regulatory factor-3 and nuclear factor-κB. Mitochondrial antiviral signaling (MAVS) protein is also known as one of the adaptor molecules responsible for antiviral signaling triggered by RLRs. Recent reports have identified numerous intracellular molecules involved in the antiviral responses mediated by RLRs/MAVS. Several viral proteins interfere with the RLR/MAVS signaling, allowing the virus to evade the host defense. In this review, we comprehensively update RLR-dependent antiviral signaling with special reference to the RLRs/MAVS-mediated responses.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki City, Aomori, 036-8562, Japan.
| | | | | | | |
Collapse
|
258
|
Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36:19-29. [PMID: 20813532 PMCID: PMC3017212 DOI: 10.1016/j.tibs.2010.07.008] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 12/22/2022]
Abstract
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA-protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes.
Collapse
Affiliation(s)
- Eckhard Jankowsky
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
259
|
Ye J, Chen S, Maniatis T. Cardiac glycosides are potent inhibitors of interferon-β gene expression. Nat Chem Biol 2011; 7:25-33. [PMID: 21076398 PMCID: PMC3076628 DOI: 10.1038/nchembio.476] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/05/2010] [Indexed: 02/07/2023]
Abstract
Here we report that bufalin and other cardiac glycoside inhibitors of the sodium-potassium ATPase (sodium pump) potently inhibit the induction of the interferon-β (IFNβ) gene by virus, double-stranded RNA or double-stranded DNA. Cardiac glycosides increase the intracellular sodium concentration, which appears to inhibit the ATPase activity of the RNA sensor RIG-I, an essential and early component in the IFNβ activation pathway. This, in turn, prevents the activation of the critical transcription factors IRF3 and NFκB. Bufalin inhibition can be overcome by expressing a drug-resistant variant of the sodium pump and knocking down the pump by short hairpin RNA inhibits IFNβ expression. Thus, bufalin acts exclusively through the sodium pump. We also show that bufalin inhibits tumor necrosis factor (TNF) signaling, at least in part by interfering with the nuclear translocation of NFκB. These findings suggest that bufalin could be used to treat inflammatory and autoimmune diseases in which IFN or TNF are hyperactivated.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Shuibing Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
260
|
Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 2010; 5:e15496. [PMID: 21103398 PMCID: PMC2980497 DOI: 10.1371/journal.pone.0015496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/02/2010] [Indexed: 01/30/2023] Open
Abstract
DNA binding by MutL homologs (MLH/PMS) during mismatch repair (MMR) has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA) binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET) and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D) = 29 nM) while it dramatically decreases above 100 mM (K(D)>2 µM). Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Daekil In
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Physics Department, The Ohio State University, Columbus, Ohio, United States of America
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
261
|
Shi X, Lim J, Ha T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 2010; 82:6132-8. [PMID: 20583766 PMCID: PMC2904532 DOI: 10.1021/ac1008749] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Xinghua Shi
- Howard Hughes Medical Institute, Department of Physics, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
262
|
Schmidt A, Endres S, Rothenfusser S. Pattern recognition of viral nucleic acids by RIG-I-like helicases. J Mol Med (Berl) 2010; 89:5-12. [PMID: 20820752 DOI: 10.1007/s00109-010-0672-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 08/11/2010] [Indexed: 12/24/2022]
Abstract
Recognition of pathogenic microbes by the innate immune system is based on the principle of pathogen-associated molecular patterns (PAMPs). These are conserved molecular structures that are present in the pathogen but not in the host. Cells of the innate immune system or, in some cases, virtually all cells of our body express receptors that are able to specifically recognize PAMPs and trigger the appropriate responses including the production of cytokines. In the case of viruses, an interesting complication exists: Viruses use the host's cellular metabolism and building blocks to replicate. As a consequence, protein modifications, lipid or carbohydrate configurations restricted to viruses do not exist. Instead, parts of the innate immune system have evolved to detect viral nucleic acids mainly by virtue of their (non-physiological) localization and structure. Understanding the molecules involved in anti-viral defence and the patterns they recognize will allow harnessing them for therapeutic strategies targeting viral and autoimmune diseases and tumours. This review presents important recent advances in understanding intracellular recognition of nucleic acid patterns by the innate immune system.
