251
|
D’Ambrosio A, Altomare A, Boscarino T, Gori M, Balestrieri P, Putignani L, Del Chierico F, Carotti S, Cicala M, Guarino MPL, Piemonte V. Mathematical Modeling of Vedolizumab Treatment's Effect on Microbiota and Intestinal Permeability in Inflammatory Bowel Disease Patients. Bioengineering (Basel) 2024; 11:710. [PMID: 39061792 PMCID: PMC11274165 DOI: 10.3390/bioengineering11070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Growing evidence suggests that impaired gut permeability and gut microbiota alterations are involved in the pathogenesis of Inflammatory Bowel Diseases (IBDs), which include Ulcerative Colitis (UC) and Crohn's Disease (CD). Vedolizumab is an anti-α4β7 antibody approved for IBD treatment, used as the first treatment or second-line therapy when the first line results in inadequate effectiveness. The aim of this study is to develop a mathematical model capable of describing the pathophysiological mechanisms of Vedolizumab treatment in IBD patients. In particular, the relationship between drug concentration in the blood, colonic mucosal permeability and fecal microbiota composition was investigated and modeled to detect and predict trends in order to support and tailor Vedolizumab therapies. To pursue this aim, clinical data from a pilot study on a cluster of 11 IBD patients were analyzed. Enrolled patients underwent colonoscopy in three phases (before (t0), after 24 weeks of (t1) and after 52 weeks of (t2 ) Vedolizumab treatment) to collect mucosal biopsies for transepithelial electrical resistance (TEER) evaluation (permeability to ions), intestinal permeability measurement and histological analysis. Moreover, fecal samples were collected for the intestinal microbiota analysis at the three time points. The collected data were compared to those of 11 healthy subjects at t0, who underwent colonoscopy for screening surveillance, and used to implement a three-compartmental mathematical model (comprising central blood, peripheral blood and the intestine). The latter extends previous evidence from the literature, based on the regression of experimental data, to link drug concentration in the peripheral blood compartment with Roseburia abundance and intestinal permeability. The clinical data showed that Vedolizumab treatment leads to an increase in TEER and a reduction in intestinal permeability to a paracellular probe, improving tissue inflammation status. Microbiota analysis showed increasing values of Roseburia, albeit not statistically significant. This trend was adequately reproduced by the mathematical model, which offers a useful tool to describe the pathophysiological effects of Vedolizumab therapy on colonic mucosal permeability and fecal microbiota composition. The model's satisfactory predictive capabilities and simplicity shed light on the relationship between the drug, the microbiota and permeability and allow for its straightforward extension to diverse therapeutic conditions.
Collapse
Affiliation(s)
- Antonio D’Ambrosio
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| | - Annamaria Altomare
- Department of Sciences and Technology of Sustainable Development and Human Health, Università Campus Biomedico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
| | - Tamara Boscarino
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| | - Manuele Gori
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), International Campus “A. Buzzati-Traverso”, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Paola Balestrieri
- Gastroenterology Unit, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy;
| | - Lorenza Putignani
- Units of Microbiomics and Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Cicala
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Microscopic and Ultrastructural Anatomy Research Unit, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Pier Luca Guarino
- Gastroenterology Research Unit, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.G.); (M.C.); (M.P.L.G.)
- Gastroenterology Unit, Fondazione Policlinico Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy;
| | - Vincenzo Piemonte
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (T.B.); (V.P.)
| |
Collapse
|
252
|
Long AE, Pitta D, Hennessy M, Indugu N, Vecchiarelli B, Luethy D, Aceto H, Hurcombe S. Assessment of fecal bacterial viability and diversity in fresh and frozen fecal microbiota transplant (FMT) product in horses. BMC Vet Res 2024; 20:306. [PMID: 38987780 PMCID: PMC11234551 DOI: 10.1186/s12917-024-04166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Currently, lack of standardization for fecal microbiota transplantation (FMT) in equine practice has resulted in highly variable techniques, and there is no data on the bacterial metabolic activity or viability of the administered product. The objectives of this study were to compare the total and potentially metabolically active bacterial populations in equine FMT, and assess the effect of different frozen storage times, buffers, and temperatures on an equine FMT product. Fresh feces collected from three healthy adult horses was subjected to different storage methods. This included different preservation solutions (saline plus glycerol or saline only), temperature (-20 °C or -80 °C), and time (fresh, 30, 60, or 90 days). Samples underwent DNA extraction to assess total bacterial populations (both live and dead combined) and RNA extraction followed by reverse transcription to cDNA as a proxy to assess viable bacteria, then 16s rRNA gene amplicon sequencing using the V1-V2 region. RESULTS The largest difference in population indices and taxonomic composition at the genus level was seen when evaluating the results of DNA-based (total) and cDNA-based (potentially metabolically active) extraction method. At the community level, alpha diversity (observed species, Shannon diversity) was significantly decreased in frozen samples for DNA-based analysis (P < 0.05), with less difference seen for cDNA-based sequencing. Using DNA-based analysis, length of storage had a significant impact (P < 0.05) on the bacterial community profiles. For potentially metabolically active populations, storage overall had less of an effect on the bacterial community composition, with a significant effect of buffer (P < 0.05). Individual horse had the most significant effect within both DNA and cDNA bacterial communities. CONCLUSIONS Frozen storage of equine FMT material can preserve potentially metabolically active bacteria of the equine fecal microbiome, with saline plus glycerol preservation more effective than saline alone. Larger studies are needed to determine if these findings apply to other individual horses. The ability to freeze FMT material for use in equine patients could allow for easier clinical use of fecal transplant in horses with disturbances in their intestinal microbiome.
Collapse
Affiliation(s)
- Alicia E Long
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA.
| | - Dipti Pitta
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Meagan Hennessy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Nagaraju Indugu
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Daniela Luethy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Helen Aceto
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Samuel Hurcombe
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
- Veterinary Innovative Partners, New York, NY, USA
| |
Collapse
|
253
|
Ezz El Deen NM, Karem M, El Borhamy MI, Hanora AMS, Fahmy N, Zakeer S. Multivariate Analysis and Correlation Study Shows the Impact of Anthropometric and Demographic Variables on Gut Microbiota in Obese Egyptian Children. Curr Microbiol 2024; 81:259. [PMID: 38972943 DOI: 10.1007/s00284-024-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Deciphering the gut microbiome's link to obesity is crucial. Our study characterized the gut microbial community in Egyptian children and investigated the effect of covariates on the gut microbiome, body mass index (BMI), geographical location, gender, and age. We used 16S rRNA sequencing to characterize the gut microbial communities of 49 children. We then evaluated these communities for diversity, potential biomarkers, and functional capacity. Alpha diversity of the non-obese group was higher than that of the obese group (Chao1, P = 0.006 and observed species, P = 0.003). Beta diversity analysis revealed significant variations in the gut microbiome between the two geographical locations, Cairo and Ismailia (unweighted UniFrac, P = 0.03) and between obesity statuses, obese and non-obese (weighted UniFrac, P = 0.034; unweighted UniFrac, P = 0.015). We observed a significantly higher Firmicutes/Bacteroidetes ratio in obese males than in non-obese males (P = 0.004). Interestingly, this difference was not seen in females (P = 0.77). Multivariable association with linear models (MaAsLin2) identified 8 microbial features associated with obesity, 12 associated with non-obesity, and found 29 and 13 features specific to Cairo and Ismailia patients, respectively. It has also shown one microbial feature associated with patients under five years old. MaAsLin2, however, failed to recognize any association between gender and the gut microbiome. Moreover, it could find the most predominant features in groups 2-9 but not in group 1. Another method used in the analysis is the Linear discriminant analysis Effect Size (LEfSe) approach, which effectively identified 19 biomarkers linked to obesity, 9 linked non-obesity, 20 linked to patients residing in Cairo, 14 linked to patients in Ismailia, one linked to males, and 12 linked to females. LEfSe could not, however, detect any prevalent bacteria among children younger or older than five. Future studies should take advantage of such correlations, specifically BMI, to determine the interventions needed for obesity management.
Collapse
Affiliation(s)
- Nada Mohamed Ezz El Deen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona Karem
- Department of Pediatrics, Endocrinology and Diabetes Division, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mervat Ismail El Borhamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Amro Mohamed Said Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, Ras Sudr, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Nora Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
254
|
Song WJ, Huang JW, Liu Y, Wang J, Ding W, Chen BL, Peng DY, Long Z, He LY. Effects of low-intensity pulsed ultrasound on the microorganisms of expressed prostatic secretion in patients with IIIB prostatitis. Sci Rep 2024; 14:15368. [PMID: 38965410 PMCID: PMC11224392 DOI: 10.1038/s41598-024-66329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.
Collapse
Affiliation(s)
- Wei-Jie Song
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ji-Wei Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Ding
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin-Long Chen
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dong-Yi Peng
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le-Ye He
- Department of Urology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha City, 410013, Hunan Province, China.