Collapse
Affiliation(s)
- Andreas Schmidt
- Division of Clinical Pharmacology, Department of Medicine, Ludwig-Maximilian University Munich, Ziemssenstr. 1, 80336, Munich, Germany
| | | | | |
Collapse
|
263
|
Castanier C, Arnoult D. Mitochondrial localization of viral proteins as a means to subvert host defense. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:575-83. [PMID: 20807553 DOI: 10.1016/j.bbamcr.2010.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/29/2022]
Abstract
Viruses have developed a battery of distinct strategies to overcome the very sophisticated defense mechanisms of the infected host. Throughout the process of pathogen-host co-evolution, viruses have therefore acquired the capability to prevent host cell apoptosis because elimination of infected cells via apoptosis is one of the most ancestral defense mechanism against infection. Conversely, induction of apoptosis may favor viral dissemination as a result of the dismantlement of the infected cells. Mitochondria have been long recognized for their key role in the modulation of apoptosis but more recently, mitochondria have been shown to serve as a crucial platform for innate immune signaling as illustrated by the identification of MAVS. Thus, it is therefore not surprising that this organelle represents a recurrent target for viruses, aiming to manipulate the fate of the infected host cell or to inhibit innate immune response. In this review, we highlight the viral proteins that are specifically targeted to the mitochondria to subvert host defense. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Céline Castanier
- INSERM U1014, Hopital Paul Brousse, Batiment Lavoisier, 14 avenue Paul Vaillant Couturier, 94807 Villejuif cedex, France
| | | |
Collapse
|
264
|
Park J, Myong S, Niedziela-Majka A, Yu J, Lohman TM, Ha T. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 2010; 142:544-55. [PMID: 20723756 PMCID: PMC2943210 DOI: 10.1016/j.cell.2010.07.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/02/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Translocation of helicase-like proteins on nucleic acids underlies key cellular functions. However, it is still unclear how translocation can drive removal of DNA-bound proteins, and basic properties like the elementary step size remain controversial. Using single-molecule fluorescence analysis on a prototypical superfamily 1 helicase, Bacillus stearothermophilus PcrA, we discovered that PcrA preferentially translocates on the DNA lagging strand instead of unwinding the template duplex. PcrA anchors itself to the template duplex using the 2B subdomain and reels in the lagging strand, extruding a single-stranded loop. Static disorder limited previous ensemble studies of a PcrA stepping mechanism. Here, highly repetitive looping revealed that PcrA translocates in uniform steps of 1 nt. This reeling-in activity requires the open conformation of PcrA and can rapidly dismantle a preformed RecA filament even at low PcrA concentrations, suggesting a mode of action for eliminating potentially deleterious recombination intermediates.
Collapse
Affiliation(s)
- Jeehae Park
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sua Myong
- Bioengineering department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jin Yu
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Taekjip Ha
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Bioengineering department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Howard Hughes Medical Institute, Urbana, IL 61801
| |
Collapse
|
265
|
Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 2010; 43:185-217. [PMID: 20682090 DOI: 10.1017/s0033583510000107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Helicases are a class of nucleic acid (NA) motors that catalyze NTP-dependent unwinding of NA duplexes into single strands, a reaction essential to all areas of NA metabolism. In the last decade, single-molecule (sm) technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching has enabled the study of helicase conformational dynamics, force generation, step size, pausing, reversal and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multiprotein complexes. The contributions of these sm investigations to our understanding of helicase mechanism and function will be discussed.
Collapse
|
266
|
Hohlbein J, Gryte K, Heilemann M, Kapanidis AN. Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 2010; 7:031001. [DOI: 10.1088/1478-3975/7/3/031001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
267
|
Abstract
Persistent hepatitis C virus infection is associated with progressive hepatic fibrosis and liver cancer. Acute infection evokes several distinct innate immune responses, but these are partially or completely countered by the virus. Hepatitis C virus proteins serve dual functions in replication and immune evasion, acting to disrupt cellular signaling pathways leading to interferon synthesis, subvert Jak-STAT signaling to limit expression of interferon-stimulated genes, and block antiviral activities of interferon-stimulated genes. The net effect is a multilayered evasion of innate immunity, which negatively influences the subsequent development of antigen-specific adaptive immunity, thereby contributing to virus persistence and resistance to therapy.
Collapse
Affiliation(s)
- Stanley M. Lemon
- From the Division of Infectious Disease, Department of Medicine, Center for Translational Immunology, Inflammatory Diseases Institute, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030
| |
Collapse
|
268
|
Jin B, Sun T, Yu XH, Liu CQ, Yang YX, Lu P, Fu SF, Qiu HB, Yeo AET. Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol 2010; 2010:690438. [PMID: 20671921 PMCID: PMC2910503 DOI: 10.1155/2010/690438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/09/2010] [Indexed: 02/07/2023] Open
Abstract
dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously.
Collapse
Affiliation(s)
- Bo Jin
- Department of Digestive Diseases, Naval General Hospital, 6 Fucheng Rd., Beijing 100048, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, Juranek S, Sheng G, Micura R, Tuschl T, Hartmann G, Patel DJ. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 2010; 17:781-7. [PMID: 20581823 PMCID: PMC3744876 DOI: 10.1038/nsmb.1863] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
RIG-I is a cytosolic helicase that senses 5'-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5'-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5'-ppp dsRNA 12-mer, with interactions involving 5'-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5'-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5'-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2'-OCH(3) RNA modifications on the interferon response.