- Sexual Health Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
255
|
Harakawa K, Kawarai S, Kryukov K, Nakagawa S, Moriya S, Imakawa K. Buccal Swab Samples from Japanese Brown Cattle Fed with Limonite Reveal Altered Rumen Microbiome. Animals (Basel) 2024; 14:1968. [PMID: 38998081 PMCID: PMC11240510 DOI: 10.3390/ani14131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The areas of the Mount Aso grasslands in Kumamoto, Japan, are the primary location for the breeding of the Kumamoto strain of Japanese Brown cattle (JBRK). Although Aso limonite, deposited by volcanic ash and magma, has been commonly fed to pregnant JBRK in this area, the mechanisms of its salutary effects on pregnant JBRK have not yet been elucidated. Approximately 100 days before the expected day of calf delivery, seven JBRK (four supplemented with limonite and three controls without limonite) were assigned to this study, from which a buccal swab was collected at the highest rumination every 30 days for 90 days. DNA extracted from these swabs was then analyzed using a 16S rRNA gene amplicon sequence analysis. Statistically significant differences between the two groups were discovered through beta-diversity analysis, though results from alpha-diversity analysis were inconclusive. The microbiota identified were classified into six clusters, and three of the main clusters were core-rumen bacteria, primarily cellulose digestion in cluster 1, oral bacteria in cluster 2, and non-core-rumen bacteria in cluster 3. In the limonite group, core-rumen bacteria decreased while non-core-rumen bacteria increased, suggesting that limonite feeding alters rumen microbiota, particularly activation of non-core-rumen microbiota.
Collapse
Affiliation(s)
- Kentaro Harakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| | - Shinpei Kawarai
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima 411-8540, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara 259-1193, Kanagawa, Japan
| | - Shigeharu Moriya
- Photonics Control Technology Team, Riken Center for Advanced Photonics, Numazu 410-8601, Shizuoka, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Kumamoto, Japan
| |
Collapse
|
256
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
257
|
Henry LP, Fernandez M, Wolf S, Abhyankar V, Ayroles JF. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol Evol 2024; 14:e70004. [PMID: 39041013 PMCID: PMC11262851 DOI: 10.1002/ece3.70004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Lucas P. Henry
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkNew YorkUSA
| | - Michael Fernandez
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Scott Wolf
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Varada Abhyankar
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Julien F. Ayroles
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
258
|
Lee CS, Lin CR, Chua HH, Wu JF, Chang KC, Ni YH, Chang MH, Chen HL. Gut Bifidobacterium longum is associated with better native liver survival in patients with biliary atresia. JHEP Rep 2024; 6:101090. [PMID: 39006502 PMCID: PMC11246047 DOI: 10.1016/j.jhepr.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 07/16/2024] Open
Abstract
Background & Aims The gut microbiome plays an important role in liver diseases, but its specific impact on biliary atresia (BA) remains to be explored. We aimed to investigate the microbial signature in the early life of patients with BA and to analyze its influence on long-term outcomes. Methods Fecal samples (n = 42) were collected from infants with BA before and after Kasai portoenterostomy (KPE). The stool microbiota was analyzed using 16S rRNA next-generation sequencing and compared with that of age-matched healthy controls (HCs). Shotgun metagenomic sequencing analysis was employed to confirm the bacterial composition in 10 fecal samples before KPE. The correlation of the microbiome signature with liver function and long-term outcomes was assessed. Results In the 16S rRNA next-generation sequencing analysis of fecal microbiota, the alpha and beta diversity analyses revealed significant differences between HCs and patients with BA before and after KPE. The difference in microbial composition analyzed by linear discriminant analysis and random forest classification revealed that the abundance of Bifidobacterium longum (B. longum) was significantly lower in patients before and after KPE than in HCs. The abundance of B. longum was negatively correlated with the gamma-glutamyltransferase level after KPE (p <0.05). Patients with early detectable B. longum had significantly lower total and direct bilirubin 3 months after KPE (p <0.005) and had a significantly lower liver transplantation rate (hazard ratio: 0.16, 95% CI 0.03-0.83, p = 0.029). Shotgun metagenomic sequencing also revealed that patients with BA and detectable B. longum had reduced total and direct bilirubin after KPE. Conclusion The gut microbiome of patients with BA differed from that of HCs, with a notable abundance of B. longum in early infancy correlating with better long-term outcomes. Impact and implications Bifidobacterium longum (B. longum) is a beneficial bacterium commonly found in the human gut. It has been studied for its potential impacts on various health conditions. In patients with biliary atresia, we found that a greater abundance of B. longum in the fecal microbiome is associated with improved clinical outcomes. This suggests that early colonization and increasing B. longum levels in the gut could be a therapeutic strategy to improve the prognosis of patients with biliary atresia.
Collapse
Affiliation(s)
- Chee-Seng Lee
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ray Lin
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Kai-Chi Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Center of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Medical Microbiota Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
259
|
Pillai N, Nanduri B, Rothrock MJ, Chen Z, Ramkumar M. Bayesian-Guided Generation of Synthetic Microbiomes with Minimized Pathogenicity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039328 DOI: 10.1109/embc53108.2024.10782111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Synthetic microbiomes offer new possibilities for modulating microbiota, to address the barriers in multidtug resistance (MDR) research. We present a Bayesian optimization approach to enable efficient searching over the space of synthetic microbiome variants to identify candidates predictive of reduced MDR. Microbiome datasets were encoded into a low-dimensional latent space using autoencoders. Sampling from this space allowed generation of synthetic microbiome signatures. Bayesian optimization was then implemented to select variants for biological screening to maximize identification of designs with restricted MDR pathogens based on minimal samples. Four acquisition functions were evaluated: expected improvement, upper confidence bound, Thompson sampling, and probability of improvement. Based on each strategy, synthetic samples were prioritized according to their MDR detection. Expected improvement, upper confidence bound, and probability of improvement consistently produced synthetic microbiome candidates with significantly fewer searches than Thompson sampling. By combining deep latent space mapping and Bayesian learning for efficient guided screening, this study demonstrated the feasibility of creating bespoke synthetic microbiomes with customized MDR profiles.
Collapse
|
260
|
Cho JH, Chae CW, Lim JR, Jung YH, Han SJ, Yoon JH, Park JY, Han HJ. Sodium butyrate ameliorates high glucose-suppressed neuronal mitophagy by restoring PRKN expression via inhibiting the RELA-HDAC8 complex. Autophagy 2024; 20:1505-1522. [PMID: 38409852 PMCID: PMC11210903 DOI: 10.1080/15548627.2024.2323785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the PRKN promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Su Jong Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
261
|
Du S, Song Z, Cen Y, Fan J, Li P, Si H, Hu D. Susceptibility and cecal microbiota alteration to Eimeria-infection in Yellow-feathered broilers, Arbor Acres broilers and Lohmann pink layers. Poult Sci 2024; 103:103824. [PMID: 38772089 PMCID: PMC11131079 DOI: 10.1016/j.psj.2024.103824] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Coccidiosis, which is caused by Eimeria species, results in huge economic losses to the poultry industry. Arbor Acres (AA) broilers and yellow-feathered broilers are the dominant broilers in northern and southern China, respectively. However, their susceptibility to coccidiosis has not been fully compared. In this study, the susceptibility of yellow-feathered broilers, AA broilers and Lohmann pink layers to E. tenella was evaluated based on mortality rate, relative body weight gain rate, intestinal lesion score, oocyst output, anticoccidial index (ACI), and cecum weight and length. The yellow-feathered broilers were shown to produce significantly fewer oocysts with higher intestinal lesion score compared to AA broilers, which had the highest growth rates and ACI scores. Subsequently, changes in the cecal microbiota of the 3 chicken lines before and after high-dose infection (1 × 104 oocysts) with E. tenella were determined by 16S rRNA sequencing. The results showed that composition of the microbiota changed dramatically after infection. The abundance of Firmicutes and Bacteroidetes in the infected chickens decreased, and Proteobacteria increased significantly among the different chicken lines. At the genus level, Escherichia increased significantly in all 3 groups of infected chickens, but Lactobacillus decreased to 0% in the infected yellow-feathered broilers. The results of the study indicate that the susceptibility to E. tenella varies among the 3 chicken lines, and that changes in intestinal microbiota by E. tenella-infection among the different chicken lines had a similar trend, but to different degrees. This study provides basic knowledge of the susceptibility in the 3 chicken lines, which can be helpful for the control and prevention of coccidiosis.