Collapse
Affiliation(s)
- Yanli Wang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Jankowsky E, Fairman-Williams ME. An Introduction to RNA Helicases: Superfamilies, Families, and Major Themes. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eckhard Jankowsky
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
| | - Margaret E. Fairman-Williams
- Department of Biochemistry & Center for RNA Molecular Biology School of Medicine Case Western Reserve University 10900 Euclid Ave Cleveland OH 44106 USA
- current address: Department of Biochemistry Brandeis University Waltham MA 44106 USA
| |
Collapse
|
271
|
Rehwinkel J. Exposing viruses: RNA patterns sensed by RIG-I-like receptors. J Clin Immunol 2010; 30:491-5. [PMID: 20354786 DOI: 10.1007/s10875-010-9384-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Virus infection triggers a multitude of innate immune pathways that limit viral replication, restrict viral spread and coordinate antigen-specific, adaptive immune responses. Type-I interferons (IFNs) play a crucial role in these events. Innate receptors expressed by the host cell recognize virus presence and signal for rapid IFN induction following infection. SCOPE This review article discusses recent progress in our understanding of how cytoplasmic RIG-I-like receptors detect infection with RNA viruses.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
272
|
Shmulevitz M, Pan LZ, Garant K, Pan D, Lee PWK. Oncogenic Ras promotes reovirus spread by suppressing IFN-beta production through negative regulation of RIG-I signaling. Cancer Res 2010; 70:4912-21. [PMID: 20501842 DOI: 10.1158/0008-5472.can-09-4676] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reovirus is the first naturally occurring human virus reported to exploit activated Ras signaling in the host cell for infection, and is currently undergoing clinical trials as a cancer therapeutic. Recent evidence suggests that Ras transformation promotes three reoviral replication steps during the first round of infection: uncoating of the incoming virion, generation of progeny viruses with enhanced infectivity, and virus release through enhanced apoptosis. Whether oncogenic Ras also enhances reovirus spread in subsequent rounds of infection through other mechanisms has not been examined. Here, we show that compared with nontransformed cells, Ras-transformed cells are severely compromised not only in their response to IFN-beta, but also in the induction of IFN-beta mRNA following reovirus infection. Defects in both IFN-beta production and response allow for efficient virus spread in Ras-transformed cells. We show that the MEK/ERK pathway downstream of Ras is responsible for inhibiting IFN-beta expression by blocking signaling from the retinoic acid-inducible gene I (RIG-I) which recognizes viral RNAs. Overexpression of wild-type RIG-I restores INF-beta expression in reovirus-infected Ras-transformed cells. In vitro-synthesized viral mRNAs also invoke robust RIG-I-mediated IFN-beta production in transfected nontransformed cells, but not in Ras-transformed cells. Collectively, our data suggest that oncogenic Ras promotes virus spread by suppressing viral RNA-induced IFN-beta production through negative regulation of RIG-I signaling.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Transformation, Neoplastic
- Cells, Cultured
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Flow Cytometry
- Gene Expression Regulation
- Gene Expression Regulation, Viral
- Genes, ras/physiology
- Humans
- Immunoenzyme Techniques
- Interferon-beta/antagonists & inhibitors
- Interferon-beta/metabolism
- Mice
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mitogen-Activated Protein Kinase Kinases/metabolism
- NIH 3T3 Cells
- Oncogenes/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Immunologic
- Reoviridae/physiology
- Reoviridae Infections/genetics
- Reoviridae Infections/metabolism
- Reoviridae Infections/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- Virion/genetics
- Virion/metabolism
- raf Kinases/genetics
- raf Kinases/metabolism
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Pathology and Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
273
|
Matranga C, Pyle AM. Double-stranded RNA-dependent ATPase DRH-3: insight into its role in RNAsilencing in Caenorhabditis elegans. J Biol Chem 2010; 285:25363-71. [PMID: 20529861 PMCID: PMC2919099 DOI: 10.1074/jbc.m110.117010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA helicases are proteins essential to almost every facet of RNA metabolism, including the gene-silencing pathways that employ small RNAs. A phylogenetically related group of helicases is required for the RNA-silencing mechanism in Caenorhabditis elegans. Dicer-related helicase 3 (DRH-3) is a Dicer-RIG-I family protein that is essential for RNA silencing and germline development in nematodes. Here we performed a biochemical characterization of the ligand binding and catalytic activities of DRH-3 in vitro. We identify signature motifs specific to this family of RNA helicases. We find that DRH-3 binds both single-stranded and double-stranded RNAs with high affinity. However, the ATPase activity of DRH-3 is stimulated only by double-stranded RNA. DRH-3 is a robust RNA-stimulated ATPase with a k(cat) value of 500/min when stimulated with short RNA duplexes. The DRH-3 ATPase may have allosteric regulation in cis that is controlled by the stoichiometry of double-stranded RNA to enzyme. We observe that the DRH-3 ATPase is stimulated only by duplexes containing RNA, suggesting a role for DRH-3 during or after transcription. Our findings provide clues to the role of DRH-3 during the RNA interference response in vivo.
Collapse
Affiliation(s)
- Christian Matranga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
274
|
Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20:313-24. [PMID: 20456941 PMCID: PMC2916977 DOI: 10.1016/j.sbi.2010.03.011] [Citation(s) in RCA: 712] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/29/2010] [Indexed: 12/25/2022]
Abstract
Helicases of the superfamily (SF) 1 and 2 are involved in virtually all aspects of RNA and DNA metabolism. SF1 and SF2 helicases share a catalytic core with high structural similarity, but different enzymes even within each SF perform a wide spectrum of distinct functions on diverse substrates. To rationalize similarities and differences between these helicases, we outline a classification based on protein families that are characterized by typical sequence, structural, and mechanistic features. This classification complements and extends existing SF1 and SF2 helicase categorizations and highlights major structural and functional themes for these proteins. We discuss recent data in the context of this unifying view of SF1 and SF2 helicases.