Collapse
Affiliation(s)
- Shiqi Du
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhixuan Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yucan Cen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingzhi Fan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Peiyao Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
| |
Collapse
|
262
|
Wan L, Li T, Yao M, Zhang B, Zhang W, Zhang J. Linoelaidic acid gavage has more severe consequences on triglycerides accumulation, inflammation and intestinal microbiota in mice than elaidic acid. Food Chem X 2024; 22:101328. [PMID: 38576778 PMCID: PMC10992693 DOI: 10.1016/j.fochx.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
This work aims to study the effects of oral gavage (0.2 mg/g body weight) of elaidic acid (C18:1-9 t, EA) and linoelaidic acid (C18:2-9 t,12 t, LEA) on lipid metabolism, inflammation and gut homeostasis of mice. Results showed that both EA and LEA gavage significantly increased LDL-c, TC and oxidative stress levels in the liver and serum and may stimulate liver inflammation via NF-κB and MAPK signaling pathway. Compared with EA, LEA gavage significantly promoted TAG accumulation and inflammatory signaling. Serum lipidomics revealed that LEA intake significantly increased the concentration of ∼50 TAGs, while EA gavage primarily caused significant decreases in several SMs. 16S rRNA demonstrated that LEA ingestion markedly changed fecal microbiota by enriching Lactobacillus (phylum Firmicutes), however, EA treatment did not affect it. Overall, LEA gavage has more severe consequences on TAG accumulation, inflammation and microbial structure than EA, highlighting that the number of trans double bonds affects these processes.
Collapse
Affiliation(s)
- Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Tian Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Mengying Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
263
|
Idowu AP, Yamamoto K, Koizumi T, Matsutani M, Takada K, Shiwa Y, Asfaw A, Matsumoto R, Ouyabe M, Pachakkil B, Kikuno H, Shiwachi H. Changes in the rhizosphere and root-associated bacteria community of white Guinea yam ( Dioscorea rotundata Poir.) impacted by genotype and nitrogen fertilization. Heliyon 2024; 10:e33169. [PMID: 39021943 PMCID: PMC11252748 DOI: 10.1016/j.heliyon.2024.e33169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The bacterial diversity and composition of water yam (Dioscorea alata L. cv. A-19), which can grow without chemical fertilization, have recently been characterized with no significant differences compared with the use of chemical fertilization. However, the diversity and community structure of bacteria associated with the white Guinea yam (Dioscorea rotundata), the most cultivated and economically important yam in West Africa, have not yet been investigated. This study characterized the bacterial diversity and composition associated with bulk soil, rhizosphere, and plant roots in six white Guinea yam genotypes (S004, S020, S032, S042, S058, and S074) in field experiments in Ibadan, Nigeria under N-based chemical fertilizer application. The largest diversity of bacteria was found in the bulk soil, followed by the rhizosphere and roots. Based on the alpha diversity analysis, the bacterial diversity in both S020 and S042 increased with fertilizer application among the bulk soil samples. S058 grown under no-fertilizer conditions had the highest bacterial diversity among the rhizosphere samples. Beta diversity analysis highlighted the significant difference in the composition of bacteria associated with the genotypes and fertilizer treatments, and S032 had a unique bacterial composition compared to the other genotypes. The dominant phylum across all sample types was Proteobacteria. Actinobacteriota was the dominant phylum among bulk soil samples. At the genus level, Bacillus was the most abundant bacterial genus across both the control and treated samples. Pseudomonas was predominant across all rhizosphere samples. Chryseobacterium, Sphingobium, Delftia and Klebsiella associated with the rhizosphere were shown the altered relative abundance between the control and treated samples depending on genotypes. A genus related to symbiotic nitrogen-fixing bacteria, the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, showed higher relative abundance among all root samples, indicating that it is a core bacterial genus. Furthermore, the field application of chemical fertilizer had a significant impact on the relative abundances of two genera related to symbiotic nitrogen-fixers, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade and Bradyrhizobium in the rhizosphere and root. These results suggest that N-based chemical fertilizers and plant genotypes would influence the compositional arrangement of associated bacterial communities, including symbiotic nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Ayodeji Peter Idowu
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiko Koizumi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Kanako Takada
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), PMB 5320 Oyo Road Ibadan, Nigeria
| | - Ryo Matsumoto
- International Institute of Tropical Agriculture (IITA), PMB 5320 Oyo Road Ibadan, Nigeria
| | - Michel Ouyabe
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Babil Pachakkil
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Kikuno
- Miyako Subtropical Training and Research Farm, Tokyo University of Agriculture, Okinawa, Japan
| | - Hironobu Shiwachi
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
264
|
de Carvalho Alves J, de Souza CO, de Matos Santos L, Viana SNA, de Jesus Assis D, Tavares PPLG, Requião EDR, Ferro JMRBDS, Roselino MN. Licuri Kernel ( Syagrus coronata (Martius) Beccari): A Promising Matrix for the Development of Fermented Plant-Based Kefir Beverages. Foods 2024; 13:2056. [PMID: 38998561 PMCID: PMC11240999 DOI: 10.3390/foods13132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
New licuri-based kefir beverages were obtained using water kefir grains as fermentation inoculum (1, 2.5, and 5%) under different fermentation times (24 and 48 h). Metagenomic sequencing of the kefir grains adapted to the aqueous licuri extract revealed Lactobacillus hilgardii and Brettanomyces bruxellensis to be predominant in this inoculum. The excellent adaptation of the kefir grains to the licuri extract raised the possibility of prebiotic action of these almonds. The beverages showed acidity values between 0.33 ± 0.00 and 0.88 ± 0.00 mg lactic acid/100 mL and pH between 3.52 ± 0.01 and 4.29 ± 0.04. The viability of lactic acid bacteria in the fermented beverages was equal to or greater than 108 CFU/mL, while yeasts were between 104 and 105 CFU/mL. There were significant differences (p < 0.05) in the proximate composition of the formulations, especially in the protein (1.37 ± 0.33-2.16 ± 0.84) and carbohydrate (5.86 ± 0.19-11.51 ± 1.26) contents. In addition, all the samples showed good stability in terms of acidity, pH, and viability for LAB and yeasts during 28 days of storage (4 °C). Overall, the beverages showed a dominant yellow-green color, non-Newtonian pseudoplastic behavior, and high mean scores in the sensory evaluation. This study provided evidence of the emerging potential of licuri in the plant-based beverage industry.
Collapse
Affiliation(s)
- Janaína de Carvalho Alves
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
| | - Carolina Oliveira de Souza
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Livia de Matos Santos
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Suelen Neris Almeida Viana
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Denilson de Jesus Assis
- School of Exact and Technological Sciences, Salvador University, Av. Tancredo Neves, 2131, Salvador 41820-021, Brazil
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, R. Prof. Aristídes Novis, 2, Salvador 40210-630, Brazil
| | | | - Elis Dos Reis Requião
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | | | - Mariana Nougalli Roselino
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- Postgraduate Program in Microbiology (PPG-MICRO), Institute of Biology, Federal University of Bahia, R. Barão de Jeremoabo, 668, Salvador 40170-115, Brazil
| |
Collapse
|
265
|
Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, Davis BC, Zhang L, Vikesland PJ, Pruden A. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nat Commun 2024; 15:5412. [PMID: 38926391 PMCID: PMC11208604 DOI: 10.1038/s41467-024-49742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.
Collapse
Affiliation(s)
- Connor L Brown
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA
| | | | | | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, USA
| | | | - Benjamin C Davis
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, USA
| | - Liqing Zhang
- Dept. of Computer Science, Virginia Tech, Blacksburg, USA
| | - Peter J Vikesland
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| | - Amy Pruden
- Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
266
|
Ram Das A, Pillai N, Nanduri B, Rothrock MJ, Ramkumar M. Exploring Pathogen Presence Prediction in Pastured Poultry Farms through Transformer-Based Models and Attention Mechanism Explainability. Microorganisms 2024; 12:1274. [PMID: 39065042 PMCID: PMC11278766 DOI: 10.3390/microorganisms12071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we explore how transformer models, which are known for their attention mechanisms, can improve pathogen prediction in pastured poultry farming. By combining farm management practices with microbiome data, our model outperforms traditional prediction methods in terms of the F1 score-an evaluation metric for model performance-thus fulfilling an essential need in predictive microbiology. Additionally, the emphasis is on making our model's predictions explainable. We introduce a novel approach for identifying feature importance using the model's attention matrix and the PageRank algorithm, offering insights that enhance our comprehension of established techniques such as DeepLIFT. Our results showcase the efficacy of transformer models in pathogen prediction for food safety and mark a noteworthy contribution to the progress of explainable AI within the biomedical sciences. This study sheds light on the impact of effective farm management practices and highlights the importance of technological advancements in ensuring food safety.
Collapse
Affiliation(s)
- Athish Ram Das
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.D.); (B.N.)
| | - Nisha Pillai
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS 39762, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.D.); (B.N.)
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, USDA-ARS U.S. National Poultry Research Center, Athens, GA 30605, USA;
| | - Mahalingam Ramkumar
- Department of Computer Science and Engineering, Mississippi State University, Starkville, MS 39762, USA;
| |
Collapse
|
267
|
Lueschow-Guijosa SR, Stanford AH, Berger JN, Gong H, Boly TJ, Jensen BA, Nordkild P, Leegwater AJ, Wehkamp J, Underwood MA, McElroy SJ. Host defense peptides human β defensin 2 and LL-37 ameliorate murine necrotizing enterocolitis. iScience 2024; 27:109993. [PMID: 38846005 PMCID: PMC11154634 DOI: 10.1016/j.isci.2024.109993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of preterm infant morbidity and mortality. Treatment for NEC is limited and non-targeted, which makes new treatment and prevention strategies critical. Host defense peptides (HDPs) are essential components of the innate immune system and have multifactorial mechanisms in host defense. LL-37 and hBD2 are two HDPs that have been shown in prior literature to protect from neonatal sepsis-induced mortality or adult inflammatory bowel disease, respectively. Therefore, this article sought to understand if these two HDPs could influence NEC severity in murine preclinical models. NEC was induced in P14-16 C57Bl/6 mice and HDPs were provided as a pretreatment or treatment. Both LL-37 and hBD2 resulted in decreased NEC injury scores as a treatment and hBD2 as a pretreatment. Our data suggest LL-37 functions through antimicrobial properties, while hBD2 functions through decreases in inflammation and improvement of intestinal barrier integrity.
Collapse
Affiliation(s)
| | - Amy H. Stanford
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer N. Berger
- Department of Pediatrics, Children’s Minnesota, Minneapolis, MN 55404, USA
| | - Huiyu Gong
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy J. Boly
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin A.H. Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | | | | | - Jan Wehkamp
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Mark A. Underwood
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA
| | - Steven J. McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA
| |
Collapse
|
268
|
Miao J, Chen T, Misir M, Lin Y. Deep learning for predicting 16S rRNA gene copy number. Sci Rep 2024; 14:14282. [PMID: 38902329 PMCID: PMC11190246 DOI: 10.1038/s41598-024-64658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Culture-independent 16S rRNA gene metabarcoding is a commonly used method for microbiome profiling. To achieve more quantitative cell fraction estimates, it is important to account for the 16S rRNA gene copy number (hereafter 16S GCN) of different community members. Currently, there are several bioinformatic tools available to estimate the 16S GCN values, either based on taxonomy assignment or phylogeny. Here we present a novel approach ANNA16, Artificial Neural Network Approximator for 16S rRNA gene copy number, a deep learning-based method that estimates the 16S GCN values directly from the 16S gene sequence strings. Based on 27,579 16S rRNA gene sequences and gene copy number data from the rrnDB database, we show that ANNA16 outperforms the commonly used 16S GCN prediction algorithms. Interestingly, Shapley Additive exPlanations (SHAP) shows that ANNA16 can identify unexpected informative positions in 16S rRNA gene sequences without any prior phylogenetic knowledge, which suggests potential applications beyond 16S GCN prediction.
Collapse
Affiliation(s)
- Jiazheng Miao
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Tianlai Chen
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Mustafa Misir
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China.
| | - Yajuan Lin
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China.
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, USA.
| |
Collapse
|
269
|
Zhu B, Edwards DJ, Spaine KM, Edupuganti L, Matveyev A, Serrano MG, Buck GA. The association of maternal factors with the neonatal microbiota and health. Nat Commun 2024; 15:5260. [PMID: 38898021 PMCID: PMC11187136 DOI: 10.1038/s41467-024-49160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The human microbiome plays a crucial role in human health. However, the influence of maternal factors on the neonatal microbiota remains obscure. Herein, our observations suggest that the neonatal microbiotas, particularly the buccal microbiota, change rapidly within 24-48 h of birth but begin to stabilize by 48-72 h after parturition. Network analysis clustered over 200 maternal factors into thirteen distinct groups, and most associated factors were in the same group. Multiple maternal factor groups were associated with the neonatal buccal, rectal, and stool microbiotas. Particularly, a higher maternal inflammatory state and a lower maternal socioeconomic position were associated with a higher alpha diversity of the neonatal buccal microbiota and beta diversity of the neonatal stool microbiota was influenced by maternal diet and cesarean section by 24-72 h postpartum. The risk of admission of a neonate to the newborn intensive care unit was associated with preterm birth as well as higher cytokine levels and probably higher alpha diversity of the maternal buccal microbiota.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - David J Edwards
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Katherine M Spaine
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Andrey Matveyev
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Myrna G Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Gregory A Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Statistical Sciences and Operations Research, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Computer Science Department, College of Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Genomics Core, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
270
|
Kochumon S, Malik MZ, Sindhu S, Arefanian H, Jacob T, Bahman F, Nizam R, Hasan A, Thomas R, Al-Rashed F, Shenouda S, Wilson A, Albeloushi S, Almansour N, Alhamar G, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice. Nutrients 2024; 16:1929. [PMID: 38931284 PMCID: PMC11207001 DOI: 10.3390/nu16121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Shihab Kochumon
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Md. Zubbair Malik
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Sardar Sindhu
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Hossein Arefanian
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Texy Jacob
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatemah Bahman
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Amal Hasan
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Reeby Thomas
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatema Al-Rashed
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Steve Shenouda
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ajit Wilson
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Shaima Albeloushi
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Nourah Almansour
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ghadeer Alhamar
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ashraf Al Madhoun
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Thangavel Alphonse Thanaraj
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
| | - Fahd Al-Mulla
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheed Ahmad
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| |
Collapse
|
271
|
Hernández-Zulueta J, Rubio-Bueno S, Zamora-Tavares MDP, Vargas-Ponce O, Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA. Metabarcoding the Bacterial Assemblages Associated with Toxopneustes roseus in the Mexican Central Pacific. Microorganisms 2024; 12:1195. [PMID: 38930577 PMCID: PMC11205562 DOI: 10.3390/microorganisms12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Sharix Rubio-Bueno
- Programa de Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
| | - María del Pilar Zamora-Tavares
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Ofelia Vargas-Ponce
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Alma Paola Rodríguez-Troncoso
- Laboratorio de Ecología Marina, Centro Universitario de la Costa (CUCosta), Universidad de Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
272
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
273
|
Ren J, Ren Y, Mu Y, Zhang L, Chen B, Li S, Fang Q, Zhang Z, Zhang K, Li S, Liu W, Cui Y, Li X. Microbial imbalance in Chinese children with diarrhea or constipation. Sci Rep 2024; 14:13516. [PMID: 38866797 PMCID: PMC11169388 DOI: 10.1038/s41598-024-60683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
Diarrhea and constipation are common health concerns in children. Numerous studies have identified strong association between gut microbiota and digestive-related diseases. But little is known about the gut microbiota that simultaneously affects both diarrhea and constipation or their potential regulatory mechanisms. Stool samples from 618 children (66 diarrhea, 138 constipation, 414 healthy controls) aged 0-3 years were collected to investigate gut microbiota changes using 16S rRNA sequencing. Compared with healthy, children with diarrhea exhibited a significant decrease in microbial diversity, while those with constipation showed a marked increase (p < 0.05). Significantly, our results firstly Ruminococcus increased in constipation (p = 0.03) and decreased in diarrhea (p < 0.01) compared to healthy controls. Pathway analysis revealed that Ruminococcus highly involved in the regulation of five common pathways (membrane transport, nervous system, energy metabolism, signal transduction and endocrine system pathways) between diarrhea and constipation, suggesting a potential shared regulatory mechanism. Our finding firstly reveals one core microorganisms that may affect the steady balance of the gut in children with diarrhea or constipation, providing an important reference for potential diagnosis and treatment of constipation and diarrhea.
Collapse
Affiliation(s)
- Jing Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yi Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yu Mu
- Dr. Cuiyutao Healthcare Co., Ltd., Beijing, China
| | - Lanying Zhang
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China
| | - Binghan Chen
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Sisi Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Qinyi Fang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Zhiming Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Kejian Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Sabrina Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yutao Cui
- Dr. Cuiyutao Healthcare Co., Ltd., Beijing, China.
| | - Xu Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
| |
Collapse
|
274
|
Korneev A, Peshkova M, Koteneva P, Gundogdu A, Timashev P. Modulation of the skin and gut microbiome by psoriasis treatment: a comprehensive systematic review. Arch Dermatol Res 2024; 316:374. [PMID: 38850443 DOI: 10.1007/s00403-024-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.