Collapse
Affiliation(s)
- Margaret E. Fairman-Williams
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, Wood Building, W137, 10900 Euclid Ave, Cleveland, OH 44106, Phone 216.368.3336
| | - Ulf-Peter Guenther
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, Wood Building, W137, 10900 Euclid Ave, Cleveland, OH 44106, Phone 216.368.3336
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University, Wood Building, W137, 10900 Euclid Ave, Cleveland, OH 44106, Phone 216.368.3336
| |
Collapse
|
275
|
Qiao L, Phipps-Yonas H, Hartmann B, Moran TM, Sealfon SC, Hayot F. Immune response modeling of interferon beta-pretreated influenza virus-infected human dendritic cells. Biophys J 2010; 98:505-14. [PMID: 20159146 DOI: 10.1016/j.bpj.2009.10.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 09/18/2009] [Accepted: 10/30/2009] [Indexed: 12/20/2022] Open
Abstract
The pretreatment of human dendritic cells with interferon-beta enhances their immune response to influenza virus infection. We measured the expression levels of several key players in that response over a period of 13 h both during pretreatment and after viral infection. Their activation profiles reflect the presence of both negative and positive feedback loops in interferon induction and interferon signaling pathway. Based on these measurements, we have developed a comprehensive computational model of cellular immune response that elucidates its mechanism and its dynamics in interferon-pretreated dendritic cells, and provides insights into the effects of duration and strength of pretreatment.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
276
|
Baum A, García-Sastre A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids 2010; 38:1283-99. [PMID: 19882216 PMCID: PMC2860555 DOI: 10.1007/s00726-009-0374-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/12/2009] [Indexed: 12/18/2022]
Abstract
Virus recognition and induction of interferon (IFN) are critical components of the innate immune system. The Toll-like receptor (TLR) and RIG-I-like receptor families have been characterized as key players in RNA virus detection. Signaling cascades initiated by these receptors are crucial for establishment of an IFN signaling mediated antiviral state in infected and neighboring cells and containment of virus replication as well as initiation of the adaptive immune response. In this review, we focus on the diverse and overlapping functions of these receptors, their physiological importance, and respective viral inducers. We highlight the roles of TRL3, TLR7/8, retinoic acid inducible gene I, melanoma differentiation-associated gene 5, and the RNA molecules responsible for activating these viral sensors.
Collapse
Affiliation(s)
- Alina Baum
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029 USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029 USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
277
|
Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010; 141:315-30. [PMID: 20403326 PMCID: PMC2919214 DOI: 10.1016/j.cell.2010.03.029] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 02/22/2010] [Accepted: 03/23/2010] [Indexed: 12/25/2022]
Abstract
RIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 63 (K63) of ubiquitin. RIG-I binds specifically to K63-polyubiquitin chains through its tandem CARD domains in a manner that depends on RNA and ATP. Mutations in the CARD domains that abrogate ubiquitin binding also impair RIG-I activation. Remarkably, unanchored K63-ubiquitin chains, which are not conjugated to any target protein, potently activate RIG-I. These ubiquitin chains function as an endogenous ligand of RIG-I in human cells. Our results delineate the mechanism of RIG-I activation, identify CARD domains as a ubiquitin sensor, and demonstrate that unanchored K63-polyubiquitin chains are signaling molecules in antiviral innate immunity.