Collapse
Affiliation(s)
- Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991.
| | - Maria Peshkova
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
| | - Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Design Center "Biofactory", Sechenov University, Moscow, Russia, 119991
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Metagenomics Laboratory, Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
275
|
Tarazi-Riess H, Shani-Levi C, Lesmes U. Heat-moisture and acid treatments can increase levels of resistant starch in arrowroot starch without adversely affecting its prebiotic activity in human colon microbiota. Food Funct 2024; 15:5813-5824. [PMID: 38747641 DOI: 10.1039/d4fo00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Carbohydrates are an important macronutrient whose processing and digestive fate can have numerous beneficial or adverse effects on consumer health. This study investigated the impact of heat-moisture treatments (HMT) and citric acid treatments (CAT) on arrowroot starch (ARS) with a focus on its physicochemical properties, digestibility, and influence on gut microbiota. The results revealed that HMT and CAT did not alter the colloidal characteristics of ARS but significantly affected the balance between amorphous and crystalline regions. Changes in thermal properties, morphology, and particle size were also observed. These can influence ARS shelf life and functional properties in various food applications. Furthermore, certain treatments in both processing methods increased the resistant starch (RS) content of ARS, with HMT for 16 hours at 80 °C and CAT with 0.6 M citric acid, resulting in the most pronounced effects. These changes coincided with reductions in rapidly digestible starch (RDS) levels and improvements in the ratio of slowly digestible starch (SDS) to RDS, which could potentially improve glycemic control. This study also examined the impact of processed ARS on colonic microbiota composition. It found that ARS-derived RS formed under HMT and CAT did not negatively affect the prebiotic potential of the RS fraction. Both treatments were associated with lowering the Firmicutes to Bacteroidetes ratio (F/B), a marker of gut health, and decreasing the relative abundance of Proteobacteria, microbes associated with adverse health effects. Additionally, CAT-derived RS showed a significant increase in the relative abundance of Roseburia, a beneficial gut bacterium. In conclusion, processing ARS through HMT and CAT techniques has the potential for enhancing its RS content, improving its glycemic impact, and positively influencing the gut microbiota composition, potentially contributing to gut health and metabolic well-being.
Collapse
Affiliation(s)
- Hila Tarazi-Riess
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Carmit Shani-Levi
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Uri Lesmes
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
276
|
Jiang Y, McDonald D, Perry D, Knight R, Mirarab S. Scaling DEPP phylogenetic placement to ultra-large reference trees: a tree-aware ensemble approach. Bioinformatics 2024; 40:btae361. [PMID: 38870525 PMCID: PMC11193062 DOI: 10.1093/bioinformatics/btae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 04/09/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
MOTIVATION Phylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify the content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone tree, making it crucial that placement methods scale to very large trees. Moreover, a new paradigm has been recently proposed to place sequences on the species tree using single-gene data. The goal is to better characterize the samples and to enable combined analyses of marker-gene (e.g., 16S rRNA gene amplicon) and genome-wide data. The recent method DEPP enables performing such analyses using metric learning. However, metric learning is hampered by a need to compute and save a quadratically growing matrix of pairwise distances during training. Thus, the training phase of DEPP does not scale to more than roughly 10 000 backbone species, a problem that we faced when trying to use our recently released Greengenes2 (GG2) reference tree containing 331 270 species. RESULTS This paper explores divide-and-conquer for training ensembles of DEPP models, culminating in a method called C-DEPP. While divide-and-conquer has been extensively used in phylogenetics, applying divide-and-conquer to data-hungry machine-learning methods needs nuance. C-DEPP uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP enables placing 20 million 16S fragments on the GG2 reference tree in 41 h of computation. AVAILABILITY AND IMPLEMENTATION The dataset and C-DEPP software are freely available at https://github.com/yueyujiang/dataset_cdepp/.
Collapse
Affiliation(s)
- Yueyu Jiang
- Electrical and Computer Engineering Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Daniel McDonald
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Daniela Perry
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Rob Knight
- Pediatrics Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| |
Collapse
|
277
|
Campello-Nunes PH, da Silva-Neto ID, da S Paiva T, Soares CAG, Fernandes NM. Ciliate diversity in rodrigo de freitas lagoon (Rio de Janeiro, Brazil) from an integrative standpoint. Braz J Microbiol 2024; 55:1489-1505. [PMID: 38401009 PMCID: PMC11153468 DOI: 10.1007/s42770-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/18/2024] [Indexed: 02/26/2024] Open
Abstract
The Rodrigo de Freitas Lagoon is a highly eutrophic lacustrine system and has one of the longest histories of exploration and anthropic alteration in Brazil. Despite its relevance, limited studies explored the diversity of micro-eukaryotes in the lagoon. Ciliates (Alveolata, Ciliophora) are overlooked in environmental microbiology, especially in tropical and subtropical ecosystems, resulting in limited knowledge about their diversity and functional relevance in South American habitats, particularly in coastal lagoons. To fill this gap, here we investigated the diversity of ciliates in a brackish coastal lagoon in an urban area of Rio de Janeiro, Brazil, applying and comparing the performance of morphological and metabarcoding approaches. The metabarcoding analysis, based on high-throughput sequencing of the hipervariable region V4 of the 18S rRNA genes detected 37 molecular operational taxonomic units (MOTUs) assigned to Ciliophora, representing only about a half (56.9%) of the diversity detected by microscopy, which counted 65 ciliate morphotypes. The most representative classes in both approaches were Spirotrichea and Oligohymenophorea. The metabarcoding analysis revealed that 35.3% of the ciliate MOTUs had less than 97% similarity to available sequences in the NCBI database, indicating that more than one-third of these MOTUs potentially represents still not represented or undescribed ciliate species in current databases. Our findings indicate that metabarcoding techniques can significantly enhance the comprehension of ciliate diversity in tropical environments, but the scarcity of reference sequences of brackish ciliates in molecular databases represents a challenge to the taxonomic assignment of the MOTUs. This study provides new insights into the diversity of ciliates in a threatened coastal lagoon, revealing a vast array of still unknown and rare ciliate taxonomic units in tropical environments.
Collapse
Affiliation(s)
- Pedro H Campello-Nunes
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Inácio D da Silva-Neto
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thiago da S Paiva
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos A G Soares
- Laboratório de Genética Molecular de Eucariontes E Simbiontes, Departamento de Genética, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Noemi M Fernandes
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
278
|
Sato Y, Hasemi K, Machikawa K, Kinjo H, Yashiro N, Iimura Y, Aoki H, Habe H. Assessing microbial stability and predicting biogas production in full-scale thermophilic dry methane fermentation of municipal solid waste. BIORESOURCE TECHNOLOGY 2024; 402:130766. [PMID: 38692378 DOI: 10.1016/j.biortech.2024.130766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Compared to typical anaerobic digestion processes, little is known about both sludge microbial compositions and biogas production models for full-scale dry methane fermentation treating municipal solid waste (MSW). The anaerobic sludge composed of one major hydrogenotrophic methanogen (Methanoculleus) and syntrophic acetate oxidizing bacteria (e.g., Caldicoprobacter), besides enrichment of MSW degraders such as Clostridia. The core population remained phylogenetically unchanged during the fermentation process, regardless of amounts of MSW supplied (∼35 ton/d) or biogas produced (∼12000 Nm3/d). Based on the correlations observed between feed amounts of MSW from 6 days in advance to the current day and biogas output (the strongest correlation: r = 0.77), the best multiple linear regression (MLR) model incorporating the temperature factor was developed with a good prediction for validation data (R2 = 0.975). The proposed simple MLR method with only data on the feedstock amounts will help decision-making processes to prevent low-efficient biogas production.
Collapse
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kentaro Hasemi
- Kagawa Prefectural Industrial Technology Center, 587-1 Goto-cho, Takamatsu, Kagawa 761-8031, Japan
| | - Kazunori Machikawa
- Fuji Clean Corporation, Ltd., 2994-1 Yamadashimo, Ayagawacho, Ayauta, Kagawa 761-2204, Japan
| | - Hisato Kinjo
- Fuji Clean Corporation, Ltd., 2994-1 Yamadashimo, Ayagawacho, Ayauta, Kagawa 761-2204, Japan
| | - Naohisa Yashiro
- Fuji Clean Corporation, Ltd., 2994-1 Yamadashimo, Ayagawacho, Ayauta, Kagawa 761-2204, Japan
| | - Yosuke Iimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| |
Collapse
|
279
|
McCauley KE, Durack J, Lynch KV, Fadrosh DW, Fujimura KE, Vundla F, Özçam M, LeBeau P, Caltroni A, Burns P, Tran HT, Bacharier LB, Kattan M, O'Connor GT, Wood RA, Togias A, Boushey HA, Jackson DJ, Gern JE, Lynch SV. Early-life nasal microbiota dynamics relate to longitudinal respiratory phenotypes in urban children. J Allergy Clin Immunol 2024; 153:1563-1573. [PMID: 38423369 PMCID: PMC11162315 DOI: 10.1016/j.jaci.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.
Collapse
Affiliation(s)
- Kathryn E McCauley
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Juliana Durack
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Kole V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Douglas W Fadrosh
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Kei E Fujimura
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Faith Vundla
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | | | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St Louis, St Louis, Mo
| | - Meyer Kattan
- Department of Pediatrics, Columbia University, New York, NY
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Robert A Wood
- Departments of Pediatrics and Allergy and Immunology, Johns Hopkins University, Baltimore, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Homer A Boushey
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
280
|
Di Cesare A, Sathicq MB, Sbaffi T, Sabatino R, Manca D, Breider F, Coudret S, Pinnell LJ, Turner JW, Corno G. Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. MARINE POLLUTION BULLETIN 2024; 203:116495. [PMID: 38759465 DOI: 10.1016/j.marpolbul.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Maria Belen Sathicq
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) CONICET-UNLP, Bv. 120 y 62 n1437, La Plata, Buenos Aires, Argentina
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Dario Manca
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Sylvain Coudret
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
281
|
Agustinho DP, Fu Y, Menon VK, Metcalf GA, Treangen TJ, Sedlazeck FJ. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat Methods 2024; 21:954-966. [PMID: 38689099 PMCID: PMC11955098 DOI: 10.1038/s41592-024-02262-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Long-read sequencing has recently transformed metagenomics, enhancing strain-level pathogen characterization, enabling accurate and complete metagenome-assembled genomes, and improving microbiome taxonomic classification and profiling. These advancements are not only due to improvements in sequencing accuracy, but also happening across rapidly changing analysis methods. In this Review, we explore long-read sequencing's profound impact on metagenomics, focusing on computational pipelines for genome assembly, taxonomic characterization and variant detection, to summarize recent advancements in the field and provide an overview of available analytical methods to fully leverage long reads. We provide insights into the advantages and disadvantages of long reads over short reads and their evolution from the early days of long-read sequencing to their recent impact on metagenomics and clinical diagnostics. We further point out remaining challenges for the field such as the integration of methylation signals in sub-strain analysis and the lack of benchmarks.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Vipin K Menon
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
- Senior research project manager, Human Genetics, Genentech, South San Francisco, CA, USA
| | - Ginger A Metcalf
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
282
|
He M, Liu A, Shi J, Xu YJ, Liu Y. Multi-Omics Reveals the Effects of Cannabidiol on Gut Microbiota and Metabolic Phenotypes. Cannabis Cannabinoid Res 2024; 9:714-727. [PMID: 37098174 DOI: 10.1089/can.2022.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has important pharmacological activity, which includes antispasmodic, antioxidant, antithrombotic, and antianxiety properties. CBD has been applied as a health supplement to atherosclerosis. However, CBDs effect on gut microbiota and metabolic phenotype is unclear. Materials and Methods: We constructed a high production of cardiovascular risk factors, such as trimethylamine-N-oxide (TMAO) and phenylacetylglutamine (PAGln), in a mouse model using Clostridium sporogenes colonization. We used 16S ribosomal RNA (rRNA) gene sequencing and ultra-high performance liquid chromatography-quadrupole time-of flight mass spectrometry-based metabolomics to evaluate the effect of CBD on gut microbiota and plasma metabolites. Results: CBD decreased the levels of creatine kinase (CK), alanine transaminase (ALT), and low-density lipoprotein cholesterol and markedly increased high-density lipoprotein cholesterol. Furthermore, CBD treatment increased the abundance of beneficial bacteria, which include Lachnospiraceae_NK4A136 and Blautia in the gut, but it decreased the levels of TMAO and PAGln in the plasma. Conclusion: CBD might have beneficial effects for cardiovascular protection.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Aiyang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
283
|
Wang D, Li K, Wang L, Teng Z, Luo X, Sun H, Huang Y, Hu S, Xu X, He Z. Dissecting and tracing the gut microbiota of infants with botulism: a cross sectional and longitudinal study. Front Microbiol 2024; 15:1416879. [PMID: 38881667 PMCID: PMC11176563 DOI: 10.3389/fmicb.2024.1416879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Background Infant botulism is caused by botulinum neurotoxin (BoNT), which is mainly produced by Clostridium botulinum. However, there is a lack of longitudinal cohort studies on infant botulism. Herein, we have constructed a cross-sectional and longitudinal cohort of infants infected with C. botulinum. Our goal was to reveal the differences in the intestinal microbiota of botulism-infected and healthy infants as well as the dynamic changes over time through multi-omics analysis. Methods We performed 16S rRNA sequencing of 20 infants' stools over a period of 3 months and conducted whole genome sequencing of isolated C. botulinum strains from these laboratory-confirmed cases of infant botulism. Through bioinformatics analysis, we focused on the changes in the infants' intestinal microbiota as well as function over time series. Results We found that Enterococcus was significantly enriched in the infected group and declined over time, whereas Bifidobacterium was significantly enriched in the healthy group and gradually increased over time. 18/20 isolates carried the type B 2 botulinum toxin gene with identical sequences. In silico Multilocus sequence typing found that 20\u00B0C. botulinum isolates from the patients were typed into ST31 and ST32. Conclusion Differences in intestinal microbiota and functions in infants were found with botulism through cross-sectional and longitudinal studies and Bifidobacterium may play a role in the recovery of infected infants.
Collapse
Affiliation(s)
- Dai Wang
- Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen Women and Children's Hospital, Department of Pathology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Kexin Li
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lijuan Wang
- Pediatric Intensive Care Unit, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zhongqiu Teng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuefang Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases and National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| |
Collapse
|
284
|
Ahmed O, Boucher C, Langmead B. Cliffy: robust 16S rRNA classification based on a compressed LCA index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595899. [PMID: 38854039 PMCID: PMC11160684 DOI: 10.1101/2024.05.25.595899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Taxonomic sequence classification is a computational problem central to the study of metagenomics and evolution. Advances in compressed indexing with the r -index enable full-text pattern matching against large sequence collections. But the data structures that link pattern sequences to their clades of origin still do not scale well to large collections. Previous work proposed the document array profiles, which use 𝒪 ( rd ) words of space where r is the number of maximal-equal letter runs in the Burrows-Wheeler transform and d is the number of distinct genomes. The linear dependence on d is limiting, since real taxonomies can easily contain 10,000s of leaves or more. We propose a method called cliff compression that reduces this size by a large factor, over 250x when indexing the SILVA 16S rRNA gene database. This method uses Θ( r log d ) words of space in expectation under a random model we propose here. We implemented these ideas in an open source tool called Cliffy that performs efficient taxonomic classification of sequencing reads with respect to a compressed taxonomic index. When applied to simulated 16S rRNA reads, Cliffy's read-level accuracy is higher than Kraken2's by 11-18%. Clade abundances are also more accurately predicted by Cliffy compared to Kraken2 and Bracken. Overall, Cliffy is a fast and space-economical extension to compressed full-text indexes, enabling them to perform fast and accurate taxonomic classification queries. 2012 ACM Subject Classification Applied computing → Computational genomics.
Collapse
|
285
|
Lee J, Kim H, Park JS. Beyond the Bile: Exploring the Microbiome and Metabolites in Cholangiocarcinoma. Life (Basel) 2024; 14:698. [PMID: 38929681 PMCID: PMC11204422 DOI: 10.3390/life14060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Cholangiocarcinoma (CCC) still has a high mortality rate despite improvements in diagnostic and therapeutic techniques. The role of the human microbiome in CCC is poorly understood, and a recent metagenomic analysis demonstrated a significant correlation between microbiome-associated carcinogenesis and CCC. This study aimed to investigate changes in microbiome composition associated with CCC and its metabolic signature by integrating taxonomic and functional information with metabolomics data and in vitro experimental results. METHODS From February 2019 to January 2021, this study included patients who underwent endoscopic retrograde cholangiopancreatography (ERCP), both with and without a diagnosis of CCC. Bile samples were collected via endoscopic nasobiliary drainages (ENBD) and subjected to DNA extraction, PCR amplification of the bacterial 16S rRNA gene V3-V4 region, and data analysis using QIIME2. In vitro Carboxyfluorescein succinimidyl ester (CFSE) proliferation and Annexin V/PI apoptosis assays were performed to investigate the effects of metabolites on CCC cells. RESULTS A total of 24 patients were included in the study. Bile fluid analysis revealed a significantly higher abundance of Escherichia coli in the CCC group. Alpha diversity analyses exhibited significant differences between the CCC and non-CCC groups, and Nuclear Magnetic Resonance (NMR) spectroscopy metabolic profiling identified 15 metabolites with significant concentration differences; isoleucine showed the most notable difference. In vitro experiments demonstrated that isoleucine suppressed CCC cell proliferation but did not induce apoptosis. CONCLUSIONS This research underlines the significance of biliary dysbiosis and specific bile metabolites, such as isoleucine, in influencing the development and progression of CCC.
Collapse
Affiliation(s)
- Jungnam Lee
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea; (J.L.); (H.K.)
| | - Hanul Kim
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea; (J.L.); (H.K.)
| | - Jin-Seok Park
- Department of Internal Medicine, Shihwa Medical Center, Siheung 15034, Republic of Korea
| |
Collapse
|
286
|
Figueiredo CC, Monteiro HF, Cunha F, Bisinotto DZ, Ruiz AR, Duarte GA, Ge Y, Lima FS, Mohamadzadeh M, Galvão KN, Bisinotto RS. Shifts in uterine microbiome associated with pregnancy outcomes at first insemination and clinical cure in dairy cows with metritis. Sci Rep 2024; 14:11864. [PMID: 38789554 PMCID: PMC11126406 DOI: 10.1038/s41598-024-61704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Objectives were to assess differences in uterine microbiome associated with clinical cure and pregnancy outcomes in dairy cows treated for metritis. Cows with metritis (reddish-brownish, watery, and fetid vaginal discharge) were paired with cows without metritis based on parity and days postpartum. Uterine contents were collected through transcervical lavage at diagnosis, five days later following antimicrobial therapy (day 5), and at 40 days postpartum. Uterine microbiome was assessed by sequencing the V4 hypervariable region of the 16S rRNA gene. Although alpha-diversity based on Chao1, Shannon, and inverse Simpson indexes at diagnosis did not differ between cows with and without metritis, disease was associated with differences in beta-diversity. Prevalence of Porphyromonas, Bacteroides, and Veillonella was greater in cows with metritis. Streptococcus, Sphingomonas, and Ureaplasma were more prevalent in cows without metritis. Differences in beta-diversity between cows with and without metritis persisted on day 5. Uterine microbiome was not associated with clinical cure. Richness and alpha-diversity, but not beta-diversity, of uterine microbiome 40 days postpartum were associated with metritis and pregnancy. No relationship between uterine microbiome and pregnancy outcomes was observed. Results indicate that factors other than changes in intrauterine bacterial community underlie fertility loss and clinical cure in cows with metritis.