Collapse
Affiliation(s)
- Wenwen Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Lijun Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Xiaomo Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Fajian Hou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Anirban Adhikari
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Ming Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
278
|
Marq JB, Kolakofsky D, Garcin D. Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J Biol Chem 2010; 285:18208-16. [PMID: 20400512 DOI: 10.1074/jbc.m109.089425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arenavirus and bunyavirus RNA genomes are unusual in that they are found in circular nucleocapsids, presumably due to the annealing of their complementary terminal sequences. Moreover, arenavirus genome synthesis initiates with GTP at position +2 of the template rather than at the precise 3' end (position +1). After formation of a dinucleotide, 5' pppGpC(OH) is then realigned on the template before this primer is extended. The net result of this "prime and realign" mechanism of genome initiation is that 5' pppG is found as an unpaired 5' nucleotide when the complementary genome ends anneal to form a double-stranded (dsRNA) panhandle. Using 5' pppRNA made in vitro and purified so that all dsRNA side products are absent, we have determined that both this 5' nucleotide overhang, as well as mismatches within the dsRNA (as found in some arenavirus genomes), clearly reduce the ability of these model dsRNAs to induce interferon upon transfection into cells. The presence of this unpaired 5' ppp-nucleotide is thus another way that some viruses appear to use to avoid detection by cytoplasmic pattern recognition receptors.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 9 Avenue de Champel, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
279
|
Chistiakov DA. Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review. Viral Immunol 2010; 23:3-15. [PMID: 20121398 DOI: 10.1089/vim.2009.0071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to genetic factors, environmental triggers, including viruses and other pathogens, are thought to play a major role in the development of autoimmune disease. Recent findings have shown that viral-induced autoimmunity is likely to be genetically determined. In large-scale genetic analyses, an association of interferon induced with helicase C domain 1 (IFIH1) gene variants encoding a viral RNA-sensing helicase with susceptibility to several autoimmune diseases was found. To date, the precise role of IFIH1 in pathogenic mechanisms of viral-induced autoimmunity has yet to be fully elucidated. However, recent reports suggest that IFIH1 may play a role in the etiology of type 1 diabetes. Rare IFIH1 alleles have been shown to be protective against diabetes, and their carriage correlates with lower production of this helicase and its functional disruption. In contrast, upregulation of IFIH1 expression by viruses is associated with more severe disease, and could exacerbate the autoimmune process in susceptible individuals.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia
| |
Collapse
|
280
|
Abstract
Much of the dynamics information is lost in bulk measurements because of the population averaging. Single-molecule methods measure one molecule at a time; they provide knowledge not obtainable by other means. In this article, we review the application of the two most widely used single-molecule methods--fluorescence resonance energy transfer (FRET) and force versus extension measurements--to several RNA reactions. First, we discuss folding/unfolding studies on a hairpin ribozyme that revealed multiple conformations of the RNA with distinct kinetics, and on a series of RNA pseudoknots, whose mechanical stabilities were found to show a strong correlation with their frameshifting efficiency during translation. We also discuss several RNA-related molecular motors. Single-molecule experiments revealed detailed mechanisms for the interaction of HIV reverse transcriptase and nucleic acid helicases (NS3 and RIG-1) with their substrates. Optical tweezers studies showed that translation of a single messenger RNA by a ribosome occurs by successive translocation-and-pause cycles. Single-molecule FRET experiments yielded important information on ribosome conformational changes and tRNA dynamics during translation. Overall, single-molecule experiments have been very valuable for understanding RNA reactions.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | | | |
Collapse
|
281
|
Horner SM, Gale M. Intracellular innate immune cascades and interferon defenses that control hepatitis C virus. J Interferon Cytokine Res 2010; 29:489-98. [PMID: 19708811 DOI: 10.1089/jir.2009.0063] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is a global public health problem that mediates a persistent infection in nearly 200 million people. HCV is efficient in establishing chronicity due in part to the inefficiency of the host immune system in controlling and counteracting HCV-mediated evasion strategies. HCV persistence is linked to the ability of the virus to suppress the RIG-I pathway and interferon production from infected hepatocytes, thus evading innate immune defenses within the infected cell. This review describes the virus and host processes that regulate the RIG-I pathway during HCV infection. An understanding of these HCV-host interactions could lead to more effective therapies for HCV designed to reactivate the host immune response following HCV infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
282
|
Goldsmith RH, Moerner WE. Watching conformational- and photo-dynamics of single fluorescent proteins in solution. Nat Chem 2010; 2:179-86. [PMID: 20625479 PMCID: PMC2899709 DOI: 10.1038/nchem.545] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended investigation of solution-phase biomolecules - without immobilization -through real-time electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic antenna protein, Allophycocyanin (APC). The technique allows the observation of single molecules of solution-phase APC for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation, and biomaterials for solar energy harvesting.
Collapse
|
283
|
Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010; 140:397-408. [PMID: 20144762 DOI: 10.1016/j.cell.2010.01.020] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 11/01/2009] [Accepted: 01/06/2010] [Indexed: 12/24/2022]
Abstract
RIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and interferon induction in virus-infected cells is not known. Here, we use three approaches to identify physiological RIG-I agonists in cells infected with influenza A virus or Sendai virus. We show that RIG-I agonists are exclusively generated by the process of virus replication and correspond to full-length virus genomes. Therefore, nongenomic viral transcripts, short replication intermediates, and cleaved self-RNA do not contribute substantially to interferon induction in cells infected with these negative strand RNA viruses. Rather, single-stranded RNA viral genomes bearing 5'-triphosphates constitute the natural RIG-I agonists that trigger cell-intrinsic innate immune responses during infection.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A3PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
285
|
Abstract
Virus infection in mammals elicits a variety of defense responses that are initiated by signals from virus-sensing receptors expressed by the host. These receptors include the ubiquitously expressed RIG-I-like receptor (RLR) family of RNA helicases. RLRs are cytoplasmic proteins that act in cell-intrinsic antiviral defense by recognizing RNAs indicative of virus presence. Here, we highlight recent progress in understanding how RLRs discriminate between the RNA content of healthy versus virus-infected cells, functioning as accurate sensors of virus invasion.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK (CRUK) London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
286
|
LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 2010; 107:1512-7. [PMID: 20080593 DOI: 10.1073/pnas.0912986107] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA virus infection is recognized by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), RIG-I, and melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm. RLRs are comprised of N-terminal caspase-recruitment domains (CARDs) and a DExD/H-box helicase domain. The third member of the RLR family, LGP2, lacks any CARDs and was originally identified as a negative regulator of RLR signaling. In the present study, we generated mice lacking LGP2 and found that LGP2 was required for RIG-I- and MDA5-mediated antiviral responses. In particular, LGP2 was essential for type I IFN production in response to picornaviridae infection. Overexpression of the CARDs from RIG-I and MDA5 in Lgp2(-/-) fibroblasts activated the IFN-beta promoter, suggesting that LGP2 acts upstream of RIG-I and MDA5. We further examined the role of the LGP2 helicase domain by generating mice harboring a point mutation of Lys-30 to Ala (Lgp2 (K30A/K30A)) that abrogated the LGP2 ATPase activity. Lgp2 (K30A/K30A) dendritic cells showed impaired IFN-beta productions in response to various RNA viruses to extents similar to those of Lgp2(-/-) cells. Lgp2(-/-) and Lgp2 (K30A/K30A) mice were highly susceptible to encephalomyocarditis virus infection. Nevertheless, LGP2 and its ATPase activity were dispensable for the responses to synthetic RNA ligands for MDA5 and RIG-I. Taken together, the present data suggest that LGP2 facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain.