Collapse
Affiliation(s)
- Caio C Figueiredo
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, 99164, USA
| | - Hugo F Monteiro
- Department of Population Health and Reproduction, University of California, Davis, 95616, USA
| | - Federico Cunha
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA
| | - Danilo Z Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA
| | - Angel Revilla Ruiz
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | - Gustavo A Duarte
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, 78229, USA
| | - Fábio S Lima
- Department of Population Health and Reproduction, University of California, Davis, 95616, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, 78229, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA
| | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
287
|
Wang Y, Zou Q. Deciphering Microbial Adaptation in the Rhizosphere: Insights into Niche Preference, Functional Profiles, and Cross-Kingdom Co-occurrences. MICROBIAL ECOLOGY 2024; 87:74. [PMID: 38771320 PMCID: PMC11108897 DOI: 10.1007/s00248-024-02390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Rhizosphere microbial communities are to be as critical factors for plant growth and vitality, and their adaptive differentiation strategies have received increasing amounts of attention but are poorly understood. In this study, we obtained bacterial and fungal amplicon sequences from the rhizosphere and bulk soils of various ecosystems to investigate the potential mechanisms of microbial adaptation to the rhizosphere environment. Our focus encompasses three aspects: niche preference, functional profiles, and cross-kingdom co-occurrence patterns. Our findings revealed a correlation between niche similarity and nucleotide distance, suggesting that niche adaptation explains nucleotide variation among some closely related amplicon sequence variants (ASVs). Furthermore, biological macromolecule metabolism and communication among abundant bacteria increase in the rhizosphere conditions, suggesting that bacterial function is trait-mediated in terms of fitness in new habitats. Additionally, our analysis of cross-kingdom networks revealed that fungi act as intermediaries that facilitate connections between bacteria, indicating that microbes can modify their cooperative relationships to adapt. Overall, the evidence for rhizosphere microbial community adaptation, via differences in gene and functional and co-occurrence patterns, elucidates the adaptive benefits of genetic and functional flexibility of the rhizosphere microbiota through niche shifts.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
288
|
Wei Y, Yu W, Zhang Z, Liu S, Xue J, Wu C, Gao Z, Guo S. Comparative analysis of oropharyngeal microbiota in healthcare workers post-COVID-19. Front Cell Infect Microbiol 2024; 14:1347345. [PMID: 38828262 PMCID: PMC11140064 DOI: 10.3389/fcimb.2024.1347345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Background To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.
Collapse
Affiliation(s)
- Yue Wei
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Zhixia Zhang
- Nursing Department, Linfen Central Hospital, Shanxi, China
| | - Siqin Liu
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Chunyan Wu
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
- Institute of Chest and Lung Diseases, Shanxi Medical University, Linfen, Shanxi, China
| | - Shuming Guo
- Nursing of school, Shanxi Medical University, Taiyuan, Shanxi, China
- Nursing Department, Linfen Central Hospital, Shanxi, China
| |
Collapse
|
289
|
Zhang L, Lin TY, Liu WT, Ling F. Toward Characterizing Environmental Sources of Non-tuberculous Mycobacteria (NTM) at the Species Level: A Tutorial Review of NTM Phylogeny and Phylogenetic Classification. ACS ENVIRONMENTAL AU 2024; 4:127-141. [PMID: 38765059 PMCID: PMC11100324 DOI: 10.1021/acsenvironau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024]
Abstract
Nontuberculous mycobacteria (NTM) are any mycobacteria that do not cause tuberculosis or leprosy. While the majority of NTM are harmless and some of them are considered probiotic, a growing number of people are being diagnosed with NTM infections. Therefore, their detection in the environment is of interest to clinicians, environmental microbiologists, and water quality researchers alike. This review provides a tutorial on the foundational approaches for taxonomic classifications, with a focus on the phylogenetic relationships among NTM revealed by the 16S rRNA gene, rpoB gene, and hsp65 gene, and by genome-based approaches. Recent updates on the Mycobacterium genus taxonomy are also provided. A synthesis on the habitats of 189 mycobacterial species in a genome-based taxonomy framework was performed, with attention paid to environmental sources (e.g., drinking water, aquatic environments, and soil). The 16S rRNA gene-based classification accuracy for various regions was evaluated (V3, V3-V4, V3-V5, V4, V4-V5, and V1-V9), revealing overall excellent genus-level classification (up to 100% accuracy) yet only modest performance (up to 63.5% accuracy) at the species level. Future research quantifying NTM species in water systems, determining the effects of water treatment and plumbing conditions on their variations, developing high throughput species-level characterization tools for use in the environment, and incorporating the characterization of functions in a phylogenetic framework will likely fill critical knowledge gaps. We believe this tutorial will be useful for researchers new to the field of molecular or genome-based taxonomic profiling of environmental microbiomes. Experts may also find this review useful in terms of the selected key findings of the past 30 years, recent updates on phylogenomic analyses, as well as a synthesis of the ecology of NTM in a phylogenetic framework.
Collapse
Affiliation(s)
- Lin Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tzu-Yu Lin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
290
|
Bel Mokhtar N, Asimakis E, Galiatsatos I, Maurady A, Stathopoulou P, Tsiamis G. Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis. Curr Issues Mol Biol 2024; 46:4803-4814. [PMID: 38785557 PMCID: PMC11120546 DOI: 10.3390/cimb46050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Over the last decades, the analysis of complex microbial communities by high-throughput sequencing of marker gene amplicons has become routine work for many research groups. However, the main challenges faced by scientists who want to make use of the generated sequencing datasets are the lack of expertise to select a suitable pipeline and the need for bioinformatics or programming skills to apply it. Here, we present MetaXplore, an interactive, user-friendly platform that enables the discovery and visualization of amplicon sequencing data. Currently, it provides a set of well-documented choices for downstream analysis, including alpha and beta diversity analysis, taxonomic composition, differential abundance analysis, identification of the core microbiome within a population, and biomarker analysis. These features are presented in a user-friendly format that facilitates easy customization and the generation of publication-quality graphics. MetaXplore is implemented entirely in the R language using the Shiny framework. It can be easily used locally on any system with R installed, including Windows, Mac OS, and most Linux distributions, or remotely via a web server without bioinformatic expertise. It can also be used as a framework for advanced users who can modify and expand the tool.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tanger 93000, Morocco;
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| |
Collapse
|
291
|
Parra M, Aldabaldetrecu M, Arce P, Soto-Aguilera S, Vargas R, Guerrero J, Tello M, Modak B. Oral administration of a new copper (I) complex with coumarin as ligand: modulation of the immune response and the composition of the intestinal microbiota in Onchorhynchus mykiss. Front Chem 2024; 12:1338614. [PMID: 38807978 PMCID: PMC11131136 DOI: 10.3389/fchem.2024.1338614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.
Collapse
Affiliation(s)
- Mick Parra
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Maialen Aldabaldetrecu
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Pablo Arce
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Sarita Soto-Aguilera
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Rodrigo Vargas
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
- Aquaculture Production Unit, Universidad de Los Lagos, Osorno, Chile
| | - Juan Guerrero
- Laboratory of Coordination Compounds and Supramolecularity, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Mario Tello
- Laboratory of Bacterial Metagenomic, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Laboratory of Natural Products Chemistry, Centre of Aquatic Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| |
Collapse
|
292
|
Harris JR, Zoccoli-Rodriguez V, Delaney MS, Cruz TN, Gaudette BT, Wilmore JR. Gut commensals require Peyer's patches to induce protective systemic IgA responses. RESEARCH SQUARE 2024:rs.3.rs-4220532. [PMID: 38798510 PMCID: PMC11118714 DOI: 10.21203/rs.3.rs-4220532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Gut educated IgA secreting plasma cells that disseminate beyond the mucosa and into systemic tissues have been described as providing beneficial effects from disease in several contexts. Several bacteria have been implicated in the induction of systemic IgA, however the mechanisms that result in differential levels of induction by each bacterial species are still unknown. Here we show, the commensal bacteria, Bacteroides fragilis (Bf), is an efficient inducer of systemic IgA responses. The ability of Bf to induce the production of bone marrow IgA plasma cells and high levels of serum IgA relied on high levels of gut colonization in a dose-dependent manner. Colonization induced Bf-specific IgA responses were severely diminished in the absence of Peyer's patches, but not the murine cecal patch. Colonization of mice with Bf, a natural human commensal, resulted in few changes within the microbiome and the host transcriptional profile in the gut, suggesting a commensal relationship with the host. Bf colonization did benefit the mice by inducing systemic IgA that led to increased protection in a bowel perforation model resulting in lower peritoneal abscess formation. These findings demonstrate a critical role for bacterial colonization and Peyer's patches in the induction of robust systemic IgA responses that confer protection from bacterial dissemination outside of the gut.