Collapse
|
287
|
Abstract
Antiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation. RIG-I belongs to the IFN-stimulated gene (ISG) family, but certain cells regulate its expression through IFN-independent mechanisms. Several lines of evidence indicate that deregulated RIG-I signaling is associated with autoimmune disorders. Further studies suggest that RIG-I has functions in addition to those directly related to its role in RNA sensing and host defense. We have much to learn and discover regarding this interesting cytoplasmic sensor so that we can capitalize on its properties for the treatment of viral infections, immune disorders, cancer, and perhaps other conditions.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Diana M. Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
288
|
Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity. Rev Med Virol 2009; 20:4-22. [DOI: 10.1002/rmv.633] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
289
|
Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 2009; 462:940-3. [PMID: 19924126 DOI: 10.1038/nature08611] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/26/2009] [Indexed: 11/08/2022]
Abstract
Genomic DNA is replicated by two DNA polymerase molecules, one of which works in close association with the helicase to copy the leading-strand template in a continuous manner while the second copies the already unwound lagging-strand template in a discontinuous manner through the synthesis of Okazaki fragments. Considering that the lagging-strand polymerase has to recycle after the completion of every Okazaki fragment through the slow steps of primer synthesis and hand-off to the polymerase, it is not understood how the two strands are synthesized with the same net rate. Here we show, using the T7 replication proteins, that RNA primers are made 'on the fly' during ongoing DNA synthesis and that the leading-strand T7 replisome does not pause during primer synthesis, contrary to previous reports. Instead, the leading-strand polymerase remains limited by the speed of the helicase; it therefore synthesizes DNA more slowly than the lagging-strand polymerase. We show that the primase-helicase T7 gp4 maintains contact with the priming sequence during ongoing DNA synthesis; the nascent lagging-strand template therefore organizes into a priming loop that keeps the primer in physical proximity to the replication complex. Our findings provide three synergistic mechanisms of coordination: first, primers are made concomitantly with DNA synthesis; second, the priming loop ensures efficient primer use and hand-off to the polymerase; and third, the lagging-strand polymerase copies DNA faster, which allows it to keep up with leading-strand DNA synthesis overall.
Collapse
|
290
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
291
|
Olejniczak M, Galka P, Krzyzosiak WJ. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res 2009; 38:1-16. [PMID: 19843612 PMCID: PMC2800214 DOI: 10.1093/nar/gkp829] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells.
Collapse
Affiliation(s)
- Marta Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
292
|
Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase. Mol Cell 2009; 35:694-703. [PMID: 19748362 PMCID: PMC2776038 DOI: 10.1016/j.molcel.2009.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/06/2009] [Accepted: 07/08/2009] [Indexed: 01/30/2023]
Abstract
An encounter between a DNA-translocating enzyme and a DNA-bound protein must occur frequently in the cell, but little is known about its outcome. Here we developed a multicolor single-molecule fluorescence approach to simultaneously monitor single-stranded DNA (ssDNA) translocation by a helicase and the fate of another protein bound to the same DNA. Distance-dependent fluorescence quenching by the iron-sulfur cluster of the archaeal XPD (Rad3) helicase was used as a calibrated proximity signal. Despite the similar equilibrium DNA-binding properties, the two cognate ssDNA-binding proteins RPA1 and RPA2 differentially affected XPD translocation. RPA1 competed with XPD for ssDNA access. In contrast, RPA2 did not interfere with XPD-ssDNA binding but markedly slowed down XPD translocation. Mechanistic models of bypassing DNA-bound proteins by the Rad3 family helicases and their biological implications are discussed.