Collapse
Affiliation(s)
- Joshua R. Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | | | - Mara S. Delaney
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Tania N. Cruz
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Brian T. Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joel R. Wilmore
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
- Sepsis Interdisciplinary Research Center, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
293
|
Mazorra-Alonso M, Peralta-Sánchez JM, Martín-Vivaldi M, Martínez-Bueno M, Gómez RN, Soler JJ. Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes. Anim Microbiome 2024; 6:26. [PMID: 38725090 PMCID: PMC11084096 DOI: 10.1186/s42523-024-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions. RESULTS Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success. CONCLUSIONS These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | | | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Rafael Núñez Gómez
- Servicio de Instrumentación Científica, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain.
| |
Collapse
|
294
|
Zeng MH, Li S, Lv QB, Wang XX, Qadeer A, Mahmoud MH. Modulation of the rat intestinal microbiota in the course of Anisakis pegreffii infection. Front Vet Sci 2024; 11:1403920. [PMID: 38784661 PMCID: PMC11111928 DOI: 10.3389/fvets.2024.1403920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Background Anisakis are globally distributed, marine parasitic nematodes that can cause human health problems, including symptoms such as vomiting, acute diarrhea, and allergic reactions. As parasitic nematodes that primarily affect the patient's digestive tract, intestinal helminths can interact directly with the host microbiota through physical contact, chemicals, or nutrient competition. It is widely accepted that the host microbiota plays a crucial role in the regulation of immunity. Materials and methods Nematodes collected from the abdominal cavity of marine fish were identified by molecular biology and live worms were artificially infected in rats. Infection was determined by indirect ELISA based on rat serum and worm extraction. Feces were collected for 16S rDNA-based analysis of microbiota diversity. Results Molecular biology identification based on ITS sequences identified the collected nematodes as A. pegreffii. The success of the artificial infection was determined by indirect ELISA based on serum and worm extraction from artificially infected rats. Microbiota diversity analysis showed that a total of 773 ASVs were generated, and PCoA showed that the infected group was differentiated from the control group. The control group contained five characterized genera (Prevotellaceae NK3B31 group, Turicibacter, Clostridium sensu stricto 1, Candidatus Stoquefichus, Lachnospira) and the infected group contained nine characterized genera (Rodentibacter, Christensenella, Dubosiella, Streptococcus, Anaeroplasma, Lactococcus, Papillibacter, Desulfovibrio, Roseburia). Based on the Wilcoxon test, four processes were found to be significant: bacterial secretion system, bacterial invasion of epithelial cells, bacterial chemotaxis, and ABC transporters. Conclusion This study is the first to analyze the diversity of the intestinal microbiota of rats infected with A. pegreffii and to determine the damage and regulation of metabolism and immunity caused by the infection in the rat gut. The findings provide a basis for further research on host-helminth-microbe correlationships.
Collapse
Affiliation(s)
- Min-hao Zeng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shan Li
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Qing-bo Lv
- Key Laboratory of Zoonosis Research, Institute of Zoonosis, College of Veterinary Medicine, Ministry of Education, Jilin University, Changchun, China
| | - Xiao-xu Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
295
|
Scanu M, Toto F, Petito V, Masi L, Fidaleo M, Puca P, Baldelli V, Reddel S, Vernocchi P, Pani G, Putignani L, Scaldaferri F, Del Chierico F. An integrative multi-omic analysis defines gut microbiota, mycobiota, and metabolic fingerprints in ulcerative colitis patients. Front Cell Infect Microbiol 2024; 14:1366192. [PMID: 38779566 PMCID: PMC11109417 DOI: 10.3389/fcimb.2024.1366192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches. Methods The 16S rRNA- and ITS2-based metataxonomics and gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis. Results In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions. Conclusion In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.
Collapse
Affiliation(s)
- Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Toto
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina Petito
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Letizia Masi
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- CNIS Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, Rome, Italy
| | - Pierluigi Puca
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valerio Baldelli
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovambattista Pani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Research Area of Immunology, Rheumatology and Infectious Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Scaldaferri
- Dipartimento di Scienze Mediche e Chirurgiche, Unità Operativa Semplice di Malattie Infiammatorie Croniche Intestinali, CEMAD, Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
296
|
Balaban M, Jiang Y, Zhu Q, McDonald D, Knight R, Mirarab S. Generation of accurate, expandable phylogenomic trees with uDance. Nat Biotechnol 2024; 42:768-777. [PMID: 37500914 PMCID: PMC10818028 DOI: 10.1038/s41587-023-01868-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Phylogenetic trees provide a framework for organizing evolutionary histories across the tree of life and aid downstream comparative analyses such as metagenomic identification. Methods that rely on single-marker genes such as 16S rRNA have produced trees of limited accuracy with hundreds of thousands of organisms, whereas methods that use genome-wide data are not scalable to large numbers of genomes. We introduce updating trees using divide-and-conquer (uDance), a method that enables updatable genome-wide inference using a divide-and-conquer strategy that refines different parts of the tree independently and can build off of existing trees, with high accuracy and scalability. With uDance, we infer a species tree of roughly 200,000 genomes using 387 marker genes, totaling 42.5 billion amino acid residues.
Collapse
Affiliation(s)
- Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Yueyu Jiang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
297
|
Ramkissoon NK, Macey MC, Kucukkilic-Stephens E, Barton T, Steele A, Johnson DN, Stephens BP, Schwenzer SP, Pearson VK, Olsson-Francis K. Experimental Identification of Potential Martian Biosignatures in Open and Closed Systems. ASTROBIOLOGY 2024; 24:538-558. [PMID: 38648554 DOI: 10.1089/ast.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
Collapse
Affiliation(s)
| | - Michael C Macey
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | - Timothy Barton
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - David N Johnson
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Ben P Stephens
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
298
|
Trecarten S, Fongang B, Liss M. Current Trends and Challenges of Microbiome Research in Prostate Cancer. Curr Oncol Rep 2024; 26:477-487. [PMID: 38573440 DOI: 10.1007/s11912-024-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW The role of the gut microbiome in prostate cancer is an emerging area of research interest. However, no single causative organism has yet been identified. The goal of this paper is to examine the role of the microbiome in prostate cancer and summarize the challenges relating to methodology in specimen collection, sequencing technology, and interpretation of results. RECENT FINDINGS Significant heterogeneity still exists in methodology for stool sampling/storage, preservative options, DNA extraction, and sequencing database selection/in silico processing. Debate persists over primer choice in amplicon sequencing as well as optimal methods for data normalization. Statistical methods for longitudinal microbiome analysis continue to undergo refinement. While standardization of methodology may help yield more consistent results for organism identification in prostate cancer, this is a difficult task due to considerable procedural variation at each step in the process. Further reproducibility and methodology research is required.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Michael Liss
- Department of Urology, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
299
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. WATER RESEARCH 2024; 254:121408. [PMID: 38442607 DOI: 10.1016/j.watres.2024.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Free-living (FL) and particulate-associated (PA) communities are distinct bacterioplankton lifestyles with different mobility and dissemination routes. Understanding spatio-temporal dynamics of PA and FL fractions will allow improvement to wastewater treatment processes including pathogen and AMR bacteria removal. In this study, PA, FL and sediment community composition and antimicrobial resistance gene (ARG; tetW, ermB, sul1, intI1) dynamics were investigated in a full-scale municipal wastewater free-water surface polishing constructed wetland. Taxonomic composition of PA and FL microbial communities shifted towards less diverse communities (Shannon, Chao1) at the CW effluent but retained a distinct fraction-specific composition. Wastewater treatment plant derived PA communities introduced the bulk of AMR load (70 %) into the CW. However, the FL fraction was responsible for exporting over 60 % of the effluent AMR load given its high mobility and the effective immobilization (1-3 log removal) of PA communities. Strong correlations (r2>0.8, p < 0.05) were observed between the FL fraction, tetW and emrB dynamics, and amplicon sequence variants (ASVs) of potentially pathogenic taxa, including Bacteroides, Enterobacteriaceae, Aeromonadaceae, and Lachnospiraceae. This study reveals niche differentiation of microbial communities and associated AMR in CWs and shows that free-living bacteria are a primary escape route of pathogenic and ARG load from CWs under low-flow hydraulic conditions.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
300
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|