Collapse
|
293
|
Grossoehme NE, Li L, Keane SC, Liu P, Dann CE, Leibowitz JL, Giedroc DP. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol 2009; 394:544-57. [PMID: 19782089 PMCID: PMC2783395 DOI: 10.1016/j.jmb.2009.09.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 11/03/2022]
Abstract
All coronaviruses (CoVs), including the causative agent of severe acute respiratory syndrome (SARS), encode a nucleocapsid (N) protein that harbors two independent RNA binding domains of known structure, but poorly characterized RNA binding properties. We show here that the N-terminal domain (NTD) of N protein from mouse hepatitis virus (MHV), a virus most closely related to SARS-CoV, employs aromatic amino acid-nucleobase stacking interactions with a triple adenosine motif to mediate high-affinity binding to single-stranded RNAs containing the transcriptional regulatory sequence (TRS) or its complement (cTRS). Stoichiometric NTD fully unwinds a TRS-cTRS duplex that mimics a transiently formed transcription intermediate in viral subgenomic RNA synthesis. Mutation of the solvent-exposed Y127, positioned on the beta-platform surface of our 1.75 A structure, binds the TRS far less tightly and is severely crippled in its RNA unwinding activity. In contrast, the C-terminal domain (CTD) exhibits no RNA unwinding activity. Viruses harboring Y127A N mutation are strongly selected against and Y127A N does not support an accessory function in MHV replication. We propose that the helix melting activity of the coronavirus N protein NTD plays a critical accessory role in subgenomic RNA synthesis and other processes requiring RNA remodeling.
Collapse
|
294
|
Control of herpes simplex virus replication is mediated through an interferon regulatory factor 3-dependent pathway. J Virol 2009; 83:12399-406. [PMID: 19759149 DOI: 10.1128/jvi.00888-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The type I interferon (IFN) cascade is critical in controlling viral replication and pathogenesis. Recognition pathways triggered by viral infection rapidly induce the type I IFN cascade, often in an IFN regulatory factor 3 (IRF-3)-dependent fashion. This dependence predicts that loss of IRF-3 would render early recognition pathways inoperative and thereby impact virus replication, but this has not been observed previously with herpes simplex virus type 1 (HSV-1) in vitro. In this study, HSV-1-infected IRF-3(-/-) bone marrow-derived dendritic cells (BMDCs) and macrophages supported increased HSV replication compared to control cells. In addition, IRF-3-deficient BMDCs exhibited delayed type I IFN synthesis compared to control cells. However, while IFN pretreatment of IRF-3(-/-) BMDCs resulted in reduced virus titers, a far greater reduction was seen after IFN treatment of wild-type cells. This suggests that even in the presence of exogenously supplied IFN, IRF-3(-/-) BMDCs are inherently defective in the control of HSV-1 replication. Together, these results demonstrate a critical role for IRF-3-mediated pathways in controlling HSV-1 replication in cells of the murine immune system.
Collapse
|
295
|
Xiao X, Zhao P, Rodriguez-Pinto D, Qi D, Henegariu O, Alexopoulou L, Flavell RA, Wong FS, Wen L. Inflammatory regulation by TLR3 in acute hepatitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3712-9. [PMID: 19710451 DOI: 10.4049/jimmunol.0901221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TLR3 is known to respond to dsRNA from viruses, apoptotic cells, and/or necrotic cells. Dying cells are a rich source of ligands that can activate TLRs, such as TLR3. TLR3 expressed in the liver is likely to be a mediator of innate activation and inflammation in the liver. The importance of this function of TLR3 during acute hepatitis has not previously been fully explored. We used the mouse model of Con A-induced hepatitis and observed a novel role for TLR3 in hepatocyte damage in the absence of an exogenous viral stimulus. Interestingly, TLR3 expression in liver mononuclear cells and sinus endothelial cells was up-regulated after Con A injection and TLR3(-/-) mice were protected from Con A-induced hepatitis. Moreover, splenocytes from TLR3(-/-) mice proliferated less to Con A stimulation in the presence of RNA derived from damaged liver tissue compared with wild-type (WT) mice. To determine the relative contribution of TLR3 expression by hematopoietic cells or nonhematopoietic to liver damage during Con A-induced hepatitis, we generated bone marrow chimeric mice. TLR3(-/-) mice engrafted with WT hematopoietic cells were protected in a similar manner to WT mice reconstituted with TLR3(-/-) bone marrow, indicating that TLR3 signaling in both nonhematopoietic and hematopoietic cells plays an important role in mediating liver damage. In summary, our data suggest that TLR3 signaling is necessary for Con A-induced liver damage in vivo and that TLR3 regulates inflammation and the adaptive T cell immune response in the absence of viral infection.
Collapse
Affiliation(s)
- Xiaoyan Xiao
- Section of Endocrinology, Department of Internal Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Ranjan P, Bowzard JB, Schwerzmann JW, Jeisy-Scott V, Fujita T, Sambhara S. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol Med 2009; 15:359-68. [PMID: 19665430 DOI: 10.1016/j.molmed.2009.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/17/2022]
Abstract
The innate immune system uses pattern recognition receptors (PRRs) to sense invading microbes and initiate a rapid protective response. PRRs bind and are activated by structural motifs, such as nucleic acids or bacterial and fungal cell wall components, collectively known as pathogen-associated molecular patterns. PRRs that recognize pathogen-derived nucleic acids are present in vesicular compartments and in the cytosol of most cell types. Here, we review recent studies of these cytosolic sensors, focusing on the nature of the ligands for DNA-dependent activator of interferon (DAI)-regulatory factors, absent in melanoma 2 (AIM2), and the retinoic acid-inducible gene I-like helicase (RLH) family of receptors, the basis of ligand recognition and the signaling pathways triggered by the activation of these receptors. An increased understanding of these molecular aspects of innate immunity will guide the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|
297
|
Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 2009; 83:10761-9. [PMID: 19656871 DOI: 10.1128/jvi.00770-09] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recognition of virus presence via RIG-I (retinoic acid inducible gene I) and/or MDA5 (melanoma differentiation-associated protein 5) initiates a signaling cascade that culminates in transcription of innate response genes such as those encoding the alpha/beta interferon (IFN-alpha/beta) cytokines. It is generally assumed that MDA5 is activated by long molecules of double-stranded RNA (dsRNA) produced by annealing of complementary RNAs generated during viral infection. Here, we used an antibody to dsRNA to show that the presence of immunoreactivity in virus-infected cells does indeed correlate with the ability of RNA extracted from these cells to activate MDA5. Furthermore, RNA from cells infected with encephalomyocarditis virus or with vaccinia virus and precipitated with the anti-dsRNA antibody can bind to MDA5 and induce MDA5-dependent IFN-alpha/beta production upon transfection into indicator cells. However, a prominent band of dsRNA apparent in cells infected with either virus does not stimulate IFN-alpha/beta production. Instead, stimulatory activity resides in higher-order structured RNA that contains single-stranded RNA and dsRNA. These results suggest that MDA5 activation requires an RNA web rather than simply long molecules of dsRNA.
Collapse
|
298
|
Sorokina M, Koh HR, Patel SS, Ha T. Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. J Am Chem Soc 2009; 131:9630-1. [PMID: 19552410 PMCID: PMC2726732 DOI: 10.1021/ja902861f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Indexed: 12/04/2022]
Abstract
Single molecule (SM) techniques are relatively new additions to the field of biophysics that allow one to manipulate individual molecules and study their behavior. To make these studies more relevant to what actually happens in the cell, one needs to move beyond the studies of individual molecules in isolation and study many different molecules working in concert. This presents a technical challenge as most SM experiments measure only one observable as a function of time, whereas complex biomolecular systems require multidimensional SM analysis. Förster resonance energy transfer (FRET) is one of the most common single molecule approaches and can report on the real time distance changes. However, FRET requires two fluorophores which will ultimately limit the degree of multiplexing in future SM applications. It will be useful if a single fluorophore can be used to provide equivalent information. In this communication, we show that fluorescence lifetime analysis of a single Cy3 fluorophore attached to the promoter region of the DNA can be used to reveal transient reaction intermediates during transcription initiation by T7 RNA polymerase. This work represents the first demonstration of real-time biochemical reactions observed via single molecule fluorescence lifetime trajectories of immobilized molecules.
Collapse
|
299
|
5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 2009; 106:12067-72. [PMID: 19574455 DOI: 10.1073/pnas.0900971106] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ATPase retinoid acid-inducible gene (RIG)-I senses viral RNA in the cytoplasm of infected cells and subsequently activates cellular antiviral defense mechanisms. RIG-I recognizes molecular structures that discriminate viral from host RNA. Here, we show that RIG-I ligands require base-paired structures in conjunction with a free 5'-triphosphate to trigger antiviral signaling. Hitherto unavailable chemically synthesized 5'-triphosphate RNA ligands do not trigger RIG-I-dependent IFN production in cells, and they are unable to trigger the ATPase activity of RIG-I without a base-paired stretch. Consistently, immunostimulatory RNA from cells infected with a virus recognized by RIG-I is sensitive to double-strand, but not single-strand, specific RNases. In vitro, base-paired stretches and the 5'-triphosphate bind to distinct sites of RIG-I and synergize to trigger the induction of signaling competent RIG-I multimers. Strengthening our model of a bipartite molecular pattern for RIG-I activation, we show that the activity of supposedly "single-stranded" 5'-triphosphate RNAs generated by in vitro transcription depends on extended and base-paired by-products inadvertently, but commonly, produced by this method. Together, our findings accurately define a minimal molecular pattern sufficient to activate RIG-I that can be found in viral genomes or transcripts.
Collapse
|
300
|
Daffis S, Suthar MS, Gale M, Diamond MS. Measure and countermeasure: type I IFN (IFN-alpha/beta) antiviral response against West Nile virus. J Innate Immun 2009; 1:435-45. [PMID: 20375601 DOI: 10.1159/000226248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/28/2009] [Indexed: 12/24/2022] Open
Abstract
As a first line of defense after viral infection, host cells develop an intrinsic immune response to control virus dissemination and protect against serious infection. Recent experiments have shown a dominant role of the IFN-alpha/beta response in protection against lethal West Nile virus (WNV) by limiting the cellular and tissue tropism of infection. This review will focus on advances in identifying the host sensors that detect WNV and the adaptor molecules and signaling pathways that regulate the induction of IFN-alpha/beta defenses that limit WNV replication, spread and pathogenesis.
Collapse
Affiliation(s)
- Stephane Daffis
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|